必修.线面平行面面平行的经典道证明题

合集下载

线线、线面、面面平行练习题(含答案)

线线、线面、面面平行练习题(含答案)

DC A B B 1A1C 1直线、平面平行的判定及其性质 测试题A一、选择题1.下列条件中,能判断两个平面平行的是( ) A .一个平面内的一条直线平行于另一个平面; B .一个平面内的两条直线平行于另一个平面 C .一个平面内有无数条直线平行于另一个平面 D .一个平面内任何一条直线都平行于另一个平面2.E ,F ,G 分别是四面体ABCD 的棱BC ,CD ,DA 的中点,则此四面体中与过E ,F ,G 的截面平行的棱的条数是 A .0 B .1 C .2 D .3 3. 直线,a b c ,及平面αβ,,使//a b 成立的条件是( )A .//,a b αα⊂B .//,//a b ααC .//,//a c b cD .//,a b ααβ= 4.若直线m 不平行于平面α,且m ⊄α,则下列结论成立的是( ) A .α内的所有直线与m 异面 B .α内不存在与m 平行的直线 C .α内存在唯一的直线与m 平行 D .α内的直线与m 都相交 5.下列命题中,假命题的个数是( )① 一条直线平行于一个平面,这条直线就和这个平面内的任何直线不相交;② 过平面外一点有且只有一条直线和这个平面平行;③ 过直线外一点有且只有一个平面和这条直线平行;④ 平行于同一条直线的两条直线和同一平面平行;⑤ a 和b 异面,则经过b 存在唯一一个平面与α平行A .4B .3C .2D .1 6.已知空间四边形ABCD 中,,M N 分别是,AB CD 的中点,则下列判断正确的是( ) A .()12MN AC BD ≥+ B .()12MN AC BD ≤+C .()12MN AC BD =+ D .()12MN AC BD <+二、填空题7.在四面体ABCD 中,M ,N 分别是面△ACD ,△BCD 的重心,则四面体的四个面中与MN 平行的是________.8.如下图所示,四个正方体中,A ,B 为正方体的两个顶点,M ,N ,P分别为其所在棱的中点,能得到AB//面MNP 的图形的序号的是①②③④9.正方体ABCD -A 1B 1C 1D 1中,E 为DD 1中点,则BD 1和平面ACE 位置关系是 . 三、解答题10.如图,正三棱柱111C B A ABC -的底面边长是2,侧棱长是3,D 是AC 的中点.求证://1C B 平面BD A 1.11.如图,在平行六面体ABCD -A 1B 1C 1D 1中,E ,M ,N ,G 分别是AA 1,CD ,CB ,CC 1的中点, 求证:(1)MN //B 1D 1 ;(2)AC 1//平面EB 1D 1 ;(3)平面EB 1D 1//平面BDG .B一、选择题1.α,β是两个不重合的平面,a ,b 是两条不同直线,在下列条件下,可判定α∥β的是( )A .α,β都平行于直线a ,bB .α内有三个不共线点到β的距离相等C .a ,b 是α内两条直线,且a ∥β,b ∥βD .a ,b 是两条异面直线且a ∥α,b ∥α,a ∥β,b ∥β2.两条直线a ,b 满足a ∥b ,b α,则a 与平面α的关系是( )A .a ∥αB .a 与α相交C .a 与α不相交D .a α 3.设,a b 表示直线,,αβ表示平面,P 是空间一点,下面命题中正确的是( ) A .a α⊄,则//a α B .//a α,b α⊂,则//a bC .//,,a b αβαβ⊂⊂,则//a bD .,,//,//P a P a βααβ∈∈,则a β⊂ 4.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是( )A.异面B.相交C.平行D.不能确定 5.下列四个命题中,正确的是( )①夹在两条平行线间的平行线段相等;②夹在两条平行线间的相等线段平行;③如果一条直线和一个平面平行,那么夹在这条直线和平面间的平行线段相等;④如果一条直线和一个平面平行,那么夹在这条直线和平面间的相等线段平行 A .①③ B .①② C .②③ D .③④6.a ,b 是两条异面直线,A 是不在a ,b 上的点,则下列结论成立的是A .过A 有且只有一个平面平行于a ,bB .过A 至少有一个平面平行于a ,bC .过A 有无数个平面平行于a ,bD .过A 且平行a ,b 的平面可能不存在 二、填空题7.a ,b ,c为三条不重合的直线,α,β,γ为三个不重合的平面,直线均不在平面内,给出六个命题:.⇒⎭⎬⎫;⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫αγγαβαγβγαααβαβαγγ∥∥∥⑥∥∥∥⑤∥∥∥④∥∥∥③∥∥∥②∥∥∥①a a a c a c c c b a b a b a c b c a ;;;; 其中正确的命题是________________.(将正确的序号都填上)8.设平面α∥β,A ,C ∈α,B ,D ∈β,直线AB 与CD 交于S ,若AS =18,BS =9,CD =34,则CS =_____________.9.如图,正四棱柱ABCD-A 1B 1C 1D 1中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,DD 1,DC 中点,N 是BC 中点,点M 在四边形EFGH 及其内部运动,则M 满足 时,有MN ∥平面B 1BD D 1. 三、解答题10.如图,在正四棱锥P ABCD -中,PA AB a ==,点E在棱PC 上. 问点E 在何处时,//PA EBD 平面,并加以证明.11.如下图,设P 为长方形ABCD 所在平面外一点,M ,N 分别为AB ,PD 上的点,且MB AM =NPDN,求证:直线MN ∥平面PBC .EPDCBA参考答案A一、选择题 1.D【提示】当l =⋂βα时,α内有无数多条直线与交线l 平行,同时这些直线也与平面β平行.故A ,B ,C 均是错误的2.C【提示】棱AC ,BD 与平面EFG 平行,共2条. 3.C【提示】//,,a b αα⊂则//a b 或,a b 异面;所以A 错误;//,//,a b αα则//a b 或,a b 异面或,a b 相交,所以B 错误;//,,a b ααβ=则//a b 或,a b 异面,所以D 错误;//,//a c b c ,则//a b ,这是公理4,所以C 正确.4.B【提示】若直线m 不平行于平面α,且m ⊄α,则直线m 于平面α相交,α内不存在与m 平行的直线. 5.B【提示】②③④错误.②过平面外一点有且只有一个平面和这个平面平行,有无数多条直线与它平行.③过直线外一点有无数个平面和这条直线平行④平行于同一条直线的两条直线和同一平面平行或其中一条在平面上. 6. D【提示】本题可利用空间中的平行关系,构造三角形的两边之和大于第三边. 二、填空题7.平面ABC ,平面ABD【提示】连接AM 并延长,交CD 于E ,连结BN 并延长交CD 于F ,由重心性质可知,E 、F 重合为一点,且该点为CD 的中点E ,由MA EM =NB EN =21得MN ∥AB .因此,MN ∥平面ABC 且MN ∥平面ABD . 8. ①③【提示】对于①,面MNP//面AB,故AB//面MNP.对于③,MP//AB,故AB//面MNP,对于②④,过AB 找一个平面与平面MNP 相交,AB 与交线显然不平行,故②④不能推证AB//面MNP. 9.平行【提示】连接BD 交AC 于O ,连OE ,∴OE ∥B D 1,OEC 平面ACE ,∴B D 1∥平面ACE. 三、解答题10.证明:设1AB 与B A 1相交于点P ,连接PD ,则P 为1AB 中点,D 为AC 中点,∴PD//C B 1.又 PD ⊂平面B A 1D ,∴C B 1//平面B A 1 D11.证明:(1) M 、N 分别是CD 、CB 的中点,∴MN//BD又 BB 1//DD 1,∴四边形BB 1D 1D 是平行四边形.所以BD//B 1D 1.又MN//BD ,从而MN//B 1D 1(2)(法1)连A 1C 1,A 1C 1交B 1D 1与O 点四边形A 1B 1C 1D 1为平行四边形,则O 点是A 1C 1的中点 E 是AA 1的中点,∴EO 是∆AA 1C 1的中位线,EO//AC 1.AC 1⊄面EB 1D 1 ,EO ⊂面EB 1D 1,所以AC 1//面EB 1D 1 (法2)作BB 1中点为H 点,连接AH 、C 1H ,E 、H 点为AA 1、BB 1中点, 所以EH //C 1D 1,则四边形EHC 1D 1是平行四边形,所以ED 1//HC 1 又因为EA //B 1H ,则四边形EAHB 1是平行四边形,所以EB 1//AHAH ⋂HC 1=H ,∴面AHC 1//面EB 1D 1.而AC 1⊂面AHC 1,所以AC 1//面EB 1D 1(3)因为EA //B 1H ,则四边形EAHB 1是平行四边形,所以EB 1//AH 因为AD //HG ,则四边形ADGH 是平行四边形,所以DG//AH ,所以EB 1//DG 又 BB 1//DD 1,∴四边形BB 1D 1D 是平行四边形. 所以BD//B 1D 1.BD ⋂DG=G ,∴面EB 1D 1//面BDGB一、选择题1.D【提示】A 错,若a ∥b ,则不能断定α∥β;B 错,若A ,B ,C 三点不在β的同一侧,则不能断定α∥β;C 错,若a ∥b ,则不能断定α∥β;D 正确. 2.C【提示】若直线a ,b 满足a ∥b ,b α,则a ∥α 或a α 3.D【提示】根据面面平行的性质定理可推证之. 4.C【提示】设α∩β=l ,a ∥α,a ∥β,过直线a 作与α、β都相交的平面γ,记α∩γ=b ,β∩γ=c ,则a ∥b 且a ∥c ,∴b ∥c .又b ⊂α,α∩β=l ,∴b ∥l .∴a ∥l . 5.A 【提示】 6. D【提示】过点A 可作直线a ′∥a ,b ′∥b ,则a ′∩b ′=A ,∴a ′,b ′可确定一个平面,记为α.如果a ⊄α,b ⊄α,则a ∥α,b ∥α.由于平面α可能过直线a 、b 之一,因此,过A 且平行于a 、b 的平面可能不存在. 二、填空题 7.①④⑤⑥ 8.68或368 【提示】如图(1),由α∥β可知BD ∥AC ,∴SA SB =SC SD ,即189=SCSC 34-,∴SC =68. SS AABBCCα α ββ(1)(2)DD如图(2),由α∥β知AC ∥BD ,∴SB SA =SD SC =SC CD SC -,即918=SCSC -34. ∴SC =368.9.M ∈HF【提示】易证平面NHF ∥平面BD D 1 B 1,M 为两平面的公共点,应在交线HF 上. 三、解答题 10.解:当E 为PC 中点时,//PA EBD 平面.证明:连接AC ,且AC BD O =,由于四边形ABCD 为正方形,∴O 为AC 的中点,又E 为中点,∴OE 为△ACP 的中位线,∴//PA EO ,又PA EBD ⊄平面,∴//PA EBD 平面. 11.证法一:过N 作NR ∥DC 交PC 于点R ,连接RB ,依题意得NR NR DC -=NP DN =MB AM =MB MB AB -=MBMBDC -⇒NR =MB .∵NR ∥DC ∥AB ,∴四边形MNRB 是平行四边形.∴MN ∥RB .又∵RB 平面PBC ,∴直线MN ∥平面PBC .证法二:过N 作NQ ∥AD 交P A 于点Q ,连接QM ,∵MB AM =NP DN =QPAQ,∴QM ∥PB .又NQ ∥AD ∥BC ,∴平面MQN ∥平面PBC .∴直线MN ∥平面PBC .OF ABCDP E。

直线与平面平行经典题目

直线与平面平行经典题目

9.2 直线与平面平行●知识梳理1.直线与平面的位置关系有且只有三种,即直线与平面平行、直线与平面相交、直线在平面内.2.直线与平面平行的判定:如果平面外的一条直线与平面内的一条直线平行,那么这条直线与这个平面平行.3.直线与平面平行的性质:如果一条直线与一个平面平行,经过这条直线的平面与已知平面相交,那么这条直线与交线平行.●点击双基1.设有平面α、β和直线m 、n ,则m ∥α的一个充分条件是 A.α⊥β且m ⊥β B.α∩β=n 且m ∥n C.m ∥n 且n ∥α D.α∥β且m β 答案:D2.设m 、n 是两条不同的直线,α、β、γ是三个不同的平面.给出下列四个命题,其中正确命题的序号是①若m ⊥α,n ∥α,则m ⊥n ②若α∥β,β∥γ,m ⊥α,则m ⊥γ ③若m ∥α,n ∥α,则m ∥n ④若α⊥γ,β⊥γ,则α∥β A.①② B.②③ C.③④ D.①④解析:①②显然正确.③中m 与n 可能相交或异面.④考虑长方体的顶点,α与β可以相交. 答案:A3.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是 A.异面 B.相交 C.平行 D.不能确定 解析:设α∩β=l ,a ∥α,a ∥β, 过直线a 作与α、β都相交的平面γ, 记α∩γ=b ,β∩γ=c , 则a ∥b 且a ∥c , ∴b ∥c .又b ⊂α,α∩β=l ,∴b ∥l .∴a ∥l .答案:C4.(06重庆卷)对于任意的直线l 与平同a ,在平面a 内必有直线m ,使m 与l A.平行 B.相交 C.垂直 D.互为异面直线解析:对于任意的直线l 与平面α,若l 在平面α内,则存在直线m ⊥l ;若l 不在平面α内,且l ⊥α,则平面α内任意一条直线都垂直于l ,若l 不在平面α内,且l 于α不垂直,则它的射影在平面α内为一条直线,在平面α内必有直线m 垂直于它的射影,则m 与l 垂直, 综上所述,选C.5.已知平面βα,和直线,给出条件:①α//m ;②α⊥m ;③α⊂m ;④βα⊥;⑤βα//. (i )当满足条件 ③⑤ 时,有β//m ;(ii )当满足条件 ②⑤ 时,有β⊥m .(填所选条件的序号)●典例剖析【例1】 如下图,两个全等的正方形ABCD 和ABEF 所在平面相交于AB ,M ∈AC ,N ∈FB 且AM =FN ,求证:MN ∥平面BCE .QB CDMP FE N证法一:过M 作MP ⊥BC ,NQ ⊥BE ,P 、Q 为垂足(如上图),连结PQ . ∵MP ∥AB ,NQ ∥AB ,∴MP ∥NQ .又NQ =22 BN =22CM =MP ,∴MPQN 是平行四边形. ∴MN ∥PQ ,PQ ⊂平面BCE .而MN ⊄平面BCE ,∴MN ∥平面BCE . 证法二:过M 作MG ∥BC ,交AB 于点G (如下图),连结NG .GBCDM FE N∵MG ∥BC ,BC ⊂平面BCE ,MG ⊄平面BCE ,∴MG ∥平面BCE .又GA BG =MA CM =NFBN,∴GN ∥AF ∥BE ,同样可证明GN ∥平面BCE . 又面MG ∩NG =G ,∴平面MNG ∥平面BCE .又MN ⊂平面MNG .∴MN ∥平面BCE . 特别提示证明直线和平面的平行通常采用如下两种方法:①利用直线和平面平行的判定定理,通过“线线”平行,证得“线面”平行;②利用两平面平行的性质定理,通过“面面”平行,证得“线面”平行.【例2】 已知正四棱锥P —ABCD 的底面边长及侧棱长均为13,M 、N 分别是PA 、BD 上的点,且PM ∶MA =BN ∶ND =5∶8.BD E OMNP(1)求证:直线MN ∥平面PBC ;(2)求直线MN 与平面ABCD 所成的角. (1)证明:∵P —ABCD 是正四棱锥,∴ABCD 是正方形.连结AN 并延长交BC 于点E ,连结PE . ∵AD ∥BC ,∴EN ∶AN =BN ∶ND . 又∵BN ∶ND =PM ∶MA ,∴EN ∶AN =PM ∶MA . ∴MN ∥PE .又∵PE 在平面PBC 内,∴MN ∥平面PBC .(2)解:由(1)知MN ∥PE ,∴MN 与平面ABCD 所成的角就是PE 与平面ABCD 所成的角. 设点P 在底面ABCD 上的射影为O ,连结OE ,则∠PEO 为PE 与平面ABCD 所成的角. 由正棱锥的性质知PO =22OB PB -=2213. 由(1)知,BE ∶AD =BN ∶ND =5∶8, ∴BE =865. 在△PEB 中,∠PBE =60°,PB =13,BE =865, 根据余弦定理,得PE =891. 在Rt △POE 中,PO =2213,PE =891,∴sin ∠PEO =PEPO =724.故MN 与平面ABCD 所成的角为arcsin 724.【例3】如图, 在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AA 1=4,点D 是AB 的中点,(I )求证:AC ⊥BC 1; (II )求证:AC 1//平面CDB 1; (III )求异面直线 AC 1与 B 1C 所成角的余弦值.解析:(I )直三棱柱ABC -A 1B 1C 1,底面三边长AC=3,BC=4,AB=5,∴ AC ⊥BC ,且BC 1在平面ABC 内的射影为BC ,∴ AC ⊥BC 1;(II )设CB 1与C 1B 的交点为E ,连结DE ,∵ D 是AB 的中点, E 是BC 1的中点,∴ DE//AC 1, ∵ DE ⊂平面CDB 1,AC 1⊄平面CDB 1, ∴ AC 1//平面CDB 1;(III )∵ DE//AC 1,∴ ∠CED 为AC 1与B 1C 所成的角,在△CED 中, ED=21AC 1=25,CD=21AB=25,CE=21CB 1=22, ∴ 8cos 5522CED∠==⋅, ∴ 异面直线AC 1与 B 1C 所成角的余弦值5. ●闯关训练夯实基础1. (07福建理)已知m 、n 为两条不同的直线,为两个不同的平面,则下列命题中正确的是A. m n m ,,α⊂α⊂∥β,n ∥β⇒ α∥βB. α∥β,α⊂α⊂n m ,,⇒m ∥nC. m ⊥α,m ⊥n ⇒n ∥α D . n ∥m,n ⊥α⇒m ⊥α解析:A 中m 、n 少相交条件,不正确;B 中分别在两个平行平面的两条直线不一定平行,不正确;C 中n 可以在α内,不正确,选D2.(06福建卷)对于平面α和共面的直线m 、n ,下列命题中真命题是 A.若m ⊥α,m ⊥n ,则n ∥α B.若m ∥α,n ∥α,则m ∥nC.若m ⊂α,n ∥α,则m ∥nD.若m 、n 与α所成的角相等,则n ∥m 解:对于平面α和共面的直线m 、,n 真命题是“若,m n αα⊂∥,则m ∥n ”, 选C. 3.(06湖南卷)过平行六面体ABCD-A 1B 1C 1D 1任意两条棱的 中点 作直线,其中与平面DBB 1D 1平行的直线共有 ( ) A. 4条 B.6条 C.8条 D.12条解:如图,过平行六面体1111D C B A ABCD -任意两条棱的中点作直线, 其中与平面11D DBB 平行的直线共有12条,选D.4.(06重庆卷)若P 是平面α外一点,则下列命题正确的是A.过P 只能作一条直线与平面α相交B.过P 可作无数条直线与平面α垂直C.过P 只能作一条直线与平面α平行D.过P 可作无数条直线与平面α平行 解析:过平面外一点有且只有一个平面与已知平面平行, 且这个平面内的任一条直线都与已知平面平行。

人教A版必修二立体几何 直线、平面平行的判定及其性质——解答题篇常规运用

人教A版必修二立体几何 直线、平面平行的判定及其性质——解答题篇常规运用

一、直线与平面平行1.判定定理2(1)证线面平行①若a∥α,a∥b,b⊄α,则b∥α.②若a∥α,α∥β,a⊄β,则a∥β.(2)线面平行的性质①若a∥α,a∥β,α∩β=b,则a∥b.②若a∥α,a⊥β,则α⊥β.二、平面与平面平行1.判定定理2平面与平面平行的几个性质(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面. (2)夹在两个平行平面之间的平行线段长度相等. (3)经过平面外一点有且只有一个平面与已知平面平行. (4)两条直线被三个平行平面所截,截得的对应线段成比例. (5)如果两个平面分别平行于第三个平面,那么这两个平面互相平行.(6)如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行.一、直线与平面平行的判定1.(2015·海淀模拟)如图,在四棱锥P -ABCD 中,底面ABCD 是菱形,P A =PB ,且侧面P AB ⊥平面ABCD ,点E 是棱AB 的中点.(1)求证:CD ∥平面P AB ;【证明】(1)因为底面ABCD 是菱形,所以CD ∥AB .又因为CD ⊄平面P AB ,AB ⊂平面P AB ,所以CD ∥平面P AB .2.(2015·南京检测)如图,在正三棱锥ABC -A 1B 1C 1中,E ,F 分别为BB 1,AC 的中点.(1)求证:BF ∥平面A 1EC ;【证明】(1)连接AC 1交A 1C 于点O ,连接OE ,OF ,在正三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1为平行四边形,所以OA =OC 1. 又因为F 为AC 中点,所以OF ∥CC 1且OF =12CC 1.因为E 为BB 1中点,所以BE ∥CC 1且BE =12CC 1.所以BE ∥OF 且BE =OF ,所以四边形BEOF 是平行四边形,所以BF ∥OE . 又BF ⊄平面A 1EC ,OE ⊂平面A 1EC , 所以BF ∥平面A 1EC .3.(2014·安徽高考)如图,四棱锥P-ABCD的底面是边长为8的正方形,四条侧棱长均为217 .点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.(1)证明:GH∥EF;【证明】(1)因为BC∥平面GEFH,BC⊂平面PBC,且平面PBC∩平面GEFH=GH,所以GH∥BC.同理可证EF∥BC,因此GH∥EF.三、平面与平面平行的判定4.在正方体ABCD-A1B1C1D1中,M,N,P分别是C1C,B1C1,C1D1的中点,求证:平面PMN∥平面A1BD.D1,B1C.∵P,N分别是D1C1,B1C1的中点,【证明】如图,连接B∴PN∥B1D1.又B1D1∥BD,∴PN∥BD.又PN⊄平面A1BD,BD⊂平面A1BD;∴PN∥平面A1BD.同理MN∥平面A1BD,又PN∩MN=N,∴平面PMN∥平面A1BD.5.(2015·西城模拟)如图,在多面体ABCDEF中,底面ABCD是边长为2的正方形,四边形BDEF是矩形,BF=3,G和H分别是CE和CF的中点.(2)求证:平面BDGH∥平面AEF;【证明】(2)在△CEF中,因为G,H分别是CE,CF的中点,所以GH∥EF,又因为GH⊄平面AEF,EF⊂平面AEF,所以GH∥平面AEF.设AC∩BD=O,连接OH,在△ACF中,因为OA=OC,CH=HF,所以OH∥AF,又因为OH⊄平面AEF,AF⊂平面AEF,所以OH∥平面AEF.又因为OH∩GH=H,OH,GH⊂平面BDGH,所以平面BDGH∥平面AEF.6.(2015·南通模拟)如图所示,斜三棱柱ABC -A 1B 1C 1中,D ,D 1分别为AC ,A 1C 1上的点且平面BC 1D ∥平面AB 1D 1,试求ADDC的值【解】由平面BC 1D ∥平面AB 1D 1,且平面A 1BC 1∩平面BC 1D =BC 1,平面A 1BC 1∩平面AB 1D 1=D 1O得BC 1∥D 1O ,∴A 1D 1D 1C 1=A 1OOB. 又A 1D 1D 1C 1=DC AD ,A 1OOB =1, ∴DC AD =1即ADDC=1.[思想方法]1.对线面平行,面面平行的认识一般按照“定义—判定定理—性质定理—应用”的顺序.其中定义中的条件和结论是相互充要的,它既可以作为判定线面平行和面面平行的方法,又可以作为线面平行和面面平行的性质来应用.2.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,其转化关系为在应用性质定理时,其顺序恰好相反,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.[易错防范]1.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.2.线面平行关系证明的难点在于辅助面和辅助线的添加,在添加辅助线、辅助面时一定要以某一性质定理为依据,绝不能主观臆断.3.解题时注意符号语言的规范应用.(2015·南通模拟)如图所示,斜三棱柱ABC-A1B1C1中,点D,D1分别为AC,A1C1上的中点.(1)证明AD1∥平面BDC1.(2)证明BD∥平面AB1D1.【证明】(1)∵D1,D分别为A1C1与AC的中点,四边形ACC1A1为平行四边形,∴C1D1∥DA,且C1D1=DA;∴四边形ADC1D1为平行四边形,∴AD1∥C1D,又AD1⊄平面BDC1,C1D⊂平面BDC1,∴AD1∥平面BDC1.(2)连接D1D,∵BB1∥平面ACC1A1,BB1⊂平面BB1D1D,平面ACC1A1∩平面BB1D1D=D1D,∴BB1∥D1D,又D1,D分别为A1C1AC中点,∴BB1=DD1,故四边形BDD1B1为平行四边形,∴BD∥B1D1,又BD⊄平面AB1D1,B1D1⊂平面AB1D1∴BD∥平面AB1D1.1.(2012·北京高考)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;【证明】(1)因为D,E分别为AC,AB的中点,所以DE∥BC.又因为DE⊄平面A1CB,BC⊂平面A1CB所以DE∥平面A1CB.2.如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB =AA1=2.(1)证明:平面A1BD∥平面CD1B1;【证明】(1)由题设知,BB1∥DD1,且BB1=DD1;∴四边形BB1D1D是平行四边形,∴BD∥B1D1.又BD⊄平面CD1B1,B1D1⊂平面CD1B1,∴BD∥平面CD1B1.∵A1D1∥B1C1∥BC,且A1D1=B1C1=BC;∴四边形A1BCD1是平行四边形,∴A1B∥D1C.又A1B⊄平面CD1B1,D1C⊂平面CD1B1∴A1B∥平面CD1B1.又∵BD∩A1B=B,BD、A1B⊂平面A1BD∴平面A1BD∥平面CD1B1.3.如图,ABCD与ADEF均为平行四边形,M,N,G分别是AB,AD,EF的中点.(1)求证:BE∥平面DMF;(2)求证:平面BDE∥平面MNG.【证明】(1)连接AE,则AE必过DF与GN的交点O,连接MO,则MO为△ABE的中位线,所以BE∥MO,又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN,又DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.又M为AB的中点,所以MN为△ABD的中位线,所以BD∥MN,又MN⊂平面MNG,BD⊄平面MNG,所以BD∥平面MNG,又DE,BD⊂平面BDE,DE∩BD=D,所以平面BDE∥平面MNG.4.(2014·长沙模拟)一个多面体的直观图及三视图如图所示(其中M ,N 分别是AF ,BC 的中点).(1)求证:MN ∥平面CDEF ;【证明】(1)由三视图可知:AB =BC =BF =2,DE =CF =22,∠CBF =π2.取BF 的中点G ,连接MG ,NG ,由M ,N 分别为AF ,BC 的中点, 得NG ∥CF ,MG ∥AB ∥EF ,又NG ⊄平面CDEF ,CF ⊂平面CDEF ;∴NG ∥平面CDEF ;同理MG ∥平面CDEF ; 又NG ∩MG =G ,NG 、MG ⊂平面MNG ∴平面MNG ∥平面CDEF , 又MN ⊂平面MNG , ∴MN ∥平面CDEF .5.(2014·四川高考)在如图所示的多面体中,四边形ABB 1A 1和ACC 1A 1都为矩形.(2)设D ,E 分别是线段BC ,CC 1的中点,在线段AB 上是否存在一点M ,使直线DE ∥平面A 1MC ?请证明你的结论.【证明】(2)取线段AB 的中点M ,连接A 1M ,MC ,A 1C ,AC 1,设O 为A 1C ,AC 1的交点.由已知,O 为AC 1的中点. 连接MD ,OE ,则MD ,OE 分别为△ABC ,△ACC 1的中位线,所以,MD ∥AC ,且MD =12AC ;OE ∥AC ,且OE =12AC ;因此MD ∥OE ,且MD =OE ;连接OM ,从而四边形MDEO 为平行四边形,则DE ∥MO . 因为直线DE ⊄平面A 1MC ,MO ⊂平面A 1MC , 所以直线DE ∥平面A 1MC .即线段AB 上存在一点M (线段AB 的中点),使直线DE ∥平面A 1MC .1.(2014·江苏高考)如图,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A=6,BC=8,DF=5.求证:(1)直线P A∥平面DEF;【证明】(1)因为D,E分别为棱PC,AC的中点,所以DE∥P A.又因为P A⊄平面DEF,DE⊂平面DEF,所以直线P A∥平面DEF.2.(2015·江苏卷)如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;【证明】(1)由题意知,E为B1C的中点,又D为AB1的中点,因此DE∥AC.(三角形的中位线)又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C.(直线与平面的平行的判定定理)3.如图,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=2,AA′=1,点M,N分别为A′B和B′C′的中点.(1)证明:MN∥平面A′ACC′;【证明】(1)连接AB′,AC′,如图,由已知∠BAC=90°,AB=AC,三棱柱ABC-A′B′C′为直三棱柱,所以M为AB′中点.又因为N为B′C′的中点,所以MN∥AC′又MN⊄平面A′ACC′,AC′⊂平面A′ACC′因此MN∥平面A′ACC′.4.如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(2)求证:C1F∥平面ABE;【证明】(2)取AB 中点G ,连接EG ,FG .因为E ,F 分别为是A 1C 1,BC 的中点, 所以FG ∥AC ,且FG =12AC .因为AC ∥A 1C 1,且AC =A 1C 1, 所以FG ∥EC 1,且FG =EC 1. 所以四边形FGEC 1为平行四边形. 所以C 1F ∥EG .又因为EG ⊂平面ABE ,C 1F ⊄平面ABE , 所以C 1F ∥平面ABE .5.(2014·山东高考)如图,四棱锥P -ABCD 中, AP ⊥平面PCD ,AD ∥BC ,AB =BC =12AD ,E ,F 分别为线段AD ,PC 的中点.(1)求证:AP ∥平面BEF ;【证明】(1)设AC ∩BE =O ,连接OF ,EC .由于E 为AD 的中点,AB =BC =12AD ,AD ∥BC ,所以AE ∥BC ,AE =AB =BC , 因此四边形ABCE 为菱形, 所以O 为AC 的中点. 又F 为PC 的中点,因此在△P AC 中,可得AP ∥OF . 又OF ⊂平面BEF ,AP ⊄平面BEF . 所以AP ∥平面BEF .6.如图,已知四棱锥P -ABCD ,底面ABCD 是等腰梯形,且AB ∥CD ,O 是AB 中点,PO =CD =DA =12AB =4,M 是P A 中点.(1)证明:平面PBC ∥平面ODM ;【证明】(1)由题意,CD ∥BO ,CD =BO ,∴四边形OBCD 为平行四边形,∴BC ∥OD . 又∵AO =OB ,AM =MP ,∴OM ∥PB . 又OM ⊄平面PBC ,PB ⊂平面PBC , ∴OM ∥平面PBC .同理,OD ∥平面PBC ,又OM ∩OD =O , ∴平面PBC ∥平面ODM .7.如图所示,已知六棱锥P-ABCDEF的底面是正六边形,AB=2,P A=22,M是P A的中点.(1)求证:平面PCD∥平面MBE;【证明】(1)连接AD交BE于点G,连接MG,则点G是正六边形的中心,所以G是线段AD的中点.因为M是P A的中点,所以MG∥PD.因为PD⊄平面MBE,MG⊂平面MBE,所以PD∥平面MBE.因为DC∥BE,DC⊄平面MBE,BE⊂平面MBE,所以DC∥平面MBE.因为PD∩DC=D,所以平面PCD∥平面MBE.8.如图所示,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E,F,G分别是BC,DC,SC的中点,求证:(1)直线EG∥平面BDD1B1;(2)平面EFG∥平面BDD1B1.【证明】(1)如图所示,连接SB,∵E,G分别是BC,SC的中点,∴EG∥SB.又∵SB⊂平面BDD1B1,EG⊄平面BDD1B1,∴直线EG∥平面BDD1B1.(2)连接SD,∵F,G分别是DC,SC的中点,∴FG∥SD.又∵SD⊂平面BDD1B1,FG⊄平面BDD1B1,∴FG∥平面BDD1B1,且EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,∴平面EFG∥平面BDD1B1.9.如图,正方体ABCD-A1B1C1D1中,E、F、G、M、N分别是B1C1、A1D1、A1B1、BD、B1C的中点,求证:(1)MN ∥平面CDD 1C 1;(2)平面EBD ∥平面FGA .【证明】(1)连接BC 1,DC 1,∵四边形BCC 1B 1为正方形,N 为B 1C 的中点,∴N 在BC 1上,且N 为BC 1的中点.又∵M 为BD 的中点,∴MN ∥DC 1,且MN =12DC 1;又MN ⊄平面CDD 1C 1,DC 1⊂平面CDD 1C 1,∴MN ∥平面CDD 1C 1.(2)连接EF ,B 1D 1,则EF ∥AB ,EF =12AB ;∴四边形ABEF 为平行四边形,∴AF ∥BE .又易知FG ∥B 1D 1,B 1D 1∥BD ,∴FG ∥BD .又AF ⊄平面EBD ,BE ⊂平面EBD ,∴AF ∥平面EBD ,同理FG ∥平面EBD又∵AF ∩FG =F ,AF 、FG ⊂平面FGA∴平面EBD ∥平面FGA .10.如图所示,四边形EFGH 所在平面为三棱锥A -BCD 的一个截面,四边形EFGH 为平行四边形.(1)求证:AB ∥平面EFGH ,CD ∥平面EFGH .(2)若AB =4,CD =6,求四边形EFGH 周长的取值范围.【证明】(1)∵四边形EFGH 为平行四边形,∴EF ∥GH .∵HG ⊂平面ABD ,EF ⊄平面ABD ,∴EF ∥平面ABD .∵EF ⊂平面ABC ,平面ABD ∩平面ABC =AB ,∴EF ∥AB ,∵EF ⊂平面EFGH ,AB ⊄平面EFGH ,∴AB ∥平面EFGH .同理可得CD ∥平面EFGH .【解析】(2)设EF =x (0<x <4),四边形EFGH 的周长为l .由(1)知EF ∥AB ,则CF CB =x 4又由(1)同理可得CD ∥FG ,则FG CD =BF CB∴FG 6=BF CB =BF -CF CB =1-x 4,从而FG =6-32x , ∴四边形EFGH 的周长l =2(x +6-32x )=12-x . 又0<x <4,∴8<l <12,即四边形EFGH 周长的取值范围为(8,12).1.如图所示,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,点M 在AD 1上移动,点N 在BD 上移动,D 1M =DN =a (0<a <2),连接MN .(1)证明:对任意a ∈(0,2),总有MN ∥平面DCC 1D 1;(2)当a 为何值时,MN 的长最小?【证明】(1)作MP ∥AD ,交DD 1于P ,作NQ ∥BC ,交DC 于Q ,连接PQ ;由题意得MP ∥NQ ,且MP =NQ ,则四边形MNQP 为平行四边形.∴MN ∥PQ .又PQ ⊂平面DCC 1D 1,MN 平面DCC 1D 1, ∴MN ∥平面DCC 1D 1.(2)由(1)知四边形MNQP 为平行四边形,∴MN =PQ , 由已知D 1M =DN =a ,DD 1=AD =DC =1, ∴AD 1=BD =2,∴D 1P ∶1=a ∶2,DQ ∶1=a ∶2,即D 1P =DQ =a 2. ∴MN =PQ =(1-D 1P )2+DQ 2=(1-a 2)2+( a 2)2=(a -22)2+12(0<a <2), 故当a =22时,MN 的长有最小值22. 即当M 、N 分别移动到AD 1,BD 的中点时,MN 的长最小,此时MN 的长为22.。

立体几何文科经典题证明线面平行精选题

立体几何文科经典题证明线面平行精选题

线面平行一“线线平行”与“线面平行”的转化问题(一)中位线法:当直线上没有中点,平面内有一个中点的时候,(如例1求证://PB 平面AEC P 、B 为顶点,平面AEC 内E 为中点)采用中位线法。

具体做法:如例1,平面AEC 的三个顶点,除中点E 外,取AC 的中点O ,连接EO ,再确定由直线PB 和中点E 、O 、D 确定的∆PBD (连接∆PBD 的第三边BD ),在∆PBD 中,EO 为PB 的中位线。

规范写法:ααα//,,,//b b a b a ∴⊂⊄例1如图,在底面为平行四边形的四棱锥P ABCD -中,点E 是PD 的中点. 求证://PB 平面AEC ;例2三棱柱111ABC A B C -中,D 为AB 边 中点。

求证:1AC ∥平面1CDB ;【习题巩固一】1.(2011天津文)如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,O 为AC 中点M 为PD 中点.(Ⅰ)证明:PB ACMDCAPMO11) 证明:a bαC 1B 1A 1D CBABC12011四川文)如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=1,延长A1C1至点P,使C1P=A1C1,连接AP交棱CC1于D.(Ⅰ)求证:PB1∥平面BDA1;(二)平行四边形法:当直线上有一个中点(如例1证明:FO CDE∆∆ααα//,,,//,,//EHFGEHFGEHEFGHGHEFGHEF∴⊂⊄∴∴=是平行四边形ABCDEF O ABCD CDE//1 2EF BC=FO CDE P ABCD-//AB DC M PA//DM PBC面Ⅰ)证明:EF∥平面PAD;(II)若H是AD的中点,证明:EA∥平面PHC;【习题巩固二】1.【2010·北京文数】如图,正方形ABCD和四边形ACEF所在的平面互相垂直.EF 22013年高考山东卷(文))如图,四棱锥P ABCD-中,,2AB CD AB CD =∥,E 为 PB 的中点(Ⅰ)求证:CE PAD ∥平面;3.(2012广东)如图5所示,在四棱锥P ABCD -中,AB ⊥平面PAD ,//,AB CD PD AD =,E 是PB 中点,F 是DC 上的点,且12DF AB =,PH 为PAD ∆中AD 边上的高。

(完整版)线线、线面、面面平行练习题(含答案)

(完整版)线线、线面、面面平行练习题(含答案)

直线、平面平行的判断及其性质测试题A一、选择题1.以下条件中 ,能判断两个平面平行的是 ( )A .一个平面内的一条直线平行于另一个平面 ;B .一个平面内的两条直线平行于另一个平面C .一个平面内有无数条直线平行于另一个平面D .一个平面内任何一条直线都平行于另一个平面2. E ,F , G 分别是四周体 ABCD 的棱 BC , CD , DA 的中点,则此四周体中与过E ,F ,G 的截面平行的棱的条数是A .0B .1C . 2D . 3 3. 直线 a , b, c 及平面,,使 a // b 建立的条件是()A . a // , bB . a // , b //C . a // c ,b // cD . a // , Ib4.若直线 m 不平行于平面,且 m ,则以下结论建立的是()A . 内的全部直线与 m 异面B . 内不存在与 m 平行的直线C . 内存在独一的直线与m 平行D .内的直线与 m 都订交5.以下命题中,假命题的个数是( )① 一条直线平行于一个平面,这条直线就和这个平面内的任何直线不订交;② 过平面外一点有且只有一条直线和这个平面平行; ③ 过直线外一点有且只有一个平面和这条直线平行;④平行于同一条直线的两条直线和同一平面平行;⑤a 和 b异面,则经过 b 存在独一一个平面与平行A . 4B . 3C . 2D . 16.已知空间四边形 ABCD中, M, N 分别是 AB,CD 的中点,则以下判断正确的选项是( )A .MN1 AC BD B . MN 1 AC BD22C .MN1 AC BDD.MN1ACBD22二、填空题7.在四周体 ABCD 中, M , N 分别是面 △ ACD ,△ BCD 的重心,则 四周体的四个面中与 MN 平行的是 ________.8.以以下图所示,四个正方体中, A ,B 为正方体的两个极点,M ,N ,P分别为其所在棱的中点,能获得 AB// 面 MNP 的图形的序号的是①② ③ ④9.正方体 ABCD -A 1B 1C 1D 1 中,E 为 DD 1 中点,则 BD 1 和平面 ACE 地点关系是 .三、解答题10.如图,正三棱柱 ABCA 1B 1C 1 的底面边长是 2,侧棱长是3,D 是 AC 的中点 .求证: B 1C // 平面 A 1 BD .C 1A 1B 1CDAB11.如图,在平行六面体 ABCD -A B C D中, E ,M ,N ,G 分别是 AA , CD , CB ,1 11 11CC 的中点,求证:( 1)MN//B D1;( 2)AC //平面 EB D 1;(3)平面 EB D //平面11111 1BDG .1B一、选择题1.,β是两个不重合的平面,a,b 是两条不一样直线,在以下条件下,可判断∥β的是()A .,β都平行于直线a, bB .内有三个不共线点到β的距离相等C. a, b 是内两条直线,且a∥ β, b∥ βD . a, b 是两条异面直线且a∥,b∥,a∥ β,b∥β2.两条直线a, b 知足 a∥ b, b,则a与平面的关系是()A . a∥B. a 与订交C. a 与不订交D. a3.设a, b表示直线,,表示平面,P是空间一点,下边命题中正确的选项是()A .a,则a //B. a // , b,则 a // bC .// , a, b,则 a // bD .P a, P, a // , // ,则 a4.一条直线若同时平行于两个订交平面,那么这条直线与这两个平面的交线的地点关系是()A. 异面B. 订交C.平行D. 不可以确立5.以下四个命题中,正确的选项是()①夹在两条平行线间的平行线段相等;②夹在两条平行线间的相等线段平行;③假如一条直线和一个平面平行,那么夹在这条直线和平面间的平行线段相等;④假如一条直线和一个平面平行,那么夹在这条直线和平面间的相等线段平行A .①③B.①②C.②③ D .③④6. a,b 是两条异面直线, A 是不在 a, b 上的点,则以下结论建立的是A .过 A 有且只有一个平面平行于a, bB .过 A 起码有一个平面平行于a, bC.过A有无数个平面平行于a,bD.过A 且平行,的平面可能不存在a b二、填空题7. a,b,c为三条不重合的直线,α,β,γ为三个不重合的平面,直线均不在平面内,给出六个命题:①a∥c a ∥ b;②a∥∥c∥ ;a ∥ b; ③b∥ c b∥∥ c④∥ ca∥ ;⑤∥∥a ∥∥∥ ⑥a∥ c a∥此中正确的命题是 ________________.(将正确的序号都填上)8.设平面∥ β,A,C∈, B, D ∈β,直线 AB 与 CD 交于 S,若 AS=18 , BS=9 ,CD=34 ,则 CS=_____________.9.如图,正四棱柱 ABCD-A B C D中, E,F, G,H 分1111别是棱 CC1,C1D 1,DD 1,DC 中点, N 是 BC 中点,点 M在四边形 EFGH 及其内部运动,则M 知足时,有 MN∥平面 B1BD D 1.三、解答题10.如图,在正四棱锥P ABCD 中, PA AB a ,点E在棱 PC 上.问点 E 在哪处时,PA //平面EBD,并加以证明 .PED CA B11.以以下图,设P 为长方形ABCD 所在平面外一点,M, N 分别为 AB, PD 上的点,且AM=DN,求证:直线 MN ∥平面 PBC.MB NP2参照答案A一、选择题1. D【提示】当l 时,内有无数多条直线与交线l 平行,同时这些直线也与平面平行 . 故 A , B , C 均是错误的2. C【提示】棱 AC ,BD 与平面 EFG 平行,共 2 条 .3. C【提示】 a // , b, 则 a // b 或 a, b 异面;所以 A 错误;a // , b // , 则 a // b 或 a,b异面或 a,b 订交,所以 B 错误; a //, Ib, 则 a // b 或 a, b 异面,所以 D 错误;a // c,b //c ,则 a // b ,这是公义 4,所以 C 正确 .4. B【提示】若直线 m 不平行于平面 ,且 m,则直线 m 于平面订交,内不存在与 m 平行的直线 .5. B【提示】②③④错误 .②过平面外一点有且只有一个平面和这个平面平行,有无数多条直线与它平行 .③过直线外一点有无数个平面和这条直线平行④平行于同一条直线的两条直线和同一平面平行或此中一条在平面上 .6. D【提示】此题可利用空间中的平行关系,结构三角形的两边之和大于第三边 .二、填空题7.平面 ABC ,平面 ABD【提示】连结 AM 并延伸,交 CD 于 E ,连结 BN 并延伸交 CD 于 F ,由重心性质可知, E 、 F 重合为一点,且该点为 CD 的中点 E ,由EM =EN = 1得 MN ∥AB.所以,MA NB 2MN ∥平面 ABC 且 MN ∥平面 ABD .8. ①③【提示】关于①,面 MNP// 面 AB, 故 AB// 面 MNP.关于③, MP//AB, 故 AB// 面 MNP, 关于②④,过 AB 找一个平面与平面 MNP 订交, AB 与交线明显不平行,故②④不可以推证 AB// 面 MNP.9.平行【提示】连结 BD 交 AC 于 O ,连 OE ,∴ OE ∥ B D 1 ,OEC 平面 ACE ,∴ B D 1 ∥平面 ACE.三、解答题10.证明 :设 AB 1 与 A 1B 订交于点 P ,连结 PD ,则 P 为 AB 1 中点,D 为 AC 中点,PD// B 1C .又PD平面 A 1B D , B 1C //平面 A 1B D11.证明 :( 1) M 、N 分别是 CD 、 CB 的中点,MN//BD又 BB 1 // DD 1, 四边形 BB 1D 1D 是平行四边形 .所以 BD//B 1D 1 .又 MN//BD ,进而 MN//B 1D 1( 2)(法 1)连 A 1C 1,A 1C 1 交 B 1D 1 与 O 点四边形 A 1B 1C 1D 1 为平行四边形,则O 点是 A 1C 1 的中点E 是AA1 的中点,EO 是 AA C 的中位线, EO//AC .111AC 1 面 EB 1D 1 , EO 面 EB 1D 1,所以 AC 1//面 EB 1D 1(法 2)作 BB 1 中点为 H 点,连结 AH 、 C 1H ,E 、 H 点为 AA 1 、BB 1 中点,所以 EH //C1D 1,则四边形 EHC 1D 1 是平行四边形,所以ED 1//HC 1又因为 EA // B 1H ,则四边形 EAHB 1 是平行四边形,所以EB 1//AHAHHC =H , 面 AHC //面 EB D 1.而 AC1面 AHC1,所以 AC //面 EB D111111 ( 3)因为 EA // B 1H ,则四边形 EAHB 1 是平行四边形,所以 EB 1//AH因为 AD // HG ,则四边形 ADGH 是平行四边形,所以 DG//AH ,所以 EB 1//DG又 BB 1// DD 1, 四边形 BB 1D 1D 是平行四边形 .所以 BD//B 1D 1.3BD DG=G,面EB1D1//面BDGB一、选择题1. D【提示】 A 错,若 a∥ b,则不可以判定∥ β;B错,若A,B,C三点不在β的同一如图( 2),由∥ β知AC∥BD,∴ SA=SC=SC,即18=SC.SB SD CD SC934 SC ∴SC=68.39.M HF侧,则不可以判定∥ β; C 错,若 a∥ b,则不可以判定∥ β;D正确.2. C【提示】若直线a, b 知足 a∥ b, b,则a∥或a3. D【提示】依据面面平行的性质定理可推证之.4. C【提示】设∩β=l,a∥,a∥β,过直线a作与α、β都订交的平面γ,记∩γ=b,β∩γ=c,则 a∥b 且 a∥ c,∴ b∥ c.又 b,∩β=l,∴ b∥ l.∴ a∥l .5. A 【提示】易证平面 NHF ∥平面 BD D 1 B1, M 为两平面的公共点,应在交线三、解答题10.解:当 E 为 PC 中点时, PA // 平面 EBD .证明:连结 AC,且AC I BD O,因为四边形ABCD 为正方形,FD∴ O 为 AC 的中点,又 E 为中点,∴ OE 为△ ACP 的中位线,∴ PA// EO ,又PA平面 EBD ,∴PA //平面EBD .A11.证法一:过 N 作 NR∥DC 交 PC 于点 R,连结 RB,依题HF 上.PECOB【提示】6. D【提示】过点 A 可作直线a′∥ a,b′∥b,则 a′∩b′=A,∴ a′,b′可确立一个平面,记为.假如 a,b,则a∥,b∥.因为平面可能过直线a、b 之一,所以,过 A 且平行于a、 b 的平面可能不存在.二、填空题7. ①④⑤⑥688.68 或3【提示】如图(1),由∥ β可知BD∥AC,∴ SB=SD,即9=SC34,∴SC=68.SA SC18SCSD BB DSAAC C(1)(2)意得 DC NR=DN= AM=AB MB=DC MB NR=MB .∵NR∥ DC∥ AB,∴NR NP MB MB MB四边形 MNRB 是平行四边形 .∴ MN ∥RB.又∵ RB平面PBC,∴直线MN∥平面PBC.证法二:过 N 作 NQ∥ AD 交 PA 于点 Q,连结 QM,∵AM=DN=AQ,∴ QM∥PB.MB NP QP 又 NQ∥AD ∥BC,∴平面MQN ∥平面 PBC.∴直线 MN ∥平面 PBC.4。

平行线的证明100道经典习题练习(含答案)

平行线的证明100道经典习题练习(含答案)

平行线的证明100道经典习题练习(含答案在卷尾)一、选择题(本大题共64小题,共192.0分)1.一个三角形三个内角的度数之比是1:2:3,则这个三角形一定是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰直角三角形2.如图,能判断直线AB//CD的条件是()A. ∠1=∠2B. ∠3=∠4C. ∠1+∠3=180∘D. ∠3+∠4=180∘3.如图,点F,E分别在线段AB和CD上,下列条件能判定AB//CD的是()A. ∠1=∠2B. ∠1=∠4C. ∠4=∠2D. ∠3=∠44.如图,直线a//b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有()A. 4个B. 3个C. 2个D. 1个5.如图,∠BDC=98°,∠C=38°,∠A=37°,∠B的度数是()A. 33°B. 23°C. 27°D. 37°6.命题“垂直于同一条直线的两条直线互相平行”的条件是().A. 垂直B. 两条直线C. 同一条直线D. 两条直线垂直于同一条直线7.如图,BC//DE,若∠A=35°,∠C=24°,则∠E等于()A. 24°B. 59°C. 60°D. 69°8.在如图所示的四种沿AB进行折叠的方法中,不一定能判断纸带两条边a,b互相平行的是()A. 如图1,展开后测得∠1=∠2B. 如图2,展开后测得∠1=∠2且∠3=∠4C. 如图3,测得∠1=∠2D. 在图④中,展开后测得∠1+∠2=180°9.一次数学活动中,检验两条纸带 ①、 ②的边线是否平行,小明和小丽采用两种不同的方法:如图,小明对纸带 ①沿AB折叠,量得∠1=∠2=50∘;小丽对纸带 ②沿GH折叠,发现GD与GC重合,HF与HE重合.则下列判断正确的是()A. 纸带 ①的边线平行,纸带 ②的边线不平行B. 纸带 ①的边线不平行,纸带 ②的边线平行C. 纸带 ① ②的边线都平行D. 纸带 ① ②的边线都不平行10.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A. a=3,b=2B. a=−3,b=2C. a=3,b=−1D. a=−1,b=311.将一个长方形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A. 40°B. 50°C. 60°D. 70°12.通过观察你能肯定的是()A. 图形中线段是否相等B. 图形中线段是否平行C. 图形中线段是否相交D. 图形中线段是否垂直13.学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的,如图:从图中可知,小敏画平行线的依据有①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行。

8.4 热点题型三 线、面平行的证明-2017年高考数学(理)热点+题型全突破含解析

热点题型三线、面平行的证明线、面平行的证明在高考为高频考点,多在解答题中的第一问出现,难度中等或较易。

归纳起来常见的命题角度有如下两类。

类型一线、面平行的证明类型二线、面平行的探索性问题【基础知识整合】知识点1 线面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与这个平面内的一条直线平行,则该直线与此平面平行(简记;线线平行线面平行)∵l∥a,a⊂α, l⊄α,∴l∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该∵l∥α,l⊂β,α∩β=b,∴l∥b直线平行(简记;为线面平行⇒线线平行)知识点2 面面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记;线面平行⇒面面平行”)∵a∥β,b∥βa∩b=P,a⊂α,b⊂α,∴α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行(简记;面面平行⇒线线平行)∵α∥β,α∩γ=a,β∩γ=b,∴a∥b(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β;(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b;(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ。

2.必清误区(1)直线与平面平行的判定中易忽视”线在面外”,这一关键条件.(2)面面平行的判定中易忽视“面内两条相交直线”,这一条件.类型一线与面平行的证明【典例1】【2016高考课标3理数19】如图,四棱锥P−ABC 中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点。

(I)证明MN∥平面PAB;【答案】(I)详见解析【解析】:(I )由已知得232==AD AM.取BP 的中点T ,连接TN AT ,,由N为PC 中点知BC TN //,221==BC TN 。

(完整版)线面平行证明的常用方法

线面平行证明的常用方法张磊立体几安在高考解答题中每年是必考内容,必有一个证明题;要点观察:平行与垂直(线线平行、线面平行、面面平行、线线垂直、线面垂直、面面垂直等),我们此刻对线面平行这一方面作以下商讨:方法一:中位线型:找平行线。

例 1、如图⑴,在底面为平行四边形的四棱锥P ABCD 中,点 E 是 PD 的中点.求证: PB // 平面 AEC .D O剖析:PAEC MA EB GBD OEF A DC如图⑴如图⑵如图⑶ B N C 方法二:结构平行四边形,找平行线例 2、如图⑵ , 平行四边形 ABCD和梯形 BEFC 所在平面订交, BE//CF ,求证:AE// 平面 DCF.剖析:过点 E 作 EG//AD交 FC 于 G, DG 就是平面 AEGD与平面 DCF 的交线,那么只需证明AE//DG即可。

方法三:作协助面使两个平面是平行, 即:作平行平面,使得过所证直线作与已知平面平行的平面例 3、如图⑷,在四棱锥O ABCD 中,底面 ABCD 为菱形,M 为 OA 的中点, N 为 BC 的中点,证明:直线MN ‖平面 OCD剖析::取 OB 中点 E,连结 ME , NE,只需证平面 MEN平面 OCD 。

方法四:利用平行线分线段成比率定理的逆定理证线线平行。

例 4、已知正方形 ABCD 和正方形 ABEF 所在的平面订交于AB ,点 M,N 分别在AC 和 BF 上,且 AM=FN.z求证: MN ‖平面 BCE.SEFF NCBM D C yD AA E B如图⑷如图⑸如图⑹例 5.如图⑸, 已知三棱锥P —ABC, A′, B ′,C ′是△ PBC, △PCA, △PAB的重心 .(1)求证:A′B′∥面ABC; (2)求 S △A ′B ′C ′:S △ ABC .方法五:(向量法)所证直线与已知平面的法向量垂直,要点:成立空间坐标系(或找空间一组基底)及平面的法向量。

线面平行的证明

线面平行的证明线面平行三个重要的定理:1.线面平行的判定定理: 如果存在平面外的一条直线和平面内的一条直线平行,则这条直线和这个平面平行2.线面平行的性质定理:如果一条直线和一个平面平行,则经过这条直线的平面和这个平面相交,得到的绞线平行3.面面平行的判定定理:如果一个平面内存在两条相交直线和另外一个平面平行,则这两个平面平行4.平面与平面平行的性质定理(1):两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行5.平面与平面平行的性质定理(2):两个平面平行,其中一个平面内的直线必平行于另一个平面。

方法一:三角形中位线法例:(06北京卷)如图,在底面为平行四边形的四棱锥P ABCD -中,AB AC ⊥,PA ⊥平面ABCD ,且PA AB =,点E 是PD 的中点.求证:证明:连接BD ,与 AC 相交于 O ,连接 EO.∵ABCD 是平行四边形,∴O 是 BD的中点 又 E 是 PD 的中点∴EO ∥PB.又 PB ∉平面 AEC ,EO ⊂平面 AEC ,∴PB ∥平面 AEC.在三棱锥S ABC -中,已知点D 、E 、F 分别为棱AC 、SA 、SC 的中点. ①求证:EF ∥平面ABC .16:如图,在三棱锥P ABC -中,PC ⊥底面ABC ,AB BC ⊥, D 、E 分别是AB 、PB 的中点.(1)求证:DE ∥平面PAC ;BACPBDE如图,ABCD 是正方形,O 是正方形的中心, PO ⊥底面ABCD ,E 是PC 的中点. 求证:(1)PA∥平面BDE ;如图,在四棱锥P-ABCD 中,底面ABCD 是正方形, 侧棱PD ⊥底面ABCD ,PD =DC ,E 是P C 的中点, 作EF ⊥PB 交PB 于点F .(1)证明 P A //平面EDB ;四边形ABCD与ABEF是两个全等正方形,且AM=FN,其中M AC ∈,N BF ∈,求证:MN∥平面BCE9. 如图,在正四棱柱ABCD-A 1B 1C 1D 1中,棱长AA 1=2,AB=1,E 是AA 1的中点. (Ⅰ)求证:A 1C ∥平面BDE ; (Ⅱ)求点A 到平面BDE 的距离.方法二:构造平行四边形(08浙江卷)如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE//CF ,∠BCF=∠CEF=︒90,AD=3,EF=2。

2.2.3 线面平行的性质定理

A1
D1 P
E
C1
F
D
B1
C B
A
必修2 第二章 点、直线、平面之间的位置关系
例题示范
例3:有一块木料如图,已知棱BC平 行于面A′C′(1)要经过木料表面A′B′C′D′ 内的一 点P和棱BC将木料锯开,应怎样画线?(2)所画的线和面 AC有什么关系?
(2)因为棱BC平行于平面A'C',平面BC'与平面A'C' 交于B'C',所以BC∥B'C',由(1)知,EF∥B'C', 所以,EF∥BC,因此,EF//BC, EF平面AC,BC平面AC.所以,EF//平面AC. BE、CF显然都与平面AC相交。
AC // MN
MN 面ABCD AC 面ABCD
必修2 第二章
MN // 面ABCD
点、直线、平面之间的位置关系
证法2
(略写)
A1
D1
C1
利用相似三角形对应边成比例 及平行线分线段成比例的性质
PM PB PBM∽ AA1 M MA AA1 PN PB PBN ∽CC 1 N NC CC 1
必修2 第二章 点、直线、平面之间的位置关系
定理的应用
例4:已知平面外的两条平行直线中的一条平行于这个 平面,求证:另一条也平行于这个平面。 第一步:将原题改写成数学符号 语言 如图,已知直线a,b,平面α,且 a//b,a//α ,a,b都在平面α 外. 求证:b//α. 第二步:分析:怎样进行平行的 转化?→如何作辅助平面?
必修2 第二章 点、直线、平面之间的位置关系
第三步:书写证明过程
必修2 第二章 点、直线、平面之间的位置关系
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D
C
A
B

B
1

A

1

C
1

必修2—线面平行、面面平行的证明经典练习
1.直三棱柱111CBAABC中,D是AB的中点,证明:1BC1ACD图,在四棱锥
ABCDP
中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点。求
证:直线EF∥平面PCD;
3.
4.
5.如图,在四棱锥P—
ABCD中,
底面ABCD是
正方形,
侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB

交PB于点F。证明PA三棱柱111CBAABC的底面边长是
2,侧

棱长是3,D是AC的中点。
求证://1CB平面BDA1;
7.两个边长均为3的正方形ABCD和ABEF所在平面垂直相交于AB,,ACM

FBN,且FNAM.(1)证明://MN平面BCE

相关文档
最新文档