有理数乘法的证明
2.6有理数的乘法与除法 第1课时 有理数的乘法-2020秋苏科版七年级数学上册课件(共22张PPT)

2.6 有理数的乘法与除法
第1课时 有理数的乘法
新知导入 课程讲授
随堂练习 课堂小结
知识要点
1.有理数的乘法法则 2.有理数乘法运算律 3.倒数
新知导入
试一试:观察下图中图形的运动轨迹,完成下列内容.
B
每次向上移动_3____
格,共运动__3__次,移
动__9__格可以到达 B
的位置 3×3=9
6×(-7)=__-_4_2__ (-7)×6=__-_4_2__ (-6)×(-5)=___3_0__ (-5)×(-6)=___3_0__
乘法交换律仍然适用, 两个数相乘,交换两个因数的位置,积不变.
a×b=b×a
课程讲授
2 有理数乘法运算律
问题1:引入负数之后,乘法的运算律是否仍然适用?
[3×(-5)]×(-2)=___3_0__ 3×[(-5)×(-2)]=___3_0__
课程讲授
1 有理数的乘法法则
(2)水位下降4cm记作_-_4_,3天后记为_+__3,那么3天后 的水位变化是
(- 4)× 3=-12. 类似地, (- 4)×(- 3)=+12. 即3天前的水位比今天高12 cm.
课程讲授
1 有理数的乘法法则
问题1.3:按照上面的过程,写出1天后、2天后、1天前、
(1)(1 1 1 1) 60; 2345
(2() 12.5)( 2.5)( 8) 4.
解:(1)(1 1 1 1) 60
2345
解: (2() 12.5)( 2.5)( 8) 4
=(12.5)( 8)( 2.5) 4
= 1 60 1 60 1 60 1 60 2345
=30-20-15+12
有理数的乘法2

就坐在椅子上;伊去灶前生火,我就攀着菜橱一格一格看;伊去水井边与阿母一起洗衫,我隔着窗户喊伊:“阿--嬷!” 丽花听到了,把话传给她:“你阿敏嫃哪在叫你咧!” “做啥?”伊往我这里看了。 “莫什么代记啦!”我觉得话团太大了,说不出口。 “呷
饱碗筷也不收来洗,放在那里生蚂蚁。”阿母说。 把一副碗筷埋到井池里去的时候,伊三人都不说话,我速速说:“我去读册了。”便出门。 走到小石子路头,正打算抄田埂去追江岸路上的同学,才跨过河沟,竹林里传出话来: “阿--敏--嫃哪,回来啰,你阿嬷要
1.(1)如果2个数的乘积为负数,其中有个 1 (2)如果3个数的乘积为负数,其中有个 1或3
负因数。 负因数。
(3)如果4个数的乘积为负数,其中有个 1或3 负因数。
(4)如果5个数的乘积为负数,其中有个 1,3,5 负因数。
(5)如果101个数的乘积为负数,其中有个 1,3,…,101 负因数。
? 小时候,为着家里孩子多,零食分到每个人手上只有一点点,阿嬷总是偷偷惜我,把多的糖果、饼干、水果藏起来,趁弟妹不在时悄悄告诉我:
“米瓮内有一粒桠柑,拿去呷,莫给阿林、阿丽、阿云、阿东看到,剩一粒而已。”“斗柜内第二个抽屉毛巾盖住,用日记纸包着,有两粒金甘仔糖。”“灶前装粗糠的布袋里还有半包纽仔饼。”阿嬷的藏功是一流的,瘄边家嫁女儿送的爆米香,她藏到屋梁上去。我们的偷功
给你五角银买糖仔呷பைடு நூலகம்,快回来拿,慢一脚步就莫啰!” 可恶的丽花。我压着书包快快跑回去,把大大的五毛钱放进铅笔盒里,一天的重量都有了。 “阿嬷我要去了,阿母我要去了,‘--丽花我要去了!" 丽花咯咯笑,扬了一片水花过来. 背后,阿嬷的耳语飘来:"五角
银没给伊,伊的脚底像给店仔胶黏住,走不开脚啦!" 二十多年过了,老的愈老,年轻的也要老。每日早晨我一醒来,阿嬷便蹑手蹑脚进房劝: “你也好心,莫饮咖啡,呷点热粥才有元气!” 房里已经弥漫着咖啡的香,晨间阅读正要开始。我说:“不想呷咧,咖啡好饮。”
有理数的乘法2

注意 1、乘法的交换律、结合律只涉及一种运 算,而分配律要涉及两种运算。 2、分配律还可写成: a×b+a×c=a×(b+c), 利用它有时也可以简化计算。 3、字母a、b、c可以表示正数、负数,也 可以表示零,即a、b、c可以表示任意 有理数。
15 ( 8) 例3、计算: 71 16
1、已知a、b互为相反数,c、d互为倒数,e是绝
1 对值最小的数,计算:(a+b)+ cd - (a+b)e
2、已知|x|=2,|y|=3,且xy<0,则x-y=
3、下列运算错误的是_____ D A.(-2)×(-3)=6
.
B.(-3)×(-2)×(-4)=-24
C.(-5)×(-2)×(-4)=-40
计算:
(-85)×(-25)×(-4)
=(-85)×[(-25)×(-4)]
=(-85)×100=-8500
7 1 15 1 8 7 7 8 = 15 8 7
7 8 = 15 8 7
B. a<0,b<0 D. a>0,b>0或a<0,b<0 B ) B. a,b至少有一个为0 D. a,b最多有一个为0
7.若ab=0,则一定有(
1 1 1 1 (1).( 1) ( 1) ( 1) ... ( 1) 101 100 99 2 100 99 98 1 解:原式= (- ) (- ) (- ) ... (- ) 101 100 99 2 100 99 98 1 = ... 101 100 99 2 1 = 101
1.8-有理数的乘法

例1 计算:
有理数相乘,先确定
符号 积的 ______, 再确定 (1)3.5 ×(-2); ( 2) 3 2 ;
8
绝对值 积的_____
9
1 ( 3) (3) ;
(2)(-85) (-25) (-4)
1 5 2 (2)( ) 105 3 7 5 1 1 1 (6)3 4 4 6 2 7 1 (8)( ) 15 (-1 ) 8 7
1 1 1 (7)-12 4 6 2
2.分组计算:
例1 .计算
(1) (2)
5 12 37 6
1 6 10 0.1 3
能约分 的、 凑整的、 互为倒数 的数要尽 可能的结 合在一起
1 2 4 30 2 3 5
(4)
4.99×(-12)
本算式结果取 解(1) 12 ( 37) 5 什么符号? 6 5 (乘法交换律) 37 12 6
(3 4) 5 3 (4 5)
那么大家想想引入负数后,乘法的交换律
和结合律是否还是成立的?
(二)探索与总结
大家看一下下面两个式子:
(一) (1) (7) 8 5 9 (二) (1) (- ) (- ) 3 10 (2) 8 (-7) 9 5 (2)(- ) (- ) 10 3
(+2)×(+3)=+6 ①
(2)如果蜗牛一直以每分钟2cm的速度向左
爬行,3分钟后它在什么位置?
-8
-6
-4
-2
0
3分钟蜗牛应在l上点O左边6cm处 这可以表示为 (-2)×(+3)=-6 ②
有理数的乘法法则

有理数的乘法法则1.正数相乘的法则:两个正数相乘,积仍为正数。
例如,2乘以3得到6,3乘以4得到122.负数相乘的法则:两个负数相乘,积仍为正数。
例如,-2乘以-3得到6,-3乘以-4得到123.正数与负数相乘的法则:一个正数与一个负数相乘,积为负数。
例如,2乘以-3得到-6,3乘以-4得到-124.乘以零的法则:任何有理数乘以零,积为零。
例如,2乘以0得到0,-5乘以0得到0。
1.数线法:可以使用数线图形的方式来证明有理数的乘法法则。
数线上的位置代表有理数,可以通过移动数线上的点来进行乘法操作,然后观察结果是否与法则相符。
2.示例法:可以通过一些具体的例子来证明有理数的乘法法则。
以两个正数相乘为例,可以选取一对正数,计算它们的乘积,然后观察结果是否为正数。
将这个例子推广到所有正数,可以得出结论。
3.代数法:可以通过代数运算来证明有理数的乘法法则。
以两个正数相乘为例,可以用代数变量表示这两个数,然后进行乘法运算。
根据正数的性质,可以得出结果为正数。
有理数的乘法法则是数学中的基本概念之一,它在实际生活中有很多应用。
例如,在货币交易中,我们常常需要计算商品价格与数量的乘积,有理数的乘法法则可以帮助我们准确计算总金额。
同时,在科学研究中,有理数的乘法法则也有广泛应用,例如在物理学中用来计算速度与时间的乘积,以及在化学中用来计算物质的质量与物质的量的乘积等等。
总之,有理数的乘法法则是数学中非常重要的一个概念,它不仅有理论意义,而且在实际生活中有很多应用。
通过深入理解和掌握有理数的乘法法则,我们可以更好地应用它解决实际问题。
七年级数学上册第二章有理数及其运算2.7有理数的乘法课件新版北师大版

拓展提升
解:∵a与b互为相反数, ∴a+b=0, ∵c与d互为倒数, ∴cd=1, ∵e为绝对值最小的数, ∴e=0,
体验收获
今天我们学习了哪些知识?
1.有理数的乘法法则 2.倒数 3.有理数乘法运算
布置作业
教材54页习题第1,3题。
编后语
• 同学们在听课的过程中,还要善于抓住各种课程的特点,运用相应的方法去听,这样才能达到最佳的学习效果。 • 一、听理科课重在理解基本概念和规律 • 数、理、化是逻辑性很强的学科,前面的知识没学懂,后面的学习就很难继续进行。因此,掌握基本概念是学习的关键。上课时要抓好概念的理解,
4个 -3相加
活动探究
(-3)×4= -12 (-3)×3= -9 (-3)×2= -6
(-3)×1= -3
一个因数减小 1时,积怎样变
化?
(-3)×(-1)= 3
(-3)×0= 0
(-3)×(-2)= 6
一个因数减少1时,积增大3.
(-3)×(-3)= 9
你能写出右边各式的 结果吗?
(-3)×(-4)= 12
Q
-12 -9 -6 -3 0 3 6 9 12
3 ×(-4)= -12
在Q点左侧12cm处
讲授新知 3×4=12 (-3)×(-4)=12
正数乘正数积为_正_数 负数乘负数积为_正_数
同号 得正
3×(-4)= -12 (-3)×4= -12
负数乘正数积为_负_数 正数乘负数积为_负_数
异号 得负
= +(5×7) 同号得正,绝对值相乘 =35
观察(3)(4)小题的结果,你发现了什么?
讲授新知 如果两个有理数的乘积为1,那么称其中一个数是 另一个的倒数,也称这两个有理数互为倒数。
有理数的乘除混合运算
=2
自我·检测
例2 计算:
(1)(-10)÷(-5) ×(-2);
(2)
8Biblioteka 5
1 4
2 3
;
(3)
2.4
43
1 4
.
先算前两位数,同号相除为正
再算乘法
(1)(-10)÷(-5) ×(-2)
解: 原式= 2 ×(-2)
(2)(-6)÷(-2)÷3 = 3÷3 = 1 ;
(3)2÷(-7)×(-4)
=
2 7
×
(-4)
=
8 7
;
(4)18 ÷6 ÷(-2) = 3× (-2)= -6 .
反思小结,巩固提高
有理数乘法除法混合运算的顺序是什么?
有理数的运算中既有乘法运算又有除法运算, 称为有理数的乘除混合运算。
请叙述有理数乘法的法则 两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数同 0 相乘,都得 0.
几个不是零的数相乘,负因数的个数是偶数时,积 是正数;负因数的个数是奇数时,积是负数.
几个数相乘,如果其中有一个因数为0,积等于 0.
请叙述有理数除法的法则 除以一个不为 0 的数,等于乘这个数的倒数.
异号相除为负
=
7 2
可以依次计算
(2)(-3.2)÷ 0.8 ÷(-2) 解:原式=(-4)÷(-2) 同号相除为正
=2
先算前两位数
可以依次计算
(1)(-56)÷(-2) ÷(-8) 解:原式= 28 ÷(-8) 异号相除,结果为负
有理数的运算讲义
有理数的运算一、有理数基本加、减混合运算 有理数加法法则:① 同号两数相加,取相同的符号,并把绝对值相加.② 绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值. ③ 一个数同0相加,仍得这个数. 有理数加法的运算步骤:法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤: ① 确定和的符号; ② 求和的绝对值,即确定是两个加数的绝对值的和或差. 有理数加法的运算律:① 两个加数相加,交换加数的位置,和不变.a b b a +=+(加法交换律)② 三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.()()a b c a b c ++=++(加法结合律) 有理数加法的运算技巧:① 分数与小数均有时,应先化为统一形式. ② 带分数可分为整数与分数两部分参与运算. ③ 多个加数相加时,若有互为相反数的两个数,可先结合相加得零. ④ 若有可以凑整的数,即相加得整数时,可先结合相加.⑤ 若有同分母的分数或易通分的分数,应先结合在一起. ⑥ 符号相同的数可以先结合在一起. 有理数减法法则:减去一个数,等于加这个数的相反数.()a b a b -=+- 有理数减法的运算步骤:① 把减号变为加号(改变运算符号) ② 把减数变为它的相反数(改变性质符号) ③ 把减法转化为加法,按照加法运算的步骤进行运算. 有理数加减混合运算的步骤:① 把算式中的减法转化为加法; ② 省略加号与括号; ③ 利用运算律及技巧简便计算,求出结果. 注意:根据有理数减法法则,减去一个数等于加上它的相反数,因此加减混合运算可以依据上述法则转变为只有加法的运算,即为求几个正数,负数和0的和,这个和称为代数和.为了书写简便,可以把加号与每个加数外的括号均省略,写成省略加号和的形式.例如:()(3)(0.15)9(5)(11)30.159511++-+-+++-=--+-,它的含义是正3,负0.15,负9,正5,负11的和.【例1】 计算:5116(2.39)(1.57)(3)(5)(2)(7.61)(32)(1.57)6767-+-+++-+-+-+-++【例2】 计算:()()()()3133514--++---; 计算:31212 1.753463--+【例3】 计算:413 4.5727⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭; 计算:212(738)(78.36)(53)(13.64)(43)2323+-+--+---【巩固】 若0a >,0b <,则a b - 0 若0a <,0b >,则a b - 0【巩固】 若0a <,0b <,则()a b -- 0; 若0a <,0b <,且||||a b <,则a b - 0. 【例4】 (第14届希望杯)有一串数:2003-,1999-,1995-,1991-,…,按一定的规律排列,那么这串数中前 个数的和最小.【例5】 设三个互不相等的有理数,既可分别表示为1a b a +,,的形式,又可分别表示为0bb a,,的形式,则20042001a b +=【例6】 给出一连串连续整数:203202...20032004--,,,,,这串连续整数共有 个;它们的和是 【例7】 1997个不全相等的有理数之和为0,则这1997个有理数中( )A .至少有一个是零B .至少有998个正数C .至少有一个是负数D .至多有995个是负数【巩固】 若0a b c d <<<<,则以下四个结论中,正确的是( )A .a b c d +++一定是正数.B .d c a b +--可能是负数.C .d c b a ---一定是正数.D .c d b a ---一定是正数.【例8】 北京市2007年5月份某一周的日最高气温(单位:ºC )分别为:25,28,30,29,31,32,28,这周的日最高气温的平均值为( )A . 28ºCB . 29ºC C . 30ºCD . 31ºC【例9】 超市新进了10箱橙子,每箱标准重量为50kg ,到货后超市复秤结果如下(超市标准重量的千克数记为正数,不足的千克数记为负数):+0.5,+0.3,-0.9,+0.1,+0.4,-0.2,-0.7,+0.8, +0.3,+0.1.那么超市购进的橙子共多少千克?【巩固】 电子跳蚤在数轴上的某一点0K ,第一步0K 向左跳1个单位到点1K ,第二步由点1K 向右跳2个单位到点2K ,第三步有点2K 向左跳3个单位到点3K ,第四步由点3K 向右跳4个单位到点4K ,...... ,按以上规律跳了100步时,电子跳蚤落在数轴上的点100K 所表示的数恰好是19.94. 求电子跳蚤的初始位置点0K 所表示的数.二、有理数基本乘法、除法 Ⅰ:有理数乘法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0. 有理数乘法运算律:① 两个数相乘,交换因数的位置,积相等. ab ba =(乘法交换律)② 三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等. ()abc a bc =(乘法结合律)③ 一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加. ()a b c ab ac +=+(乘法分配律) 有理数乘法法则的推广:① 几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数.② 几个数相乘,如果有一个因数为0,则积为0.③ 在进行乘法运算时,若有带分数,应先化为假分数,便于约分;若有小数及分数,一般先将小数化为分数,或凑整计算;利用乘法分配律及其逆用,也可简化计算.在进行有理数运算时,先确定符号,再计算绝对值,有括号的先算括号里的数.【例10】 ()()()345826-⨯--⨯--⨯-⎡⎤⎡⎤⎣⎦⎣⎦ 计算:111112211142612⎛⎫-⨯-+- ⎪⎝⎭【例11】 计算:4113(3)11559211⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 计算:()()999812512412161616⎛⎫⎛⎫⎛⎫-⨯---⨯-+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【巩固】 计算:735(1)(36)1246⎡⎤-+---⨯-⎢⎥⎣⎦计算:1111136()23469⨯+---.【例12】 积11111111...111324359810099101⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪ ⎪⎪⨯⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值的整数部分是【例13】 设()2n n ≥个正整数123...n a a a a ,,,,,任意改变他们的顺序后,记作123...n b b b b ,,,,,若 ()()()()112233...n n P a b a b a b a b =----,则( ) A .P 一定是奇数 B .P 一定是偶数C .当n 是奇数时,P 是偶数D .当n 是偶数时,P 是奇数【例14】 若a ,b ,c ,d 是互不相等的整数,且9abcd =则a b c d +++的值为( )A .0B .4C .8D .无法确定.【巩固】 如果4个不同的正整数m ,n ,p ,q 满足(7)(7)(7)(7)4m n p q ----=,那么m n p q +++的值是多少?【例15】 如果a b c ,,均为正数,且()()()152162170a b c b a c c a b +=+=+=,,,那么abc 的值等于 【例16】 若19980a b +=,则ab 是( )A . 正数B . 非正数C . 负数D . 非负数【巩固】 奇数个负数相乘,积的符号为 , 个负数相乘,积的符号为正. 【巩固】 如果22()()4a b a b +--=,则一定成立的是( )A .a 是b 的相反数B .a 是b -的相反数C .a 是b 的倒数D .a 是b -的倒数【巩固】 a 、b 、c 为非零有理数,它们的积必为正数的是( )A .0a >,b 、c 同号B .0b >,a 、c 异号C .0c >,a 、b 异号D .a 、b 、c 同号【巩固】 若a b c ,,三个数互不相等,则在a b b c c ab c c a a b------,,中,正数一定有( ) A .0个B .1个C .2个D .3个Ⅱ:有理数除法有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.1a b a b÷=⋅,(0b ≠)两数相除,同号得正,异号得负,并把绝对值相除; 0除以任何一个不等于0的数,都得0.有理数除法的运算步骤:首先确定商的符号,然后再求出商的绝对值.【例17】 计算:111321335⎛⎫⎛⎫⎛⎫-÷÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 计算:()()112103523⎛⎫⎛⎫-÷-⨯-÷- ⎪ ⎪⎝⎭⎝⎭【巩固】 计算:11111()()234560-+-÷-; 计算:5315()( 1.25)(3) 1.4()24423--÷÷-⨯-÷⨯-.【例18】 用“>”或“<”填空⑴ 如果0ab c >,0ac <那么b 0 ; ⑵ 如果0a b >,0bc <那么ac 0 . (3) 如果0a b <,0bc<,试确定ac 的符号.【例19】 观察下面的式子:224224;31313434;222241414545;3333515156564444⨯=+=⨯=+=⨯=+=⨯=+=,,,,⑴ 小明归纳了上面各式得出一个猜想:两个有理数的积等于这两个有理数的和,小明的猜想正确吗?为什么?⑵ 请你观察上面各式的结构特点,归纳出一个猜想,并证明你的猜想【例20】已知a、b互为相反数,c、d互为负倒数,x的绝对值等于它相反数的2倍.求3x abcdx a bcd++-的值.【例21】计算:1111111111 (1)(1)(1)(1)(1)(1)(1)(1)(1)(1)246810357911+⨯+⨯+⨯+⨯+⨯-⨯-⨯-⨯-⨯-三、有理数的混合运算顺序(1)“先乘方,再乘除,最后加减”的顺序进行;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
有理数的乘法2
想一想
计算:
(-24)×(
1 3
-
3 4
+
1 6
-
5 8
)
正确解法:
_____ ______ _____ ______ 原式=(-24)×
1 3
+(-24)×(-
3 4
)+(-24)×
1 6
+(-24)×(-
5 8
)
= - 8 + 18 - 4 + 15
= - 12 +33 = 21
特别提醒: 1.不要漏掉符号, 2.不要漏乘.
不要漏写符号
思考:你能看出下式的结果吗?如果能,请说
明理由。
7.8×(-8.1)×0×(-19.6)=?
归纳:
几个数相乘,如果其中 有因数为0,积等于(0)
练习:不计算,判断下列各题的结果是否为零, 如果不为零,请说出它们的符号及结果.
(1) 3×(-5) = -15;负 (2) 3×(-5)×(-2) = 30; 正 (3) 3×(-5)×(-2)×(-4)= -120; 负
学以致用---分配律
53
(1)(- + )×(-24)
68
(2)7 3 ×5
15
(3)
(-11)×(- 52)+(-11)×2
53+(-11)×(-
1 5)
例题
例2 计算
先确定积的 多个不是0 符号,再把
(1) 3 5 9 1
6 5 4
5×3+5×(-7) = 15+(-35)=-20
乘法分配律
一般地,一个数与两个数的和相乘,等于 把这个数分别与这两个数相乘,再把积相 加。
如果a,b,c分别表示任一有理数, 那么:a(b+c)=ab+ac
有理数的乘法概念
有理数的乘法概念1. 定义有理数是可以表示为两个整数的比值的数。
有理数包括整数、分数和小数。
有理数的乘法是指两个有理数相乘得到的结果。
对于任意两个有理数a和b,它们的乘积记作a * b,可以表示为以下形式:a *b = c其中c也是一个有理数。
2. 重要性有理数的乘法在日常生活中具有广泛的应用。
它在商业、工程、科学等领域都起着重要作用。
商业应用商业中经常涉及到货币和商品的计算,而货币和商品的价格往往是小数或分数形式。
通过对有理数进行乘法运算,可以计算出购买一定数量商品所需支付的总金额,或者根据商品单价和购买数量计算出总价。
同时,在商业中还需要进行折扣、利润等计算,这些计算都离不开有理数的乘法。
工程应用工程领域中经常需要进行测量、设计以及材料配比等工作。
这些工作往往需要对长度、面积、体积等进行计算。
而这些物理量通常是以小数或分数形式表示的有理数。
通过有理数的乘法,可以计算出不同尺寸的物体的面积、体积等信息,以便进行工程设计和施工。
科学应用科学领域中,有理数的乘法也是非常重要的。
例如,在物理学中,运动速度是通过将位移与时间进行相除得到的。
而位移和时间都可以表示为有理数,因此运动速度也是一个有理数。
在化学实验中,需要按照一定比例配制溶液或混合物。
这些比例往往是以分数形式给出的有理数。
3. 应用举例例1:商业应用假设某商品价格为2.5元/个,现在要购买5个商品,求购买5个商品所需支付的总金额。
解:首先将商品价格2.5元/个表示为小数形式2.5。
然后计算总金额:总金额 = 商品价格 * 购买数量 = 2.5 * 5 = 12.5元所以购买5个商品所需支付的总金额为12.5元。
例2:工程应用假设一块长方形土地的长和宽分别为4米和6米,求土地的面积。
解:面积可以通过长和宽相乘得到。
计算公式为:面积 = 长 * 宽 = 4 * 6 = 24平方米所以土地的面积为24平方米。
例3:科学应用假设某车辆以每小时80公里的速度行驶,行驶了2.5小时,求行驶的总距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
负数的本质与有理数乘法法则——从数学的角度解析“负负得正”
上传: 熊云华更新时间:2012-5-25 10:50:03
一、有理数乘法法则需要数学证明
有理数乘法法则是初中数学的重要内容,“负负得正”是其中的难点,研究表明,虽然学生都能准确记忆有理数乘法法则,并能依据法则进行计算,然而绝大多数学生都不能举出实例来验证法则,更没有学生能够解释法则背后的数学道理,这也就是说,学生仅仅掌握了有理数乘法的算法,且只能遵循算法进行机械计算,并没有真正理解其中的算理,
导致这种现状的原因可能是多方面的,然而本文只探索有理数乘法的算理是什么,即法则怎么来的,笔者带着这一问题查阅了现行各版本的初中数学教材,发现各版本教材只给出了有理数的乘法法则,而没有给出其中的理由.但教材为了让学生发现有理数乘法法则,创设了一个生活化的数学情境,作为脚手架来帮助学生学习法则,
比如,人教版教材创设的是“蜗牛爬行”的情境,一只蜗牛沿着直线z爬行,它现在的位置恰好在f上的点o.让学生根据生活经验推断:如果蜗牛一直以每分钟2厘米的速度向右/左
爬行,3分钟后/前它在什么位置,在此情境中,“被乘数”、“乘数”和“积”涉及3个物理量(速度、时间和位移),每个量有3个基准(基准点o、约定正方向和负方向),三者关系比较复杂,弄得学生昏头转向,苏教版、浙教版教材也是采用类似的情境来引入有理数乘法的.由于这类情境中的关系极为复杂,学生并不感兴趣,更不可能从中归纳概括出有理数乘法法则.
再如,北师大版教材采用了归纳模型,即让学生在计算(-3)×3=-9、(-3)×2=-6、(-3)×1=-3、(-3)x0=0的基础上,让学生猜想(-3)×(-1)=?、(-3)×(-2)=?、(-3)×(-3)=?等算式的结果,进而归纳出有理数乘法法则.而华东师大版教材采用的是相反数模型,即从算式3x2=6和(-3)x2=-6出发,得到结论“两个数相乘,把一个因数换成它的相反数,所得的积是原来积的相反数”,并用此结论计算3×(-2)=?和(-3)×(-2)=?,进而概括出有理数乘法法则.然而,学生很难接受这两种模型,因为“两个因数变小了,而乘积却变大了”,这与学生已有经验相矛盾。
其实,有理数乘法法则并非人为规定,也不是根据生活实例和计算结果归纳出来的,而是由正负数的数学本质和运算的定义决定的.也就是说,有理数乘法法则是依赖于数学的特征和数学和谐运转的需要,它的正确性可以用数学逻辑来证明.遗憾的
是,现有证明都用到抽象代数中集、群、环的相关理论,非专业人士很难理解,不可能用于初中数学教学。
然而,只要我们从负数的数学本质人手,根据整数四则运算的常用结论,可以证明有理数乘法法则.该证明难度不大,比较轻松地突破了“负负得正”,初中学生容易理解.同时,从数学出发用推理的方式证明有理数乘法法则,可以弥补上述教材所采用的归纳方法的逻辑缺陷。
二、负数的数学本质与有理数乘法法则
在非负数范围内,加法可以畅通无阻地进行,即任何两个非负数相加,其结果是非负数,可是,在非负数范围内,减法却不能畅通无阻地进行,当减数大于被减数时差不是非负数.然而,减法和加法互为逆运算,应当具备同样的性质,其地位才是对等的,因此,要适当延伸非负数,即增加一些新的数,得到一个更广阔的范围,在这个范围内,减法可以畅通无阻地进行,而原来能在非负数范围内进行的四则运算仍然保持原来的结果和运算律(加法和乘法的交换律、结合律以及乘法对加法的分配律)。
1.负数的数学本质
负数最早出现在中国古代数学名著《九章算术》的“方程术”中,在用加减消元法解多元一次方程组时,为了表示小数减大数的运算结果,便引入了负数.后来,魏晋时期的数学家刘徽在《九章算术注》中对负数的出现作了解释,“两算得失相反.要令正负以名之”,著名数学家柯朗在《什么是数学》中进一步解释道:“引进了符号-1,-2,-3,…以及对b<a的情况,定义b-a=-(a-b).这保证了减法能在正整数和负整数范围内无限制的进行。
”
由此可见,负数的产生,是源于减法的需要,负数的本质是小数减去大数所得的差,即负数c=-(a-b)=b-a(此时b<a).举个例子来说,在非负数范围内,我们没办法计算5-8,但可以尽量将它化简,即根据差不变的性质,得到5-8=0-3.把0-3看做一个新的数,简单记作-3.而原来在非负数范围内可以进行的减法还按原来的方法进行,比如8-5=3-0=0+3=3.更一般的,数学上规定形如3(=0+3)、5(=0+5)这样的数叫做正数,形如-3(=0—3)、-5(=0-5)这样的数叫做负数,把正数、零和负数统称为有理数。
2.有理数乘法法则的推导
在有理数范围内,借助负数的本质,可将有理数乘法转化为非负数乘法来讨论,而且该过程并不复杂(但要事先规定:零乘任何数都等于零).为了论述方便,我们用a,b表示任意两个正有理数,而用-a,-b表示任意两个负有理数,对任意两个非零有理数相乘的四种情况分别介绍如下:
(1)正数×正数,仍然按照非负数的方式进行,即axb=ab:
(2)正数×负数,a×(-b)=ax(o-b)=a×(o-a)×b=0-ab=-(ab-o)=-ab(其中第二个等号成立的依据是乘法分配律,第四个等号成立的依据是负数的定义);
(3)负数×正数,(-a)xb=(o-a)xb=oxb-axb=0-ab=-(ab-o)=-ab;
(4)负数×负数,(-a)×(-b)=(0-a)×(0-b)=0×(-b)-a ×(-b)=o-a(-b)=-a(-b)=-(-ab)=-(o-ab)=ab-o=ab(其中,第五个等号成立的依据(2)中的结果,第六个和第七个等号成立的依据是负数的定义).
可见,“负负得正”并非想象的那么复杂,也并非不可证
明.还可以验证,在有理数范围内,乘法交换律、结合律和分配律成立.此外,我们可以用类似方法证明有理数的加减法法则和除法法则,难度也不大,感兴趣的读者可自行证明.
三、有理数乘法法则的教学
笔者设想:只要学生能够理解负数的数学本质和运用负数的数学意义,并善于将与负数有关的问题转化为与正数有关的问题,那么学生就可能以推理的方式推导出有理数乘法法则,从数学逻辑上理解“负负得正”的含义.为了验证这一设想,笔者随机选择了初一年级一个班的学生,按照设想方式进行教学实验,一个月后检查发现这些学生大都能正确推导出有理数的乘法法则.现将教学过程简要介绍如下,仅供老师们教学时作参考.
1.复习旧知.引入课题
师:请问负数的本质是什么?
生:负数是小数减大数的差,也就是说,当b<a时,定义-(a-b)=b-a,比如,-3=0-3=2—5=…
师:进入初中后,我们学习了有理数的加减运算.请你想
想,有理数的加减运算和小学中非负数的加减运算有何异同?
生:相同点是,非负数里加减的结果仍然等于现在有理数里加减的结果,加法交换律和结合律都成立;不同点是,有理数里参与运算的数可正可负也可为零。
生:从非负数到有理数,数的范围扩大了,参与运算的数更多了,但运算结果和运算律并没有改变,
师:我们今天学习有理数的乘法,你觉得有理数的乘法应当满足哪些特征呢?
生:最好也满足交换律、结合律和分配律.
生:非负数中乘法的结果要等于有理数中乘法的结果.因为非负数是有理数的一部分,两个乘法的结果应当一样,否则,出现多个结果,就不知道谁对谁错,数学计算的结果应。