空间向量及其运算(讲义及答案)

合集下载

空间向量的运算及其应用(含答案)

空间向量的运算及其应用(含答案)

空间向量的运算及应用知识梳理数量积及坐标运算 (1)两个向量的数量积: ①a·b =|a||b|cos 〈a ,b 〉;②a ⊥b ⇔a·b =0(a ,b 为非零向量); ③|a |2=a 2,|a |=x 2+y 2+z 2. (2)向量的坐标运算:a =(a 1,a 2,a 3),b =(b 1,b 2,b 3) 向量和 a +b =(a 1+b 1,a 2+b 2,a 3+b 3) 向量差 a -b =(a 1-b 1,a 2-b 2,a 3-b 3)数量积 a ·b =a 1b 1+a 2b 2+a 3b 3共线 a ∥b ⇒a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ,b ≠0)垂直 a ⊥b ⇔a 1b 1+a 2b 2+a 3b 3=0 夹角公式cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23b 21+b 22+b 23方法归纳1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB 为直线l 的方向向量,与AB 平行的任意非零向量也是直线l 的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n·a =0,n·b =0.2.建立空间直角坐标系的原则:(1)合理利用几何体中的垂直关系,特别是面面垂直; (2)尽可能地让相关点落在坐标轴或坐标平面上. 3.利用空间向量坐标运算求解问题的方法:用空间向量解决立体几何中的平行或共线问题一般用向量共线定理;求两点间距离或某一线段的长度,一般用向量的模来解决;解决垂直问题一般可转化为向量的数量积为零;求异面直线所成的角,一般可以转化为两向量的夹角,但要注意两种角的范围不同,最后应进行转化.[练一练]1.若平面π1,π2垂直,则下面可以是这两个平面的法向量的是( ) A .n 1=(1,2,1),n 2=(-3,1,1) B .n 1=(1,1,2),n 2=(-2,1,1) C .n 1=(1,1,1),n 2=(-1,2,1) D .n 1=(1,2,1),n 2=(0,-2,-2) 解析:选A 两个平面垂直时其法向量也垂直,只有选项A 中的两个向量垂直.2.已知a =(cos θ,1,sin θ),b =(sin θ,1,cos θ),则向量a +b 与a -b 的夹角是________. 解析:∵(a +b )·(a -b )=a 2-b 2=|a |2-|b |2 =(cos 2θ+1+sin 2θ)-(sin 2θ+1+cos 2θ)=0,∴(a +b )⊥(a -b ),即向量a +b 与a -b 的夹角为90°. 答案:90°3.如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是CD ,CC 1的中点,则异面直线A 1M 与DN 所成角的大小是________.解析:建立空间直角坐标系如图所示,设正方体的棱长为1,则D (0,0,0),A 1(1,0,1),M 10,,02⎛⎫ ⎪⎝⎭,N 10,1,2⎛⎫ ⎪⎝⎭,则1A M =11,,12⎛⎫-- ⎪⎝⎭,DN =10,1,2⎛⎫ ⎪⎝⎭,所以cos 〈1A M ,DN 〉=1A M ·DN |1A M |·|DN |=0,所以1A M ⊥DN ,故异面直线A 1M 与DN 所成角的大小为90°.答案:90°空间向量在立体几何中的应用角度一 利用空间向量证明平行或垂直如图所示的长方体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为2的正方形,O 为AC 与BD 的交点,BB 1=2,M 是线段B 1D 1的中点. (1)求证:BM ∥平面D 1AC ; (2)求证:D 1O ⊥平面AB 1C ;[证明] (1)建立如图所示的空间直角坐标系,则点O (1,1,0),D 1(0,0,2),∴1OD =(-1,-1,2),又点B (2,2,0),M (1,1,2),∴BM =(-1,-1,2),∴1OD =BM .又∵OD 1与BM 不共线, ∴OD 1∥BM .又OD 1⊂平面D 1AC ,BM ⊄平面D 1AC ,∴BM ∥平面D 1AC . (2)连接OB 1,点B 1(2,2,2),A (2,0,0),C (0,2,0),∵1OD ·1OB =(-1,-1,2)·(1,1,2)=0,1OD ·AC =(-1,-1,2)·(-2,2,0)=0, ∴1OD ⊥1OB ,1OD ⊥AC ,即OD 1⊥OB 1,OD 1⊥AC , 又OB 1∩AC =O ,∴D 1O ⊥平面AB 1C . [解题通法]利用直线的方向向量与平面的法向量,可以判定直线与直线、直线与平面、平面与平面的平行和垂直:(1)设直线l 1的方向向量v 1=(a 1,b 1,c 1),l 2的方向向量v 2=(a 2,b 2,c 2). 则l 1∥l 2⇔v 1∥v 2⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)(k ∈R ). l 1⊥l 2⇔v 1⊥v 2⇔a 1a 2+b 1b 2+c 1c 2=0.(2)设直线l 的方向向量为v =(a 1,b 1,c 1),平面α的法向量为n =(a 2,b 2,c 2),则l ∥α⇔v ⊥n ⇔a 1a 2+b 1b 2+c 1c 2=0.l ⊥α⇔v ∥n ⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2).(3)设平面α的法向量n 1=(a 1,b 1,c 1),β的法向量为n 2=(a 2,b 2,c 2),则α∥β⇔n 1∥n 2,α⊥β⇔n 1⊥n 2.角度二 异面直线所成角的求法设两条异面直线a ,b 的方向向量为a ,b ,其夹角为θ,则cos φ=|cos θ|=|a·b||a||b|(其中φ为异面直线a ,b 所成的角).例1.在直三棱柱A 1B 1C 1-ABC 中,∠BCA =90°,点D 1,F 1分别是A 1B 1,A 1C 1的中点,BC=CA =CC 1,则BD 1与AF 1所成角的余弦值是( ) A.3010 B.12 C.3015 D.1510解析:选A建立如图所示的坐标系,设BC =1,则A (-1,0,0),F 11,0,12⎛⎫- ⎪⎝⎭, B (0,-1,0),D 111,,122⎛⎫-- ⎪⎝⎭,则1AF =1,0,12⎛⎫- ⎪⎝⎭, 1BD =11,,122⎛⎫- ⎪⎝⎭. ∴cos 〈1AF ,1BD 〉=1AF ·1BD | 1AF ||1BD |=3010. 2.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 和N 分别是A 1B 1和BB 1的中点,那么直线AM 与CN所成角的余弦值为________.解析:以D 为坐标原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,如图所示.则A (1,0,0),M 11,,12⎛⎫⎪⎝⎭,C (0,1,0),N 11,1,2⎛⎫ ⎪⎝⎭. ∴AM =10,,12⎛⎫ ⎪⎝⎭,CN =11,0,2⎛⎫ ⎪⎝⎭.设直线AM 与CN 所成的角为θ,则cos θ=|cos 〈AM ,CN 〉|=|AM ·CN ||AM ||CN |=121+14× 1+14=25. 答案:25[解题通法]1.向量法求异面直线所成的角的方法有两种 (1)基向量法:利用线性运算. (2)坐标法:利用坐标运算.2.注意向量的夹角与异面直线所成角的区别当异面直线的方向向量的夹角为锐角或直角时,就是此异面直线所成的角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线所成的角.3.求异面直线所成角时,易求出余弦值为负值而盲目得出答案而忽视了夹角为0,2π⎛⎤⎥⎝⎦.角度三 直线和平面所成的角的求法如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|n·e||n||e|.例.如图所示,在四棱锥P -ABCD 中,底面ABCD 是矩形,P A ⊥平面ABCD ,P A =AD =2,AB =1,BM ⊥PD 于点M .求直线CD 与平面ACM 所成角的余弦值.解析:如图所示,以点A 为坐标原点,建立空间直角坐标系A -xyz ,则A (0,0,0),P (0,0,2),B (1,0,0),C (1,2,0),D (0,2,0).∵AM ⊥PD ,P A =AD ,∴M 为PD 的中点,∴M 的坐标为(0,1,1). ∴AC =(1,2,0),AM =(0,1,1),CD =(-1,0,0). 设平面ACM 的一个法向量为n =(x ,y ,z ), 由n ⊥AC ,n ⊥AM可得⎩⎪⎨⎪⎧x +2y =0y +z =0,令z =1,得x =2,y =-1.∴n =(2,-1,1).设直线CD 与平面ACM 所成的角为α, 则sin α=|CD ·n ||CD ||n |=63.∴cos α=33,即直线CD 与平面ACM 所成角的余弦值为33答案:33[解题通法]利用平面的法向量求线面角时,应注意(1)求出直线的方向向量与平面的法向量所夹的锐角(钝角时取其补角),取其余角即为所求. (2)若求线面角的余弦值,要注意利用平方关系sin 2θ+cos 2θ=1求出其值.不要误为直线的方向向量与平面的法向量所夹角的余弦值为所求.(3)求直线与平面所成角时,注意求出夹角的余弦值的绝对值应为线面角的正弦值. [针对训练](2013·福建高考改编)如图,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC =6k (k >0).若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值.解:由题意知DC ⊥AD ,D 1D ⊥DC ,D 1D ⊥AD 故以D 为原点,DA ,DC ,1DD 的方向为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系,则A (4k,0,0),C (0,6k,0),B 1(4k,3k,1),A 1(4k,0,1), 所以AC =(-4k,6k,0),1AB =(0,3k,1),1AA =(0,0,1).设平面AB 1C 的法向量n =(x ,y ,z ),则由⎩⎪⎨⎪⎧AC ·n =0,1AB ·n =0,得⎩⎪⎨⎪⎧-4kx +6ky =0,3ky +z =0.取y =2,得n =(3,2,-6k ). 设AA 1与平面AB 1C 所成角为θ,则sin θ=|cos 〈1AA ,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪1AA ·n | 1AA |·|n |=6k 36k 2+13=67,解得k =1,故所求k 的值为1. 角度四 求二面角的大小(1)如图①,AB ,CD 是二面角α -l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB ,CD 〉.(2)如图②③,n 1,n 2分别是二面角α -l -β的两个半平面α,β的法向量,则二面角的大小θ=〈n 1,n 2〉(或π-〈n 1,n 2〉).例:1.(2012·北京东城模拟)如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .(1)证明:平面PQC ⊥平面DCQ ; (2)求二面角Q -BP -C 的余弦值.解:(1)证明:如图,以D 为坐标原点,DA 、DP 、DC 所在的直线分别为x轴、y 轴、z 轴建立如图所示的空间直角坐标系D -xyz .设DA =1,则有D (0,0,0),Q (1,1,0),C (0,0,1),P (0,2,0),所以DQ =(1,1,0),DC =(0,0,1),PQ =(1,-1,0),所以PQ ·DQ =0,PQ ·DC =0,即PQ ⊥DQ ,PQ ⊥DC . 又DQ ⊂平面DCQ ,DC ⊂平面DCQ ,且DQ ∩DC =D ,所以PQ ⊥平面DCQ .又PQ ⊂平面PQC ,所以平面PQC ⊥平面DCQ . (2)由(1)易知B (1,0,1),CB =(1,0,0),BP =(-1,2,-1).设n =(x ,y ,z )是平面PBC 的法向量,则⎩⎨⎧n ·CB =0,n ·BP =0,即⎩⎪⎨⎪⎧x =0,-x +2y -z =0,可取n =(0,-1,-2). 设m =(x 1,y 1,z 1)是平面PBQ 的法向量,则⎩⎪⎨⎪⎧m ·BP =0,m ·PQ =0,即⎩⎪⎨⎪⎧-x 1+2y 1-z 1=0,x 1-y 1=0,可取m =(1,1,1).所以cos 〈m ,n 〉=-155,故二面角Q -BP -C 的余弦值为-155. [解题通法]利用法向量求二面角时应注意(1)对于某些平面的法向量要注意题中隐含着,不用单独求.(2)注意判断二面角的平面角是锐角还是钝角,可结合图形进行,以防结论失误.(3)利用平面的法向量求二面角的大小时,二面角是锐角或钝角由图形决定.由图形知二面角是锐角时cos θ=|n 1·n 2||n 1||n 2|;由图形知二面角是钝角时,cos θ=-|n 1·n 2||n 1||n 2|.当图形不能确定时,要根据向量坐标在图形中观察法向量的方向,从而确定二面角与向量n 1,n 2的夹角是相等(一个平面的法向量指向二面角的内部,另一个平面的法向量指向二面角的外部),还是互补(两个法向量同时指向二面角的内部或外部),这是利用向量求二面角的难点、易错点. 针对练习(2012·山西模拟)如图,在底面为直角梯形的四棱锥P -ABCD 中,AD ∥BC ,∠ABC =90°,P A ⊥平面ABCD ,P A =3,AD =2,AB =23,BC =6.(1)求证:BD ⊥平面P AC ; (2)求二面角P -BD -A 的大小.解:(1)证明:由题可知,AP 、AD 、AB 两两垂直,则分别以AB 、AD 、AP 所在直线为x 、y 、z 轴建立如图所示的空间直角坐标系,则A (0,0,0),B (23,0,0),C (23,6,0),D (0,2,0),P (0,0,3),∴AP =(0,0,3),AC =(23,6,0),BD =(-23,2,0),∴BD ·AP =0,BD ·AC =0.∴BD ⊥AP ,BD ⊥AC . 又P A ∩AC =A ,∴BD ⊥平面P AC .(2)显然平面ABD 的一个法向量为m =(0,0,1),设平面PBD 的法向量为n =(x ,y ,z ),则n ·BD =0,n ·BP =0.由(1)知,BP =(-23,0,3), ∴⎩⎨⎧-23x +2y =0,-23x +3z =0,整理得⎩⎪⎨⎪⎧y =3x ,z =233x .令x =3,则n =(3,3,2), ∴cos 〈m ,n 〉=m ·n |m ||n |=12,∴结合图形可知二面角P -BD -A 的大小为60°.。

高中数学 第七章 第六节_空间向量及其运算课件(理) 新人教版

高中数学 第七章 第六节_空间向量及其运算课件(理) 新人教版

向量m和n用该组基底表示出来,再求他们的数量积及自
身长度,最后利用公式cos〈m,n〉=
.
2.在向量性质中|a|2=a·a提供了向量与实数相互转化的 工具,运用此公式,可使线段长度的计算问题转化成 两个相等向量的数量积的计算问题.
[特别警示] 求向量的数量积关键是求出两个向量的模 和夹角.
在平行四边形ABCD中,AB=AC=1,∠ACD= 90°,将它沿对角线AC折起,使AB和CD成60°角(见 下图).求B、D间的距离.
谢谢观赏
You made my day!我们还在路上……∴cos〈
〉=
=.
即异面直线CE与AC′所成角的余弦值为 .
1.若空间三点A(1,5,-2),B(2,4,1),C(p,3,q+2)共线,

()
A.p=3,q=2
B.p=2,q=3
C.p=-3,q=-2
D.p=-2,q=-3
解析: =(1,-1,3), =(p-2,-1,q+1), 由题意知,存在实数λ,使 =λ ,即λ=1,p=3,q =2. 答案:A
〉=120°,〈

〉=90°.
〉=60°,
1
1
1
= 2 (-2×2·2 +2×2×2 +0)=0,

,即异面直线AM与BC所成角为90°. ┄┄┄12分
[自主体验] 直三棱柱ABC-A′B′C′中, AC=BC=AA′,∠ACB=90°,D、 E分别为AB、BB′的中点. (1)求证:CE⊥A′D; (2)求异面直线CE与AC′所成角的余弦值.
( + )等于
()
A.
B.
C.
D.
解析: + ( + )= + = . 答案:A

空间向量及其线性运算-高中数学知识点讲解(含答案)

空间向量及其线性运算-高中数学知识点讲解(含答案)

空间向量及其线性运算(北京习题集)(教师版)一.选择题(共5 小题)1.(2019 秋•海淀区校级期末)已知向量a ,2,1) ,b (1,0, 4) ,则a 2b ( )(1A. ( 1 ,2,9) B. ( 1 ,4,5) C. (1 ,2,7) D. (1 ,4,9)2.(2009 秋•昌平区期末)已知三棱锥O ABC ,点M ,N 分别为AB ,OC 的中点,且OA a,OB b,OC c ,用a ,b ,c 表示MN ,则MN 等于 ( )r r r 1r r1 r r 1 r r 1A.(b c a) B.(a b c) C.(a b c)D.2 2 2 2rr r(c ab)3.(2004 春•丰台区期末)如图,在四边形ABCD 中,下列各式成立的是 ( )A.BC BD CD B.CD DA AC C.CB AD BA CD D.AB AC BD DC4.(2015 秋•昌平区期末)如图,在正方体ABCD A B C D 中,点M ,N 分别是面对角线A B 与B D 的中点,若1 1 1 1 1 1 1DA a r DC b DD c r MN ( ),,,则1r r1 r r 1 a r c r 1 (c r a r)r r 1A.(c b a) B.(a b c) C.( ) D.2 2 2 25.(2015 秋•大兴区期末)如图,在平行六面体中,若,,,则ABCD A B C D AB a r AD b AA c r BM( )第1页(共8页)r r r r1 r 1 r 1 r 1 r 1 r 1 r 1 r 1 rA. a b c B. a b c C. a b c D. a b c2 2 2 2 2 2 2 2二.填空题(共4 小题)6.(2019 秋•怀柔区期末)已知平面的一个法向量是n (1,1, 2) ,且点A(0 ,3,1) 在平面上,若P(x ,y z) AP P,是平面上任意一点,则向量,点的坐标满足的方程是.u u u u r r57.(2016•顺义区一模)设A ,A ,A ,A ,A 是空间中给定的 5 个不同的点,则使MA 0 成立的点M 的个数1 2 3 4 5 kk 1有个.8.(2015 秋•朝阳区校级月考)在三棱柱中,若,,,则BC .(用向量a ,ABC A B C AB a r BB b AC c r1 1 1 1 1b ,c 表示)9.(2015 秋•东城区期末)已知a (1,1, 0) ,b (1,0, 2) ,则| 2a b |.第2页(共8页)空间向量及其线性运算(北京习题集)(教师版)参考答案与试题解析一.选择题(共5 小题)1.(2019 秋•海淀区校级期末)已知向量(1,2,,,0,,则a 1)b ( 1 4) a 2b ( )A. ( 1 ,2,9) B. ( 1 ,4,5) C. (1 ,2,7) D. (1 ,4,9)【分析】利用向量坐标运算性质即可得出.【解答】解:a 2b (1,2,1) 2(1,0, 4) (1,2,9) .故选:A .【点评】本题考查了向量坐标运算性质,考查了推理能力与计算能力,属于基础题.2.(2009 秋•昌平区期末)已知三棱锥O ABC ,点M ,N 分别为AB ,OC 的中点,且OA a,OB b,OC c ,用a ,b ,c 表示MN ,则MN 等于 ( )r r r 1 r r1 r r 1 r r 1A.(b c a) B.(a b c) C.(a b c)D.2 2 2 2rr r(c ab)【分析】根据所给的图形,在图形中看出要求的向量可以怎么得到,用减法把向量先变化成已知向量的差的形式,再利用向量的加法法则,得到结果.【解答】解:由题意知MN ON OMu u u r u u u r u u u r1 1OC (OA OB)2 2Q OA a r,OB b,OC c ru u u u r r r r1MN (c bc)2故选:D .【点评】本题考查空间向量的加减法,本题解题的关键是在已知图形中尽量的应用几何体的已知棱表示要求的结果,本题是一个基础题.第3页(共8页)3.(2004 春•丰台区期末)如图,在四边形ABCD 中,下列各式成立的是 ( )A.BC BD CD B.CD DA AC C.CB AD BA CD D.AB AC BD DC【分析】由向量加减法的三角形法则,逐一计算四个答案中的向量运算式,比照后,即可得到正确的答案.【解答】解:BC BD BC DB DC ,故A 错误;CD DA CA ,故B 错误;CB AD BA CB BD CD C,故正确;BD DC BC AB AC D,故错误;故选:C .【点评】本题考查的知识点是向量的加减法,向量加法的三角形法则核心是“首尾相接”,向量减法的核心是“同起点,连终点,方向指向被减”.4.(2015 秋•昌平区期末)如图,在正方体ABCD A B C D 中,点M ,N 分别是面对角线A B 与B D 的中点,若1 1 1 1 1 1 1DA a r DC b DD c r MN ( ),,,则1r r1 a r c r 1 (c r a r)r r 1 r r 1A.(c b a) B.(a b c) C.D.( )2 2 2 2【分析】由空间向量运算法则得,由此能求出结果.MN MB BB B N1 1【解答】解:在正方体ABCD A B C D 中,1 1 1 1Q点M ,N 分别是面对角线A B 与的中点,,,,B D DA a r DC b DDc r1 1 11M N MB BBB N1 1第4页(共8页)u u u r u u u r u u u u r1 1A B BB B D1 1 1 12 2u u u r u u u r u u u r u u u r u u u r1 1(A A AB ) BB (BC CD)1 12 2r r1 r r 1 r( c b ) c ( a b)2 2r r1 1a c2 2.rr1(c a)2故选:D .【点评】本题考查向量的求法,是基础题,解题时要认真审题,注意空间向量加法法则的合理运用.5.(2015 秋•大兴区期末)如图,在平行六面体中,若,,,则ABCD A B C D AB a r AD b AA c r BM( )r r r r1 r 1 r 1 r 1 r 1 r 1 r 1 r 1 rA. a b c B. a b c C. a b c D. a b c2 2 2 2 2 2 2 2u u u u r u u u r u u u u u r u u u r u u u r u u u r u u u r u u u r1 1【分析】由空间向量加法法则得到BM BB B M AA BD AA (BA AD) ,由此能求出结果.2 2【解答】解:Q在平行六面体ABCD A B C D中,AB a r AD b AA c r,,,u u u u r u u u r u u u u u r u u u r u u u r u u u r u u u ru u u r1 1BM BB B M AA BD AA(BA AD)2 2r r.r 1 r 1 r 1 rc ( a b ) ab c2 2 2故选:A .第5页(共8页)【点评】本题考查空间向量的求法,是基础题,解题时要认真审题,注意空间向量坐标运算法则的合理运用.二.填空题(共4 小题)6.(2019 秋•怀柔区期末)已知平面的一个法向量是,,,且点,3,在平面上,若,n (1 1 2) A(0 1) P(x y z ) AP (x y 3 z 1) P,是平面上任意一点,则向量,,,点的坐标满足的方程是.【分析】由点A(0 ,3,1) 在平面上,P(x ,y ,z) 是平面上任意一点,利用向量坐标运算法则能求出向量AP n (1 1 2) n rg AP x (y 3) 2z 0 P ,再由平面的一个法向量是,,,得到,由此能求出点的坐标满足的方程.【解答】解:平面的一个法向量是,,,Q n (1 1 2)点A(0 ,3,1) 在平面上,P(x ,y ,z) 是平面上任意一点,AP (x y 3 z 1)向量,,,,n r g AP x yz( 3) 2 0P x y 2z 3 0点的坐标满足的方程是.故答案为:,,,.(x y 3 z 1) x y 2z 3 0【点评】本题考查向量的求法,考查平面向量坐标运算法则、法向量等基础知识,考查运算求解能力,是基础题.u u u u r r57.(2016•顺义区一模)设A ,,,,是空间中给定的 5 个不同的点,则使MA 0 成立的点M 的个数A A A A1 2 3 4 5 kk 1有1个.【分析】分别设出A 、、、、和各点的坐标,得到向量MA k ,2,3,4,5) 的坐标,A A A A M ( 11 2 3 4 5 ku u u u r5根据加法的坐标运算代入题中的向量等式 0 ,化简整理可得点M 的坐标是唯一的.MAkk 1【解答】解:设A1(x1 ,,,,,,,,,y z1) yA x 3 ( 3 3 )2 ( 2 yz2 ) A x z1 2 3A4 (x4,,z4 ),,,;y A5 (x5 5 )y z4 5再设M (a ,b ,c) ,则可得 1 ( 1 ,y b ,z 1 c) ,MA x a1MA 2 (x 2 a ,y b , 2 ) ,z c2MA x a3 ( 3,y b ,3 ) ,z c 3MA x a4 ( 4,y b , 4 ) ,z c4MA x a5 ( 5,, 5 ) ,y b z c5第6页(共8页)Qu u u u r r5MAkk 1成立,x x x x x5a 01 2 3 4 5y y y y y 5b1 2 3 4 5z z z z z 5c 01 2 3 4 5,1a (x x x x x )1 2 3 4 551解得 b (y y y yy ) ,1 2 3 4 551c (z z z z z )1 2 3 4 55u u u u r r5因此,存在唯一的点M ,使MA 0 成立.kk 1故答案为:1.【点评】本题给出空间 5 个点,探索这 5 个点与点M 构成的向量和为零向量的点的个数问题,着重考查了向量的线性运算及其几何意义的知识,是基础题目.8 .(2015 秋•朝阳区校级月考)在三棱柱中,若,,,则BCABC A B C AB a r BB b AC c r1 1 1 1 1c a b a b c.(用向量,,表示)【分析】利用向量的三角形法则可得:,即可得出.BC BC CC AC AB CC1 1 1【解答】解:.BC BC CC AC AB CC c r a r b1 1 1故答案为:.c a b【点评】本题考查了向量的三角形法则,考查了推理能力与计算能力,属于基础题.9.(2015 秋•东城区期末)已知a (1,1, 0) ,b (1,0, 2) ,则| 2a b |17 .【分析】利用平面向量坐标运算公式求出,由此能求出.2a b | 2a b |【解答】解:Q a (1,1, 0) ,b (1,0, 2) ,2a b (2 0) ( 1 2) (3 2),2,,0,,2,,.r| 2a b | 9 4 4 17故答案为:17 .第7页(共8页)【点评】本题考查向量的模的求法,是基础题,解题时要认真审题,注意空间向量坐标运算法则的合理运用.第8页(共8页)。

空间向量及其运算(内容详细,题目典型,适合新授课)

空间向量及其运算(内容详细,题目典型,适合新授课)
(3).空间向量的数乘运算满足分配律及结合律
即: (a b) a b ( ) a a a ( )a ( )a
四、空间向量加法与数乘向量运算律
化简( AB CD) ( AC BD)
解: 方法一: 将减法转化为加法进行 化简 AB CD AB DC ( AB CD ) ( AC BD) AB DC AC BD AB DC CA BD AB BD DC CA AD DA 0
五、共线向量: 1.空间共线向量:如果表示空间向量的
有向线段所在直线互相平行或重合,则这些 向量叫做共线向量(或平行向量),记作 a // b 零向量与任意向量共线.
2.空间共线向量定理:对空间任意两个 向量 a, b(b o), a // b 的充要条件是存在实 数使 a b
由此可判断空间中两直线平行或三点共线问题
你能对(3)(4)结论进行推广吗?
四、空间向量加法与数乘向量运算律
A1 A2 A2 A3 An 1 An _____ A1 An
(3) A1 A2 A2 A3 A3 A4 A1 A4
A1 An A2 A3
An-1

A 4 首尾相接的若干向量之和,等于由起始向量的起 点指向末尾向量的终点的向量.
B
b
a
O
A
O′
结论:空间任意两个向量都可以平移到同一个平面内, 内,成为同一平面内的两个向量。
一、空间向量的基本概念
说明 ⒈空间向量的运算就是平面向量运算的推广.
2.凡是只涉及空间任意两个向量的问题,平面向量 中有关结论仍适用于它们。
一、空间向量的基本概念

空间向量及其运算习题答案

空间向量及其运算习题答案

空间向量及其运算习题答案空间向量及其运算习题答案引言:空间向量是三维空间中的一种数学概念,它可以用来描述物体在空间中的位置、方向和运动状态。

空间向量的运算是空间几何中的重要内容,掌握空间向量的运算方法对于解决实际问题具有重要意义。

本文将通过一些典型的空间向量运算习题,来讲解空间向量的运算方法和答案。

一、向量的加法和减法1. 已知向量A(1, 2, 3)和向量B(4, -1, 2),求向量A + 向量B的结果。

答案:向量A + 向量B = (1+4, 2+(-1), 3+2) = (5, 1, 5)2. 已知向量C(2, -3, 1)和向量D(-1, 4, -2),求向量C - 向量D的结果。

答案:向量C - 向量D = (2-(-1), -3-4, 1-(-2)) = (3, -7, 3)二、向量的数量积和夹角3. 已知向量E(1, 2, 3)和向量F(4, -1, 2),求向量E和向量F的数量积。

答案:向量E·向量F = 1*4 + 2*(-1) + 3*2 = 4 - 2 + 6 = 84. 已知向量G(2, -3, 1)和向量H(-1, 4, -2),求向量G和向量H的夹角的余弦值。

答案:向量G·向量H = 2*(-1) + (-3)*4 + 1*(-2) = -2 - 12 - 2 = -16|向量G| = √(2^2 + (-3)^2 + 1^2) = √(4 + 9 + 1) = √14|向量H| = √((-1)^2 + 4^2 + (-2)^2) = √(1 + 16 + 4) = √21cosθ = (向量G·向量H) / (|向量G| * |向量H|) = -16 / (√14 * √21)三、向量的向量积和平面方程5. 已知向量I(1, 2, 3)和向量J(4, -1, 2),求向量I和向量J的向量积。

答案:向量I × 向量J = (2*2 - (-1)*3, 3*4 - 1*2, 1*(-1) - 2*4) = (4 + 3, 12 - 2, -1 - 8) = (7, 10, -9)6. 已知平面P过点(1, 2, 3),且平面P的法向量为向量K(2, -1, 3),求平面P的方程。

空间向量及其运算和空间位置关系(含解析)

空间向量及其运算和空间位置关系(含解析)

归纳与技巧:空间向量及其运算和空间位置关系基础知识归纳一、空间向量及其有关概念二、数量积及坐标运算1.两个向量的数量积(1)a·b=|a||b|cos〈a,b〉;(2)a⊥b⇔a·b=0(a,b为非零向量);(3)|a|2=a2,|a|=x2+y2+z2.2.向量的坐标运算三、平面的法向量(1)所谓平面的法向量,就是指所在的直线与平面垂直的向量,显然一个平面的法向量有无数多个,它们是共线向量.(2)在空间中,给定一个点A 和一个向量a ,那么以向量a 为法向量且经过点A 的平面是唯一的.基础题必做1.(课本习题改编)已知a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2)则下列结论正确的是( )A .a ∥c ,b ∥cB .a ∥b ,a ⊥cC .a ∥c ,a ⊥bD .以上都不对解析:选C ∵c =(-4,-6,2)=2a ,∴a ∥c .又a ·b =0,故a ⊥b .2. 若{a ,b ,c }为空间的一组基底,则下列各项中,能构成基底的一组向量是( )A .{a ,a +b ,a -b }B .{b ,a +b ,a -b }C .{c ,a +b ,a -b }D .{a +b ,a -b ,a +2b }解析:选C 若c 、a +b 、a -b 共面, 则c =λ(a +b )+m (a -b )=(λ+m )a +(λ-m )b ,则a 、b 、c 为共面向量,与{a ,b ,c }为空间向量的一组基底矛盾,故c ,a +b ,a -b 可构成空间向量的一组基底.3.(教材习题改编)下列命题:①若A 、B 、C 、D 是空间任意四点,则有AB u u u r +BC u u u r +CD u u u r +DA u u u r=0;②若MB u u u r =x MA u u u r +y MB u u u r,则M 、P 、A 、B 共面;③若p =x a +y b ,则p 与a ,b 共面. 其中正确的个数为( ) A .0 B .1 C .2D .3解析:选D 可判断①②③正确.4.在四面体O -ABC 中,OA u u u r =a ,OB u u u r =b ,OC u u u r=c ,D 为BC 的中点,E 为AD 的中点,则OE u u u r=________(用a ,b ,c 表示).解析:如图,OE u u u r =12OA u u u r +12OD u u u r=12OA u uu r +14OB u u u r +14OC u u u r =12a +14b +14c . 答案:12a +14b +14c5.已知ABCD -A 1B 1C 1D 1为正方体,①(1A A u u u u r +11A D u u u u r +11A B u u u u r )2=311A B u u u u r2;②1A C u u u u r ·(11A B u u u u r -1A A u u u u r )=0;③向量1AD u u u u r 与向量1A B u u u u r的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB u u u r ·1AA u u u u r ·AD u u ur |.其中正确命题的序号是________.解析:设正方体的棱长为1,①中(1A A u u u u r +11A D u u u u r +11A B u u u u r )2=311A B u u u u r2=3,故①正确;②中11A B u u u u r -1A A u u u u r =1AB u u u u r,由于AB 1⊥A 1C ,故②正确;③中A 1B 与AD 1两异面直线所成角为60°,但1AD u u u u r 与1A B u u u u r 的夹角为120°,故③不正确;④中|AB u u u r ·1AA u u u u r ·AD u u u r|=0.故④也不正确.答案:①②解题方法归纳1.用空间向量解决立体几何中的平行或共线问题一般用向量共线定理;求两点间距离或某一线段的长度,一般用向量的模来解决;解决垂直问题一般可转化为向量的数量积为零;求异面直线所成的角,一般可以转化为两向量的夹角,但要注意两种角的范围不同,最后应进行转化.2.直线的方向向量与平面的法向量的确定:(1)直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB u u u r为直线l 的方向向量,与AB u u u r平行的任意非零向量也是直线l 的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n ·a =0,n ·b =0.空间向量的线性运算典题导入[例1] 如图,在平行六面体ABCD -A 1B 1C 1D 1中G 为△A 1BD 的重心,设AB u u u r =a ,AD u u u r=b ,1AA u u u u r =c ,试用a ,b ,c 表示1AC u u u u r ,AG u u u r .[自主解答] 1AC u u u u r =AB u u u r +BC u u u r +1CC u u u u r =AB u u u r +AD u u u r +1AA u u uu r=a +b +c .AG u u u r =1AA u u u u r +1A G u u u u r=1AA u u u u r +13(1A D u u u u r +1A B u u u u r )=1AA u u u u r +13(AD u u u r -1AA u u u u r )+13(AB u u u r -1AA u u u u r )=131AA uu u u r +13AD u u u r +13AB u u u r =13a +13b +13c .本例条件不变,设A 1C 1与B 1D 1交点为M ,试用a ,b ,c 表示MG u u u u r.解:如图,MG u u u u r =1MA u u u u r +1A G u u u u r=-12(11A B uu u u r +11A D u u u u r )+13(1A D u u u u r +1A B u u u u r )=-12a -12b +13(AD u u ur -1AA u u u u r )+13(AB u u u r -1AA u u u u r )=-12a -12b +13b -13c +13a -13c=-16a -16b -23c解题方法归纳用已知向量表示未知向量,一定要结合图形,以图形为指导是解题的关键,要正确理解向量加法、减法与数乘运算的几何意义,灵活运用三角形法则及四边形法则.以题试法1.如图所示,已知空间四边形OABC ,其对角线为OB 、AC ,M 、N分别为OA 、BC 的中点,点G 在线段MN 上,且MG u u u u r =2GN u u u r ,若OG u u u r =x OA u u u r +y OB u u u r +z OC u u u r,则x ,y ,z 的值分别为________.解析:∵OG u u u r =OM u u u u r +MG u u u u r =12OA u u u r +23MN u u u u r=12OA u uu r +23(ON u u u r -OM u u u u r ) =12OA u uu r +23ON u u u r -23OM u u u u r =12OA u uu r +23×12(OB u u u r +OC u u u r )-23×12OA u u u r =16OA u uu r +13OB u u u r +13OC u u u r ∴x ,y ,z 的值分别为16,13,13.答案:16,13,13共线、共面向量定理的应用典题导入[例2] 如右图,已知平行六面体ABCD -A ′B ′C ′D ′,E 、F 、G 、H 分别是棱A ′D ′、D ′C ′、C ′C 和AB 的中点,求证E 、F 、G 、H 四点共面.[自主解答] 取ED 'u u u u r =a ,EF u u u r =b ,EH u u u r =c ,则HG u u u r =HBu u u r +BC u u u r +CG u u u r =D F 'u u u u r +2ED 'u u u u r +12AA 'u u u r=b -a +2a +12(AH u u u r +HE u u u r +EA 'u u u r )=b +a +12(b -a -c -a )=32b -12c ,∴HG u u u r 与b 、c 共面.即E 、F 、G 、H 四点共面. 解题方法归纳应用共线向量定理、共面向量定理证明点共线、点共面的方法比较:三点(P ,A ,B )共线空间四点(M ,P ,A ,B )共面PA u u u r =λPB u u u r且同过点P MP u u u r =x MA u u u r +y MB u u u r对空间任一点O ,OP u u u r =OA u u u r →+t AB u u u r对空间任一点O ,OP u u u r =OM u u u u r +x MA u u u r+y MB u u u r对空间任一点O ,OP u u u r =x OA u u u r +(1-x ) OB u u u r 对空间任一点O ,OP u u u r =x OM u u u u r +y OA u u u r+(1-x -y ) OB u u u r以题试法2.已知E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的中点,用向量方法,求证:(1)E 、F 、G 、H 四点共面; (2)BD ∥平面EFGH .证明:(1)连接BG ,则EG u u u r =EB u u u r +BG u u ur=EB u u u r +12(BC u u u r +BD u u u r)=EB u u u r +BF u u u r +EH u u u r =EF u u u r +EH u u u r ,由共面向量定理知: E 、F 、G 、H 四点共面.(2)因为EH u u u r =AH u u u r -AE u u u r=12AD u u ur -12AB u u u r =12(AD u u u r -AB u u u r )=12BD u u u r , 又因为E 、H 、B 、D 四点不共线,所以EH ∥BD . 又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH .利用空间向量证明平行或垂直典题导入[例3] 已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,边长为2a ,AD =DE =2AB ,F 为CD 的中点.(1)求证:AF ∥平面BCE ; (2)求证:平面BCE ⊥平面CDE .[自主解答] 依题意,以AC 所在的直线为x 轴,AB 所在的直线为z 轴,过点A 且垂直于AC 的直线为y 轴,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),C (2a,0,0),B (0,0,a ),D (a ,3a,0),E (a ,3a,2a ).∵F 为CD 的中点,∴F ⎝⎛⎭⎫32a ,32a ,0.(1)易知,AF u u u r =⎝⎛⎭⎫32a ,32a ,0,BE u u u r =(a ,3a ,a ),BC u u u r =(2a,0,-a ), ∵AF u u u r =12(BE u u u r +BC u u ur ),AF ⊄平面BCE ,∴AF ∥平面BCE .(2)∵AF u u u r =⎝⎛⎭⎫32a ,32a ,0,CD u u u r =(-a ,3a,0),ED u u u r =(0,0,-2a ),∴AF u u u r ·CD u u u r =0,AF u u u r ·ED u u u r=0, ∴AF u u u r ⊥CD u u u r ,AF u u u r ⊥ED u u u r,即AF ⊥CD ,AF ⊥ED .又CD ∩ED =D ,∴AF ⊥平面CDE . 又AF ∥平面BCE ,∴平面BCE ⊥平面CDE .解题方法归纳利用直线的方向向量与平面的法向量,可以判定直线与直线、直线与平面、平面与平面的平行和垂直.(1)设直线l 1的方向向量v 1=(a 1,b 1,c 1),l 2的方向向量v 2=(a 2,b 2,c 2). 则l 1∥l 2⇔v 1∥v 2⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)(k ∈R ). l 1⊥l 2⇔v 1⊥v 2⇔a 1a 2+b 1b 2+c 1c 2=0.(2)设直线l 的方向向量为v =(a 1,b 1,c 1),平面α的法向量为n =(a 2,b 2,c 2),则l ∥α⇔v ⊥n ⇔a 1a 2+b 1b 2+c 1c 2=0.l ⊥α⇔v ∥n ⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2).(3)设平面α的法向量n 1=(a 1,b 1,c 1),β的法向量为n 2=(a 2,b 2,c 2),则α∥β⇔n 1∥n 2,α⊥β⇔n 1⊥n 2.以题试法3. 如图所示的长方体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为2的正方形,O 为AC 与BD 的交点,BB 1=2,M 是线段B 1D 1的中点.(1)求证:BM ∥平面D 1AC ; (2)求证:D 1O ⊥平面AB 1C .证明:(1)建立如图所示的空间直角坐标系,则点O (1,1,0)、D 1(0,0,2),∴1OD u u u u r=(-1,-1,2),又点B (2,2,0),M (1,1,2),∴BM u u u u r=(-1,-1,2), ∴1OD u u u u r =BM u u u u r ,又∵OD 1与BM 不共线, ∴OD 1∥BM .又OD 1⊂平面D 1AC ,BM ⊄平面D 1AC , ∴BM ∥平面D 1AC .(2)连接OB 1.∵1OD u u u u r ·1OB u u u r =(-1,-1,2)·(1,1,2)=0,1OD u u u u r ·AC u u ur =(-1,-1,2)·(-2,2,0)=0,∴1OD u u u u r ⊥1OB u u u r ,1OD u u u u r ⊥AC u u u r ,即OD 1⊥OB 1,OD 1⊥AC ,又OB 1∩AC =O ,∴D 1O ⊥平面AB 1C .1. 若直线l 的方向向量为a ,平面α的法向量为n ,能使l ∥α的是( ) A .a =(1,0,0),n =(-2,0,0) B .a =(1,3,5),n =(1,0,1) C .a =(0,2,1),n =(-1,0,-1) D .a =(1,-1,3),n =(0,3,1)解析:选D 若l ∥α,则a ·n =0.而A 中a ·n =-2, B 中a ·n =1+5=6,C 中a ·n =-1, 只有D 选项中a ·n =-3+3=0.2.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( )A.627 B.637 C.607D.657解析:选D 由题意得c =t a +μ b =(2t -μ,-t +4μ,3t -2μ),∴⎩⎪⎨⎪⎧7=2t -μ,5=-t +4μ,λ=3t -2μ.∴⎩⎪⎨⎪⎧t =337,μ=177,λ=657.3.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB u u u r =a ,AD u u u r =b ,1AA u u u u r =c ,则下列向量中与BM u u u u r相等的向量是( )A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 解析:选A BM u u u u r =1BB u u u u r +1B M u u u u r =1AA u u u u r +12(AD u u u r -AB u u u r)=c +12(b -a )=-12a +12b +c .4. 如图所示,已知空间四边形OABC ,OB =OC ,且∠AOB =∠AOC=π3,则cos 〈OA u u u r ,BC u u u r 〉的值为( ) A .0 B.12 C.32D.22解析:选A 设OA u u u r =a ,OB u u u r =b ,OC u u u r=c ,由已知条件〈a ,b 〉=〈a ,c 〉=π3,且|b |=|c |,OA u u u r ·BC u u u r =a ·(c -b )=a ·c -a ·b=12|a ||c |-12|a ||b |=0,∴cos 〈OA u u u r ,BC u u u r 〉=0. 5. 平行六面体ABCD -A 1B 1C 1D 1中,向量AB u u u r 、AD u u u r 、1AA u u uu r 两两的夹角均为60°,且|AB u u u r |=1,|AD u u u r|=2,|1AA u u u u r |=3,则|1AC u u u u r |等于( )A .5B .6C .4D .8解析:选A 设AB u u u r =a ,AD u u u r =b ,1AA u u u u r =c ,则1AC u u u u r=a +b +c ,1AC u u u u r2=a 2+b 2+c 2+2a ·c +2b ·c +2c ·a =25, 因此|1AC u u u u r|=5.6.在正方体ABCD -A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 内一点,线段D 1Q 与OP 互相平分,则满足MQ u u u u r=λMN u u u u r的实数λ的值有( )A .0个B .1个C .2个D .3个解析:选C 建立如图所示的坐标系,设正方体的棱长为2, 则P (x ,y,2),O (1,1,0), ∴OP 的中点坐标为⎝⎛⎭⎫x +12,y +12,1,又知D 1(0,0,2),∴Q (x +1,y +1,0), 而Q 在MN 上,∴x Q +y Q =3, ∴x +y =1,即点P 坐标满足x +y =1. ∴有2个符合题意的点P ,即对应有2个λ.7.在下列条件中,使M 与A 、B 、C 一定共面的是________.①OM u u u u r =2OA u u u r -OB u u u r -OC u u u r ;②OM u u u u r =15OA u u u r +13OB u u u r +12OC u u u r ;③MA u u u r +MB u u u r +MC u u uu r =0;④OM u u u u r +OA u u u r +OB u u u r +OC u u u r =0.解析:∵MA u u u r +MB u u u r +MC u u u u r =0,∴MA u u u r =-MB u u u r -MC u u u u r ,则MA u u u r 、MB u u u r 、MC u u uu r 为共面向量,即M 、A 、B 、C 四点共面.答案:③8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别是棱BC 、DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.解析:以D 1A 1、D 1C 1、D 1D 分别为x ,y ,z 轴建立空间直角坐标系,设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),∴1B E u u u u r =(x -1,0,1),又F (0,0,1-y ),B (1,1,1),∴FB u u u r =(1,1,y ),由于AB ⊥B 1E ,故若B 1E ⊥平面ABF ,只需PB u u u r ―→·1B E u u u u r =(1,1,y )·(x -1,0,1)=0⇒x +y =1. 答案:19.如图所示,PD 垂直于正方形ABCD 所在平面,AB =2,E 为PB的中点,cos 〈DP u u u r ,AE u u u r 〉=33,若以DA 、DC ,DP 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则点E 的坐标为________.解析:设PD =a ,则A (2,0,0),B (2,2,0),P (0,0,a ),E ⎝⎛⎭⎫1,1,a 2. ∴DP u u u r =(0,0,a ),AE u u u r =⎝⎛⎭⎫-1,1,a 2. 由cos 〈DP u u u r ,AE u u u r 〉=33, ∴a 22=a 2+a 24·33,∴a =2. ∴E 的坐标为(1,1,1).答案:(1,1,1)10.如图所示,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,P A =AB =BC ,E 是PC 的中点.证明:(1)AE ⊥CD ;(2)PD ⊥平面ABE .证明:AB 、AD 、AP 两两垂直,建立如图所示的空间直角坐标系,设P A =AB =BC =1,则P (0,0,1).(1)∵∠ABC =60°,∴△ABC 为正三角形.∴C ⎝⎛⎭⎫12,32,0,E ⎝⎛⎭⎫14,34,12. 设D (0,y,0),由AC ⊥CD ,得AC u u u r ·CD u u u r =0, 即y =233,则D ⎝⎛⎭⎫0,233,0, ∴CD u u u r =⎝⎛⎭⎫-12,36,0.又AE u u u r =⎝⎛⎭⎫14,34,12, ∴AE u u u r ·CD u u u r =-12×14+36×34=0, ∴AE u u u r ⊥CD u u u r ,即AE ⊥CD .(2)法一:∵P (0,0,1),∴PD u u u r =⎝⎛⎭⎫0,233,-1. 又AE u u u r ·PD u u u r =34×233+12×(-1)=0,∴PD u u u r ⊥AE u u u r ,即PD ⊥AE .∵AB u u u r =(1,0,0),∴PD u u u r ·AB u u u r =0.∴PD ⊥AB ,又AB ∩AE =A ,∴PD ⊥平面AEB .法二:AB u u u r =(1,0,0),AE u u u r =⎝⎛⎭⎫14,34,12, 设平面ABE 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ x =0,14x +34y +12z =0,令y =2,则z =-3,∴n =(0,2,-3). ∵PD u u u r =⎝⎛⎭⎫0,233,-1,显然PD u u u r =33n . ∵PD u u u r ∥n ,∴PD u u u r ⊥平面ABE ,即PD ⊥平面ABE .11.已知矩形ABCD 中,AB =6,BC =62,E 为AD 的中点(图甲).沿BE 将△ABE 折起,使二面角A -BE -C 为直二面角(图乙),且F 为AC 的中点.(1)求证:FD ∥平面ABE ;(2)求证:AC ⊥BE .证明:(1)如图1,设M 为BC 的中点,连接DM 、MF .∵F 为AC 的中点,M 为BC 的中点,∴MF ∥AB .又∵BM 綊DE ,∴四边形BMDE 为平行四边形,∴MD ∥BE .∵MF ∩MD =M ,AB ∩BE =B ,∴平面DFM ∥平面ABE .又∵PD ⊂平面DFM ,FD ⊄平面ABE ,∴FD ∥平面ABE .(2)在矩形ABCD (如图2)中,连接AC ,交BE 于G .BE u u u r ·AC u u u r =(BA u u u r +AE u u u r )·(AB u u u r +BC u u u r ) =-AB u u u r 2+AE u u u r ·BC u u u r =-36+36=0. ∴AC ⊥BE .∴在图3中,AG ⊥BE ,CG ⊥BE .又∵AG ∩GC =G ,∴BE ⊥平面AGC .又∵AC ⊂平面AGC ,∴AC ⊥BE .12. 如图,在底面为直角梯形的四棱锥P -ABCD 中,AD ∥BC ,∠ABC =90°,PD ⊥平面ABCD ,AD =1,AB =3,BC =4.(1)求证:BD ⊥PC ;(2)设点E 在棱PC 上,PE u u u r =λPC u u u r ,若DE ∥平面P AB ,求λ的值.解:(1)证明:如图,在平面ABCD 内过点D 作直线DF ∥AB ,交BC 于点F ,以D 为坐标原点,DA 、DF 、DP 所在的直线分别为x 、y 、z 轴建立空间直角坐标系D -xyz ,则A (1,0,0),B (1,3,0),D (0,0,0),C (-3,3,0).(1)设PD =a ,则P (0,0,a ),BD u u u r =(-1,-3,0),PC u u u r =(-3,3,-a ),∵BD u u u r ·PC u u u r =3-3=0,∴BD ⊥PC . (2)由题意知,AB u u u r =(0,3,0),DP u u u r =(0,0,a ),PA u u u r =(1,0,-a ),PC u u u r =(-3,3,-a ),∵PE u u u r =λPC u u u r ,∴PE u u u r =(-3λ,3λ,-aλ),DE u u u r =DP u u u r +PE u u u r =(0,0,a )+(-3λ,3λ,-aλ)=(-3λ,3λ,a -aλ).设n =(x ,y ,z )为平面P AB 的法向量,则⎩⎪⎨⎪⎧AB u u u r ·n =0,PA u u u r ·n =0, 即⎩⎪⎨⎪⎧3y =0,x -az =0.令z =1,得x =a ,∴n =(a,0,1), ∵DE ∥平面P AB ,∴DE u u u r ·n =0,∴-3aλ+a -aλ=0,即a (1-4λ)=0,∵a ≠0,∴λ=14. 1.已知AB u u u r =(1,5,-2),BC u u u r =(3,1,z ),若AB u u u r ⊥BC u u u r ,BP u u u r =(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为( )A.337,-157,4 B.407,-157,4 C.407,-2,4 D .4,407,-15 解析:选B ∵AB u u u r ⊥BC u u u r ,∴AB u u u r ·BC u u u r =0, 即3+5-2z =0,得z =4.又BP ⊥平面ABC ,∴BP ⊥AB ,BP ⊥BC ,BC u u u r =(3,1,4),则⎩⎪⎨⎪⎧ (x -1)+5y +6=0,3(x -1)+y -12=0,解得⎩⎨⎧ x =407,y =-157.2.设空间四点O ,A ,B ,P 满足OP u u u r =OA u u u r +t AB u u u r ,其中0<t <1,则有( )A .点P 在线段AB 上B .点P 在线段AB 的延长线上C .点P 在线段BA 的延长线上D .点P 不一定在直线AB 上解析:选A ∵0<t <1,∴P 点在线段AB 上.3.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E 、F 分别是BB 1、DD 1的中点.求证:(1)FC 1∥平面ADE ;(2)平面ADE ∥平面B 1C 1F .证明:(1)如图所示,建立空间直角坐标系D -xyz ,则有D (0,0,0)、A (2,0,0)、C (0,2,0)、C 1(0,2,2)、E (2,2,1)、F (0,0,1),所以1FC u u u u r =(0,2,1),DA u u u r =(2,0,0),AE u u u r =(0,2,1).设n 1=(x 1,y 1,z 1)是平面ADE 的一个法向量,则n 1⊥DA u u u r ,n 1⊥AE u u u r ,即⎩⎪⎨⎪⎧n 1·DA u u u r =2x 1=0,n 1·AE u u u r =2y 1+z 1=0. 解得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1. 令z 1=2,则y 1=-1,所以n 1=(0,-1,2). 因为1FC u u u u r ·n 1=-2+2=0,所以1FC u u u u r ⊥n 1.又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE .(2)由(1)得B 1(2,2,2),11C B u u u u r =(2,0,0).设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量,则n 2⊥1FC u u u u r ,n 2⊥11C B u u u u r ,即⎩⎪⎨⎪⎧ n 2·1FC u u u u r =2y 2+z 2=0,n 2·11C B u u u u r =2x 2=0.解得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,则y 2=-1,所以n 2=(0,-1,2).因为n 1=n 2,所以平面ADE ∥平面B 1C 1F .1.已知在一个60°的二面角的棱上,如图有两个点A ,B ,AC ,BD 分别是在这个二面角的两个半平面内垂直于AB 的线段,且AB=4 cm ,AC =6 cm ,BD =8 cm ,则CD 的长为________.解析:设BD u u u r =a ,AB u u u r =b ,AC u u u r =c ,由已知条件|a |=8,|b |=4,|c |=6,〈a ,b 〉=90°,〈b ,c 〉=90°,〈a ,c 〉=60°,|CD u u u r |2=|CA u u u r +AB u u u r +BD u u u r |2=|-c +b +a |2=a 2+b 2+c 2+2a ·b -2a ·c -2b ·c =68,则|CD u u u r |=217. 答案:217 cm2.如图所示,平行六面体ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CD =∠C 1CB =∠BCD =60°.(1)求证:C 1C ⊥BD ;(2)当CD CC 1的值是多少时,能使A 1C ⊥平面C 1BD ?请给出证明. 解:(1)证明:设CD u u u r =a ,CB u u u r =b ,1CC u u u u r =c ,由已知|a |=|b |,且〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,BD u u u r =CD u u u r -CB u u u r =a -b ,1CC u u u u r ·BD u u u r =c ·(a -b )=c ·a -c ·b =12|c ||a |-12|c ||b |=0,∴1C C u u u u r ⊥BD u u u r ,即C 1C ⊥BD . (2)若A 1C ⊥平面C 1BD ,则A 1C ⊥C 1D ,1CA u u u r =a +b +c ,1C D u u u u r =a -c .∴1CA u u u r ·1C D u u u u r =0,即(a +b +c )·(a -c )=0. 整理得:3a 2-|a ||c |-2c 2=0,(3|a |+2|c |)(|a |-|c |)=0,∴|a |-|c |=0,即|a |=|c |. 即当CD CC 1=|a ||c |=1时,A 1C ⊥平面C 1BD . 3.如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E 、F 、G 分别是线段P A 、PD 、CD 的中点.求证:PB ∥平面EFG .证明:∵平面P AD ⊥平面ABCD ,且ABCD 为正方形,∴AB 、AP 、AD 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0)、B (2,0,0)、C (2,2,0)、D (0,2,0)、P (0,0,2)、E (0,0,1)、F (0,1,1)、G (1,2,0).∴PB u u u r =(2,0,-2),FE u u u r =(0,-1,0),FG u u u r =(1,1,-1),设PB u u u r =s FE u u u r +t FG u u u r ,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎪⎨⎪⎧ t =2,t -s =0,-t =-2,解得s =t =2.∴PB u u u r =2FE u u u r +2FG u u u r ,又∵FE u u u r 与FG u u u r 不共线,∴PB u u u r 、FE u u u r 与FG u u u r 共面.∵PB ⊄平面EFG ,∴PB ∥平面EFG .。

高二数学复习典型题型与知识点专题讲解1---空间向量及其运算(解析版)

高二数学复习典型题型与知识点专题讲解 01空间向量及其运算+空间向量基本定理+空间向量及其运算的坐标表示一、典例精析拓思维(名师点拨)知识点1 回路法求模与夹角知识点2 共线与共面知识点3 空间向量基本定理知识点4 建系设点二、题型归类练专练一、典例精析拓思维(名师点拨)知识点1 回路法求模与夹角例1.(2021·湖北省直辖县级单位·高二阶段练习)如图,平行六面体ABCD A B C D ''''-,其中4AB =,3AD =,3AA '=,90BAD ∠=︒,60BAA '∠=︒,60DAA '∠=︒,则AC '的长为________【详解】根据题意,''AC AC CC AB BC AA =+='++'AC AB BC AA ∴=++'根据题中的数据可知,()()()()2'22'2'2222'2?··433243cos9033cos 6043cos 6055AB BC AA AB BC AA AB BC BC AA AB AA AC AB BC AA ++=+++++=+++⨯⨯︒+⨯⨯︒+⨯⨯︒=∴=++=名师点评:回路法求模,比如AD AB BC CD =++,则有22||()AD AB BC CD =++。

也如本例中:AC AB BC CC '=+'+,特别提醒:找向量夹角时,注意共起点才能找夹角,当两个向量不共起点时,需平移成共起点条件下找夹角.例2.(2021·重庆南开中学高二阶段练习)如图,平行六面体1111ABCD A B C D -,其中,以顶点A 为端点的三条棱长均为2,且它们彼此的夹角都是60︒,则AC 与1BD 所成角的余弦值___________.【详解】 因为111,AC AB AD BD AD AB AA AD AB =+=-=+-,所以()()()()111AC BD AB AD AA AD AB AB AD AA AD AB ⋅=+⋅+-=+⋅+-,2211AB AA AB AD AA AD =⋅-+⋅+, 2222cos60222cos6024=⨯⨯-+⨯⨯+=, ()22222AC AB AD AB AB AD AD =+=+⋅+, 222222cos60212=+⨯⨯⨯+=,所以23AC =()2211BD AA AD AB =+-,222111222AA AD AB AA AD AA AB AD AB =+++⋅-⋅-⋅,222222222cos60222cos60222cos60=+++⨯⨯⨯-⨯⨯⨯-⨯⨯⨯, 8= 所以122BD =设AC 与1BD 所成的角为θ,所以111cos cos ,2AC BD AC BD AC BD θ⋅====⋅. 名师点评:利用向量求异面直线所成角时注意:①0,a b π≤<>≤,利用公式cos ,||||a b a b a b ⋅<>=,求出的cos ,a b <>可正可负可为零;②异面直线a ,b 所成角02πθ<≤,在利用向量求异面直线所成角时注意转化cos |cos ,|a b θ=<>. 知识点2 共线与共面例1.(2021·辽宁·大连市第一中学高三期中)在ABC ∆中,点D 是线段BC 上任意一点(不包含端点),若AD mAB nAC=+,则41m n+的最小值为______. 【答案】9【详解】 D 是线段BC 上一点,B ∴,C ,D 三点共线,AD mAB nAC =+,1m n ∴+=,且0m >,0n >,∴14()()52459441n m n m n m n m n m+=++=+++=, 当且仅当4m n n m=时取等号. ∴41m n+的最小值为9.故答案为:9.练习1-1.(2021·广东深圳·高三阶段练习)如图,在ABC ∆中,点P 满足2BP PC =,过点P 的直线与AB AC ,所在的直线分别交于点M N ,若AM AB λ=,,(0,0)AN AC μλμ=>>,则λμ+的最小值为__________.【答案】1 【详解】 BP BA AP =+,PC PA AC =+,又2BP PC =,∴()2AB AP AC AP -+=-, ∴12123333AP AB AC AM AN λμ=+=+, 又P 、M 、N 三点共线, ∴12133λμ+=,∴12122()11333333μλλμλμλμλμ⎛⎫⎛⎫⎛⎫+=+⋅+=+++≥+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当233μλλμ=,即1233λμ==时取等,∴λμ+的最小值为1故答案为:1练习1-2.(2021·全国·高二单元测试)已知A ,B ,C 三点共线,则对空间任一点O ,存在三个不为0的实数λ,m ,n ,使OA λ+mOB +nOC =0,那么m n λ++的值为________.【答案】0【详解】因A ,B ,C 三点共线,则存在唯一实数k 使AB k AC =,显然0k ≠且1k ≠,否则点A ,B 重合或点B ,C 重合,则()OB OA k OC OA -=-,整理得:(1)0k OA OB kOC -+-=,令λ=k -1,m =1,n =-k ,显然实数λ,m ,n 不为0,因此,存在三个不为0的实数λ,m ,n ,使λOA +m OB +n OC =0,此时λ+m +n = k -1+1+(-k )=0, 所以λ+m +n 的值为0.故答案为:0另解:由A ,B ,C 三点共线,且OA λ+mOB +nOC =0⇒mnOA OB OC λλ=--()10mn m n m n λλλλ⇒-+-=⇒+=-⇒++= 名师点评:①空间中三点,,P A B 共线⇔PA PB λ=;②空间中三点,,P A B 共线⇔对于空间中任意一点O ,(1)OP OA OB λμλμ=++=合理的利用好三点共线向量的充要条件,在解题时可以迅速得出结论。

高考数学专题复习《空间向量及其运算》PPT课件

(3)a·b= x1x2+y1y2+z1z2
;
(4)|a|= ·=
(5)当 a≠0 且 b≠0
12 + 12 + 12
·
时,cos<a,b>=||||
;
=
1 2 +1 2 +1 2
12 +12 +12 22 +22 +22
.
9.空间向量的坐标与空间向量的平行、垂直
第七章
7.5 空间向量及其运算




01பைடு நூலகம்
必备知识 预案自诊
02
关键能力 学案突破
【知识梳理】
1.空间向量
(1)定义:空间中既有 大小
又有 方向
(2)向量的模(或长度):向量的 大小
.
的量称为空间向量.
(3)表示方法:
①几何表示法:可以用 有向线段
来直观的表示向量,如始点为A终点
为B的向量,记为 ,向量的模用 | | 表示.
(ⅰ)当λ>0时,与a的方向 相同
;
(ⅱ)当λ<0时,与a的方向 相反
,而且λa的方向:
.
②当λ=0或a=0时,λa= 0 .
(4)空间向量的线性运算满足如下运算律:
对于实数λ与μ,向量a与b,有λa+μa=(λ+μ)a,λ(a+b)=λa+λb.
4.空间向量的数量积
(1)空间向量的夹角
非零
<a,b>
x2=λx1
(1)当 a≠0 时,a∥b⇔b=λa⇔(x2,y2,z2)=λ(x1,y1,z1)⇔ y2=λy1

空间向量及其加减运算 课件


[解析] ∵平行六面体的六个面均为平行四边形, ∴A→C=A→B+A→D,A→ B′=A→B+AA→′,AD→′=A→D+A→ A′, ∴A→C+AB→′+AD→′=(A→B+A→D)+(A→B+AA→′)+(A→D+ AA→′) =2(A→B+A→D+AA→′). 又∵A→ A′=C→ C′,A→D=B→C, ∴A→B+A→D+A→ A′
命题方向 空间向量的数乘运算 [例 3] 在长方体 ABCD-A1B1C1D1 中,O 为底面 A1B1C1D1 的中心,设A→A1=c,A→B=a,A→D=b,用 a、b、c 表示下列向量: B→C1、A→C1、B→D1、C→O.
[分析] 用 a、b、c 表示待求向量,应充分利用长方体的 特殊性和向量的“自由”移动性求解.
[点评] (1)两个向量的模相等,则它们的长度相等,但方 向不确定,即两个向量(非零向量)的模相等是两个向量相等的 必要不充分条件.
(2)熟练掌握空间向量的有关概念、向量的加减法满足的运 算法则及运算律是解决好这类问题的关键.
命题方向 空间向量的加减运算
[例 2] 如图,已知长方体 ABCD—A′B′C′D′,化 简下列向量表达式,并在图中标出化简结果的向量.
[答案] B
[分析] 给出的命题都是对向量的有关概念及加减法的理 解,解答本题应紧扣向量及其加减运算的有关概念进行.
[解析] |a|=|b|,说明 a 与 b 模相等,但方向不确定,由 a 的相反向量 b=-a,故|a|=|b|,从而 B 正确.只定义加法具有 结合律,减法不具有结合律,一般的四边形不具有A→B+A→D= A→C正确.
=A→B+B→C+C→C′ =A→C+C→C′=AC→′, ∴A→C+AB→′+AD→′=2AC→′.
[点评] 利用向量解决立体几何中的问题的一般思路:

空间向量及其运算和空间位置关系(含解析)

归纳与技巧:空间向量及其运算和空间位置关系基础知识归纳一、空间向量及其有关概念OP=x OA+y OB+z OC且x+二、数量积及坐标运算1.两个向量的数量积(1)a·b=|a||b|cos〈a,b〉;(2)a⊥b⇔a·b=0(a,b为非零向量);(3)|a|2=a2,|a|=x2+y2+z2.2.向量的坐标运算三、平面的法向量(1)所谓平面的法向量,就是指所在的直线与平面垂直的向量,显然一个平面的法向量有无数多个,它们是共线向量.(2)在空间中,给定一个点A和一个向量a,那么以向量a为法向量且经过点A的平面是唯一的.基础题必做1.(课本习题改编)已知a=(-2,-3,1),b=(2,0,4),c=(-4,-6,2)则下列结论正确的是()A.a∥c,b∥c B.a∥b,a⊥cC.a∥c,a⊥b D.以上都不对解析:选C∵c=(-4,-6,2)=2a,∴a∥c.又a·b=0,故a⊥b.2.若{a,b,c}为空间的一组基底,则下列各项中,能构成基底的一组向量是()A.{a,a+b,a-b} B.{b,a+b,a-b}C.{c,a+b,a-b} D.{a+b,a-b,a+2b}解析:选C若c、a+b、a-b共面,则c=λ(a+b)+m(a-b)=(λ+m)a+(λ-m)b,则a、b、c为共面向量,与{a,b,c}为空间向量的一组基底矛盾,故c,a+b,a-b可构成空间向量的一组基底.3.(教材习题改编)下列命题:①若A、B、C、D是空间任意四点,则有AB+BC+CD+DA=0;②若MB=x MA+y MB,则M、P、A、B共面;③若p=x a+y b,则p与a,b共面.其中正确的个数为()A.0B.1C.2 D.3解析:选D可判断①②③正确.4.在四面体O-ABC中,OA=a,OB=b,OC=c,D为BC的中点,E为AD的中点,则OE=________(用a,b,c表示).解析:如图,OE=12OA+12OD=12OA +14OB +14OC =12a +14b +14c . 答案:12a +14b +14c5.已知ABCD -A 1B 1C 1D 1为正方体,①(1A A +11A D +11A B )2=311A B 2;②1A C ·(11A B -1A A )=0;③向量1AD 与向量1A B 的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB ·1AA ·AD |.其中正确命题的序号是________.解析:设正方体的棱长为1,①中(1A A +11A D +11A B )2=311A B 2=3,故①正确;②中11A B -1A A =1AB ,由于AB 1⊥A 1C ,故②正确;③中A 1B 与AD 1两异面直线所成角为60°,但1AD 与1A B 的夹角为120°,故③不正确;④中|AB ·1AA ·AD |=0.故④也不正确.答案:①②解题方法归纳1.用空间向量解决立体几何中的平行或共线问题一般用向量共线定理;求两点间距离或某一线段的长度,一般用向量的模来解决;解决垂直问题一般可转化为向量的数量积为零;求异面直线所成的角,一般可以转化为两向量的夹角,但要注意两种角的范围不同,最后应进行转化.2.直线的方向向量与平面的法向量的确定:(1)直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB 为直线l 的方向向量,与AB 平行的任意非零向量也是直线l 的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n ·a =0,n ·b =0.空间向量的线性运算典题导入[例1] 如图,在平行六面体ABCD -A 1B 1C 1D 1中G 为△A 1BD 的重心,设AB =a ,AD =b ,1AA =c ,试用a ,b ,c 表示1AC ,AG .[自主解答] 1AC =AB +BC +1CC =AB +AD +1AA =a +b +c .AG =1AA +1A G=1AA +13(1A D +1A B )=1AA +13(AD -1AA )+13(AB -1AA )=131AA +13AD +13AB =13a +13b +13c .本例条件不变,设A 1C 1与B 1D 1交点为M ,试用a ,b ,c 表示MG . 解:如图,MG =1MA +1A G=-12(11A B +11A D )+13(1A D +1A B )=-12a -12b +13(AD -1AA )+13(AB -1AA )=-12a -12b +13b -13c +13a -13c=-16a -16b -23c解题方法归纳用已知向量表示未知向量,一定要结合图形,以图形为指导是解题的关键,要正确理解向量加法、减法与数乘运算的几何意义,灵活运用三角形法则及四边形法则.以题试法1.如图所示,已知空间四边形OABC ,其对角线为OB 、AC ,M 、N分别为OA 、BC 的中点,点G 在线段MN 上,且MG =2GN ,若OG =x OA +y OB +z OC ,则x ,y ,z 的值分别为________.解析:∵OG =OM +MG =12OA +23MN=12OA +23(ON -OM ) =12OA +23ON -23OM =12OA +23×12(OB +OC )-23×12OA =16OA +13OB +13OC ∴x ,y ,z 的值分别为16,13,13.答案:16,13,13共线、共面向量定理的应用典题导入[例2] 如右图,已知平行六面体ABCD -A ′B ′C ′D ′,E 、F 、G 、H 分别是棱A ′D ′、D ′C ′、C ′C 和AB 的中点,求证E 、F 、G 、H 四点共面.[自主解答] 取ED '=a ,EF =b ,EH =c ,则HG =HB +BC +CG =D F '+2ED '+12AA '=b -a +2a +12(AH +HE +EA ')=b +a +12(b -a -c -a )=32b -12c ,∴HG 与b 、c 共面.即E 、F 、G 、H 四点共面. 解题方法归纳应用共线向量定理、共面向量定理证明点共线、点共面的方法比较:三点(P ,A ,B )共线空间四点(M ,P ,A ,B )共面PA =λPB 且同过点P MP =x MA +y MB对空间任一点O,OP=OA→+t AB对空间任一点O,OP=OM+x MA+y MB对空间任一点O,OP=x OA+(1-x)OB对空间任一点O,OP=x OM+y OA+(1-x-y)OB以题试法2.已知E、F、G、H分别是空间四边形ABCD的边AB、BC、CD、DA的中点,用向量方法,求证:(1)E、F、G、H四点共面;(2)BD∥平面EFGH.证明:(1)连接BG,则EG=EB+BG=EB+12(BC+BD)=EB+BF+EH=EF+EH,由共面向量定理知:E、F、G、H四点共面.(2)因为EH=AH-AE=1 2AD-12AB=12(AD-AB)=12BD,又因为E、H、B、D四点不共线,所以EH∥BD.又EH⊂平面EFGH,BD⊄平面EFGH,所以BD∥平面EFGH.利用空间向量证明平行或垂直典题导入[例3]已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,边长为2a,AD=DE=2AB,F为CD的中点.(1)求证:AF ∥平面BCE ; (2)求证:平面BCE ⊥平面CDE .[自主解答] 依题意,以AC 所在的直线为x 轴,AB 所在的直线为z 轴,过点A 且垂直于AC 的直线为y 轴,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),C (2a,0,0),B (0,0,a ),D (a ,3a,0),E (a ,3a,2a ).∵F 为CD 的中点,∴F ⎝⎛⎭⎫32a ,32a ,0.(1)易知,AF =⎝⎛⎭⎫32a ,32a ,0,BE =(a ,3a ,a ),BC =(2a,0,-a ),∵AF =12(BE +BC ),AF ⊄平面BCE ,∴AF ∥平面BCE .(2)∵AF =⎝⎛⎭⎫32a ,32a ,0,CD =(-a ,3a,0),ED =(0,0,-2a ),∴AF ·CD =0,AF ·ED =0, ∴AF ⊥CD ,AF ⊥ED ,即AF ⊥CD ,AF ⊥ED . 又CD ∩ED =D ,∴AF ⊥平面CDE . 又AF ∥平面BCE ,∴平面BCE ⊥平面CDE .解题方法归纳利用直线的方向向量与平面的法向量,可以判定直线与直线、直线与平面、平面与平面的平行和垂直.(1)设直线l 1的方向向量v 1=(a 1,b 1,c 1),l 2的方向向量v 2=(a 2,b 2,c 2). 则l 1∥l 2⇔v 1∥v 2⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)(k ∈R ). l 1⊥l 2⇔v 1⊥v 2⇔a 1a 2+b 1b 2+c 1c 2=0.(2)设直线l 的方向向量为v =(a 1,b 1,c 1),平面α的法向量为n =(a 2,b 2,c 2),则l ∥α⇔v ⊥n ⇔a 1a 2+b 1b 2+c 1c 2=0.l ⊥α⇔v ∥n ⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2).(3)设平面α的法向量n 1=(a 1,b 1,c 1),β的法向量为n 2=(a 2,b 2,c 2),则α∥β⇔n 1∥n 2,α⊥β⇔n 1⊥n 2.以题试法3. 如图所示的长方体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为2的正方形,O 为AC 与BD 的交点,BB 1=2,M 是线段B 1D 1的中点.(1)求证:BM ∥平面D 1AC ; (2)求证:D 1O ⊥平面AB 1C .证明:(1)建立如图所示的空间直角坐标系,则点O (1,1,0)、D 1(0,0,2), ∴1OD =(-1,-1,2), 又点B (2,2,0),M (1,1,2), ∴BM =(-1,-1,2), ∴1OD =BM , 又∵OD 1与BM 不共线, ∴OD 1∥BM .又OD 1⊂平面D 1AC ,BM ⊄平面D 1AC , ∴BM ∥平面D 1AC .(2)连接OB 1.∵1OD ·1OB =(-1,-1,2)·(1,1,2)=0,1OD ·AC =(-1,-1,2)·(-2,2,0)=0,∴1OD ⊥1OB ,1OD ⊥AC , 即OD 1⊥OB 1,OD 1⊥AC ,又OB 1∩AC =O ,∴D 1O ⊥平面AB 1C .1. 若直线l 的方向向量为a ,平面α的法向量为n ,能使l ∥α的是( ) A .a =(1,0,0),n =(-2,0,0) B .a =(1,3,5),n =(1,0,1) C .a =(0,2,1),n =(-1,0,-1) D .a =(1,-1,3),n =(0,3,1)解析:选D 若l ∥α,则a ·n =0.而A 中a ·n =-2, B 中a ·n =1+5=6,C 中a ·n =-1, 只有D 选项中a ·n =-3+3=0.2.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( )A.627 B.637 C.607D.657解析:选D 由题意得c =t a +μ b =(2t -μ,-t +4μ,3t -2μ),∴⎩⎪⎨⎪⎧7=2t -μ,5=-t +4μ,λ=3t -2μ.∴⎩⎪⎨⎪⎧t =337,μ=177,λ=657.3.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB =a ,AD =b ,1AA =c ,则下列向量中与BM 相等的向量是( )A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 解析:选A BM =1BB +1B M =1AA +12(AD -AB )=c +12(b -a )=-12a +12b +c .4. 如图所示,已知空间四边形OABC ,OB =OC ,且∠AOB =∠AOC =π3,则cos 〈OA ,BC 〉的值为( ) A .0 B.12 C.32D.22解析:选A 设OA =a ,OB =b ,OC =c , 由已知条件〈a ,b 〉=〈a ,c 〉=π3,且|b |=|c |,OA ·BC =a ·(c -b )=a ·c -a ·b=12|a ||c |-12|a ||b |=0,∴cos 〈OA ,BC 〉=0. 5. 平行六面体ABCD -A 1B 1C 1D 1中,向量AB 、AD 、1AA 两两的夹角均为60°,且|AB |=1,|AD |=2,|1AA |=3,则|1AC |等于( )A .5B .6C .4D .8解析:选A 设AB =a ,AD =b ,1AA =c ,则1AC =a +b +c , 1AC 2=a 2+b 2+c 2+2a ·c +2b ·c +2c ·a =25, 因此|1AC |=5.6.在正方体ABCD -A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 内一点,线段D 1Q 与OP 互相平分,则满足MQ =λMN 的实数λ的值有( )A .0个B .1个C .2个D .3个解析:选C 建立如图所示的坐标系,设正方体的棱长为2, 则P (x ,y,2),O (1,1,0), ∴OP 的中点坐标为⎝⎛⎭⎫x +12,y +12,1,又知D 1(0,0,2),∴Q (x +1,y +1,0), 而Q 在MN 上,∴x Q +y Q =3, ∴x +y =1,即点P 坐标满足x +y =1. ∴有2个符合题意的点P ,即对应有2个λ.7.在下列条件中,使M 与A 、B 、C 一定共面的是________.①OM =2OA -OB -OC ;②OM =15OA +13OB +12OC ;③MA +MB +MC =0;④OM +OA +OB +OC =0.解析:∵MA +MB +MC =0,∴MA =-MB -MC ,则MA 、MB 、MC 为共面向量,即M 、A 、B 、C 四点共面.答案:③8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别是棱BC 、DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.解析:以D 1A 1、D 1C 1、D 1D 分别为x ,y ,z 轴建立空间直角坐标系,设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),∴1B E =(x -1,0,1),又F (0,0,1-y ),B (1,1,1),∴FB =(1,1,y ),由于AB ⊥B 1E ,故若B 1E ⊥平面ABF ,只需PB ―→·1B E =(1,1,y )·(x -1,0,1)=0⇒x +y =1. 答案:19.如图所示,PD 垂直于正方形ABCD 所在平面,AB =2,E 为PB的中点,cos 〈DP ,AE 〉=33,若以DA 、DC ,DP 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则点E 的坐标为________.解析:设PD =a ,则A (2,0,0),B (2,2,0),P (0,0,a ),E ⎝⎛⎭⎫1,1,a 2. ∴DP =(0,0,a ),AE =⎝⎛⎭⎫-1,1,a 2. 由cos 〈DP ,AE 〉=33, ∴a 22=a 2+a 24·33,∴a =2. ∴E 的坐标为(1,1,1).答案:(1,1,1)10.如图所示,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,P A =AB =BC ,E 是PC 的中点.证明:(1)AE ⊥CD ;(2)PD ⊥平面ABE .证明:AB 、AD 、AP 两两垂直,建立如图所示的空间直角坐标系,设P A =AB =BC =1,则P (0,0,1).(1)∵∠ABC =60°,∴△ABC 为正三角形.∴C ⎝⎛⎭⎫12,32,0,E ⎝⎛⎭⎫14,34,12. 设D (0,y,0),由AC ⊥CD ,得AC ·CD =0, 即y =233,则D ⎝⎛⎭⎫0,233,0, ∴CD =⎝⎛⎭⎫-12,36,0.又AE =⎝⎛⎭⎫14,34,12, ∴AE ·CD =-12×14+36×34=0, ∴AE ⊥CD ,即AE ⊥CD .(2)法一:∵P (0,0,1),∴PD =⎝⎛⎭⎫0,233,-1. 又AE ·PD =34×233+12×(-1)=0, ∴PD ⊥AE ,即PD ⊥AE .∵AB =(1,0,0),∴PD ·AB =0.∴PD ⊥AB ,又AB ∩AE =A ,∴PD ⊥平面AEB .法二:AB =(1,0,0),AE =⎝⎛⎭⎫14,34,12, 设平面ABE 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ x =0,14x +34y +12z =0,令y =2,则z =-3,∴n =(0,2,-3).∵PD =⎝⎛⎭⎫0,233,-1,显然PD =33n . ∵PD ∥n ,∴PD ⊥平面ABE ,即PD ⊥平面ABE .11.已知矩形ABCD 中,AB =6,BC =62,E 为AD 的中点(图甲).沿BE 将△ABE 折起,使二面角A -BE -C 为直二面角(图乙),且F 为AC 的中点.(1)求证:FD∥平面ABE;(2)求证:AC⊥BE.证明:(1)如图1,设M为BC的中点,连接DM、MF.∵F为AC的中点,M为BC的中点,∴MF∥AB.又∵BM綊DE,∴四边形BMDE为平行四边形,∴MD∥BE.∵MF∩MD=M,AB∩BE=B,∴平面DFM∥平面ABE.又∵PD⊂平面DFM,FD⊄平面ABE,∴FD∥平面ABE.(2)在矩形ABCD(如图2)中,连接AC,交BE于G.BE·AC=(BA+AE)·(AB+BC)=-AB2+AE·BC=-36+36=0.∴AC⊥BE.∴在图3中,AG⊥BE,CG⊥BE.又∵AG∩GC=G,∴BE⊥平面AGC.又∵AC⊂平面AGC,∴AC⊥BE.12.如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PD⊥平面ABCD,AD=1,AB=3,BC=4.(1)求证:BD⊥PC;(2)设点E在棱PC上,PE=λPC,若DE∥平面P AB,求λ的值.解:(1)证明:如图,在平面ABCD内过点D作直线DF∥AB,交BC于点F,以D为坐标原点,DA、DF、DP所在的直线分别为x、y、z 轴建立空间直角坐标系D -xyz ,则A (1,0,0),B (1,3,0),D (0,0,0),C (-3,3,0).(1)设PD =a ,则P (0,0,a ),BD =(-1,-3,0),PC =(-3,3,-a ),∵BD ·PC =3-3=0,∴BD ⊥PC . (2)由题意知,AB =(0,3,0),DP =(0,0,a ),PA =(1,0,-a ),PC =(-3,3,-a ),∵PE =λPC ,∴PE =(-3λ,3λ,-aλ),DE =DP +PE =(0,0,a )+(-3λ,3λ,-aλ)=(-3λ,3λ,a -aλ).设n =(x ,y ,z )为平面P AB 的法向量,则⎩⎪⎨⎪⎧ AB ·n =0,PA ·n =0, 即⎩⎪⎨⎪⎧3y =0,x -az =0.令z =1,得x =a ,∴n =(a,0,1),∵DE ∥平面P AB ,∴DE ·n =0,∴-3aλ+a -aλ=0,即a (1-4λ)=0,∵a ≠0,∴λ=14.1.已知AB =(1,5,-2),BC =(3,1,z ),若AB ⊥BC ,BP =(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为( )A.337,-157,4 B.407,-157,4 C.407,-2,4 D .4,407,-15 解析:选B ∵AB ⊥BC ,∴AB ·BC =0, 即3+5-2z =0,得z =4.又BP ⊥平面ABC ,∴BP ⊥AB ,BP ⊥BC ,BC =(3,1,4),则⎩⎪⎨⎪⎧(x -1)+5y +6=0,3(x -1)+y -12=0,解得⎩⎨⎧ x =407,y =-157.2.设空间四点O ,A ,B ,P 满足OP =OA +t AB ,其中0<t <1,则有( )A .点P 在线段AB 上B .点P 在线段AB 的延长线上C .点P 在线段BA 的延长线上D .点P 不一定在直线AB 上解析:选A ∵0<t <1,∴P 点在线段AB 上.3.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E 、F 分别是BB 1、DD 1的中点.求证:(1)FC 1∥平面ADE ;(2)平面ADE ∥平面B 1C 1F .证明:(1)如图所示,建立空间直角坐标系D -xyz ,则有D (0,0,0)、A (2,0,0)、C (0,2,0)、C 1(0,2,2)、E (2,2,1)、F (0,0,1),所以1FC =(0,2,1),DA =(2,0,0),AE =(0,2,1).设n 1=(x 1,y 1,z 1)是平面ADE 的一个法向量,则n 1⊥DA ,n 1⊥AE , 即⎩⎪⎨⎪⎧ n 1·DA =2x 1=0,n 1·AE =2y 1+z 1=0. 解得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1. 令z 1=2,则y 1=-1,所以n 1=(0,-1,2).因为1FC ·n 1=-2+2=0,所以1FC ⊥n 1.又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE .(2)由(1)得B 1(2,2,2),11C B =(2,0,0).设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量,则n 2⊥1FC ,n 2⊥11C B , 即⎩⎪⎨⎪⎧ n 2·1FC =2y 2+z 2=0,n 2·11C B =2x 2=0.解得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,则y 2=-1,所以n 2=(0,-1,2).因为n 1=n 2,所以平面ADE ∥平面B 1C 1F .1.已知在一个60°的二面角的棱上,如图有两个点A ,B ,AC ,BD 分别是在这个二面角的两个半平面内垂直于AB 的线段,且AB=4 cm ,AC =6 cm ,BD =8 cm ,则CD 的长为________.解析:设BD =a ,AB =b ,AC =c ,由已知条件|a |=8,|b |=4,|c |=6,〈a ,b 〉=90°,〈b ,c 〉=90°,〈a ,c 〉=60°,|CD |2=|CA +AB +BD |2=|-c +b +a |2=a 2+b 2+c 2+2a ·b -2a ·c -2b ·c =68,则|CD |=217. 答案:217 cm2.如图所示,平行六面体ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CD =∠C 1CB =∠BCD =60°.(1)求证:C 1C ⊥BD ;(2)当CD CC 1的值是多少时,能使A 1C ⊥平面C 1BD ?请给出证明. 解:(1)证明:设CD =a ,CB =b ,1CC =c ,由已知|a |=|b |,且〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,BD =CD -CB =a -b ,1CC ·BD =c ·(a -b )=c ·a -c ·b =12|c ||a |-12|c ||b |=0,∴1C C ⊥BD ,即C 1C ⊥BD . (2)若A 1C ⊥平面C 1BD ,则A 1C ⊥C 1D ,1CA =a +b +c ,1C D =a -c .∴1CA ·1C D =0,即(a +b +c )·(a -c )=0. 整理得:3a 2-|a ||c |-2c 2=0,(3|a |+2|c |)(|a |-|c |)=0,∴|a |-|c |=0,即|a |=|c |. 即当CD CC 1=|a ||c |=1时,A 1C ⊥平面C 1BD . 3.如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E 、F 、G 分别是线段P A 、PD 、CD 的中点.求证:PB ∥平面EFG .证明:∵平面P AD ⊥平面ABCD ,且ABCD 为正方形,∴AB 、AP 、AD 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0)、B (2,0,0)、C (2,2,0)、D (0,2,0)、P (0,0,2)、E (0,0,1)、F (0,1,1)、G (1,2,0).∴PB =(2,0,-2),FE =(0,-1,0),FG =(1,1,-1),设PB =s FE +t FG ,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎪⎨⎪⎧ t =2,t -s =0,-t =-2,解得s =t =2.∴PB =2FE +2FG ,又∵FE 与FG 不共线,∴PB 、FE 与FG 共面.∵PB ⊄平面EFG ,∴PB ∥平面EFG .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 / 10空间向量及其运算(讲义)➢ 知识点睛一、空间向量的定义及定理1. 定义:在空间中,具有大小和方向的量叫做空间向量.2. 空间向量的有关定理及推论 (1)共线向量定理对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是:存在实数λ,使__________.扩充:对空间三点P ,A ,B ,可通过证明下列任意一个结论成立来证明三点共线:①PA PB λ−−→−−→=;②对空间任一点O ,OP OA t AB −−→−−→−−→=+;③对空间任一点O ,1OP x OA y OB x y −−→−−→−−→=++=(). (2)共面向量定理如果两个向量a ,b __________,那么向量p 与向量a ,b 共面的充要条件是:存在________的有序实数对(x ,y ),使____________.扩充:对空间四点P ,M ,A ,B ,可通过证明下列任意一个结论成立来证明四点共面:①MP x MA y MB −−→−−→−−→=+;②对空间任一点O ,OP OM x MA y MB −−→−−→−−→−−→=++;③对空间任一点O ,1OP xOM y OA z OB x y z −−→−−→−−→−−→=++++=(④PM −−→∥AB −−→(或PA −−→∥MB −−→或PB −−→∥AM −−→). (3)空间向量基本定理l如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得___________________________.其中,__________叫做空间的一个基底.二、空间向量的线性运算类比平面向量三、空间向量的坐标运算a=(a1,a2,a3),b=(b1,b2,b3)(a,b均为非零向量):a+b=____________________,a-b=_____________________,λa=_____________________;a b⋅=__________________,a=____________________;cos<a,b>=__________________=__________________;a∥b⇔__________⇔__________________;a⊥b⇔__________⇔__________________.四、空间位置关系1.直线的方向向量与平面的法向量(1)直线的方向向量:l是空间一直线,A,B是直线l上任AB为直线l的方向向量.意两点,则称−−→AB平行的任意__________也是直线的方向向量.与−−→(2)平面的法向量①定义:与平面__________的向量,称作平面的法向量.②确定:设a,b是平面内两不共线向量,n为平面α的法向量,则求法向量的方程组为_______________.2/ 103 / 102. 空间位置关系的向量表示➢ 精讲精练1. 如图,在空间四边形ABCD 中,若G 是CD 的中点,则1()2AB BD BC −−→−−→−−→++=( )A .BC −−→B .CG −−→C .AG −−→D .12BC −−→4 / 10GDBAE OABCD第1题图 第2题图2. 如图,在四面体OABC 中,设OA −−→=a ,OB −−→=b ,OC −−→=c ,若D 为BC 的中点,E 为AD 的中点,则−−→OE =___________.(用a ,b ,c 表示)3. 已知向量a ,b ,若2AB −−→=+a b ,56BC −−→=-+a b ,72CD −−→=-a b ,则一定共线的三点是( )A .A ,B ,D B .A ,B ,C C .B ,C ,DD .A ,C ,D4. 下列条件:①OM OA OB OC −−→−−→−−→−−→=+-; ②111532OM OA OB OC −−→−−→−−→−−→=++;③MA MB MC −−→−−→−−→++=0;④OM OA OB OC −−→−−→−−→−−→+++=0.能推出M ,A ,B ,C 四点共面的是__________.(填写序号)5 / 105. 已知{a ,b ,c }是空间向量的一个单位正交基底,{a +b ,a -b ,c }是空间的另一个基底,若向量p 在基底{a +b ,a -b ,c }下的坐标为31(3)22-,,,则p 在基底{a ,b ,c }下的坐标为 _________________.6. 已知a =(x ,4,1),b =(-2,y ,-1),c =(3,-2,z ),且a ∥b ,b ⊥c . (1)x =_______,y =_________,z =_________; (2)a +c 与b +c 所成角的余弦值为______________.7. 如图,空间四边形ABCD 的每条边和对角线的长都为1,若E ,F 分别是AB ,AD 的中点,则EF −−→⋅DC −−→=( )A .14B .14-CD.DCBA FE第7题图 第8题图8. 如图,空间四边形ABCD 的每条边和对角线的长都为a ,若E ,F 分别是BC ,AD 的中点,则−−→AE ⋅AF −−→=( )A .2aB .212aC .214aD 26 / 109. 若n 是平面α的法向量,a 是直线l 的方向向量,则下列结论正确的是( )A .若l ⊥α,则a ⊥nB .若l ∥α,则a ∥nC .若a ∥n ,则l ⊥αD .若a ⋅n =0,则l ⊥α10. 已知A (1,0,0),B (0,1,0),C (0,0,1)三点,n =(1,1,1), 则以n 为方向向量的直线l 与平面ABC 的关系是( ) A .垂直 B .不垂直 C .平行D .以上都有可能11. 若直线l 的方向向量为a ,平面α的法向量为n ,则下列能使l ∥α的是( )A .a =(1,0,0),n =(-2,0,0)B .a =(1,3,5),n =(1,0,1)C .a =(0,2,1),n =(-1,0,-1)D .a =(1,-1,3),n =(0,3,1)12. 已知平面α,β的法向量分别为a =(1,1,2),b =(x ,-2,3),若α⊥β,则x 的值为( )A .-2B .-4C .3D .413. 已知AB −−→=(2,2,1),AC −−→=(4,5,3),则平面ABC 的单位法向量是7 / 10________________.14. 如图,在空间直角坐标系中,直三棱柱111ABC A B C -的顶点C 与原点O 重合,顶点A ,1C ,B 分别在x 轴、y 轴、z 轴上,若AC =12CC BC =,则直线1BC 与直线1AB 的夹角的余弦值为( )A.5B.3C.5D .3515. 如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,B 1D 1的中点,求证:EF ⊥A 1D .B 1D 1C 1A 1D CBAE F8 / 1016. 如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F ,G 分别是A 1B 1,B 1C 1,C 1D 1的中点. (1)求证:AG ∥平面BEF ;(2)在棱BB 1上找一点M ,使DM ⊥平面BEF ,并证明你的结论.GFEABC DA 1C 1D 1B 19 / 10【参考答案】➢ 知识点睛一、空间向量的定义及定理2. (1)a=λb(2)不共线,唯一,p =x a +y b (3)p =x a +y b +z c ,{a ,b ,c } 三、空间向量的坐标运算(a 1+b 1,a 2+b 2,a 3+b 3),(a 1-b 1,a 2-b 2,a 3-b 3),(λa 1,λa 2,λa 3)a 1b 1+a 2b 2+a 3b 3a b a b ⋅b =λa ,3121231230b b b a a a a a a λ===≠(,,)0a b ⋅=,a 1b 1+a 2b 2+a 3b 3=0四、空间位置关系1. (1)非零向量(2)垂直,00n a n b ⋅⋅=⎧⎨=⎩2.2221111110x y z x y z x y z ==≠(,,),1212120x x y y z z ++= 1212120x x y y z z ++=,2221111110x y z x y z x y z ==≠(,,)2221111110x y z x y z x y z ==≠(,,),1212120x x y y z z ++= ➢ 精讲精练 1. C10 / 102.111244a b c ++ 3. A 4. ①③ 5. (1,2,3)6. (1)2,4-,2;(2)219- 7. B 8. C 9. C 10. A 11. D 12. B13. (13,23-,23)或(13-,23,23-)14. A 15. 证明略16. (1)证明略;(2)M 为BB 1的中点,证明略。

相关文档
最新文档