数字信号处理课后习题答案

合集下载

数字信号处理(姚天任江太辉第三版)课后习题答案

数字信号处理(姚天任江太辉第三版)课后习题答案

第二章2.1 判断下列序列是否是周期序列。

若是,请确定它的最小周期。

(1)x(n)=Acos(685ππ+n ) (2)x(n)=)8(π-ne j(3)x(n)=Asin(343ππ+n )解 (1)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),得出=ω85π。

因此5162=ωπ是有理数,所以是周期序列。

最小周期等于N=)5(16516取k k =。

(2)对照复指数序列的一般公式x(n)=exp[ωσj +]n,得出81=ω。

因此πωπ162=是无理数,所以不是周期序列。

(3)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),又x(n)=Asin(343ππ+n )=Acos(-2π343ππ-n )=Acos(6143-n π),得出=ω43π。

因此382=ωπ是有理数,所以是周期序列。

最小周期等于N=)3(838取k k =2.2在图2.2中,x(n)和h(n)分别是线性非移变系统的输入和单位取样响应。

计算并列的x(n)和h(n)的线性卷积以得到系统的输出y(n),并画出y(n)的图形。

(a)1111(b)(c)111110 0-1-1-1-1-1-1-1-1222222 33333444………nnn nnnx(n)x(n)x(n)h(n)h(n)h(n)21u(n)u(n)u(n)a n ===22解 利用线性卷积公式y(n)=∑∞-∞=-k k n h k x )()(按照折叠、移位、相乘、相加、的作图方法,计算y(n)的每一个取样值。

(a) y(0)=x(O)h(0)=1y(l)=x(O)h(1)+x(1)h(O)=3y(n)=x(O)h(n)+x(1)h(n-1)+x(2)h(n-2)=4,n ≥2 (b) x(n)=2δ(n)-δ(n-1)h(n)=-δ(n)+2δ(n-1)+ δ(n-2)y(n)=-2δ(n)+5δ(n-1)= δ(n-3) (c) y(n)=∑∞-∞=--k kn k n u k u a)()(=∑∞-∞=-k kn a=aa n --+111u(n)2.3 计算线性线性卷积 (1) y(n)=u(n)*u(n) (2) y(n)=λnu(n)*u(n)解:(1) y(n)=∑∞-∞=-k k n u k u )()(=∑∞=-0)()(k k n u k u =(n+1),n ≥0即y(n)=(n+1)u(n) (2) y(n)=∑∞-∞=-k k k n u k u )()(λ=∑∞=-0)()(k kk n u k u λ=λλ--+111n ,n ≥0即y(n)=λλ--+111n u(n)2.4 图P2.4所示的是单位取样响应分别为h 1(n)和h 2(n)的两个线性非移变系统的级联,已知x(n)=u(n), h 1(n)=δ(n)-δ(n-4), h 2(n)=a n u(n),|a|<1,求系统的输出y(n).解 ω(n)=x(n)*h 1(n) =∑∞-∞=k k u )([δ(n-k)-δ(n-k-4)]=u(n)-u(n-4)y(n)=ω(n)*h 2(n) =∑∞-∞=k kk u a )([u(n-k)-u(n-k-4)]=∑∞-=3n k ka,n ≥32.5 已知一个线性非移变系统的单位取样响应为h(n)=an-u(-n),0<a<1 用直接计算线性卷积的方法,求系统的单位阶跃响应。

数字信处理课后习题答案

数字信处理课后习题答案

数字信号处理(姚天任江太辉)第三版课后习题答案第二章2.1判断下列序列是否是周期序列。

若是,请确定它的最小周期(1)x(n)二Acos( 5 n86)(2)x(n )= e j(- 8 )(3) x(n )=Asi n(3 n4 3)解(1)对照正弦型序列的-般公式x(n)二 Acos( n ),得出5。

因此82 16是有理数,所以是周期序列。

5 最小周期等于N=^k 16(k取5)。

5(2)对照复指数序列的般公式x(n)二exp[ j ]n,得出1。

因此2168是无理数,所以不是周期序列。

(3)对照正弦型序列的般公式x(n)二 Acos( 3n ),又x(n)二Asin( n ) =Acos(— .门—)=Acos( —n 丄),得出3。

因此2 8是有理数,所以2 434 6 4 3是周期序列。

最小周期等于N=-k38(k 取3)2.2在图2.2中,x(n)和h(n)分别是线性非移变系统的输入和单位取样响应。

计算并列的x(n)和h(n)的线性卷积以得到系统的输出y(n),并画出y(n)的图形。

解利用线性卷积公式y(n )= x(k)h( n k)k按照折叠、移位、相乘、相加、的作图方法,计算y(n)的每一个取样值(a) y(0)=x(0)h(0)=1y(l)=x(0)h(1)+x(1)h(0)=3y(n)=x(O)h( n)+x(1)h( n-1)+x(2)h( n-2)=4,n (b) x(n )=2 (n)- (n-1)h(n)=- (n)+2 (n-1)+ (n-2)y(n)=-2(n )+5(n-1)= (n-3)(c) y(n )=u(k)kn ka u(n k):n k 1 a n 1/ \=a = . a u(n)k i a2.3计算线性线性卷积(1) y(n )=u( n)*u( n)(2) y(n)= n u(n)*u(n)解:(1) y(n)二u(k)u(n k)ku(k)u(n k)=(n+1),n >0 k 0 即y(n)=(n+1)u(n)(2) y(n )=kku(k)u( n k)2.4图P2.4所示的是单位取样响应分别为 九(n)和h 2(n)的两个线性非移变系统的级联,已知 x(n)=u(n), h ^n)二(n)-(n-4), h 2(n)=a n u(n),|a|<1,求系统的输出 y(n).解(n)=x( n)*h Jn)u(k)[(n-k)- (n-k-4)]k=u( n)-u( n-4)y(n)= (n)*h 2 (n)a k u(k)[u( n-k)-u( n-k-4)]k算线性卷积的方法,求系统的单位阶跃响应即 y(n)二ku(k)u(n1n 1——,n >n 1—u(n)2.5已知一个线性非移变系统的单位取样响应为h(n)二a n u(-n),0<a<1 用直接计2.6 试证明线性卷积满足交换率、结合率和加法分配率。

数字信号处理(吴镇扬)课后习题答案(比较详细的解答过程)chap6

数字信号处理(吴镇扬)课后习题答案(比较详细的解答过程)chap6

x ( m) x1 (m) = 0

m = 0,± M ,±2M ,⋯
其它

(6.2a)
(6.2b .2b) x1 (m) = x(m) p(m) = x(m) ∑ δ (m − Mi) (6.2b)
i =−∞
是一脉冲串序列, 式中 p(m) 是一脉冲串序列, 它在 M 的整数倍处的值 其余皆为零。 表示将采样率减少 为 1,其余皆为零。令 ↓M 表示将采样率减少 M 倍 的抽取, 6.1.1) 6.1.2 式的含意如图 6.1.1 (6.1.1 和 .2) 6.1. 的抽取, 6.1.1) (6.1.2) ( 所示, M=3。 所示,图中 M=3。
1 p( n ) = M 数展开。 数展开。
M −1 k =0
e j 2πnk / M 为周期序列 p(n) 的付里叶级 p(n)的付里叶级 ∑
所以
1 M −1 j (ω − 2πk ) / M ′(e ) = X ) (6.4) .4) ∑ X (e M k =0

′(e jω ) , X (e jω ) 分 别 是 x ′(n) 和 x (n) 的 式中 X DTFT。这样, DTFT。这样, X ′(e jω ) 是原信号频谱 X (e jω ) 先作 的移位叠加 位叠加, M 倍的扩展再在 ω 轴上每隔 2π / M 的移位叠加,
而 X 1 (e ) =
jω n = −∞

∑ x ( n ) p ( n)e
− jωn
1 M −1 j 2πnk / M − jωn = ∑ [ x ( n) ]e ∑e n = −∞ M k =0 1 M −1 = X (e j (ω − 2πk / M ) ) (6.3b (6.3b) ∑ M k =0

《数字信号处理》第三版课后习题答案

《数字信号处理》第三版课后习题答案

因为
x(n) (n 2) (n 1) 2 ( n 3)
h(n) 2 (n)
1 (n 1) (n 2)
2
x( n) * (n ) x (n ) x( n) * A (n k ) A x( n )k
所以
1
y( n) x(n)*[2 ( n) (n 1)
(n 2)]
2
2 x(n) x( n 1) 1 x( n 2) 2
6
y( n)
1 y(n 1) x(n)
1 x(n
1) ;
2
2
设系统是因果的,利用递推法求系统的单位取样响应。
解:
令: x(n) (n)
1
1
h(n) h(n 1) (n)
(n 1)
2
2
1
1
n 0,h(0) h( 1) (0) ( 1) 1
2
2
1
1
n 1,h(1) h(0) (1) (0) 1
2
2
n 2,h(2) 1 h(1) 1
n n0
( 3)如果 x( n) M , y(n)
x( k) 2n0 1 M ,因此系统是稳定的。
k n n0
系统是非因果的,因为输出还和 x(n)的将来值有关 .
(5)系统是因果系统,因为系统的输出不取决于 x(n)的未来值。如 果 x(n) M ,则 y(n) ex(n) ex(n) eM ,因此系统是稳定的。
( 1) y( n) x(n) 2x(n 1) 3x( n 2) ;
( 3) y( n) x(n n0) , n0 为整常数;
( 5) y(n) x2 (n) ;
n
( 7) y( n) x(m) 。
m0

数字信号处理(英文版)课后习题答案

数字信号处理(英文版)课后习题答案

(Partial) Solutions to Assignment 4pp.81-82Discrete Fourier Series (DFS)Discrete Fourier Transform (DFT), k=0,1,...N-1, n=0,1,...N-1Discrete Time Fourier Transform (DTFT)is periodic with period=2πFourier Series (FS)Fourier Transform (FT)---------------------------------------------------- 2.1 Consider a sinusoidal signalQ2.1 Consider a sinusoidal signalthat is sampled at a frequency s F =2 kHza). Determine an expressoin for the sampled sequence , and determine itsdiscrete time Fourier transformb) Determinec) Re-compute ()X from ()X F and verify that you obtain the same expression as in (a)a). ans:=where andUsing the formular:b) ans:wherec). ans:Let be the sample function. The Fourier transform of isUsing the relationship orwhereConsider only the region where ( orthereforewhereEND-----------------------------2.3 For each shown, determine whereis the sampled sequence. The sampling frequence is given for each case.(b) Hz(d) Hztheory: the relationship between DTFT and FT iswhereorb. ans:d. ans:omitted (using the same method as above)----------------------------------------------------2.4 In the system shown, let the sequence be and the sampling frequency be kHz. Also let the lowpass filter be ideal, with bandwidth (a). Determine an expression for Also sketch the frequency spectrum (magnitude only) within the frequency range(b) Determine the output signal(a) ansFrom class notes, we have where is an ZOH interpolation function and We can writeFirstly, to findwhereIt can be found asSecondly, find This can be solved either by FT or DTFT.We can writewhere andUsing the formula:we haveUsing the formula,:we have from DTFT of y[n]Note the above expression is two pulses at and -the scaling factor is:whereTherefore,where(b) ans:After the ideal LPF, the Fourier transform ofTake inverse Fourier transform of , the output signal is:Note both the and θ terms are introduced by ZOH functionwhere is introduced because is non-ideal and θ represents the delay of----------------------------------------------------Q 2.5. We want to digitize and store a signal on a CD, and then reconstruct it at a later time. Let the signaland let the sampling frequency Hz.(a) Determine the continuous time signal after the reconstruction.(a) ans: Assuming (ZOH+ ideal LPF) is used. This problem can be solved by using the results directly from Q2.4. In Q2.5 there are 3 sinusoidal signals instead of only one in Q2.4. Details of the solutions are omitted.----------------------------------------------------Q 2.6 In the system shown, determine the output signal for each of the following input signal Assume the sampling frequency kHz and the low pass filter (LPF) to beideal, with bandwidth(b)(d)Ans (b) (d): same as in problem Q2.5.----------------------------------------------------2.7 Suppose in DAC you want to use a linear interpolation between samples, as shown in the accompanying figure. This reconstructor can be called a first order hold, because the equation of a line is a polynomial of degree 1(a). Show that with a triangular pulse as shownin the figure(b). Determine an expression for in terms ofand(c). In the accompanying figure, let kHz, and the filterbe ideal with bandwidth Determine the outputAns: omitted.----------------------------------------------------2.9 In the following system, let the signal be affected by some random error as shown. The error is white, zero mean, with variance Determine the variance of the error after the filter for each of the filter(b)(b) ans:The variance of the output of the filter is given byTherefore--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------。

数字信号处理课后MATLAB习题答案

数字信号处理课后MATLAB习题答案

30
40
50
60
70
80
90
100
cos(6*pi*t) 1 0 -1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
cos(14*pi*t) 1 0 -1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
cos(26*pi*t) 1 0 -1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
cos(6*pi*t) 1 0 -1
1 Im g a P rt a in ry a 0.5 0 -0.5 -1 -3 -2 -1 0 Real Part 1 2 3 2
5 4 3 2 1 0 0 10 20 30 40 50 60 70 80 90 100
8 6 4 2 0
0
10
20
30
40
50
60
70
80
90
100
1-3(1)利用 MALTAB 语句 X=firls(511,[0 0.4 0.404],[1 1 0 0]) 产生一个 512 点的序列 x[k],并画出序列的频谱。
321012301020303210123105051015画出下列离散系统的幅度响应曲线和相位响应曲线并指出滤波器的类型
姓名:杨秀业 班级:电信 10-2
学号:3100718217
1-1 已知 g1 = cos(6πt ), g 2 = cos(14πt ) g 3 = cos( 26πt ) ,以抽样频率 fsam = 10 Hz 对上述 , 信号进行抽样。在同一张图上画出 g1,g2,和 g3 及其抽样点。对所得结果进行讨论。

数字信号处理习题答案共59页文档

、机遇对于有准备的头脑有特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃

数字信号处理(姚天任江太辉第三版)课后习题答案

第二章2.1 判断下列序列是否是周期序列。

若是,请确定它的最小周期。

(1)x(n)=Acos(685ππ+n ) (2)x(n)=)8(π-ne j(3)x(n)=Asin(343ππ+n ) 解 (1)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),得出=ω85π。

因此5162=ωπ是有理数,所以是周期序列。

最小周期等于N=)5(16516取k k =。

(2)对照复指数序列的一般公式x(n)=exp[ωσj +]n,得出81=ω。

因此πωπ162=是无理数,所以不是周期序列。

(3)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),又x(n)=Asin(343ππ+n )=Acos(-2π343ππ-n )=Acos(6143-n π),得出=ω43π。

因此382=ωπ是有理数,所以是周期序列。

最小周期等于N=)3(838取k k =2.2在图2.2中,x(n)和h(n)分别是线性非移变系统的输入和单位取样响应。

计算并列的x(n)和h(n)的线性卷积以得到系统的输出y(n),并画出y(n)的图形。

(a)1111(b)(c)111110 0-1-1-1-1-1-1-1-1222222 33333444………nnn nnnx(n)x(n)x(n)h(n)h(n)h(n)21u(n)u(n)u(n)a n ===22解 利用线性卷积公式y(n)=∑∞-∞=-k k n h k x )()(按照折叠、移位、相乘、相加、的作图方法,计算y(n)的每一个取样值。

(a) y(0)=x(O)h(0)=1y(l)=x(O)h(1)+x(1)h(O)=3y(n)=x(O)h(n)+x(1)h(n-1)+x(2)h(n-2)=4,n ≥2 (b) x(n)=2δ(n)-δ(n-1)h(n)=-δ(n)+2δ(n-1)+ δ(n-2)y(n)=-2δ(n)+5δ(n-1)= δ(n-3) (c) y(n)=∑∞-∞=--k kn k n u k u a)()(=∑∞-∞=-k kn a=aa n --+111u(n)2.3 计算线性线性卷积 (1) y(n)=u(n)*u(n) (2) y(n)=λnu(n)*u(n)解:(1) y(n)=∑∞-∞=-k k n u k u )()(=∑∞=-0)()(k k n u k u =(n+1),n ≥0即y(n)=(n+1)u(n) (2) y(n)=∑∞-∞=-k k k n u k u )()(λ=∑∞=-0)()(k kk n u k u λ=λλ--+111n ,n ≥0 即y(n)=λλ--+111n u(n)2.4 图P2.4所示的是单位取样响应分别为h 1(n)和h 2(n)的两个线性非移变系统的级联,已知x(n)=u(n), h 1(n)=δ(n)-δ(n-4), h 2(n)=a nu(n),|a|<1,求系统的输出y(n).解 ω(n)=x(n)*h 1(n) =∑∞-∞=k k u )([δ(n-k)-δ(n-k-4)]=u(n)-u(n-4)y(n)=ω(n)*h 2(n) =∑∞-∞=k kk u a )([u(n-k)-u(n-k-4)]=∑∞-=3n k ka,n ≥32.5 已知一个线性非移变系统的单位取样响应为h(n)=an-u(-n),0<a<1 用直接计算线性卷积的方法,求系统的单位阶跃响应。

数字信号处理(吴镇扬)课后习题答案(比较详细的解答过程)第二章测试训练题解

数字信号处理(吴镇扬)课后习题答案(比较详细的解答过程)第二章测试训练题解1.DFT和DTFT之间的关系是2.DFT和DFS之间的关系是3.对于一个128点的DFT,最先4个DFT相应于数字频率4.某滤波器的频响为H(ω) = 0.3cos2ω- 0.2cosω+ 0.05,相应于6点的DFT的H[k]为5.采样频率为22.05kHz的1024点DFT所对应的频率分辨率为6.采样率为8kHz的信号的256点DFT的第一个周期覆盖的频率范围是从0Hz至7.信号[ 1 0 2 ]的DFT每隔3个样点值重复,为8.以1600Hz对一220Hz的信号采样,进行64点DFT,最接近的DFT频率为9.以12kHz的信号对一4.25kHz的信号抽样,其256点DFT幅谱图的基带最大峰值点所对应的下标为10.采样频率为6kHz,1kHz信号的频率分辨率要达到50Hz,需11.采样频率为16kHz,1024点DFT的窗口长度为12.关于谱泄漏与窗口长度的关系是13.频谱图是展现信号的什么14.周期性方波的频谱图15.在FFT中的乘数因子是16.与512点的DFT相比,512点的FFT只需约几分之一的计算量17、一个长度为N的有限长序列可否用N个频域的采样值唯一地确定?18、计算两个N点序列的线性卷积,至少要做多少点的DFT?19、x(2n)与x(n)的关系20、对于高斯序列x(n)=exp[-(n-p)2/q],取16点作FFT,其幅度谱中低频分量最多的是21、一般地说按时间抽取基二FFT的_______序列是按位反转重新排列的。

22、信号x(n)=sin(nπ/4) - cos(nπ/7)的数字周期为23、N=2L点基二FFT,共有______列蝶形,每列有____个蝶形。

24、信号s(t)=sin(4000πt)+sin(600πt),则采样频率至少应为25、用按时间抽取法计算256点的FFT时,n=233的二进制位反转值是26、FFT之所以能减少DFT的运算量,是因为:,FFT减少DFT 运算量的基本处理思想是。

数字信号处理课后习题答案-第六章习题与答案

1.、2. 用冲激响应不变法将以下 )(s H a变换为变换为 )(z H ,抽样周期为T 。

为任意正整数 ,)()( )2()()()1(022n s s As H b a s as s H na a -=+++=分析:①冲激响应不变法满足)()()(nT h t h n h a nTt a===,T 为抽样间隔。

这种变换法必须)(s H a 先用部分分式展开。

②第(②第(22)小题要复习拉普拉斯变换公式1!][+=n n S n t L ,na n t s a S S As H t u n t Ae t h )()()()!1()(010-=⇔-=-,可求出可求出 )()()(kT Th t Th k h a kTt a===,|又 dz z dX z k kx )()(-⇔,则可递推求解。

解: (1)22111()()2a s a H s s a b s a jb s a jb ⎡⎤+==+⎢⎥+++++-⎣⎦[])( 21)()()(t u e e t h tjb a t jb a a --+-+= 由冲激响应不变法可得:由冲激响应不变法可得:由冲激响应不变法可得:[]()()()() ()2a jb nT a jb nT a T h n Th nT e e u n -+--==+ 11011() () 211naT jbT aT jbT n T H z h n z e e z e e z ∞------=⎡⎤==+⎢⎥--⎣⎦∑ 2211cos 21cos 1 ------+--⋅=z e bT z e bT z e T aT aT aT(2) 先引用拉氏变换的结论[]1!+=n n s n t L 可得:可得: n a s s As H )()(0-=))()!1()(10t u n t Ae t h n t s a -=-则 )()!1()()()(10k u n kT Ae T Tk Th k h n kT s a -⋅==- dzz dX zk kx az k u a ZZk )()( , 11)( 1-−→←-−→←-且按)11()()!1( )()!1( )()(111111000--∞=---∞=----=-==∑∑ze dz d z n AT e z k n T TA z k h z H T s n n kkT s n n k k可得⎪⎪⎩⎪⎪⎨⎧=-=-=•••---,3,2)1(1,1)(111000n z e z e AT n z e ATz H n T s T S n T s ,可以递推求得:2. 已知模拟二阶巴特沃思低通滤波器的归一化系统函数为:2'4142136.111)(s s s H a ++=而而3dB 截止频率为50Hz 的模拟滤波器,需将归一化的)('s H a 中的s 变量用502⨯πs 来代替424'108696044.928830.444108696044.9)100()(⨯++⨯==s s s H s H a a π:设系统抽样频率为设系统抽样频率为Hz f s 500=,要求从这一低通模拟滤波器设计一个低通数字滤波器,采用阶跃响应不变法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字信号处理(姚天任江太辉)第三版课后习题答案第二章2.1 判断下列序列是否是周期序列。

若是,请确定它的最小周期。

(1)x(n)=Acos(685ππ+n ) (2)x(n)=)8(π-nej(3)x(n)=Asin(343ππ+n )解 (1)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),得出=ω85π。

因此5162=ωπ是有理数,所以是周期序列。

最小周期等于N=)5(16516取k k =。

(2)对照复指数序列的一般公式x(n)=exp[ωσj +]n,得出81=ω。

因此πωπ162=是无理数,所以不是周期序列。

(3)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),又x(n)=Asin(343ππ+n )=Acos(-2π343ππ-n )=Acos(6143-n π),得出=ω43π。

因此382=ωπ是有理数,所以是周期序列。

最小周期等于N=)3(838取k k =2.2在图2.2中,x(n)和h(n)分别是线性非移变系统的输入和单位取样响应。

计算并列的x(n)和h(n)的线性卷积以得到系统的输出y(n),并画出y(n)的图形。

解 利用线性卷积公式y(n)=∑∞-∞=-k k n h k x )()(按照折叠、移位、相乘、相加、的作图方法,计算y(n)的每一个取样值。

(a) y(0)=x(O)h(0)=1y(l)=x(O)h(1)+x(1)h(O)=3y(n)=x(O)h(n)+x(1)h(n-1)+x(2)h(n-2)=4,n ≥2 (b) x(n)=2δ(n)-δ(n-1)h(n)=-δ(n)+2δ(n-1)+ δ(n-2)y(n)=-2δ(n)+5δ(n-1)= δ(n-3) (c) y(n)=∑∞-∞=--k kn k n u k u a)()(=∑∞-∞=-k kn a=aa n --+111u(n) 2.3 计算线性线性卷积 (1) y(n)=u(n)*u(n) (2) y(n)=λnu(n)*u(n)解:(1) y(n)=∑∞-∞=-k k n u k u )()(=∑∞=-0)()(k k n u k u =(n+1),n ≥0即y(n)=(n+1)u(n) (2) y(n)=∑∞-∞=-k k k n u k u )()(λ=∑∞=-0)()(k kk n u k u λ=λλ--+111n ,n ≥0即y(n)=λλ--+111n u(n)2.4 图P2.4所示的是单位取样响应分别为h 1(n)和h 2(n)的两个线性非移变系统的级联,已知x(n)=u(n), h 1(n)=δ(n)-δ(n-4), h 2(n)=a nu(n),|a|<1,求系统的输出y(n). 解 ω(n)=x(n)*h 1(n)=∑∞-∞=k k u )([δ(n-k)-δ(n-k-4)]=u(n)-u(n-4)y(n)=ω(n)*h 2(n)=∑∞-∞=k kk u a )([u(n-k)-u(n-k-4)]=∑∞-=3n k ka,n ≥32.5 已知一个线性非移变系统的单位取样响应为h(n)=a n-u(-n),0<a<1 用直接计算线性卷积的方法,求系统的单位阶跃响应。

2.6 试证明线性卷积满足交换率、结合率和加法分配率。

证明 (1)交换律X(n) * y(n) =∑∞-∞=-k k n y k x )()(令k=n-t,所以t=n-k,又-∞<k<∞,所以-∞<t<∞,因此线性卷积公式变成 `x(n) * y(n) =∑∞-∞=---t t n n y t n x )]([)( =∑∞-∞=-t t y t n x )()(=y(n) * x(n)交换律得证. (2)结合律 [x(n) * y(n)] * z(n)=[∑∞-∞=-k k n y k x )()(] * z(n)=∑∞-∞=t [∑∞-∞=-k k t y k x )()(]z(n-t)=∑∞-∞=k x(k) ∑∞-∞=t y(t-k)z(n-t)=∑∞-∞=k x(k)∑my(m)z(n-k-m)=∑∞-∞=k x(k)[y(n-k) * z(n-k)]=x(n) * [y(n) * z(n)]结合律得证. (3)加法分配律 x(n) * [y(n) + z(n)]=∑∞-∞=k x(k)[y(n - k) +z(n - k)]=∑∞-∞=k x(k)y(n-k)+∑∞-∞=k x(k)z(n - k)=x(n) * y(n) + x(n) *z(n)加法分配律得证.2.7 判断下列系统是否为线性系统、非线性系统、稳定系统、因果系统。

并加以证明 (1)y(n)= 2x(n)+3 (2)y(n)= x(n)sin[32πn+6π] (3)y(n)=∑∞-∞=k k x )( (4)y(n)= ∑=nn k k x 0)((5)y(n)= x(n)g(n)解 (1)设y 1(n)=2x 1(n)+3,y 2(n)=2x 2(n)+3,由于 y(n)=2[x 1(n)+x 2(n)]+3 ≠y 1(n)+ y 2(n) =2[x 1(n)+x 2(n)]+6 故系统不是线性系统。

由于y(n-k)=2x(n-k)+3,T[x(n-k)]=2x(n-k)+3,因而y(n-k) = T[x(n-k)]故该系统是非移变系统。

设|x(n)|≤M ,则有|y(n)|=|2x(n)+3|≤|2M+3|<∞故该系统是稳定系统。

因y(n)只取决于现在和过去的输入x(n),不取决于未来的输入,故该系统是因果系统。

(2)设 y 1(n)=ax 1(n)sin[32πn+6π]y 2(n)=bx 2(n)sin[32πn +6π]由于 y(n)=T[ax 1(n)+ bx 2(n)]=[ax 1(n)+bx 2(n)]sin[32πn+6π] =ax 1(n)sin[32πn+6π]+bx 2(n)sin[32πn+6π]=ay 1(n)+by 2(n)故该系统是线性系统。

由于 y(n-k)=x(n-k)sin[32π(n-k)+6π]T[x(n-k)]=x(n-k)sin[32πn+6π]因而有 T[x(n-k)]≠y(n-k) 帮该系统是移变系统。

设 |x(n)|≤M ,则有|y(n)|=|x(n)sin[32π(n-k)+6π]|=|x(n)|| sin[32π(n-k)+6π]|≤M|sin[32π(n- k)+6π]|≤M故系统是稳定系统。

因y(n)只取决于现在和过去的输入x(n),不取决于未来的输入,故该系统是因果系统。

(3)设 y 1(n)=∑-∞=n k k x )(1,y 2(n)=∑-∞=nk k x )(2,由于y(n)=T[ax 1(n)+ bx 2(n)]=∑-∞=+nk k k )](bx )(ax [21=a∑-∞=nk k x )(1+ b ∑-∞=nk k x )(2=ay 1(n)+by 2(n)故该系统是线性系统。

因 y(n-k)=∑--∞=t n k k x )(= ∑-∞=-nm t m x )(=T[x(n-t)]所以该系统是非移变系统。

设 x(n)=M<∞ y(n)=∑-∞=nk M =∞,所以该系统是不稳定系统。

因y(n)只取决于现在和过去的输入x(n),不取决于未来的输入,故该系统是因果系统。

(4)设 y 1(n)=∑=nn k k x 01)( ,y 2(n)=∑=nn k k x 02)(,由于y(n)=T[ax 1(n)+ bx 2(n)]=∑=+nn k k k 021)](bx )(ax [= a∑=nn k k x 01)(+b ∑=nn k k x 02)(=ay 1(n)+by 2(n)故该系统是线性系统。

因 y(n-k)=∑-=t n n k k x 0)(= ∑+=-ntn m t m x 0)(≠T[x(n-t)]=∑=-nn k t m x 0)(所以该系统是移变系统。

设x(n)=M,则lim n →∞y(n)= lim n →∞(n-n 0)M=∞,所以该系统不是稳定系统。

显而易见,若n ≥n 0。

则该系统是因果系统;若n<n 0。

则该因果系统是非因果系统。

(5)设y 1(n)=x 1(n)g(n),y 2(n)=x 2(n)g(n),由于 y(n)=T[ax 1(n)+bx 2(n)]=(ax 1(n)+bx 2(n))g(n) =ax 1(n)g(n)+b 2(n)=ay 1(n)+by 2(n)故系统是线性系统。

因y(n-k)=x(n-k),而T[x(n-k)]=x(n-k)g(n)≠y(n-k) 所以系统是移变系统。

设|x(n)|≤M<∞,则有|y(n)|=|x(n)g(n)|=M|g(n)| 所以当g(n)有限时该系统是稳定系统。

因y(n)只取决于现在和过去的输入x(n),不取决于本来的输入,故该系统是因果系统。

2.8 讨论下列各线性非移变系统的因果性和稳定性 (1)h(n)=2nu(-n) (4) h(n)=(12)nu(n) (2) h(n)=-a n u(-n-1) (5) h(n)=1nu(n) (3) h(n)=δ(n+n 0), n 0≥0 (6) h(n)= 2nR n u(n) 解 (1)因为在n<0时,h(n)= 2n≠0,故该系统不是因果系统。

因为S=n ∞=-∞∑|h(n)|=n ∞=∑|2n|=1<∞,故该系统是稳定系统。

(2) 因为在n<O 时,h(n) ≠0,故该系统不是因果系统。

因为S=n ∞=-∞∑|h(n)|=1n -=-∞∑| a n|=n ∞=∞∑an-,故该系统只有在|a|>1时才是稳定系统。

(3) 因为在n<O 时,h(n) ≠0,故该系统不是因果系统。

因为S=n ∞=-∞∑|h(n)|=n ∞=-∞∑|δ(n+n 0)|=1<∞,故该系统是稳定系统。

(4) 因为在n<O 时,h(n)=0,故该系统是因果系统 。

因为S=n ∞=-∞∑|h(n)|=n ∞=∑|(12)n|<∞,故该系统是稳定系统。

(5) 因为在n<O 时,h(n)=1nu(n)=0,故该系统是因果系统 。

因为S=n ∞=-∞∑|h(n)|=n ∞=-∞∑|1n u(n)|= 0n ∞=∑1n =∞,故该系统不是稳定系统。

(6) 因为在n<O 时,h(n)=0,故该系统是因果系统 。

因为S=n ∞=-∞∑|h(n)|=1N n -=∑|2n |=2N-1<∞,故该系统是稳定系统。

2.9 已知y(n)-2cos βy(n-1)+y(n-2)=0,且y(0)=0,y(1)=1,求证y(n)=sin()sin n ββ证明 题给齐次差分方程的特征方程为α2-2cos β·α+1=0由特征方程求得特征根α1=cos β+jsin β=e j β,α2=cos β-jsin β= ej β-齐次差分方程的通解为y(n)=c 1α1n +c 2α2n =c 1ej nβ+c 2ej nβ-代入初始条件得 y(0)=c 1+c 2=0y(1)= c 1ej nβ+c 2ej nβ-=1由上两式得到c 1=1j n j n e e ββ--=12sin β,c 2=- c 1=-12sin β 将c 1和c 2代入通解公式,最后得到y(n) =c1e j nβ+c2e j nβ-=12sinβ( e j nβ+ e j nβ-)=sin()sinnββ2.10 已知y(n)+2αy(n-1)+β(n-2)=0,且y(0)=0,y(1)=3,y(2)=6,y(3)=36,求y(n) 解首先由初始条件求出方程中得系数a和b由(2)2(1)(0)660(3)2(2)(1)361230 y ay by ay ay by a b ++=+=⎧⎨++=++=⎩可求出a=-1,b=-8 于是原方程为y(n)-2y(n-1)-iy(n-2)=0由特征方程α2-2α-8=0求得特征根α1=4 ,α2=-2齐次差分方程得通解为y(n)=c1α1n+c2α2n= c14n+c2(-2n)代入初始条件得y(n)= c1α1+c2α2= 4α1+2α2=3由上二式得到c 1=12,c2=-12将c1和c2代入通解公式,最后得到y(n)=c1α1n+c2α2n=12[4n-(-2) n]2.11 用特征根法和递推法求解下列差分方程:y(n)-y(n-1)-y(n-2)=0,且y(0)=1,y(1)=1 解由特征方程α2-α-1=0求得特征根α1=152+,α2=152-通解为y(n)=c1α1n+c2α2n=c1(152+)n+c2(152-)n代入初始条件得求出c1=1525+,c2=1525-最后得到通解y(n)= c1(1525+)n+ c2(1525-)n=15[(1525+)1n +-(1525-)1n +] 2.12 一系统的框图如图P2.12所示,试求该系统的单位取样响应h(n)和单位阶跃响应解 由图可知+x-1ßx(n)y(n)=x(n)+ βy(n-1)为求单位取样响应,令x(n)=δ(n),于是有h(n)= δ(n)+ βh(n-1)由此得到h(n)=()1n Dδβ-=βnu(n)阶跃响应为y(n)=h(n)*u(n)=nk =∑βky(k)u(n-k)=111n ββ+--u(n) 2.13 设序列x(n)的傅立叶变换为X(e jw),求下列各序列的傅立叶变换解 (1)F[ax 1(n)+bx 2(n)]=aX 1(e jw)+bX 2(ejw)(2)F[x(n-k)]=e jwk-X(ejw) (3)F[e0jw nx(n)]=X[e0()j w w -](4)F[x(-n)]=X(ejw-) (5)F[x *(n)]=X *(ejw-) (6)F[x *(-n)]= X *(ejw)(7)(8)jIm[x(n)]=12[X(e jw )-X *(e jw -)] (9)12πX(e j θ)*X(e jw) (10)j ()jw dx e dw2.14 设一个因果的线性非移变系统由下列差分方程描述y(n)-12y(n-1)=x(n)+ 12x(n-1) (1) 求该系统的单位取样响应h(n) (2) 用(1)得到的结果求输入为x(n)=e jwn时系统的响应(3) 求系统的频率响应 (4) 求系统对输入x(n)=cos(2πn+4π)的响应 解 (1)令X (n )=δ(n),得到h(n)-h(n-1)/2=δ(n)+ δ(n-1)/2由于是因果的线性非移变系统,故由上式得出 h(n)=h(n-1)/2+δ(n)+ δ(n-1)/2 ,n ≥0 递推计算出h(-1)=0h(0)=h(-1)/2+δ(0)=1 h(1)=h(0)/2+1/2=1h(2)=h(1)/2=1/2 h(3)=21h(2)=(21)2 h(4)= 21h(2)=(21)3 . ..h(n)=δ(n)+ (21)n-1u(n-1)或 h(n)= (21)n [u(n)-u(n-1)]也可将差分方程用单位延迟算子表示成(1-D)h(n)=(1+D)δ(n)由此得到h(n)=[(1+21D)/(1-21D)]δ(n) =[1+D+21D 2+ (21)2 D 3+…+(21)k-1 D 3+…] δ(n)=δ(n)+ δ(n-1)+ 21δ(n-2)+21δ(n-3)+... +(21)k-1δ(n-1)+… =δ(n)+ (21)n u(n-1)2)将jwn e n X =)(代入)(*)()(n h n x n y =得到(3)由(2)得出 (4)由(3)可知故:()()()[]⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=⎥⎦⎤⎢⎣⎡++=21arctan 242cos arg 42cos ππππn e H n e H n y jw jw2.15 某一因果线性非移变系统由下列差分方程描述y(n)-ay(n-1)=x(n)-bx(n-1)试确定能使系统成为全通系统的b 值(b ≠a ),所谓全通系统是指其频率响应的模为与频率ω无关的常数的系统。

相关文档
最新文档