实验讲义 材料的拉伸实验

实验讲义 材料的拉伸实验
实验讲义 材料的拉伸实验

实验二材料的拉伸实验

概述

常温、静载下的轴向拉伸试验是材料力学试验中最基本、应用最广泛的试验。通过拉伸试验,可以全面地测定材料的力学性能,如弹性、塑性、强度、断裂等力学性能指标。这些性能指标对材料力学的分析计算、工程设计、选择材料和新材料开发都有及其重要的作用。

一、金属的拉伸实验

(一)实验目的

1.测定低碳钢的屈服强度Rel、抗拉强度Rm、断后延伸率A11.3和断面收缩率Z。

2.测定铸铁的抗拉强度Rm。

3.观察上述两种材料在拉伸过程中的各种现象,并绘制拉伸图(F─曲线)。

4.分析比较低碳钢和铸铁的力学性能特点与试样破坏特征。

(二)实验原理

依据国标GB/T 228-2002《金属室温拉伸实验方法》分别叙述如下:

1.低碳钢试样。在拉伸试验时,利用试验机的自动绘图器可绘出低碳钢的拉伸曲线,见图1示的F—ΔL曲线。

图中最初阶段呈曲线,是由于试样头部在夹具内有滑动及试验机存在间隙等原因造成的。分析时应将图中的直线段延长与横坐标相交于O点,作为其坐标原点。拉伸曲线形象的描绘出材料的变形特征及各阶段受力和变形间的关系,可由该图形的状态来判断材料弹性与塑性好坏、断裂时的韧性与脆性程度以及不同变形下的承载能力。但同一种材料的拉伸曲线会因试样尺寸不同而各异。为了使同一种材料不同尺寸试样的拉伸过程及其特性点便于比较,以消除试样几何尺寸的影响,可将拉

F a-比例伸长力;F c-弹性伸长力;F su-上屈服力;F sl-下屈服力;

F b-最大力;F f-断裂力;-断裂后塑性伸长;-弹性伸长;

图1碳钢拉伸曲线

,并将横坐标(伸长伸曲线图的纵坐标(力F)除以试样原始横截面面积S

ΔL)除以试样的原始标距L0得到的曲线便与试样尺寸无关,此曲线称为应力-应变曲线或R—曲线,如图2示。从曲线上可以看出,它与拉伸图曲线相似,也同样表征了材料力学性能。

拉伸试验过程分为四个阶段,如图1、图2所示。

(1)弹性阶段OC。在此阶段中的OA段拉力和伸长成正比关系,表明钢材的应力与应变为线性关系,完全遵循虎克定律,如图2示。若当应力继续增加到C点时,应力和应变的关系不再是线性关系,但变形仍然是弹性的,即卸除拉力后变形完全消失。用精密仪器测定其塑性应变约为规定的引伸计标距的0.2%所对应的强度值定义为规定非比例延伸强度,它是控制材料在弹性变形范围内工作的有效指标。在工程上有实用价值。

-比例极限;-弹性极限;-上屈服点;-下屈服点;

-抗拉强度;-断裂应力;-断裂后的塑性应变;-弹性应变

图2低碳钢应力-应变图

(2)屈服阶段SK。当应力超过弹性极限到达锯齿状曲线时,示力盘上的主针暂停转动或开始回转并往复运动,这时若试样表面经过磨光,可看到表征晶体滑移的迹线,大约与试样轴线成45°方向。这种现象表征试样在承受的拉力不继续增加或稍微减少的情况下变形却继续伸长,称为材料的屈服,其应力称为屈服点(屈服应力)。示力盘的指针首次回转前的最大力(F su上屈服力)或不计初始瞬时效应(不计载荷首次下降的最低点)时的最小力(F sL下屈服力),分别所对应的应力为上、下屈服点。示力盘的主针回转后所指示的最小载荷(第一次下降后的最小载荷)即为屈服载荷F s。由于上屈服点受变形速度及试样形状等因素的影响,而下屈服点则比较稳定,故工程中一般只定下屈服点。屈服应力是衡量材料强度的一个重要指标。

(3)强化阶段KE。过了屈服阶段以后,试样材料因塑性变形其内部晶体组织结构重新得到了调整,其抵抗变形的能力有所增强,随着拉力的增加,伸长变形也随之增加,拉伸曲线继续上升。KE曲线段称为强化阶段,随着塑性变形量的增大,材料的力学性能发生变化,即材料的变形抵抗力提高,塑性降低。在强化阶段卸载,弹性变形会随之消失,塑性变形将会永久保留下来。强化阶段的卸载路径与弹性阶段平行,卸载后重新加载时,加载线与弹性阶段平行,重新加载后,材料的比例极限明显提高,而塑性性能会相应下降。这种现象叫做形变硬化或冷作硬化。当拉力增加,拉伸曲线到达顶点E时,示力盘上的主针开始返回,而副针所指的最大拉力为F m,由此可求得材料的抗拉强度。它也是材料强度性能的重要指标。

(4)局部变形阶段EG(颈缩和断裂阶段)。对于塑性材料来说,在承受拉力F m以前,试样发生的变形各处基本上是均匀的。在达到F m以后,变形主要集中于试样的某一局部区域,该处横截面面积急剧减小,这种现象即是“颈缩”现象,此时拉力随着下降,直至试样被拉断,其断口形状呈碗状,如图3a)所示。试样拉断后,弹性变形立即消失,而塑性变形则保留在拉断的试样上。利用试样标距内的塑性变形来计算材料的断后延伸率A

和断面收缩率Z。

11.3

图3拉伸试样断口形状

2. 铸铁试样。做拉伸试验时,利用试验机的自动绘图器绘出铸铁的拉伸曲线,如图4示。在整个拉伸过程中变形很小,无屈服、颈缩现象,拉伸曲线无直线段,可以近似认为经弹性阶段直接断裂,其断口是平齐粗糙的。如图3b所示。

图4铸铁拉伸图

(三)实验设备及测量仪器

1.WE-300型液压式万能材料试验机

2.游标卡尺

(四)实验步骤

1. 根据试样的形状、尺寸和预计材料的抗拉强度来估算最大拉力,选择合适的示力盘、摆锤和夹具。

2. 在试样的原始标距长度L0范围内用划线机等分10个分格点,并确定标距的端点,以便观察标距范围内沿轴向变形的情况和试样破坏后测定断后延伸率。

3.根据国标GB/T 228-2002《金属室温拉伸试验方法》中的规定,测定试样原始横截面积。本次试验采用圆形试样,应在标距的两端及中间处的两个相互垂直的方向上各测一次横截面直径,取其算术平均值,选用三处测得的直径最小值,并以此值计算横截面面积。

4.将试样一端夹于上钳口,快速调节万能试验机的夹头位置,将示力盘指针调零,并将自动绘图装置调好。然后,将试样另一端夹于下钳口,必须保持试样垂直,并使试样置入钳口足够的夹持长度。经指导教师检查后即可开始试验。

5.加载试验,在试验过程中,要求均匀缓慢地进行加载。对于低碳钢试样的拉伸试验,要注意观察拉伸过程四个阶段中的各种现象。并记下屈服载荷F el值,最大载荷F m值。对于铸铁试样,只需测定其最大载荷F m值。试样被拉断后立即停机,并取下试样。

6.对于拉断后的低碳钢试样,要分别测量断裂后的标距L U和颈缩处的最小直径d U。按照国标GB/T228-2002中的规定测定L U时,将试样断裂后的两段在断口处紧密地对接起来,直接测量原标距两端的距离。若断口处到最邻近标距端点的距离小于1/3L0时,则需要用“移位法”来计算L U。其方法是:在长段上从拉断处O取基本等于短段格数得B点,接着取等于长段所余格数[偶数,图5(a)]的一半,得C点;或者取所余格数[奇数,图5(b)]分别减1与加1的一半,得C和C1点。移位后的L1分别为:AB+2BC或者AB+BC+BC1。测定断面收缩率时,在试样颈缩最小处两个相互垂直的方向上测量其直径d1,取其算术平均值作为d1计算其断面收缩率。

(a) 余格为偶数; (b) 余格为奇数

图5 用移位法确定断后延伸率

(五)实验结果处理

根据试验测定数据,可分别计算材料的强度指标和塑性指标。

1. 低碳钢

强度指标:屈服强度:(1)

抗拉强度:(2)塑性指标:断后延伸率:(3)

断后截面收缩率:(4)

2. 铸铁

强度指标:抗拉强度 : (5)

3. 绘出拉伸过程中的F-ΔL曲线,对试验中的各种现象进行分析比较。

4、比较两种材料拉伸力学行为的差异。

(六)预习要求和思考题

1. 预习材料力学实验和材料力学教材有关内容,明确实验目的和要求。

2. 实验时如何观察低碳钢的屈服点?测定时为何要对加载速度提出要求?

3. 比较低碳钢拉伸、铸铁拉伸的断口形状,分析其破坏的力学原因。

二、高分子材料的拉伸实验

(一)实验目的

1.测定高分子材料的屈服强度、断裂强度和断裂伸长率,并绘制应力-应变曲线;

2.观察聚合物的拉伸特性;

3.掌握高聚物的静载拉伸实验方法。

(二)实验原理

1.应力-应变曲线

本实验是在一定的拉伸速度下,于试样上沿纵轴方向施加静态拉伸载荷,以测定塑料的力学性能。

拉伸实验是最常用的一种力学实验,由实验测定的应力-应变曲线,可以得

出评价材料性能的屈服强度(σ

屈),断裂强度(σ

)和断裂伸长率(ε

)等表

征参数,不同的聚合物,不同的测定条件,测得的应力-应变曲线是不同的。

结晶性高聚物的应力-应变曲线分三个区域如图所示。

(1)OA段曲线的起始部分,近乎是条直线,试样被均匀拉长,应变很小,而应力增加很快,呈普弹变形,是由于分子的键长、键角以及原子间距离的改变所引起的,其变形是可逆的,应力与应变之间服从虎克定律,即

σ=Eε

式中σ——应力,Mpa;

ε——应变。%;

E——弹性模量,Mpa;

A为屈服点,A点所对应力叫屈服应力(σ

)或屈服强度。

(2)BC段到达屈服点A后,试样突然在某处出现一个或几个“细颈”现象,出现细颈部分的本质是分子在该处发生了取向的结晶,该处强度增大,故拉伸时细颈不会再变细拉断,而是向两端扩展,直至整个试样完全变细为止,此阶段应力几乎不变,而变形却增加很多。

(3)CD段被均匀拉细后的试样,再度变细即分子进一步取向,应力随应变的增加而增大,直到断裂点D,试样被拉断,对于D点的应力称为强度极限,

是工程上重要指标,既抗拉伸强度或断裂强度σ

,其计算公式如下:

σ

断=P/A

(Mpa)

式中 P——最大破坏载荷,N;

A

——试样横截面积,mm2;

断裂点D,可能高于或者低于屈服点A。

断裂伸长率ε

断是材料在断裂时相对伸长ε

按下式计算:

ε

断=(L-L

)/L

ⅹ100%

式中 L

——试样标线间距离,mm;

L——试样断裂时标线间距离,mm。

2.玻璃态高聚物拉伸时曲线发展的几个阶段(1)屈服前区

曲线的起始部分近乎是条直线,试样被均匀拉长,应变很小,而应力增加很快,呈普弹形变,服从虎克定律σ=Eε,应力随着应变增加而上升,这是因为外力使键长键角以及原子间距离改变而使大分子间存在的大量物理交联点发生形变所致,当外力解除后,这个形变可立即回复。

(2)屈服区

继续拉伸,曲线开始变弯,出现转折点为屈服点,这时材料进入了强迫高弹形变阶段,外力使大分子链间旧有交联点遭到破坏。

(3)延伸区

材料屈服以后,再被拉伸,从曲线上可以看出应力基本不变,而形变很大,这是由于在外力作用下,强迫大分子链运动,分子重新构象,而且运动的范围可以很大,大分子链沿外力作用方向可能被拉直。

(4)增强区

随着拉伸过程的进行,取向拉直的大分子链之间断裂的物理交联点逐步增加,若使材料再伸长,只有用更大的力才能使分子之间产生滑移,致使形变应力重新增加,曲线急转向上,直至材料断裂。

3.影响高聚物机械强度的因素

(1)大分子链的主价链,分子间力以及高分子链的柔性等,是决定高聚物机械强度的主要内在因素。

(2)在加工过程中所留下来的各种痕迹如成型制品表层及内部冷却速度不一致,表面先凝固,内部仍处于高热状态,产生一种阻止表面形成完整表皮结构的内应力,使得外表皮上出现许多龟裂,整个物体冷却后,这些龟裂以裂缝、结构不均匀的细纹、凹陷、真空泡等形式留在制品表面或内层。此外,由于混料及塑化不均,以及引进微小气泡或各种杂质等,这些隐患均成为制件强度的薄弱环节。

(3)环境温度、湿度及拉伸速度等对机械强度有着非常重要的影响,塑料是属于高弹性材料,它的力学松弛过程对拉伸速度和环境温度非常敏感。升高温度使分子链段的热运动加强,松弛过程进行的较快,拉伸时表现较大的变形和较低的强度;低速拉伸时,由于速度慢,外力作用持续的时间长,分子链来得及取向位移,进行重排,所以,试样表现出较大的变形和较低的强度,因此,降低拉

伸速度和增加实验温度的结果是等效的。

(三)实验设备及试样

1.电子式万能材料试验机

2.游标卡尺一把

3.试样

聚氯乙烯和聚丙烯,标准哑铃试样,表面平整,无气泡、裂纹、分层、伤痕等缺陷。

(四)实验步骤

1.熟悉电子式万能材料试验机的结构,操作规程和注意事项。

2.用游标卡尺测量试样的标距、直径。每个试样测量三点,精确至0.02mm,取平均值。

3.试验机预热半小时。

4.正常联机后,用上夹头夹好试样,设定好试验速度,清零。

5.用下夹头夹好试样,使试样纵轴与上、下夹具中心连线重合,且松紧要适宜,防止试样滑脱或断在夹具中。

6.启动“运行”键,当达到试验要求(或试样断裂后),“停止”,进入“处理”,进行数据“输入”,打印“曲线”和“报告”。

7.试样断裂在中间平行部分之外时,此实验作废,另取试样补做。每组试样应不少于5个。

(五)实验报告要求

1.简述实验原理。

2.明确操作步骤和注意事项。

3.做好原始记录。详细记录压缩过程中观察到的现象,结合学到的理论分析现象产生原因(包括试样变形情况,表面和颜色的变化,断裂情况及断面特征等)。

4.作拉伸应力-应变曲线图;测定试样的屈服强度、断裂强度;计算断裂伸长率;分析试样的拉伸力学行为。

材料的拉伸试验实验报告

材料的拉伸试验 实验内容及目的 (1)测定低碳钢材料在常温、静载条件下的屈服强度s σ、抗拉强度b σ、伸长率δ和断面收缩率ψ。 (2)掌握万能材料试验机的工作原理和使用方法。 实验材料及设备 低碳钢、游标卡尺、万能试验机。 试样的制备 按照国家标准GB6397—86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。其中最常用的是圆形截面试样和矩形截面试样。 如图1所示,圆形截面试样和矩形截面试样均由平行、过渡和夹持三部分组成。平行部分的试验段长度l 称为试样的标距,按试样的标距l 与横截面面积A 之间的关系,分为比例试样和定标距试样。圆形截面比例试样通常取d l 10=或d l 5=,矩形截面比例试样通常取 A l 3.11=或A l 65.5=,其中,前者称为长比例试样(简称长试样),后 者称为短比例试样(简称短试样)。定标距试样的l 与A 之间无上述比例关系。过渡部分以圆弧与平行部分光滑地连接,以保证试样断裂时的断口在平行部分。夹持部分稍大,其形状和尺寸根据试样大小、材

料特性、试验目的以及万能试验机的夹具结构进行设计。 对试样的形状、尺寸和加工的技术要求参见国家标准GB6397—86。 (a ) (b ) 图1 拉伸试样 (a )圆形截面试样;(b )矩形截面试样 实验原理 进行拉伸试验时,外力必须通过试样轴线,以确保材料处于单向应力状态。低碳钢具有良好的塑性,低碳钢断裂前明显地分成四个阶段: 弹性阶段:试件的变形是弹性的。在这个范围内卸载,试样仍恢复原来的尺寸,没有任何残余变形。 屈服(流动)阶段:应力应变曲线上出现明显的屈服点。这表明材料暂时丧失抵抗继续变形的能力。这时,应力基本上不变化,而变形快速增长。通常把下屈服点作为材料屈服极限(又称屈服强度),即A F s s =σ,是材料开始进入塑性的标志。结构、零件的应力一旦超过 屈服极限,材料就会屈服,零件就会因为过量变形而失效。因此强度

《金属材料室温拉伸试验方法》GBT228-2002实施要点

《金属材料室温拉伸试验方法》GBT228-2002实施要点2006-11-04 15:061 引言 国家标准GB/T228-2002《金属材料室温拉伸试验方法》已于2002年颁布实施。这一新国家标准是合并修订国家标准GB/T228-1987《金属拉伸试验方法》、GB/T3076-1982《金属薄板(带)拉伸试验方法》和GB/T6397-1986《金属拉伸试验试样》三个标准为一个标准,它等效采用了国际标准ISO6892:1998《金属材料室温拉伸试验》,也是GB/T228第三次修订。GB/T228-2002包括的技术内容和要求与原三个标准有较大的不同,尤其在性能名称和符号、抗拉强度定义、试验速率、性能结果数值的修约方面变动较大。而且,新标准中增加了引用标准和关于试验方法准确度方面阐述的内容。为了更好地贯彻实施GB/T228-2002,将该标准的要点和实施中需注意之点说明如下。 2 GB/T228-2002标准的适用范围 标准适用于金属材料(包括黑色和有色金属材料,但不包括金属构件和零件)室温拉伸性能的测定,试样或产品的横截面尺寸≦0.1mm。对于小横截面尺寸的金属产品,例如金属箔、超细丝和毛细管等的拉伸试验需要双方协议。其原因在于:①横截面小的产品,按照标准中建议的量具分辨力要求不能满足附录A和附录C规定横截面测定准确度在±1%和±2%以内的要求。②试样标距采用常规的划细线、打小冲点等方法进行标记不可行。③常用的引伸计不适用于此类型产品试样的试验。试样的夹持方法需要特殊夹头等。 3 室温的温度范围 标准中规定室温的温度范围为10-35℃,超出这一范围不属于室温。对于材料在这一温度范围内性能对温度敏感而采用更严格的温度范围试验时,应采用23±5℃的控制温度。上述10-35℃的温度范围实质是指容许的试样温度范围,只要试样的温度是在这规定的室温范围内便符合标准要求。 4 标准中的引用标准 标准中的第二章引用了6个国家标准,即: GB/T2975-1998钢及钢产品力学性能试验取样位置和试样制备(eqv ISO377:1997) GB/T8170-1987数值修约规则 GB/T12160-2002单轴试验用引伸计的标定(idt ISO9513:1999) GB/T16825-1997拉力试验机的实验(idt ISO7500—1:1986) GB/T17600.1—1998钢的伸长率换算第1部分:碳素钢和低合金钢(eqv ISO2566—1:1984)GB/T17600.2—1998钢的伸长率换算第2部分:奥氏体钢(eqv ISO2566—2:1984) 标准中通过注日期引用的这6个国家标准是构成GB/T228—2002标准本身不可缺少的部分,应遵照被引用的6个标准中的相关规定和要求,其中被引用的5个标准分别等同和等效相应的国际标准。目前,GB/T8170—1987《数值修约规则》还没有相对应的国际标准。 5 性能和术语定义 5.1性能定义 为了与国际接轨,性能的定义按照国际标准的规定。与原GB/T228—1987相比较,屈服强度与抗拉强度的定义有明显差异,其他性能的定义无实质性差异。 新标准将抗拉强度定义为相应最大力(Fm)的应力,而最大力(Fm)定义为试样在屈服阶段之后所能抵抗的最大力;对于无明显屈服(连续屈服)的金属材料,为试验期间的最大力。按照这一定义,如图1所示的拉伸曲线,最大力应为曲线上的B点,而不是旧标准中的取其A点的力(上屈服力)计算抗拉强度。 新标准中屈服强度这一术语的含义与旧标准中的屈服点有所不同,前者是泛指上、下屈服强度性能;而后者既是泛指屈服点和上、下屈服点性能,也特指单一屈服状态的屈服点性能(ζs)。因为新标准已将旧标准中的屈服点性能ζs归入为下屈服强度ReL(见标准中的图2d)。所以,新标准中不再有与旧标准中的屈服点性能(ζs)相对应的性能定义。也就是说新标

材料拉伸与压缩试验报告

材料的拉伸压缩实验 【实验目的】 1.研究低碳钢、铸铁的应力——应变曲线拉伸图。 2.确定低碳钢在拉伸时的机械性能(比例极限R p、下屈服强度R eL、强度极限R m、延伸率A、断面收缩率Z等等)。 3. 确定铸铁在拉伸时的力学机械性能。 4.研究和比较塑性材料与脆性材料在室温下单向压缩时的力学性能。 【实验设备】 1.微机控制电子万能试验机; 2.游标卡尺。 3、记号笔 4、低碳钢、铸铁试件 【实验原理】 1、拉伸实验 低碳钢试件拉伸过程中,通过力传感器和位移传感器进行数据采集,A/D转换和处理,并输入计算机,得到F-?l曲线,即低碳钢拉伸曲线,见图1。 对于低碳钢材料,由图1曲线中发现OA直线,说明F正比于?l,此阶段称为弹性阶段。屈服阶段(B-C)常呈锯齿形,表示载荷基本不变,变形增加很快,材料失去抵抗变形能力,这时产生两个屈服点。其中,B'点为上屈服点,它受变形大小和试件等因素影响;B点为下屈服点。下屈服点比较稳定,所以工程上均以下屈服点对应的载荷作为屈服载荷。测定屈服载荷Fs时,必须缓慢而均匀地加载,并应用σs=F s/ A0(A0为试件变形前的横截面积)计算屈服极限。 图1低碳钢拉伸曲线 屈服阶段终了后,要使试件继续变形,就必须增加载荷,材料进入强化阶段。

当载荷达到强度载荷F b后,在试件的某一局部发生显著变形,载荷逐渐减小,直至试件断裂。应用公式σb=F b/A0计算强度极限(A0为试件变形前的横截面积)。 根据拉伸前后试件的标距长度和横截面面积,计算出低碳钢的延伸率δ和端面收缩率ψ,即 % 100 1? - = l l l δ,% 100 1 0? - = A A A ψ 式中,l0、l1为试件拉伸前后的标距长度,A1为颈缩处的横截面积。 2、压缩实验 铸铁试件压缩过程中,通过力传感器和位移传感器进行数据采集,A/D转换和处理,并输入计算机,得到F-?l曲线,即铸铁压缩曲线,见图2。 对铸铁材料,当承受压缩载荷达到最大载荷F b时,突然发生破裂。铸铁试件破坏后表明出与试件横截面大约成45?~55?的倾斜断裂面,这是由于脆性材料的抗剪强度低于抗压强度,使试件被剪断。 材料压缩时的力学性质可以由压缩时的力与变形关系曲线表示。铸铁受压时曲线上没有屈服阶段,但曲线明显变弯,断裂时有明显的塑性变形。由于试件承受压缩时,上下两端面与压头之间有很大的摩擦力,使试件两端的横向变形受到阻碍,故压缩后试件呈鼓形。 铸铁压缩实验的强度极限:σb=F b/A0(A0为试件变形前的横截面积)。 【实验步骤及注意事项】 1、拉伸实验步骤 (1)试件准备:在试件上划出长度为l0的标距线,在标距的两端及中部三个位置上,沿两个相互垂直方向各测量一次直径取平均值,再从三个平均值中取最小值作为试件的直径d0。 (2)试验机准备:按试验机→计算机→打印机的顺序开机,开机后须预热十分钟才可使用。按照“软件使用手册”,运行配套软件。 (3)安装夹具:根据试件情况准备好夹具,并安装在夹具座上。若夹具已 图2 铸铁压缩曲线

实验一金属材料的拉伸实验

实验一金属材料的拉伸 实验 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

实验一 金属材料的拉伸实验 拉伸是材料力学最基本的实验,通过拉伸可以测定出材料一些基本的力学性能参数,如弹性模量、强度、塑性等。 一.实验目的 1.测定低碳钢拉伸时的强度性能指标:屈服应力s σ和抗拉强度b σ。 2.测定低碳钢拉伸时的塑性性能指标:伸长率δ和断面收缩率ψ。 3.测定灰铸铁拉伸时的强度性能指标:抗拉强度b σ。 4.绘制低碳钢和灰铸铁的拉伸图,比较低碳钢与灰铸铁在拉伸时的力学性能和破坏形式。 二.实验仪器、设备 1.电子万能试验机(或液压万能材料试验机)。 2.钢尺。 3.数显卡尺。 三、实验试样 按照国家标准GB6397—86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。其中最常用的是圆形截面试样和矩形截面试样。 对试样的形状、尺寸和加工的技术要求参见国家标准GB6397—86。 夹持 过渡 夹持 过渡 h 试样分为夹持部分、过渡部分和待测部分(l )。标距(l 0)是待测部分的主体,其截面积为A 0。按标距(l 0)与其截面积(A 0)之间的关系,拉伸试样可分为比例试样和非比例试样。按国家标准GB6397-86的规定,比例试样的有关尺寸如下表1-1。 四.实验原理 (一)塑性材料弹性模量的测试: 在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。因此金属材料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验。

材料力学拉伸实验报告

材料的拉伸压缩实验 徐浩1221241020 机械一班 一、实验目的 1.观察试件受力和变形之间的相互关系; 2.观察低碳钢在拉伸过程中表现出的弹性、屈服、强化、颈缩、断裂等物 理现象。观察铸铁在压缩时的破坏现象。 3.测定拉伸时低碳钢的强度指标(σs、σb)和塑性指标(δ、ψ)。测定压缩 时铸铁的强度极限σb。 二、实验设备 1.微机控制电子万能试验机; 2.游标卡尺。 三、实验材料 拉伸实验所用试件(材料:低碳钢)如图所示, 四、实验原理 低碳钢试件拉伸过程中,通过力传感器和位移传感器进行数据采集,A/D转换和处理,并输入计算机,得到F-?l曲线,即低碳钢拉伸曲线,见图2。 对于低碳钢材料,由图2曲线中发现OA直线,说明F正比于?l,此阶段称为弹性阶段。屈服阶段(B-C)常呈锯齿形,表示载荷基本不变,变形增加很快,材料失去抵抗变形能力,这时产生两个屈服点。其中,B'点为上屈服点,它受变形大小和试件等因素影响;B点为下屈服点。下屈服点比较稳定,所以工程上均以下屈服点对应的载荷作为屈服载荷。测定屈服载荷Fs时,必须缓慢而均匀地加载,并应用σs=F s/ A0(A0为试件变形前的横截面积)计算屈服极限。

图2 低碳钢拉伸曲线 屈服阶段终了后,要使试件继续变形,就必须增加载荷,材料进入强化阶段。当载荷达到强度载荷F b 后,在试件的某一局部发生显著变形,载荷逐渐减小,直至试件断裂。应用公式σb =F b /A 0计算强度极限(A 0为试件变形前的横截面积)。 根据拉伸前后试件的标距长度和横截面面积,计算出低碳钢的延伸率δ和端面收缩率ψ,即 %100001?-= l l l δ,%1000 1 0?-=A A A ψ 式中,l 0、l 1为试件拉伸前后的标距长度,A 1为颈缩处的横截面积。 五、实验步骤及注意事项 1、拉伸实验步骤 (1)试件准备:在试件上划出长度为l 0的标距线,在标距的两端及中部三 个位置上,沿两个相互垂直方向各测量一次直径取平均值,再从三个平均值中取最小值作为试件的直径d 0。 (2)试验机准备:按试验机→计算机→打印机的顺序开机,开机后须预热十分钟才可使用。按照“软件使用手册”,运行配套软件。 (3)安装夹具:根据试件情况准备好夹具,并安装在夹具座上。 (4)夹持试件:若在上空间试验,则先将试件夹持在上夹头上,力清零消除试件自重后再夹持试件的另一端;若在下空间试验,则先将试件夹持在下夹头上,力清零消除试件自重后再夹持试件的另一端。 (5)开始实验:消除夹持力;位移清零;按运行命令按钮,按照软件设定的方案进行实验。 (6)记录数据:试件拉断后,取下试件,将断裂试件的两端对齐、靠紧,用游标卡尺测出试件断裂后的标距长度l 1及断口处的最小直径d 1(一般从相

材料拉伸与压缩实验报告参考

碳钢与铸铁的拉伸、压缩实验(实验一) 一、实验目的 1、测定碳钢在拉伸时的屈服极限s σ,强度极限b σ,延伸率δ和断面收缩率ψ,测定铸铁拉伸时的强度极限b σ。 2、观察碳钢、铸铁在拉伸过程中的变形规律及破坏现象,并进行比较,使用绘图装置绘制拉伸图(P-ΔL 曲线)。 二、实验设备 微机控制电子万能材料试验机、液压式万能材料试验机、游标卡尺。 三、实验试祥 1. 为使各种材料机械性质的数值能互相比较,避免试件的尺寸和形状对试验结果的影响,对试件的尺寸形状GB6397-86作了统一规定,如图1所示: 图1 用于测量拉伸变形的试件中段长度(标距L 0)与试件直径d 。必零满足L 0/d 0=10或5,其延伸率分别记做和δ10和δ5 2、压缩试样:低碳钢和铸铁等金属材料的压缩试件一般做成很短的圆柱形,避免压弯,一般规定试件高度h 直径d 的比值在下列范围之内: 1≤d h ≤3 为了保证试件承受轴向压力,加工时应使试件两 个端面尽可能平行,并与试件轴线垂直,为了减少 两端面与试验机承垫之间的摩擦力,试件两端面应 进行磨削加工,使其光滑。 四、实验原理 图2为试验机绘出的碳钢拉伸P-△L 曲线图, 拉伸变形ΔL 是整个试件的伸长,并且包括机器本身 的弹性变形和试件头部在夹头中的滑动,故绘出的 曲线图最初一段是曲线,流动阶段上限B ‘受变形速度和试件形式影响,下屈服点B 则比较稳定,工程上均以B 点对应的载荷作为材料屈服时的载荷P S ,以试样的初始横截面积A0除PS ,即得屈服极限: 0A Ps S =σ 图2

屈服阶段过后,进入强化阶段,试样又恢复了承载能力,载荷到达最大值P b ,时,试样某一局部的截面明显缩小,出现“颈缩”现象,这时示力盘的从动针停留在P b 不动,主动针则迅速倒退表明载荷迅速下降,试样即将被拉断。以试样的初始横截面面积A 。除P b 得强度极限为 0A P b b =σ 延伸率δ及断面收缩率φ的测定,试样的标距原长为L 0拉断后将两段试样紧密地对接在一起,量出拉断后的标距长为L 1延伸率应为 % 100001?-=l l l δ 断口附近塑性变形最大,所以L 1的量取与断口的部位有关,如断口发生于L ο的两端或在L ο之外,则试验无效,应重做,若断口距L 。的一端的距离不在标距长度的中央31 区域内,要采用断口移中的办法;以度量试件位断后的标距,设两标点CC 1之间共有10格,断口靠近左段,如图3,从临近断口的第一刻线d 起,向右取10/2=5格,记作a ,这就相当于把断口摆在标距中央,再看a 点到C 1点有多少格,就由a 点向左取相同的格数,记作b , 令L ˊ表示C 至b 的长度,L ’表示b 至a 的长度,则L ′+2L ‘′的长度中包含的格数等于 标距长度内的格数10,即 L ′+2L ‘′=L 1。 图3 试样拉断后,设颈缩处的最小横截面面积为A 1,由于断口不是规则的圆形,应在两个相互垂直的方向上量取最小截面的直径,以其平均值计算A 1,然后按下式计算断面收缩率: 010100%ψA -A =?A 铸铁试件在变形极小时,就达到最大载荷P b 而突然发生断裂。没有屈服和颈缩现象,其强度极限远小于低碳钢的强度极限。 图4为低碳钢试件的压缩图,在弹性阶段和屈服阶段,它与拉伸时的形状基本上是一致 图4 图5

实验一金属材料的拉伸实验

拉伸是材料力学最基本的实验,通过拉伸可以测定出材料一些基本的力学性能参数, 如 弹性模量、强度、塑性等。 一. 实验目的 1. 测定低碳钢拉伸时的强度性能指标:屈服应力 二s 和抗拉强度二b 。 2. 测定低碳钢拉伸时的塑性性能指标:伸长率 和断面收缩率’-:。 3. 测定灰铸铁拉伸时的强度性能指标:抗拉 强度 :「b 。 4. 绘制低碳钢和灰铸铁的拉伸图,比较低碳钢与灰铸铁在拉伸时的力学性能和破坏形 式。 二. 实验仪器、设备 1. 电子万能试验机(或液压万能材料试验机)。 2. 钢尺。 3. 数显卡尺。 三. 实验试样 按照国家标准 GB6397 — 86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品 种、规格以及试验目的的不同而分为圆形截面试样、 矩形截面试样、异形截面试样和不经机 加工的全截面形状试样四种。其中最常用的是圆形截面试样和矩形截面试样。 对试样的形状、尺寸和加工的技术要求参见国家标准 GB6397 — 86。 图1-1试件的截面形式 试样分为夹持部分、过渡部分和待测部分( I )。标距(I 0)是待测部分的主体,其截面 积为A 。。按标距(I 。)与其截面积(A o )之间的关系,拉伸试样可分为比例试样和非比例 试样。按国家标准 GB6397-86的规定,比例试样的有关尺寸如下表 1-1。 表1-1 试样 标距 | I 。, (mm) 截面积A 0 ,(mm 2 ) 圆形试样直径 d (mm ) 延伸率 比例 长 11.3 J A 。或 10 d 任意 任意 短 5.65 JA 。或 5 d 四. 实验原理 (一)塑性材料弹性模量的测试: 实验 金属材料的拉伸实验 夹持过渡 (b

关于材料的拉伸实验

实验二材料的拉伸实验 概述 常温、静载下的轴向拉伸试验是材料力学试验中最基本、应用最广泛的试验。通过拉伸试验,可以全面地测定材料的力学性能,如弹性、塑性、强度、断裂等力学性能指标。这些性能指标对材料力学的分析计算、工程设计、选择材料和新材料开发都有及其重要的作用。 一、金属的拉伸实验 (一)实验目的 1.测定低碳钢的屈服强度Rel、抗拉强度Rm、断后延伸率A11.3和断面收缩率Z。 2.测定铸铁的抗拉强度Rm。 3.观察上述两种材料在拉伸过程中的各种现象,并绘制拉伸图(F─曲线)。 4.分析比较低碳钢和铸铁的力学性能特点与试样破坏特征。 (二)实验原理 依据国标GB/T 228-2002《金属室温拉伸实验方法》分别叙述如下: 1.低碳钢试样。在拉伸试验时,利用试验机的自动绘图器可绘出低碳钢的拉伸曲线,见图1示的F—ΔL曲线。 图中最初阶段呈曲线,是由于试样头部在夹具内有滑动及试验机存在间隙等原因造成的。分析时应将图中的直线段延长与横坐标相交于O点,作为其坐标原点。拉伸曲线形象的描绘出材料的变形特征及各阶段受力和变形间的关系,可由该图形的状态来判断材料弹性与塑性好坏、断裂时的韧性与脆性程度以及不同变形下的承载能力。但同一种材料的拉伸曲线会因试样尺寸不同而各异。为了使同

一种材料不同尺寸试样的拉伸过程及其特性点便于比较,以消除试样几何尺寸的影响,可将拉 F a-比例伸长力;F c-弹性伸长力;F su-上屈服力;F sl-下屈服力; F b-最大力;F f-断裂力;-断裂后塑性伸长;-弹性伸长; 图1碳钢拉伸曲线 伸曲线图的纵坐标(力F)除以试样原始横截面面积S ,并将横坐标(伸长 ΔL)除以试样的原始标距L0得到的曲线便与试样尺寸无关,此曲线称为应力-应变曲线或R—曲线,如图2示。从曲线上可以看出,它与拉伸图曲线相似,也同样表征了材料力学性能。 拉伸试验过程分为四个阶段,如图1、图2所示。 (1)弹性阶段OC。在此阶段中的OA段拉力和伸长成正比关系,表明钢材的应力与应变为线性关系,完全遵循虎克定律,如图2示。若当应力继续增加到C点时,应力和应变的关系不再是线性关系,但变形仍然是弹性的,即卸除拉力后变形完全消失。用精密仪器测定其塑性应变约为规定的引伸计标距的0.2%所对应的强度值定义为规定非比例延伸强度,它是控制材料在弹性变形范围内工作的有效指标。在工程上有实用价值。 -比例极限;-弹性极限;-上屈服点;-下屈服点;

金属材料的拉伸与压缩实验

机械学基础实验 指导书 力学实验中心 金属材料的拉伸与压缩实验 1.1 金属材料的拉伸实验 拉伸实验是材料力学实验中最重要的实验之一。任何一种材料受力后都要产生变形,变形到一定程度就可能发生断裂破坏。材料在受力——变形——断裂的这一破坏过程中,不仅有一定的变形能力,而且对变形和断裂有一定的抵抗能力,这些能力称为材料的力学机械性能。通过拉伸实验,可以确定材料的许多重要而又最基本的力学机械性能。例如:弹性模量E 、比例极限R p 、上和下屈服强度R eH 和R eL 、强度极限R m 、延伸率A 、收缩率Z 。除此而外,通过拉伸实验的结果,往往还可以大致判定某种其它机械性能,如硬度等。 我们以两种材料——低碳钢,铸铁做拉伸试验,以便对于塑性材料和脆性材料的力学机械性能进行比较。 这个实验是研究材料在静载和常温条件下的拉断过程。利用电子万能材料试验机自动绘出的载荷——变形图,及试验前后试件的尺寸来确定其机械性能。 试件的形式和尺寸对实验的结果有很大影响,就是同一材料由于试件的计算长度不同,其延伸率变动的范围就很大。例如: 对45#钢:当L 0=10d 0时(L 0为试件计算长度,d 0为直径),延伸率A 10=24~29%,当L 0=5d 0时,A 5=23~25%。 为了能够准确的比较材料的性质,对拉伸试件的尺寸有一定的标准规定。按国标GB/T228-2002、GB/P7314-2005的要求,拉伸试件一般采用下面两种形式: 图1-1 1. 10倍试件; 圆形截面时,L 0=10d 0 矩形截面时,L 0=11.30S 2. 5倍试件 圆形截面时,L 0=5d 矩形截面时, L 0=5.650S = 045 S d 0——试验前试件计算部分的直径;

工程力学拉伸实验报告

试验目的: 1. 测定低碳钢(塑性材料)的弹性摸量E;屈服极限σs 等机械性能。 2.测定灰铸铁(脆性材料)的强度极限σb 3.了解塑性材料和脆性材料压缩时的力学性能。 材料拉伸与压缩实验指导书 低碳钢拉伸试验 拉伸试验的意义: 单向拉伸试验是在常温下以缓慢均匀的速度对专门制备的试件施加轴向载荷,在试件加载过程中观测载荷与变形的关系,从而决定材料有关力学性能。通过拉伸试验可以测定材料在单向拉应力作用下的弹性模量及屈服强度、抗拉强度、延伸率、截面收缩率等指标。其试验方法简单且易于得到较可靠的试验数据,所以是研究材料力学性能最基本、应用最广泛的试验。 操作步骤: 1.试验设备:WDW-3050电子万能试验机 2.试件准备:用游标卡尺测量试件试验段长度l0和截面直径d0,并作记录。 3.打开试验机主机及计算机等相关设备。 4.试件安装(详见WDW3050电子万能试验机使用与操作三.拉伸试件的安装)。 5.引伸计安装(用于测量E, 详见WDW3050电子万能试验机使用与操作四.引伸计安装)。 6.测量参数的设定: 7.再认真检查一遍试件安装等试验准备工作。 8.负荷清零,轴向变形清零,位移清零。 9.开始进行试验,点击试验开始。 10.根据提示摘除引伸计。 11.进入强化阶段以后,进行冷作硬化试验,按主机控制面板停止,再按▼,先卸载到10kN,再加载,按▲,接下来计算机控制,一直到试件断裂(此过程中计算机一直工作,注意观察负荷位移曲线所显示的冷作硬化现象.). 12.断裂以后记录力峰值。 13.点击试验结束(不要点击停止)。

14.材料刚度特征值中的弹性模量E的测定 试验结束后,在试验程序界面选定本试验的试验编号,并选择应力─应变曲线。在曲线上较均匀地选择若干点,记录各点的值,分别为及 (如i =0,1,2,3,4),并计算出相应的 计算E i的平均值,得到该材料的弹性模量E的值。 15.材料强度特征值屈服极限和强度极限的测定 试验结束后,在试验程序界面选定本试验的试验编号,并选择负荷─位移曲线,找到的曲线屈服阶段的下屈服点,即为屈服载荷F s, 找到的曲线上最大载荷值,即为极限载荷P b. 计算屈服极限:;计算强度极限:; 16.材料的塑性特征值延伸率及截面收缩率的测定 试件拉断后,取下试件,沿断裂面拼合,用游标卡尺测定试验段长度,和颈缩断裂处截面直径。 计算材料延伸率 计算截面收缩率 低碳钢拉伸试验报告 试验目的: 1. 掌握电子万能试验机操作; 2. 理解塑性材料拉伸时的力学性能; 3. 观察低碳钢拉伸时的变形特点; 4. 观察低碳钢材料的冷作硬化现象; 5. 测定低碳钢材料弹性模量E ; 6. 测定材料屈服极限和强度极限; 7. 测定材料伸长率δ和截面收缩率Ψ 试验设备:

金属材料的拉伸与压缩实验

实验四金属材料的拉伸实验(二)一.实验目的 1.测定低碳钢材料在常温、静载条件下的屈服极限σ s ,强度极限σ b ,延伸率δ和断面 收缩率ψ。 2.测定铸铁材料在常温静载下的强度极限σ b 。 3.观察低碳钢﹑铸铁在拉伸过程中出现的各种现象,分析P-△L图的特征。 4.比较低碳钢与铸铁力学性能的特点和试件断口情况分析其破坏原因。 5.了解微机控制电子万能材料试验机的构造原理,学习其使用方法。 二.仪器设备 1.微机控制电子万能材料试验机 2.数显游标卡尺 三.试件 在测试某一力学性能参数时,为了避免试件的尺寸和形状对实验结果的影响,便于各种材料力学性能的测试结果的互相比较,采用国家标准规定的比例试件。国家标准规 定比例试件应符合以下关系:L0=K A。对于圆形截面试件,K值通常取5.65或11.3。即直径为d0的圆形截面试件标距长度分别为5d0和10d0。本试验采用L0=10d0的比例试件。 图 3-4-1 四.测试原理

实验时,实验软件能够实时的绘出实验时力与变形的关系曲线,如图3-4-2所示。 图3-4-2 1.低碳钢拉伸 ⑴.弹性阶段 弹性阶段为拉伸曲线中的OB段。在此阶段,试件上的变形为弹性变形。OA段直线为线弹性阶段,表明载荷与变形之间满足正比例关系。接下来的AB段是一非线弹性阶段,但仍满足弹性变形的性质。 ⑵.屈服阶段 过弹性阶段后,试件进入屈服阶段,其力与曲线为锯齿状曲线BC段。此时,材料丧失了抵抗变形的能力。从图形可看出此阶段载荷虽没明显的增加,但变形继续增加;如果试件足够光亮,在试件表面可看到与试件轴线成45°方向的条纹,即滑移线。在此阶段试件上的最小载荷即为屈服载荷P s. ⑶.强化阶段 材料经过屈服后,要使试件继续变形,必须增加拉力,这是因为晶体滑移后增加了抗剪能力,同时散乱的晶体开始变得细长,并以长轴向试件纵向转动,趋于纤维状呈现方向性,从而增加了变形的抵抗力,使材料处于强化状态,我们称此阶段为材料的强化阶段(曲线CD部分)。强化阶段在拉伸图上为一缓慢上升的曲线,若在强化阶段中停止加载并逐步卸载,可以发现一种现象——卸载规律,卸载时载荷与伸长量之间仍遵循直线关系,如果卸载后立即加载,则载荷与变形之间基本上还是遵循卸载时的直线规律沿卸载直线上升至开始卸载时的M点。我们称此现象为冷作硬化现象。从图可知,卸载时试件的伸长不能完全恢复,还残留了OQ一段塑性伸长。 ⑷.颈缩阶段 当试件上的载荷达到最大值后,试件的变形沿长度方向不再是均匀的了,在试件某

材料力学拉伸试验

§1-1 轴向拉伸实验 一、实验目的 1、 测定低碳钢的屈服强度eL R (s σ)、抗拉强度m R (b σ)、断后伸长率A 11.3(δ10)和断面收缩率Z (ψ)。 2、 测定铸铁的抗拉强度m R (b σ)。 3、 比较低碳钢?5(塑性材料)和铸铁?5(脆性材料)在拉伸时的力学性能和断口特征。 注:括号内为GB/T228-2002《金属材料 室温拉伸试验方法》发布前的旧标准引用符号。 二、设备及试样 1、 电液伺服万能试验机(自行改造)。 2、 0.02mm 游标卡尺。 3、 低碳钢圆形横截面比例长试样一根。把原始标距段L 0十等分,并刻画出圆周等分线。 4、 铸铁圆形横截面非比例试样一根。 注:GB/T228-2002规定,拉伸试样分比例试样和非比例试样两种。比例试样的原始标距0L 与原始横截面积0S 的关系满足00S k L =。比例系数k 取5.65时称为短比例试样,k 取11.3时称为长比例试样,国际上使用的比例系数k 取5.65。非比例试样0L 与0S 无关。 三、实验原理及方法 低碳钢是指含碳量在0.3%以下的碳素钢。这类钢材在工程中使用较广,在拉伸时表现出的力学性能也最为典型。 ΔL (标距段伸长量) 低碳钢拉伸图(F —ΔL 曲线) 以轴向力F 为纵坐标,标距段伸长量ΔL 为横坐标,所绘出的试验曲线图称为拉伸图,即F —ΔL 曲线。低碳钢的拉伸图如上图所示,F eL 为下屈服强度对应的轴向力,F eH 为上屈服强度对应的轴向力,F m 为最大轴向力。 F —ΔL 曲线与试样的尺寸有关。为了消除试样尺寸的影响,把轴向力F 除以试样横截面的原始面积S 0就得到了名义应力,也叫工程应力,用σ表示。同样,试样在标距段的伸长ΔL 除以试样的原始标距LO 得到名义应变,也叫工程应变,用ε表示。σ—ε曲线与F —ΔL 曲线形状相似,但消除了儿何尺寸的影响,因此代表了材料本质属性,即材料的本构关系。

实验二低碳钢和铸铁的压缩实验

实验二金属材料(低碳钢和铸铁)的压缩实验 一、实验目的 (1)比较低碳钢和铸铁压缩变形和破坏现象。 (2)测定低碳钢的屈服极限σs和铸铁的强度极限σb。 (3)比较铸铁在拉伸和压缩两种受力形式下的机械性能、分析其破坏原因。 二、验仪器和设备 (1)万能材料试验机。 (2)游标卡尺。 三、试件介绍 根据国家有关标准,低碳钢和铸铁等金属材料的压缩试件一般制成圆柱形试件。低碳钢压缩试件的高度和直径的比例为3:2,铸铁压缩试件的高度和直径的比例为2:1。试件均为圆柱体。 四、实验原理及方法 压缩实验是研究材料性能常用的实验方法。对铸铁、铸造合金、建筑材料等脆性材料尤为合适。通过压缩实验观察材料的变形过程、破坏形式,并与拉伸实验进行比较,可以分析不同应力状态对材料强度、塑性的影响,从而对材料的机械性能有比较全面的认识。 压缩试验在压力试验机上进行。当试件受压时,其上下两端面与试验机支撑之间产生很大的摩擦力,使试件两端的横向变形受到阻碍,故压缩后试件呈鼓形。摩擦力的存在会

影响试件的抗压能力甚至破坏形式。为了尽量减少摩擦力的影响,实验时试件两端必须保证平行,并与轴线垂直,使试件受轴向压力。另外。端面加工应有较高的光洁度。 低碳钢压缩时也会发生屈服,但并不象拉伸那样有明显的屈服阶段。因此,在测定Ps 时要特别注意观察。在缓慢均匀加载下,测力指针等速转动,当材料发生屈服时,测力指针转动将减慢,甚至倒退。这时对应的载荷即为屈服载荷Ps。屈服之后加载到试件产生明显变形即停止加载。这是因为低碳钢受压时变形较大而不破裂,因此愈压愈扁。横截面增 ,因此也得不到强度极大时,其实际应力不随外载荷增加而增加,故不可能得到最大载荷P b ,所以在实验中是以变形来控制加载的。 限 b 前出现较明显的变形然后破裂,此时试验机测力铸铁试件压缩时,在达到最大载荷P b 指针迅速倒退,从动针读取最大载荷P 值,铸铁试件最后略呈故形,断裂面与试件轴线大 b 约呈450。 图2—2 低碳钢压缩图铸铁压缩图 五、实验步骤 (1)试验机准备。根据估算的最大载荷,选择合适的示力度盘(量程)按相应的操作规程进行操作。 (2)测量试件的直径和高度。测量试件两端及中部三处的截面直径,取三处中最小一处的平均直径计算横截面面积。 (3)将试件放在试验机活动台球形支撑板中心处。 (4)开动试验机,使活动台上升,对试件进行缓慢均匀加载,加载速度为0.5mm/min。对于低碳钢,要及时记录其屈服载荷,超过屈服载荷后,继续加载,将试件压成鼓形即可停

实验一金属材料的拉伸实验

实验一金属材料的拉伸实验 拉伸是材料力学最基本的实验,通过拉伸可以测定出材料一些基本的力学性能参数, 如 弹性模量、强度、塑性等。 一. 实验目的 1. 测定低碳钢拉伸时的强度性能指标:屈服应力 二s 和抗拉强度二b 。 2. 测定低碳钢拉伸时的塑性性能指标:伸长率 和断面收缩率<。 3. 测定灰铸铁拉伸时的强度性能指标:抗拉强度 ;「b 。 4. 绘制低碳钢和灰铸铁的拉伸图,比较低碳钢与灰铸铁在拉伸时的力学性能和破坏形 式。 二. 实验仪器、设备 1. 电子万能试验机(或液压万能材料试验机)。 2. 钢尺。 3. 数显卡尺。 三. 实验试样 按照国家标准 GB6397— 86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、 规格以及试验目的的不同而分为圆形截面试样、 矩形截面试样、异形截面试样和不经机加工 的全截面形状试样四种。其中最常用的是圆形截面试样和矩形截面试样。 对试样的形状、尺寸和加工的技术要求参见国家标准 GB6397— 86。 (a) (b) 图1-1试件的截面形式 试样分为夹持部分、过渡部分和待测部分( I )。标距(I 0)是待测部分的主体,其截面 积为A o 。按标距(I o )与其截面积(A o )之间的关系,拉伸试样可分为比例试样和非比例试 样。按国家标准GB6397-86的规定,比例试样的有关尺寸如下表 1-1。 试样 标距 I I o , (mm) 截面积A, (mrr ) 圆形试样直径 d (mm ) 延伸率 比例 长 11.3 你0 或 10 d 任意 任意 短 5.65 J A0 或 5 d 夹持过渡

四.实验原理 (一)塑性材料弹性模量的测试: 在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的 比例常数就是材料的弹性模量E,也叫杨氏模量。因此金属材料拉伸时弹性模量E地测定是 材料力学最主要最基本的一个实验。 测定材料弹性模量 E 一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为: EA o 若已知载荷△ F及试件尺寸,只要测得试件伸长△ L或纵向应变即可得出弹性模量E。 A PL° A P 1 E 二△(△L)A0 A0也名 本实验采用引伸计在试样予拉后,弹性阶段初夹持在试样的中部,过弹性阶段或屈服阶段,弹性模量E测毕取下,其中塑性材料的拉伸实验不间断。 (二)塑性材料的拉伸(低碳钢):图1-2所示是典型的低碳钢拉伸图。 当试样开始受力时,因夹持力较小,其夹持部分在夹头内有滑动,故图中开始阶段的 力称上屈服极限,由于它受变形速度等因素的影响较大,一般不作为材料的强度指标;同样, 屈服后第一次下降的最低点也不作为材料的强度指标。除此之外的其它最低点中的最小值(B 点)作为屈服强度二s: A o 当屈服阶段结束后(C点),继续加载,载荷一变形曲线开始上升,材料进入强化阶段。若在这一阶段的某一点(如D点)卸载至零,则可以得到一条与比例阶段曲线基本平行的卸载曲线。此时立即再加载,则加载曲线沿原卸载曲线上升到D点,以后的曲线基本与未经卸 载的曲线重合。可见经过加载、卸载这一过程后,材料的比例极限和屈服极限提高了,而延 伸率降低了,这就是冷作硬化。 随着载荷的继续加大,拉伸曲线上升的幅度逐渐减小,当达到最大值(E点)R m后,

材料力学拉伸实验报告

材料的拉伸压缩实验 徐浩20 机械一班 一、实验目的 1.观察试件受力和变形之间的相互关系; 2.观察低碳钢在拉伸过程中表现出的弹性、屈服、强化、颈缩、断裂等物 理现象。观察铸铁在压缩时的破坏现象。 3.测定拉伸时低碳钢的强度指标(s 、b )和塑性指标(、)。测定 压缩时铸铁的强度极限b。 二、实验设备 1.微机控制电子万能试验机; 2.游标卡尺。 三、实验材料 拉伸实验所用试件(材料:低碳钢)如图所示, d l0 l 四、实验原理 低碳钢试件拉伸过程中,通过力传感器和位移传感器进行数据采集,A/D转换和处理,并输入计算机,得到F-l曲线,即低碳钢拉伸曲线,见图2。 对于低碳钢材料,由图2曲线中发现OA直线,说明F 正比于l,此阶段称为弹性阶段。屈服阶段(B-C)常呈锯齿形,表示载荷基本不变,变形增加很快,材料失去抵抗变形能力,这时产生两个屈服点。其中,B点为上屈服点,它受变形大小和试件等因素影响;B点为下屈服点。下屈服点比较稳定,所以工程上均以下屈服点对应的载荷作为屈服载荷。测定屈服载荷Fs时,必须缓慢而均匀地加载,并应用s=F s/ A0(A0为试件变形前的横截面积)计算屈服极限。

图2 低碳钢拉伸曲线 屈服阶段终了后,要使试件继续变形,就必须增加载荷,材料进入强化阶段。当载荷达到强度载荷F b 后,在试件的某一局部发生显著变形,载荷逐渐减小,直至试件断裂。应用公式b =F b /A 0计算强度极限(A 0为试件变形前的横截面积)。 根据拉伸前后试件的标距长度和横截面面积,计算出低碳钢的延伸率和端 面收缩率,即 %100001?-= l l l δ,%1000 1 0?-=A A A ψ 式中,l 0、l 1为试件拉伸前后的标距长度,A 1为颈缩处的横截面积。 五、实验步骤及注意事项 1、拉伸实验步骤 (1)试件准备:在试件上划出长度为l 0的标距线,在标距的两端及中部三 个位置上,沿两个相互垂直方向各测量一次直径取平均值,再从三个平均值中取最小值作为试件的直径d 0。 (2)试验机准备:按试验机计算机打印机的顺序开机,开机后须预热十分钟才可使用。按照“软件使用手册”,运行配套软件。 (3)安装夹具:根据试件情况准备好夹具,并安装在夹具座上。 (4)夹持试件:若在上空间试验,则先将试件夹持在上夹头上,力清零消除试件自重后再夹持试件的另一端;若在下空间试验,则先将试件夹持在下夹头上,力清零消除试件自重后再夹持试件的另一端。 (5)开始实验:消除夹持力;位移清零;按运行命令按钮,按照软件设定的方案进行实验。 (6)记录数据:试件拉断后,取下试件,将断裂试件的两端对齐、靠紧,用游标卡尺测出试件断裂后的标距长度l 1及断口处的最小直径d 1(一般从相

金属材料力学性能实验报告

金属材料力学性能实验报告 姓名:班级:学号:成绩: 实验名称实验一金属材料静拉伸试验 实验设备1)电子拉伸材料试验机一台,型号HY-10080 2)位移传感器一个; 3)刻线机一台; 4)游标卡尺一把; 5)铝合金和20#钢。 试样示意图 图1 圆柱形拉伸标准试样示意图 试样宏观断口示意图 图2 铝合金试样常温拉伸断裂图和断口图 (和试样中轴线大约成45°角的纤维状断口,几乎没有颈缩,可以知道为切应力达到极限,发生韧性断裂)

图3 正火态20#钢常温拉伸断裂图和断口图 (可以明显看出,试样在拉断之后在断口附近产生颈缩。断口处可以看出有三个区域:1.试样中心的纤维区,表面有较大的起伏,有较大的塑性变形;2.放射区,表面较光亮平坦,有较细的放射状条纹;3.剪切唇,轴线成45°角左右的倾斜断口) 原始数据记录 表1 正火态20#钢试样的初始直径测量数据(单位:mm ) 左 中 右 平均值 9.90 10.00 10.00 9.97 9.92 10.00 10.00 10.00 10.00 9.92 左 中 右 平均值 8.70 8.72 8.68 8.69 8.68 8.70 8.70 8.64 8.72 8.70 表2 时效铝合金试样的初始直径测量数据(单位:mm ) 两试样的初始标距为050 L mm 。 表3 铝合金拉断后标距测量数据记录(单位:mm ) AB BC AB+2BC 平均 12.32 23.16 58.64 58.79 24.02 17.46 58.94 测量20#钢拉断后的平均标距为u L =69.53 mm ,断口的直径平均值为u d =6.00 mm 。 测量得到铝合金拉断后的断面直径平均值为7.96mm 。

橡胶材料拉伸实验报告

北京理工大学 橡胶材料拉伸实验报告 一、实验目的 1.进一步熟悉电子万能实验机操作以及拉伸实验的基本操作过程; 2.通过橡胶材料的拉伸实验,理解高分子材料拉伸时的力学性能,观察橡胶拉伸时的 变形特点,测定橡胶材料的弹性模量E,强度极限σb,伸长率δ和截面收缩率Ψ 二、实验设备 1.WDW3050型50kN电子万能实验机; 2.游标卡尺; 3.橡胶材料试件一件。 三、实验原理 拉伸橡胶试件时,实验机可自动绘出橡胶的拉伸应力-应变曲线。图中曲线的最初阶段会呈曲线,这是由于试样头部在夹具内有滑动及实验机存在间隙等原因造成的。分析时应将图中的直线段延长与横坐标相交于O点,作为其坐标原点。橡胶的拉伸只有弹性阶段。拉伸曲线可以直观而又比较准确地反映出橡胶拉伸时的变形特征及受力和变形间的关系。 橡胶拉伸时,基本满足胡克定律,在应力-应变曲线上大致为一段直线,因此可以用这一段直线的斜率tanα来表示弹性模量E。为了更准确地计算出弹性模量的值,可以用Matlab对比例极限内的数据进行直线拟合,得到拟合直线的斜率,即为弹性模量的值。 四、实验过程 1.用游标卡尺测量橡胶试件实验段的宽度h和厚度b,并标注一个20 mm的标距,并 做记录; 2.打开实验机主机及计算机等实验设备,安装试件; 3.打开计算机上的实验软件,进入实验程序界面,选择联机,进行式样录入和参数设 置,输入相关数据并保存; 4.再认真检查试件安装等实验准备工作,并对实验程序界面上的负荷、轴向变形和位 移进行清零,确保没有失误;、 5.点击程序界面上的实验开始按钮,开始实验; 6.试件被拉断后,根据实验程序界面的提示,测量相关数据并输入,点击实验结束; 7.从实验程序的数据管理选项中,调出相关实验数据,以备之后处理数据使用。 五、实验注意事项 1.在实验开始前,必须检查横梁移动速度设定,严禁设定高速度进行实验。在实验进 行中禁止在▲、▼方向键之间直接切换,需要改变方向时,应先按停止键; 2.安装试件时,要注意不能把试件直接放在下侧夹口处,而是应该用手将试件提起,

材料在拉伸与压缩时的力学性能-3

§2-3 材料在拉伸与压缩时的力学性能 材料的力学性能:也称机械性能。通过试验揭示材料在受力过程中所表现出的与试件几何尺寸无关的材料本身特性。如变形特性,破坏特性等。研究材料的力学性能的目的是确定在变形和破坏情况下的一些重要性能指标,以作为选用材料,计算材料强度、刚度的依据。因此材料力学试验是材料力学课程重要的组成部分。 此处介绍用常温静载试验来测定材料的力学性能。 1. 试件和设备 标准试件:圆截面试件,如图2-14:标距l 与直径的比例分为,d d l 10=,; d l 5=板试件(矩形截面):标距l 与横截面面积的比例分为,A A l 3.11=,A l 65.5=; 试验设备主要是拉力机或全能机及相关的测量、记录仪器。 详细介绍见材料力学试验部分。国家标准《金属拉伸试验方法》(如GB228-87)详细规定了实验 方法和各项要求。 2. 低碳钢拉伸时的力学性能 低碳钢是指含碳量在0.3%以下的碳素钢, 如A 3钢、16Mn 钢。 1)拉伸图(P —ΔL ),如图2-15所示。 弹性阶段(oa ) 屈服(流动)阶段(bc ) 强化阶段(ce )由于P —ΔL 曲线与试样 的尺寸有关,为了消除试件尺寸的影响,可采用 应力应变曲线,即εσ?曲线来代替P —ΔL 曲 线。进而试件内部出现裂纹,名义应力下跌, 至f 点试件断裂。 σ对低碳钢来说,s σ,b σ是衡量材料强度的重要指标。 2)εσ?曲线图,如图2-16所示,其各特征点的含义为: oa 段:在拉伸(或压缩)的初始阶段应力σ与应变ε为直线关系直至a 点,此时a 点所对应的

应力值称为比例极限,用P σ表示。它是应力与应变成正比例的最大极限。当P σσ≤ 则有 εσE = (2-5) 即胡克定律,它表示应力与应变成正比,即有 αε σtan == E E 为弹性模量,单位与σ相同。 当应力超过比例极限增加到b 点时, 关系偏离直线,此时若将应力卸至 零,则应变随之消失(一旦应力超过b 点,卸载后,有一部分应变不能消除),此b 点的应力定义为弹性极限ε?σe σ。 e σ是材料只出现弹性变形的极限值。 bc 段:应力超过弹性极限后继续加载, 会出现一种现象,即应力增加很少或不增 加,应变会很快增加,这种现象叫屈服。开始发生屈服的点所对应的应力叫屈服极限s σ。又称屈服强度。在屈服阶段应力不变而应变不断增加,材料似乎失去了抵抗变形的能力,因此产生了显著的塑性变形(此时若卸载,应变不会完全消失,而存在残余变形)。所以s σ是衡量材料强度的重要指标。 表面磨光的低碳钢试样屈服时,表面将出现与轴线成45°倾角的条纹,这是由于材料内部晶格相对滑移形成的,称为滑移线,如图2-17所示。 ce 段:越过屈服阶段后,如要让试 件继续变形,必须继续加载,材料似乎 强化了,ce 段即强化阶段。应变强化阶 段的最高点(e 点) 所对应的应力称为强度极限b σ。 它表示材料所能承受的最大应力。过e 点后,即应力达到强度极限后,试件局部发生剧烈收缩的现象,称为颈缩,如图2-18所示。 3)延伸率和截面收缩率 为度量材料塑性变形的能力,定义 延伸率为

相关文档
最新文档