论信源编码与信道编码

论信源编码与信道编码
论信源编码与信道编码

论信源编码与信道编码

李希夷 201110404107

摘要:

如今社会已经步入信息时代,在各种信息技术中,信息的传输及通信起着支撑作用。而对于信息的传输,数字通信已经成为重要的手段。而在数字通信系统中,信源编码和信道编码在信息的传送过程中起到了至关重要的作用,这要求我们对信源编码和信道编码的了解和认识有更高的层次。

关键词:

信息传输数字通信信源编码信道编码

正文:

一.信源编码和信道编码的发展历程

信源编码:

最原始的信院编码就是莫尔斯电码,另外还有ASCII码和电报码都是信源编码。但现代通信应用中常见的信源编码方式有:Huffman编码、算术编码、L-Z 编码,这三种都是无损编码,另外还有一些有损的编码方式。信源编码的目标就是使信源减少冗余,更加有效、经济地传输,最常见的应用形式就是压缩。相对地,信道编码是为了对抗信道中的噪音和衰减,通过增加冗余,如校验码等,来提高抗干扰能力以及纠错能力。

信道编码:

1948年Shannon极限理论

→1950年Hamming码

→1955年Elias卷积码

→1960年 BCH码、RS码、PGZ译码算法

→1962年Gallager LDPC(Low Density Parity Check,低密度奇偶校验)码→1965年B-M译码算法

→1967年RRNS码、Viterbi算法

→1972年Chase氏译码算法

→1974年Bahl MAP算法

→1977年IMaiBCM分组编码调制

→1978年Wolf 格状分组码

→1986年Padovani恒包络相位/频率编码调制

→1987年Ungerboeck TCM格状编码调制、SiMonMTCM多重格状编码调制、WeiL.F.多维星座TCM

→1989年Hagenauer SOVA算法

→1990年Koch Max-Lg-MAP算法

→1993年Berrou Turbo码

→1994年Pyndiah 乘积码准最佳译码

→1995年 Robertson Log-MAP算法

→1996年 Hagenauer TurboBCH码

→1996MACKay-Neal重新发掘出LDPC码

→1997年 Nick Turbo Hamming码

→1998年Tarokh 空-时卷格状码、AlaMouti空-时分组码

→1999年删除型Turbo码

虽然经过这些创新努力,已很接近Shannon极限,例如1997年Nickle的Turbo Hamming码对高斯信道传输时已与Shannon极限仅有0.27dB相差,但人们依然不会满意,因为时延、装备复杂性与可行性都是实际应用的严峻要求,而如果不考虑时延因素及复杂性本来就没有意义,因为50多年前的Shannon理论本身就已预示以接近无限的时延总容易找到一些方法逼近Shannon极限。因此,信道编码和/或编码调制理论与技术在向Shannon极限逼近的创新过程中,其难点是要同时兼顾考虑好编码及交织等处理时延、比特误码率门限要求、系统带宽、码率、编码增益、有效吞吐量、信道特征、抗衰落色散及不同类别干扰能力以及装备复杂性等要求。从而,尽管人们普遍公认Turbo码确是快速逼近Shannon极限的一种有跃变性改进的码类,但其时延、复杂性依然为其最严峻的挑战因素,看来,沿AlaMouti的STB方式是一种看好的折衷方向。同样,实际性能可比Turbo码性能更优良的LDPC码,从1962年Gallager提出, 当时并未为人们充分理解与重视,至1996年为MACKay—Neal重新发现后掀起的另一股推进其研究、应用热潮, 此又为另一明显示例。LDPC码是一类可由非常稀疏的奇偶校验矩阵或二分图(Bi-PartiteGrapg)定义的线性分组前向纠错码,它具有更简单的结构描述与硬件复杂度,可实现完全并行操作,有利高速、大吞吐能力译码,且译码复杂度亦比Turbo码低,并具更优良的基底(Floor)残余误码性能,研究表明,最好的非正则(Irregular)LDPC码,其长度为106时可获得BER=10-6时与Shannon极限仅相差0.13dB;当码长为107、码率为1/2,与Shannon极限仅差0.04dB;与Turbo码结构不同,这是由另一种途径向“Shannon极限条件”的更有效与更逼真的模拟,从而取得比Turbo码更好的性能。因此,“学习、思考、创新、发展”这一永恒主题中持续“创新”最为关键,MIMO-STC及Turbo/LDPC码的发展历程亦充分证实了这一发展哲理。

二.信源编码和信道编码远离的简要介绍

信源编码:

一种以提高通信有效性为目的而对信源符号进行的变换;为了减少或消除信源剩余度而进行的信源符号变换。为了减少信源输出符号序列中的剩余度、提高符号的平均信息量,对信源输出的符号序列所施行的变换。具体说,就是针对信源输出符号序列的统计特性来寻找某种方法,把信源输出符号序列变换

为最短的码字序列,使后者的各码元所载荷的平均信息量最大,同时又能保证无失真地恢复原来的符号序列。

数字信号在传输中往往由于各种原因,使得在传送的数据流中产生误码,从而使接收端产生图象跳跃、不连续、出现马赛克等现象。所以通过信道编码这一环节,对数码流进行相应的处理,使系统具有一定的纠错能力和抗干扰能力,可极大地避免码流传送中误码的发生。误码的处理技术有纠错、交织、线性内插等。

提高数据传输效率,降低误码率是信道编码的任务。信道编码的本质是增加通信的可靠性。但信道编码会使有用的信息数据传输减少,信道编码的过程是在源数据码流中加插一些码元,从而达到在接收端进行判错和纠错的目的,这就是我们常常说的开销。这就好象我们运送一批玻璃杯一样,为了保证运送途中不出现打烂玻璃杯的情况,我们通常都用一些泡沫或海棉等物将玻璃杯包装起来,这种包装使玻璃杯所占的容积变大,原来一部车能装5000各玻璃杯的,包装后就只能装4000个了,显然包装的代价使运送玻璃杯的有效个数减少了。同样,在带宽固定的信道中,总的传送码率也是固定的,由于信道编码增加了数据量,其结果只能是以降低传送有用信息码率为代价了。将有用比特数除以总比特数就等于编码效率了,不同的编码方式,其编码效率有所不同。

基于层次树的集分割(SPIHT)信源编码方法是基于EZW而改进的算法,它是有效利用了图像小波分解后的多分辨率特性,根据重要性生成比特流的一个渐

进式编码。这种编码方法,编码器能够在任意位置终止编码,因此能够精确实现一定目标速率或目标失真度。同样,对于给定的比特流,解码器可以在任意位置停止解码,而仍然能够恢复由截断的比特流编码的图像。而实现这一优越性能并不需要事先的训练和预存表或码本,也不需要任何关于图像源的先验知识。

数字电视中常用的纠错编码,通常采用两次附加纠错码的前向纠错(FEC)编码。RS编码属于第一个FEC,188字节后附加16字节RS码,构成(204,188)RS码,这也可以称为外编码。第二个附加纠错码的FEC一般采用卷积编码,又称为内编码。外编码和内编码结合一起,称之为级联编码。级联编码后得到的数据流再按规定的调制方式对载频进行调制。

前向纠错码(FEC)的码字是具有一定纠错能力的码型,它在接收端解码后,不仅可以发现错误,而且能够判断错误码元所在的位置,并自动纠错。这种纠错码信息不需要储存,不需要反馈,实时性好。所以在广播系统(单向传输系统)都采用这种信道编码方式。以下是纠错码的各种类型:

既然信源编码的基本目的是提高码字序列中码元的平均信息量,那么,一切旨在减少剩余度而对信源输出符号序列所施行的变换或处理,都可以在这种意义下归入信源编码的范畴,例如过滤、预测、域变换和数据压缩等。当然,这些都是广义的信源编码。

一般来说,减少信源输出符号序列中的剩余度、提高符号平均信息量的基本途径有两个:①使序列中的各个符号尽可能地互相独立;②使序列中各个符号的出现概率尽可能地相等。前者称为解除相关性,后者称为概率均匀化。

第三代移动通信中的信源编码包括语音压缩编码、各类图像压缩编码及多媒体数据压缩编码。

信道编码:

数字信号在传输中往往由于各种原因,使得在传送的数据流中产生误码,从而使接收端产生图象跳跃、不连续、出现马赛克等现象。所以通过信道编码这一环节,对数码流进行相应的处理,使系统具有一定的纠错能力和抗干扰能力,可极大地避免码流传送中误码的发生。误码的处理技术有纠错、交织、线性内插等。

提高数据传输效率,降低误码率是信道编码的任务。信道编码的本质是增加通信的可靠性。但信道编码会使有用的信息数据传输减少,信道编码的过程是在源数据码流中加插一些码元,从而达到在接收端进行判错和纠错的目的,这就是我们常常说的开销。

码率兼容截短卷积(RCPC)信道编码,就是一类采用周期性删除比特的方法来获得高码率的卷积码,它具有以下几个特点:

(1)截短卷积码也可以用生成矩阵表示,它是一种特殊的卷积码;

(2)截短卷积码的限制长度与原码相同,具有与原码同等级别的纠错能力;(3)截短卷积码具有原码的隐含结构,译码复杂度降低;

(4)改变比特删除模式,可以实现变码率的编码和译码。

三.信源编码和信道编码的区别

信源编码信源编码的作用之一是设法减少码元数目和降低码元速率,即通常所说的数据压缩。码元速率将直接影响传输所占的带宽,而传输带宽又直接反映了通信的有效性。作用之二是,当信息源给出的是模拟语音信号时,信源编码器将其转换成数字信号,以实现模拟信号的数字化传输。模拟信号数字化传输的两种方式:脉冲编码调制(PCM)和增量调制(ΔM)。信源译码是信源编码的逆过程。1.脉冲编码调制(PCM)简称脉码调制:一种用一组二进制数字代码来代替连续信号的抽样值,从而实现通信的方式。由于这种通信方式抗干扰能力强,它在光纤通信、数字微波通信、卫星通信中均获得了极为广泛的应用。增量调制(ΔM):将差值编码传输,同样可传输模拟信号所含的信息。此差值又称“增量”,其值可正可负。这种用差值编码进行通信的方式,就称为“增量调制”,缩写为DM或ΔM,主要用于军方通信中。信源编码为了减少信源输出符号序列中的剩余度、提高符号的平均信息量,对信源输出的符号序列所施行的变换。具体说,就是针对信源输出符号序列的统计特性来寻找某种方法,把信源输出符号序列变换为最短的码字序列,使后者的各码元所载荷的平均信息量最大,同时又能保证无失真地恢复原来的符号序列.信道编码的目的:信道编码是为了保证信息传输的可靠性、提高传输质量而设计的一种编码。它是在信息码中增加一定数量的多余码元,使码字具有一定的抗干扰能力。信道编码的实质:信道编码的实质就是在信息码中增加一定数量的多余码元(称为监督码元),使它们满足一定的约束关系,这样由信息码元和监督码元共同组成一个由信道传输的码字。信源编码很好理解,比如你要发送一个图形,必须把这个图像转成0101的编码,这就是信源编码。

信道编码数字信号在信道传输时,由于噪声、衰落以及人为干扰等,将会引起差错。为了减少差错,信道编码器对传输的信息码元按一定的规则加入保护成分(监督元),组成所谓“抗干扰编码”。接收端的信道译码器按一定规则进行解码,从解码过程中发现错误或纠正错误,从而提高通信系统抗干扰能力,实现可靠通信。信道编码是针对无线信道的干扰太多,把你要传送的数据加上些信息,来纠正信道的干扰。信道编码数字信号在信道传输时,由于噪声、衰落以及人为干扰等,将会引起差错。为了减少差错,信道编码器对传输的信息码元按一定的规则加入保护成分(监督元),组成所谓“抗干扰编码”。接收端的信道译码器按一定规则进行解码,从解码过程中发现错误或纠正错误,从而提高通信系统抗干扰能力,实现可靠通信。

信源编码信号:例如语音信号(频率范围300-3400Hz)、图象信号(频率范围

0-6MHz)……基带信号(基带:信号的频率从零频附近开始)。在发送端把连续消息变换成原始电信号,这种变换由信源来完成。

信道编码信号:例如二进制信号、2PSK信号……已调信号(也叫带通信号、频带信号)。这种信号有两个基本特征:一是携带信息;二是适应在信道中传输,把基带信号变换成适合在信道中传输的信号完成这样的变换是调制器。

信源编码是对输入信息进行编码,优化信息和压缩信息并且打成符合标准的数据包。信道编码是在数据中加入验证码,并且把加入验证码的数据进行调制。两者的作用完全不一样的。信源编码是指信号来源的编码,主要是指从那

个接口进来的。信道编码是说的信号通道的编码,一般是指机内的电路。总的来说吧:信源编码是对视频, 音频, 数据进行的编码,即对信息进行编码以便处理,而信道编码是指在信息传输的过程中对信息进行的处理。

四.信源编码和信道编码在现代社会的应用

1.在现代无线通信中的应用:

通信的任务是由一整套技术设备和传输媒介所构成的总体——通信系统来完成的。电子通信根据信道上传输信号的种类可分为模拟通信和数字通信。最简单的数字通信系统模型由信源、信道和信宿三个基本部分组成。实际的数字通信系统模型要比简单的数字通信系统模型复杂得多。数字通信系统设备多种多样,综合各种数字通信系统,其构成如图所示:

信源编码是以提高通信有效性为目的的编码。通常通过压缩信源的冗余度来实现。采用的一般方法是压缩每个信源符号的平均比特数或信源的码率。

信道,通俗地说是指以传输媒质为基础的信号通路。具体地说,信道是指由有线或无线电线路提供的信号通路。信道的作用是传输信号,它提供一段频带让信号通过,同时又给信号加以限制和损害。

信道编码是以提高信息传输的可靠性为目的的编码。通常通过增加信源的冗余度来实现。采用的一般方法是增大码率或带宽。与信源编码正好相反。在计算机科学领域,信道编码(channel code)被广泛用作表示编码错误监测和纠正的术语,有时候也可以在通信和存储领域用作表示数字调制方式。信道编码用来在数据传输的时候保护数据,还可以在出现错误的时候来恢复数据。2.在超宽带信道中的应用

超宽带(Ultra Wideband,以下简称UWB) [1][2]系统具有高传输速率、低功耗、低成本等独特优点,是下一代短距离无线通信系统的有力竞争者。它是指具有很高带宽比射频(带宽与中心频率之比)的无线电技术。近年来,超宽带无线通信在图像和视频传输中获得了越来越广泛的应用,它具有极高的传输速率以及很宽的传输频带,可以提供高达1Gbit/s的数据传输速率,可用在数字家庭网络或办公网络中,实现近距离、高速率数据传输。例如,利用UWB技术

可以在家用电器设备之间提供高速的音频、视频业务传输,在数字办公环境中,应用UWB技术可以减少线缆布放的麻烦,提供无线高速互联。

联合信源信道编码(Joint Source Channel Coding,以下简称JSCC)[3][4]近几年来日益受到通信界的广泛重视,主要原因是多媒体无线通信变得更加重要。根据Shannon信息论原理,通信系统中信源编码和信道编码是分离的[5],然而,该定理假设信源编码是最优的,可以去掉所有冗余,并且假设当比特率低于信道容量时可纠正所有误码。在不限制码长的复杂性和时延的前提下,可以得到这样的系统。而在实际系统中又必须限制码长的复杂性和时延,这必然会导致性能下降,这和香农编码定理的假设是相矛盾的。因此,在许多情况下,采用独立编码技术并不能获得满意的效果,例如有严重噪声的衰落信道和(移动通信信道),采用独立编码技术不能满足要求。因此需要将信源编码和信道编码联合考虑,在实际的信道条件中获得比信源和信道单独进行编码更好的效果。其中不等差错保护是联合信源信道编码的一种, 是相对于同等差错保护而言的。在网络资源有限的情况下,同等差错保护方案使得重要信息得不到足够的保护而使解码质量严重下降。而不等差错保护根据码流的不同部分对图像重建质量的重要性不同, 而采用不同的信道保护机制, 是信源信道联合编码的一个重要应用。

不等差错保护(Unequal Error Protection,以下简称UEP)的信源编码主要采用嵌入式信源编码,如

SPIHT(Set Partitioning In Hierarchical Trees) [6],EZW,JPEG2000等,信源输出码流具有渐进特性,信道编码采用RCPC[7],RCPT等码率可变的信道编码。文章[8]中研究了在AWGN信道下的不等差错保护的性能;文章[9]中研究了有反馈的移动信道下的多分辨率联合信源信道编码;文章[10]研究了无线信道下的图像传输,信源编码采用SPIHT,信道编码采用多码率Turbo coder的不等差错保护方案;文章[11]中研究了DS-CDMA多径衰落信道下信源编码为分层视频图像编码,信道编码采用RCPC,解决了在信源编码,信道编码以及各个层之间的码率最优分配;文章[12]研究了3G网络下MPEG-4视频流的传输,信道编码采用 Turbo编码,提出了用TCP传输非常重要的MPEG-4流,而用UDP传输MPEG-4 audio/video ES (Elementary Streams),并且对UDP传输的码流进行UEP的方案;文章[13]研究在无线频率选择性衰落信道中将MIMO-OFDM和adaptive wavelet pretreatment(自适应小波预处理)结合在一起的联合信源信道编码图像传输。据我们的了解, 现在并无文章研究超宽带无线信道下不等差错保护方案,本文将不等差错保护联合信源信道编码应用于超宽带无线通信中, 信源部分采用基于小波SPIHT 的编码方法,而信道部分采用RCPC编码

( Rate Compatible Punctured Convolutional codes) 对SPIHT输出码流按重要程度进行不等错误保护,并基于DS-UWB[14]方案提出双重不等差错保护方

案, 研究了不等差错保护给图像在超宽带无线通信中的图像传输所带来性能增益。

采用标准LENA256×256图像进行仿真实验, 信源编码采用SPIHT算法,SPIHT 编码速率为0.5bpp, 信道编码采用码率自适应截短卷积码RCPC, 对实验

图像进行同等差错保护信道编码( EEP) 和不等差错保护信道编码(UEP), 对于EEP编码采用1/ 2 码率;对于UEP 编码,其重要信息(包括头部语法及图像重要数据) 采用1/ 3码率,对图像次重要数据采用1/ 2码率进行编码,对图像非重要数据不进行编码。信道编码输出码流经过一个(Ns,1)重复编码器,对重要信息Ns取30,次重要数据Ns取20,非重要数据Ns取为10,再用一个周期为Np=Ns 的伪随机DS码序列对重复编码器输出序列进行编码,最后对编码输出进行PAM 调制和脉冲成形从而形成DS-UWB发送信号波形,其中脉冲参数设置为平均发射功率为-30,抽样频率为50e9,平均脉冲重复时间为2e-9,冲激响应持续时间为0.5e-9,脉冲波形形成因子为0.25e-9。DS-UWB信号经过IEEE802.15.3a CM1信道模型,接收端采用Rake接收机对接收信号进行解调,解调后的码流经过RCPC 信道译码和SPIHT信源译码恢复出原始图像。

CMI信道模型下Double-UEP与UEP,EEP的性能比较

图中给出了IEEE802.15.3a CM1信道模型下双重不等差错保护(Double-UEP)与传统不等差错保护(UEP)与同等差错保护(EEP)的性能比较,其中横轴为超宽带信道中的信噪比Eb/N0,纵轴为重建图像的峰值信噪比

PSNR(Peek Signal Noise Ratio)。

由图可见,在UWB信道中,不等差错保护的性能普遍好于同等差错保护的性能,尤其是在低信噪比的时候,采用不等差错保护能够获得更大的性能增益。在高信噪比时,由于此时信道质量较好,误码率较低,图像中的重要码流基本不会产生误码,此时不等差错保护和同等差错保护性能趋于一致;而在低信噪比时,由于不等差错保护方案对图像的重要信息加入了更多的冗余,从而在不增加传输速率的情况下使图像得以更可靠的传输,提升重建图像的质量。

五.信源编码与信道编码的发展前景

信息论理论的建立,提出了信息、信息熵的概念,接着人们提出了编码定理。编码方法有较大发展,各种界限也不断有人提出,使多用户信息论的理论日趋完整,前向纠错码(FEC)的码字也在不断完善。但现有信息理论中信息对

象的层次区分对产生和构成信息存在的基本要素、对象及关系区分不清,适用于复杂信息系统的理论比较少,缺乏核心的“实有信息”概念,不能很好地解释信息的创生和语义歧义问题。只有无记忆单用户信道和多用户信道中的特殊情况的编码定理已有严格的证明,其他信道也有一些结果,但尚不完善。但近几年来,第三代移动通信系统(3G)的热衷探索,促进了各种数字信号处理技术发展,而且Turbo码与其他技术的结合也不断完善信道编码方案。

移动通信的发展日新月异,从1978年第一代模拟蜂窝通信系统诞生至今,不过20多年的时间,就已经过三代的演变,成为拥有10亿多用户的全球电信业最活跃、最具发展潜力的业务。尤其是近几年来,随着第三代移动通信系统(3G)的渐行渐近,以及各国政府、运营商和制造商等各方面为之而投入的大量人力物力,移动通信又一次地在电信业乃至全社会掀起了滚滚热潮。虽然目前由于全球电信业的低迷以及3G系统自身存在的一些问题尚未完全解决等因素,3G业务的全面推行并不象计划中的顺利,但新一代移动通信网的到来必是大势所趋。因此,人们对新的移动通信技术的研究的热情始终未减。

移动通信的强大魅力之所在就是它能为人们提供了固话所不及的灵活、机动、高效的通信方式,非常适合信息社会发展的需要。但同时,这也使移动通信系统的研究、开发和实现比有线通信系统更复杂、更困难。实际上,移动无线信道是通信中最恶劣、最难预测的通信信道之一。由于无线电波传输不仅会随着传播距离的增加而造成能量损耗,并且会因为多径效应、多普勒频移和阴影效应等的影响而使信号快速衰落,码间干扰和信号失真严重,从而极大地影响了通信质量。为了解决这些问题,人们不断地研究和寻找多种先进的通信技术以提高移动通信的性能。特别是数字移动通信系统出现后,促进了各种数字信号处理技术如多址技术、调制技术、纠错编码、分集技术、智能天线、软件无线电等的发展。

结论:

从文中我们可以清楚的认识到信源编码和信道编码的发展布满艰辛,今天的成就来之不易。随着今天移动通信技术的不断发展和创新,信源编码与信道编码的应用也越来越广泛,其逐步的应用于各个领域,在通信系统中扮演着非常重要的角色,起到了至关重要的作用。但是,现有信息理论也存在一定的缺陷,具体表现在以下几个方面:

1.现有信息理论体系中缺乏核心的“实有信息”概念。

2.适用于复杂信息系统的理论比较少。目前的狭义与广义信息论大多是起源和立足于简单系统的信息理论,即用简单通讯信息系统的方法来类比复杂系统的信息现象,将复杂性当成了简单性来处理。而涉及生命现象和人的认识论层次的信息是很复杂的对象,其中信宿主体内信息的语义歧义和信息创生问题是难点,用现有信息理论难以解释。

3.对产生和构成信息存在的基本要素、对象及关系区分不清。如将对象的直接存在(对象的物质、能量、相互作用、功能等存在)当成信息存在;将信

息的载体存在当成信息存在;将信息与载体的统一体当成信息存在;把信宿获得的“实得信息”当成唯一的信息存在,这是主观信息论。或者把信源和信道信息当成唯一的信息存在,称之为客观信息论。这二种极端的信息理论正是忽略了信息在关系中产生、在关系中存在的复杂本质。忽略了信息存在至少涉及三个以上对象及复杂关系。

4.现有信息理论不能很好地解释信息的创生和语义歧义问题。

5.现有信息理论对信宿实得信息的理解过于简单,没有将直接实得信息与间接实得信息区别开来。

6.信息对象的层次区分没有得到重视。不少研究者将本体论层次的信息与认识论层次的信息混为一谈,将普适性信息范畴与具体科学,特别是技术层次(如通信、控制、计算等)的信息概念混为一谈。抓住信息的某一层次或某一方面当成信息对象的总体。

因此,在科学技术飞速发展的今天,我们应该加强对信源编码与信道编码的了解和认识,这能让在以后的生活和学习过程中不断完善和改进现有信息论存在的缺陷,更好的应用和了解我们的专业知识,更好更快的做好自己的工作,让自己能从各方面得到满意的结果。

参考资料:

[1] 通信信息系统的构成及发展. 江沩. 现代通信,2000年第4期,33-34.

[2] 通信原理. 樊昌信等. 国防工业出版社,2003.

[3] 信源编码与信道编码. 池秀清. 科技情报开发与经济. 2001年第11卷第6期,71-72.

[4] MATLAB应用于数字通信系统调制解调技术的仿真设计研究. 张懿. 武汉理工大学.

[1] 信息论基础. (美) Thomas M.Cover Joy A.Thomas 著阮吉寿张华译.

信源信道编码

青岛农业大学 本科生课程论文 论文题目联合信源信道编码的原理及其在通信中的应用学生专业班级信息与计算科学09级1班 学生姓名(学号)董晨晨(20093991) 指导教师吴慧 完成时间 2012年6月27日 2012 年 6 月 27 日

课程论文任务书 学生姓名董晨晨指导教师吴慧 论文题目联合信源信道编码的原理及其在通信中的应用 论文内容(需明确列出研究的问题):由于通信的根本目的是将消息有效而可靠地从信源传到信宿,信源编码的目的在于提高系统的有效性,信道编码理论核心是提高系统的可靠性,因此在编码时应在一定的传信率条件下,通过有规律的增加冗余度保证信息以尽可能小的差错概率从信源传到信宿,并且充分利用系统资源。基于这种情况下,提出了信源信道联合编码,可以跟随信道的变化充分利用通信系统的资源,达到最好的端对端的通信效果。本文主要研究了以下几个方面的问题:(1)信源信道联合编码的原理;(2)信源信道联合编码的研究方向;(3)信源信道联合编码的关键技术;(4)联合编码在通信系统方面的应用。 资料、数据、技术水平等方面的要求:通过书籍报刊杂志、网络等各种渠道广泛搜集资料,充分利用现有文献,借鉴他人的学术成果,做到了资料翔实,数据准确,引用规范,论证充分。论文符合一般学术论文的写作规范,具备学术性、科学性和一定的创造性。文字流畅、语言准确、要点清楚,有独立的观点和见解。内容理论联系实际,计算数据准确,涉及到他人的观点、统计数据或计算公式标明出处,结论写的概括简短。 发出任务书日期2012.6.20完成论文日期2012.6.27 教研室意见(签字) 院长意见(签字)

课程论文成绩评定表

数字通信中的信源编码和信道编码.(优选)

数字通信中的信源编码和信道编码 摘要:如今社会已经步入信息时代,在各种信息技术中,信息的传输及通信起着支撑作用。而对于信息的传输,数字通信已经成为重要的手段。本论文根据当今现代通信技术的发展,对信源编码和信道编码进行了概述性的介绍. 关键词:数字通信;通信系统;信源编码;信道编码 Abstract:Now it is an information society. In the all of information technologies, transmission and communication of information take an important effect. For the transmission of information, Digital communication has been an important means. In this thesis we will present an overview of source coding and channel coding depending on the development of today’s communica tion technologies. Key Words:digital communication; communication system; source coding; channel coding 1.前言 通常所谓的“编码”包括信源编码和信道编码。编码是数字通信的必要手段。使用数字信号进行传输有许多优点, 如不易受噪声干扰, 容易进行各种复杂处理, 便于存贮, 易集成化等。编码的目的就是为了优化通信系统。一般通信系统的性能指标主要是有效性和可靠性。所谓优化,就是使这些指标达到最佳。除了经济性外,这些指标正是信息论研究的对象。按照不同的编码目的,编码可主要分为信源编码和信道编码。在本文中对此做一个简单的介绍。 2.数字通信系统 通信的任务是由一整套技术设备和传输媒介所构成的总体——通信系统来完成的。电子通信根据信道上传输信号的种类可分为模拟通信和数字通信。最简单的数字通信系统模型由信源、信道和信宿三个基本部分组成。实际的数字通信系统模型要比简单的数字通信系统模型复杂得多。数字通信系统设备多种多样,综合各种数字通信系统,其构成如图2-l所示。 图2-1 数字通信系统模型 信源编码是以提高通信有效性为目的的编码。通常通过压缩信源的冗余度来实现。采用的一般方法是压缩每个信源符号的平均比特数或信源的码率。 信道,通俗地说是指以传输媒质为基础的信号通路。具体地说,信道是指由有线或无线电线路提供的信号通路。信道的作用是传输信号,它提供一段频带让信号通过,同时又给信号加以限制和损害。 信道编码是以提高信息传输的可靠性为目的的编码。通常通过增加信源的冗余度来实现。采用的一般方法是增大码率或带宽。与信源编码正好相反。在计算机科学领域,信道编

基于Huffman信源编码和LDPC信道编码的联合译码算法

Joint Source-Channel Decoding of Huffman Codes with LDPC Codes Zhonghui Mei and Lenan Wu Abstract In this paper, we present a joint source-channel decoding algorithm (JSCD) for LDPC codes by exploiting the redundancy of the Huffman coded sources.When the number of Huffman codes increases, just a moderate complexity is added for our algorithm by increasing the size of the lookup table, which is used to estimate the information bit probability based on the source redundancy. Key words - LDPC, Variable length codes (VLC), Huffman code, sum-product algorithm (SPA), joint source-channel decoding (JSCD) I. INTRODUCTION Recently in [1]-[4] several joint source-channel decoding algorithms for variable length codes (VLC) have been proposed. All of these algorithms consider the overall sequence of variable length codeword to exploit the source redundancy. The drawback is that the symbols have to be synchronized in order to limit error propagating. Furthermore, when the number of VLC increases, the decoding complexity of these algorithms explodes. In this paper we present a JSCD algorithm for LDPC codes in combination with Huffman coded sources. The error correcting property of our JSCD algorithm mainly depends on channel codes rather than source redundancy. In order to exploit the source redundancy, we estimate the information bit probability with just some corresponding bits before it, which simplifies the decoding algorithm significantly. The rest of the paper is organized as follows. Section II presents the Huffman coded source model. The JSCD algorithm for LDPC codes is described in section III. Section IV provides the simulation results. Section V concludes this paper. II. HUFFNAN CODED SOURCE MODEL Let denotes a sequence of information bits coded by VLC (e.g. a Huffman code). In [1], [3] and [4], they consider the overall sequence and express the source redundancy with . In order to compute , [3] and [4] design a trellis to illustrate statistics of the source sequence. When the number of the trellis states increases, the computational complexity of will rise explosively. ],......,,,[321n s s s s S =),......,,,()(21n s s s s p S p =)(S p )(S p In this paper, we make use of the source redundancy with , as is illustrated in Fig.1 and table 1. k is chose to be larger than the maximum length of Huffman codes. When the number of VLC increases, we only need to expand the lookup table. In addition, for we just estimate one bit probability with a small part bit of the information sequence every time, the error propagation phenomenon has been avoided successfully. ]),......,,[|(11?+??i k i k i i s s s s p

信源编码的基本原理及其应用讲课稿

信源编码的基本原理 及其应用

信源编码的基本原理及其应用 课程名称通信原理Ⅱ 专业通信工程 班级 ******* 学号 ****** 学生姓名 ***** 论文成绩 指导教师 ***** ******

信源编码的基本原理及其应用 信息论的理论定义是由当代伟大的数学家美国贝尔实验室杰出的科学家香农在他1948 年的著名论文《通信的数学理论》所定义的,它为信息论奠定了理论基础。后来其他科学家,如哈特莱、维纳、朗格等人又对信息理论作出了更加深入的探讨。使得信息论到现在形成了一套比较完整的理论体系。 信息通过信道传输到信宿的过程即为通信,通信中的基本问题是如何快速、准确地传送信息。要做到既不失真又快速地通信,需要解决两个问题:一是不失真或允许一定的失真条件下,如何提高信息传输速度(如何用尽可能少的符号来传送信源信息);二是在信道受到干扰的情况下,如何增加信号的抗干扰能力,同时又使得信息传输率最大(如何尽可能地提高信息传输的可靠性)。这样就对信源的编码有了要求,如何通过对信源的编码来实现呢? 通常对于一个数字通信系统而言,信源编码位于从信源到信宿的整个传输链路中的第一个环节,其基本目地就是压缩信源产生的冗余信息,降低传递这些不必要的信息的开销,从而提高整个传输链路的有效性。在这个过程中,对冗余信息的界定和处理是信源编码的核心问题,那么首先需要对这些冗余信息的来源进行分析,接下来才能够根据这些冗余信息的不同特点设计和采取相应的压缩处理技术进行高效的信源编码。简言之,信息的冗余来自两个主要的方面:首先是信源的相关性和记忆性。这类降低信源相关性和记忆性编码的典型例子有预测编码、变换编码等;其次是信宿对信源失真具有一定的容忍程度。这类编码的直接应用有很大一部分是在对模拟信源的量化上,或连续信源的限失真编码。可以把信源编码看成是在有效性和传递性的信息完整性(质量)之间的一种折中有段。 信源编码的基本原理: 信息论的创始人香农将信源输出的平均信息量定义为单消息(符号)离散信源的信息熵: 香农称信源输出的一个符号所含的平均信息量为 为信源的信息熵。 通信原理中对信源研究的内容包括3个方面: ∑=-=L i i i x p x p x H 12) (log )()() (x H

信息论无失真信源编码

信息,例如霍夫曼编码。它相对简单,是 本章的重点。 信息有一定的差别,例如JPEG 、MPEG ■无失真信源编码:解码之后可以得到原始 jlll ■有失真信源编码:解码之后的信息与原始 jlll

■其中X 称为码符号集,X 中的元素“称为码元或者 码符 号。输岀符号叱?称为码字,植字的集合C 称 为代码组或者码。码字比?的长度厶称为码字长度, 简称码长。 ■要实现无失真编码,编码器的映射必须是一一对 应、可 逆的。 码的分类 5.1编码器 编码器 C=(W1,W2,…,W 几 ■信源编码器表示为: X=(QK2,…对 ■例如: S=(ACD) r A B C D C=(OOJOJl)r 00,01,10,11 r X=(o ,l) S=(A ,CQ) AB C D C=(0,001,lip * 0,01,001,111 X=(0J)

■根据码长 □固定长度码(定长码):所有码字的长度相同。 □可变长度码(变长码):码字长短不一。 ■码字是否相同 □非奇异码:所有码字都不相同。 □奇异码:存在相同的码字。

5.2分组码 ■象稱蛊轟凋11映射 ■通常在接收端收到的码字之间并没有明显的间隔, 表现为皿叫…巴的形式,把这种形式称为g阶扩展码。例如前面的两个例子,ACD编码成另 001011/0001111的形式,均为3阶扩展码。 ■码字之间缺少间隔,给译码造成了一定的困难□定长码:不存在困难,001011必定译码成为ACD □变长码:存在困难,0001111可以译码成为ACD(0 001 111),也可以译码成为AABD(0 0 01 lll)o

以香农编码为信源编码、(7,4)循环码为信道编码的2FSK信号的调制解调

目录 1 课程设计目的 (1) 2 课程设计正文 (1) 2.1 调制原理 (1) 2.2 解调原理 (3) 2.3 程序分析 (3) 3 课程设计总结 (9) 4 参考文献 (9)

1 课程设计目的 通过我们对这次CDIO 二级项目的学习和理解,综合运用课本中所学到的理论知识完成一个以香农编码为信源编码、(7,4)循环码为信道编码的2FSK 信号调制解调的课程设计。以及锻炼我们查阅资料、方案比较、团结合作的能力。学会了运用MA TLAB 编程来实现2FSK 调制解调过程,并且输出其调制及解调过程中的波形,并且讨论了其调制和解调效果,增强了我们的动手能力,为以后学习和工作打下了基础。 2 课程设计正文 本次课程设计我们所做的课题是一个以香农编码为信源编码、(7,4)循环码为信道编码的2FSK 信号调制解调的CDIO 项目,这就要求我们需要完成信源编码、信道编码、信号的调制解调以及误码率分析等问题。 图1 数字通信系统模型 数字信号的传输方式分为基带传输和带通传输,在实际应用中,大多数信道具有带通特性而不能直接传输基带信号。为了使数字信号在带通信道中传输,必须使用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程称为数字调制。 2.1 调制原理 用基带信号)(t f 对高频载波的瞬时频率进行控制的调制方式叫做调频,在数字调制系统中则称为频移键控(FSK)。频移键控在数字通信中是使用较早的一种调制方式,这种方式实现起来比较容易,抗干扰和抗衰落的性能也较强。其缺点是占用频带较宽,频带利用串不够高,因此,额移键控主要应用于低、中速数据的传输,以及衰落信道与频带较宽

信源编码(数据压缩)课程课后题与答案(第二章)

信源编码 Assignment of CH2 1、(a)画出一般通信系统结构的组成框图,并详细说明各部分的作用或功能; 信源信源编码信道编码调制 噪声信道传输 , 信宿信源解码信道解码解调 图1、一般数字通信系统框图 各部分功能: 1、信源和信宿:信源的作用是把消息转换成原始的电信号;信宿的作用是 把复原的电信号转换成相应的消息。 . 2、信源编码和信源解码:一是进行模/数转换,二是进行数据压缩,即设法降低信号的数码率;信源解码是信源编码的逆过程。 3、信道编码和信道解码:用于提高信道可靠性、减小噪声对信号传输的影响;信道解码是信道编码的反变换。 4、调制和解调:将信息调制为携带信息、适应在信道中传输的信号。数字 " 解调是数字调制的逆变换。 5、信道:通信的通道,是信号传输的媒介。 (b)画出一般接收机和发射机的组成框图,并分别说明信源编解码器和信道编 解码器的作用; … 高频振荡器高频放大调制高频功放天线

" 音频功放 信 号 图2、一般发射机框图(无线广播调幅发射机为例)

天线 信号放大器混频器解调器音频放大器 信 号 本地振荡器 图3、一般接收机框图(无线广播调幅发射机为例) 信源编解码器作用:它通过对信源的压缩、扰乱、加密等一系列处理,力求 用最少的数码最安全地传输最大的信息量。信源编解码主要解决传输的有效性问题。 信道编解码器作用:使数字信息在传输过程中不出错或少出错,而且做到自 动检错和尽量纠错。信道编解码主要解决传输的可靠性问题。 (c)信源编码器和解码器一般由几部分组成,画出其组成图并给以解释。 信源编码器 时频分析量化熵编码 信道传输 时频分析反量化熵解码 信源解码器 图 4、信源编解码器框图 时频分析部分:信源编码器对信源传送来的信号进行一定方法的时域频域分析,建立一个能够表达信号规律性的数学模型,从而得知信号中的相关性和多余度,分析出信号数据中可以剔除或减少的部分(比如人感知不到的高频率音频信号或者看不见的色彩信号等等),以决定对后续数据的比特分配、编码速率等处理问题。 量化部分:根据时频分析的结果,为了更加简洁地表达利用该模型的参数, 减少精度,采取相应量化方法对信号进行量化,减小信号的多余度和不相关性,

信源编码与信道编码解析

信源编码与信道编码解析 摘要:衡量一个通信系统性能优劣的基本因素是有效性和可靠性,有效性是指信道传输信息的速度快慢,可靠性是指信道传输信息的准确程度。在数字通信系统中,信源编码是为了提高有效性,信道编码是为了提高可靠性,而在一个通信系统中,有效性和可靠性是互相矛盾的,也是可以互换的。我们可以用降低有效性的办法提高可靠性,也可以用用降低可靠性的办法提高有效性。本文对信源编码和信道编码的概念,作用,编码方式和类型进行了解析,以便于更好的理解数字通信系统的各个环节。 关键字:信源编码信道编码 Abstract: the measure of a communication system the basic factor is quality performance efficiency and reliability, effectiveness refers to channel to transfer information machine speed, reliability is to point to the accuracy of the information transmission channel. In digital communication system, the source coding is in order to improve the effectiveness, channel coding is in order to improve the reliability, and in a communication system, effectiveness and reliability is contradictory, is also can be interchanged. We can use to reduce the availability of improving the reliability, also can use to improve the effectiveness of reduces reliability. In this paper, the source coding and channel coding concept, function, coding mode and the types of analysis, in order to better understand all aspects of digital communication systems. Key words: the source coding channel coding 中图分类号:TN911.21 文献标识码:A 文章编号: 1引言 数字通信系统: 信源是把消息转化成电信号的设备,例如话筒、键盘、磁带等。 信源编码的基本部分是压缩编码。它用于减小数字信号的冗余度,提高数字信号的有效性,如果是模拟信源,则它还包括数模转换功能,在某些系统中,信源编码还包括加密功能。

信源编码和信源解码

信源编码和信源解码 字、符号、图形、图像、音频、视频、动画等各种数据本身的编码通常称为信源编码,信源编码标准是信息领域的基础性标准。无论是数字电视、激光视盘机,还是多媒体通信和各种视听消费电子产品,都需要音视频信源编码这个基础性标准。 大家用电脑打字一定很熟悉,当你用WORD编辑软件把文章(DOC文件)写完,存好盘后,再用PCTOOLS工具软件把你的DOC文件打开,你一定能看到你想象不到的东西,内容全是一些16进制的数字,这些数字叫代码,它与文章中的字符一一对应。现在我们换一种方法,用小画板软件来写同样内容的文章。你又会发现,用小画板软件写出来的BMP文件,占的内存(文件容量)是DOC文件的好几十倍,你知道这是为什么?原来WORD编辑软件使用的是字库和代码技术,而小画板软件使用的是点阵技术,即文字是由一些与坐标位置决定的点来组成,没有使用字库,因此,两者在工作效率上相差几十倍。[信源]->[信源编码]->[信道编码]->[信道传输+噪声]->[信道解码]->[信源解码]->[信宿] 目前模拟信号电视机图像信号处理技术就很类似小画板软件使用的点阵技术,而全数字电视机的图像信号处理技术就很类似WORD编辑软件使用的字库和代码技术。实际上这种代码传输技术在图文电视中很早就已用过,在图文电视机中一般都安装有一个带有图文字库的译码器,对方发送图文信号的时候只需发送图文代码信息,这样可以大大地提高数据传输效率。 对于电视机,显示内容是活动图像信息,它哪来的“字库”或“图库”呢?这个就是电视图像特有的“相关性”技术问题。原来在电视图像信号中,90%以上的图像信息是互相相关的,我们在模拟电视机中使用的Y/C(亮度信号/彩色信号)分离技术,就是利用两行图像信号的相关性,来进行Y/C分离。如果它们之间内容不相关,Y/C信号则无法进行分离。全数字信号电视也一样,如果图像内容不相关,则图像信号压缩也就要免谈。如果图像内容有相关性,那么上一幅图像的内容就相当于下一幅图像的“图形库”,或一幅图像中的某部分就是另一部分的“图形库”,因此,下一幅图像或图像中某一个与另一个相关的部分,在发送信号时,只需发送一个“代码”,而传送一个“代码”要比送一个“图形库”效率高很多,显示时也只需把内容从“图形库”中取出即可,这就是MPEG图像压缩的原理。 利用电视信号的相关性,可以进行图像信号压缩,这个原理大家已经明白,但要找出图像相关性的内容来,那就不是一件很容易的事情,这个技术真的是太复杂了。为了容易理解电视图像的相关性,我们不妨设想做一些试验,把图像平均分成几大块,然后每一块,每一块的进行比较,如果有相同的,我们就定义它们有相关性;如果没有相同的,我们继续细分下去,把每大块又分成几小块,一直比较下去,最后会发现,块分得越细,相同块的数目就越多,但分得太细需要的代码也增多,所以并不是分得越细越好。我们在看VCD的时候经常发现,如果VCD读光盘数据出错,就会在图像中看到“马赛克”,这些“马赛克”就是图像分区时的最小单位,或把数码相片进行放大,也可以看到类似“马赛克”的小区,这就是数码图像的最小“图形库”,每个小“图形库”都要对应一个“代码”。 在单幅图像中找出相关性的几率并不是很大的,所以对单幅图像的压缩率并不很大,这个通过观察数码相片的容量就很容易明白,如果把寻找相关性的范围扩大到两幅图像,你就会发现,具有相关性的内容太多了,这是因为运动物体对于人的眼睛感觉器官来说,是很慢

第10讲 信源编码的性能指标

第10讲 信源编码的性能指标 1. 无失真信源编码的冗余度压缩原理 为了压缩冗余度,必须改造信源输出符号的统计特性。一方面要尽量提高任一时刻输出符号的概率分布的均匀性,另一方面要尽量消除前后输出符号的统计相关性。因此,无失真信源编码的实质是将信源尽可能地改造为均匀分布的无记忆信源。这种信源的通信效率是最大的。改造后的新信源是由原信源和编码器共同组成的,称为编码后的信源。设f 是信源S 的一个编码,X 是编码后的信源,则三者之间的关系表示如下 f S X ??→ 信源编码f 所用的码元可以与信源S 的符号不同,一般是某个信道的输入符号。 从数据处理这个角度来看,编码f 是一个数据处理器,输入信源S 的数据,输出信源X 的数据。从通信的角度看,编码f 是一个信道,输入信源S 的数据,输出信源X 的数据。 无失真信源编码的目的是无损压缩,即用尽可能少的数据表示数据中的所有信息,不能破坏数据原有信息。这相当于提高信息传输效率,使之接近于1。因此,度量无失真编码的压缩性能可以看编码后信息传输效率,称为编码效率。编码效率越接近于1,无损压缩性能越好。下面介绍信源编码的5个性能指标,包括平均码长、码率、编码效率、编码冗余度和压缩率。 2. 平均码长 平均码长是信源编码的一个关键的性能指标。在已知信源熵的前提下,根据平均码长,可以计算出无损压缩编码的码率和编码效率。 定义2.1 设f 是一个N-分组码,各码字的码长分别记为,1i l i q ≤≤,对应的N 长分组的概率为i p ,则f 的平均码长定义为 11(/ q i i i L p l N ==∑码元信源) 注:在有的教材中,当平均码长的单位转化为“比特/信源”时,称为编码速率。本课程用不到这个概念。 讨论:用平均码长估计编码后的数据长度 设S 是一个离散无记忆信源,:f S C →是信源S 的一个编码,其平均码长为L 。令12n s s s s =?是一个信源序列。假设用f 对该数据进行编码,试估计编码后码元序列的长度。 对于信源数据12n s s s s =?,我们令L i 表示信源符号s i 所对应的码字f (s i )的长度,则编码后的数据长度为12+++n L L L 。我们把L i 视为随机变量,则对于任何i ,我们有[]i E L L =。 因为S 是离散无记忆的,所以{L i }是独立同分布随机序列。根据辛钦大数定理,我们有

信息论基础与编码(第五章)

5-1 有一信源,它有六种可能的输出,其概率分布如下表所示,表中给出了对应的六种编码12345C C C C C 、、、、和6C 。 (1) 求这些码中哪些是唯一可译码; (2) 求哪些是非延长码(即时码); (3) 对所有唯一可译码求出其平均码长。 解:(1(2)1,3,6是即时码。 5-2证明若存在一个码长为12,,,q l l l ???的唯一可译码,则一定存在具有相同码长的即时码。 证明:由定理可知若存在一个码长为的唯一可译码,则必定满足kraft 不等式 1。由定理4可知若码长满足kraft 不等式,则一定存在这样码长的即时码。 所以若存在码长的唯一可译码,则一定存在具有相同码长P (y=0)的即时码。 5-3设信源1 2 61 26()s s s S p p p P s ??? ????=???? ??? ????,6 1 1i i p ==∑。将此信源编码成为r 元唯一可译变长码(即码符号集12{,,,}r X x x x =???),其对应的码长为(126,,,l l l ???)=(1,1,2,3,2,3),求r 值的最小下限。 解:要将此信源编码成为 r 元唯一可译变长码,其码字对应的码长 (l 1 ,l 2 ,l 3, l 4,l 5, l 6)=(1,1,2,3,2,3) 必须满足克拉夫特不等式,即 13232116 1 ≤+++++=------=-∑r r r r r r r i li Lq L L ,,2,1 ∑=-q i l i r 1 ≤4?Lq L L ,,2,1

所以要满足 12 223 2≤++r r r ,其中 r 是大于或等于1的正整数。 可见,当r=1时,不能满足Kraft 不等式。 当r=2, 18 2 4222>++,不能满足Kraft 。 当r=3, 127 26 2729232<=++,满足Kraft 。 所以,求得r 的最大值下限值等于3。 5-4设某城市有805门公务电话和60000门居民电话。作为系统工程师,你需要为这些用户分配电话号码。所有号码均是十进制数,且不考虑电话系统中0、1不可用在号码首位的限制。(提示:用异前缀码概念) (1)如果要求所有公务电话号码为3位长,所有居民电话号码等长,求居民号码长度1L 的最小值; (2)设城市分为A 、B 两个区,其中A 区有9000门电话,B 区有51000门电话。现进一步要求A 区的电话号码比B 区的短1位,试求A 区号码长度2L 的最小值。 解:(a) 805门电话要占用1000个3位数中的805个,即要占用首位为0~ 7的所有数字及以8为首的5个数字。因为要求居民电话号码等长, 以9为首的数字5位长可定义10 000个号码,6位长可定义100 000 个号码。所以min L 16=。 或由Craft 不等式,有 805106000010131?+?≤--L 解 得 L 1103 180******** 5488≥--?=-log ., 即 min L 16= (b) 在(a)的基础上,将80为首的数字用于最后5个公务电话,81~86 为首的6位数用于B 区51 000个号码,以9为首的5位数用于A 区9 000 个号码。所以,min L 25=。或由 Draft 不等式,有 80510 900010510001013 122?+?+?≤---+L L () 或 80510 900051000101013 12?++??≤---()L 解得L 210 3 18051090005100 4859≥--?+=-log . 即min L 25= 5-5求概率分布为)152,152,51,51,31(的信源的二元霍夫曼码。讨论此码对于概率分布为 )5 1 ,51,51,51,51(的信源也是最佳二元码。

WCDMA技术的信源编码和信道编码

WCDMA技术的信源编码和信道编码 WCDMA网络是全球商用时间最长,技术成熟、可演进性最好的,全球第一个3G商用网络就是采用WCDMA制式。我国采用了全球广泛应用的WCDMA 3G技术,目前已全面支持HSDPA/HSUPA,网络下载理论最高速率达到14.4Mbps。2G无线宽带的最高下载速度约为150Kbps,我国的WCDMA网络速度几乎是2G网络速度的100倍。支持业务最广泛,基于WCDMA成熟的网络和业务支撑平台,其所能实现的3G业务非常丰富。无线上网卡、手机上网、手机音乐、手机电视、手机搜索、可视电话、即时通讯、手机邮箱、手机报等业务应用可为用户的工作、生活带来更多的便利和美妙享受。终端种类最多,截至2008年底,支持WCDMA商用终端的款式数量超过2000款,全球主要手机厂商都推出了为数众多的WCDMA手机。国内覆盖广泛,截至2009年9月28日,联通3G网络已成功在中国大陆285个地市完成覆盖并正式商用,新覆盖的城镇数量还在不断增长中,联通3G网络和业务已经覆盖了中国绝大部分的人口和地域。开通国家最广,可漫游的国家和地区最多,截至2008年底,全球已有115个国家开通了264个WCDMA网络,占全球3G商用网络的71.3%。截至2009年9月28日,中国联通已与全球215个国家的395个运营商开通了。 WCDMA的优势明显,技术成熟,在WCDMA物理层来看,信源编码和信道编码是WCDMA技术的基础,信源编码是采用语音编码技术,AMR语音编码技术是由基于变速率多模式语音编码技术发展而来,主要原理在于:语音编码器模型由一系列能提供多种编码输出速率与合成质量的声码器构成AMR支持八种速率。鉴于不同信源比特对合成语音质量的影响不同AMR 语音编码器输出的话音比特在传输之前需要按照它们的主观重要性来排序分类,分别采用不同保护程度的信道编码对其进行编码保护。 信源编码AMR模式自适应选择编码器模式以更加智能的方式解决信源和信道编码的速率匹配问题,使得无线资源的配置和利用更加灵活和高效。实际的语音编码速率取决于信道条件,它是信道质量的函数。而这部分工作是解码器根据信道质量的测量参数协助基站来完成,选择编码模式,决定编码速率。原则上在信道质量差时采用低速率编码器,就能分配给信道编码更多的比特冗余位来实现纠错,实现更可靠的差错控制。在信道质量好、误比特率较低时采用高速率编码器,能够提高语音质量。在自适应过程中,基站是主要部分,决定上下行链路采用的速率模式。 信源编码AMR编码器原理,WCDMA系统的AMR声码器共有八种编码模式,它们的输出比特速率不同。为了降低成本和复杂度,八种模式都采用代数码本激励线性预测技术,它们编码的语音特征参量和参量提取方法相同,不同的是参量的量化码本和量化比特数。AMR语音编码器根据实现功能大致可分为LPC分析、基音搜索、代数码本搜索三大部分。其中LPC分析完成的主要功能是获得10阶LPC滤波器的-.个系数,并将它们转化为线谱对参数,并对LSF进行量化;基音搜索包括了开环基音分析和闭环基音分析两部分,以获得基音延迟和基音增益这两个参数;代数码本搜索则是为了获得代数码本索引和代数码本增益,还包括了码本增益的量化。

数据压缩与信源编码第四章

第四章 1、详细解释下面概念:(a)绝对掩蔽门限;(b)临界频带;(c)听觉门限;(d)掩蔽效应。(a)绝对掩蔽门限:被掩蔽音单独存在时的听阈分贝值,或者说在安静环境中能被人耳听到的纯 音的最小值称为绝对掩蔽门限。 (b)临界频带:当噪声掩蔽纯音时,起作用的是以纯音频率为中心频率的一定频带宽度内的噪声 频率。如这频带内的噪声功率等于在噪声中刚能听到的该纯音的功率,则这频带就称为听觉临界 频带。 (c)听觉门限:刚刚能引起感觉的最小刺激量,称为感觉阈下限;能产生正常感觉的最大刺激量 ,称为感觉阈上限。刺激强度不允许超过上限,否则,不但无效而且还会引起相应听觉器官的损 伤。 (d)掩蔽效应:一个较弱的声音(被掩蔽音)的听觉感受被另一个较强的声音(掩蔽音)影响的现象 称为人耳的“掩蔽效应”。 2、详细说明:(a)什么是心理声学模型,它的输入和输出分别是什么? 心理声学模型是对人听感的统计性质的数学表述模型,它解释人各种听感的生理原理。输入是声 音信号,输出是编码数据流。 (b)心理声学模型在音频编码中的作用? 心理声学原理应用到音频压缩技术中,使获得低比特传输速率和透明音质成为可能。 3、(a)MPEG-1音频编码分几层,各层在编码效率、算法复杂度和算法延迟上有和区别?三层,MPEG-1 Layer1采用每声道192kbit/s,每帧384个样本,32个等宽子带,固定分割数据块。 MPEG-1 Layer2采用每声道128kbit/s,每帧1152个样本,32个子带,属不同分帧方式。MPEG-1 Layer3采用每声道64kbit/s,用混合滤波器组提高频率分辨率,按信号分辨率分成6X32或18X32个

数据压缩与信源编码第五章

第五章 1、(a)人类视觉特性中空间频率灵敏度、对比度灵敏度和色彩灵敏度分别表示什么意思?答:空间:从空间频率域来看,人眼是一个低通型线性系统,分辨景物的能力是有限的。由于瞳孔有一定的几何尺寸和一定的光学像差,视觉细胞有一定的大小,所以人眼的分辨率不可能是无穷的,HVS对太高的频率不敏感。对比度:它是相对于亮度变化的一种量度,一般来讲它与激励信号的相对亮度幅度成正比,它与激励的颜色、空间频率和时间频率有关。色彩:这是人类的一中明视觉,基本参数有色调。亮度和饱和度。 (b)JPEG编码算法是如何利用这些灵敏度特性的? 答:JPEG压缩编码算法的主要计算步骤如下:用正向离散余弦变换(FDCT)把空间域图变成频率域图;用加权函数对DCT系数量化,以使人的视觉系统最佳,Z字形扫描(zigzag scan);用差分脉冲编码调制(DPCM)对直流系数(DC)编码;用行程长度编码(RLE)对交流系数(AC)编码;熵编码:使用霍夫曼可变字长编码器进行编码;组成位数据流,以形成帧图像 2、(a)图像编码算法常用的知名算法有那些? 答:行程编码压缩算法、哈夫曼编码压缩算法、LZW压缩算法及离散余弦变换 (b)图像编码算法的关键技术有那些? 答: (c)为什么图像可以进行压缩? 答:数字图像如果不进行压缩,数据量是比较大的,这无疑对图像的存储、处理、传送带来很大的困难。事实上,在图像像素之间,无论在行方向还是列方向,都存在一定的相关性。也就是说,在一般图像中都存在很大的相关性,即冗余度。静态图像数据的冗余包括:空间冗余、时间冗余、结构冗余、知识冗余和视觉冗余、图像区域的相同性冗余、纹理的统计冗余等。图像压缩编码技术就是利用图像数据固有的冗余性和相干性,将一个大的图像数据文件转换为较小的同性质的文件。根据压缩后文件能否准确恢复原文件,将图像压缩编码技术分为无失真编码技术和有失真编码技术。 (d)就现有图像压缩技术而言,压缩比多大时仍然可以保持良好的图像质量? 答:5:1 3、(a)画出JPEG图像编解码算法的框图,并详细解释其算法; 答:图片共享到群里 详解:1)整个文件的大体结构JFIF格式的JPEG文件(*.jpg)的一般顺序为:SOI(0xFFD8) APP0(0xFFE0) [APPn(0xFFEn)]可选DQT(0xFFDB) SOF0(0xFFC0) DHT(0xFFC4) SOS(0xFFDA) 压缩数据EOI(0xFFD9) 2)字的高低位问题JPEG文件格式中,一个字(16位)的存储使用的是Motorola 格式, 而不是Intel 格式。也就是说, 一个字的高字节(高8位)在数据流的前面, 低字节(低8位)在数据流的后面,与平时习惯的Intel格式不一样。. 3)读出哈夫曼表数据a)理论说明在标记段DHT内,包含了一个或者多个的哈夫曼表。对于单一个哈夫曼表,应该包括了三部分:1哈夫曼表ID和表类型这个字节的值为一般只有四个0x00、0x01、0x10、0x11。0x00表示DC直流0号表;0x01表示DC直流1号表;0x10表示AC交流0号表;0x11表示AC交流1号表。2不同位数的码字数量,JPEG文件的哈夫曼编码只能是1~16位。这个字段的16个字节分别表示1~16位的编码码字在哈夫曼树中的个数。3编码内容这个字段记录了哈夫曼树中各个叶子结点

第五章 信源编码(第十讲)

第五章 信源编码(第十讲) (2课时) 主要内容:(1)编码的定义(2)无失真信源编码 重点:定长编码定理、变长编码定理、最佳变长编码。 难点:定长编码定理、哈夫曼编码方法。 作业:5。2,5。4,5。6; 说明:本堂课推导内容较多,枯燥平淡,不易激发学生兴趣,要注意多讨论用途。另外,注意,解题方法。多加一些内容丰富知识和理解。 通信的实质是信息的传输。而高速度、高质量地传送信息是信息传输的基本问题。将信源信息通过信道传送给信宿,怎样才能做到尽可能不失真而又快速呢?这就需要解决两个问题:第一,在不失真或允许一定失真的条件下,如何用尽可能少的符号来传送信源信息;第二,在信道受干扰的情况下,如何增加信号的抗干扰能力,同时又使得信息传输率最大。为了解决这两个问题,就要引入信源编码和信道编码。 一般来说,提高抗干扰能力(降低失真或错误概率)往往是以降低信息传输率为代价的;反之,要提高信息传输率常常又会使抗干扰能力减弱。二者是有矛盾的。然而在信息论的编码定理中,已从理论上证明,至少存在某种最佳的编码或信息处理方法,能够解决上述矛盾,做到既可靠又有效地传输信息。这些结论对各种通信系统的设计和估价具有重大的理论指导意义。 §3.1 编码的定义 编码实质上是对信源的原始符号按一定的数学规则进行的一种变换。 讨论无失真信源编码,可以不考虑干扰问题,所以它的数学描述比较简单。图 3.1是一个信源编码器,它的输入是信源符号},,,{21q s s s S =,同时存在另一符号 },,,{21r x x x X =,一般来说,元素小姐xj 是适合信道传输的,称为码符号(或者码元)。 编码器的功能就是将信源符号集中的符号s i (或者长为N 的信源符号序列)变换成由x j (j=1,2,3,…r)组成的长度为l i 的一一对应的序列。 输出的码符号序列称为码字,长度l i 称为码字长度或简称码长。可见,编码就是从信源符号到码符号的一种映射。若要实现无失真编码,则这种映射必须是一一对应的,并且是可逆的。 码符号的分类: 下图是一个码分类图

数据压缩试题库教学提纲

第一章 填空题: 1、信源编码主要解决传输的问题,信道编码主要解决传输的问题。 2、数据压缩的信号空间包括、、。 3、数据压缩按其压缩后是否产生失真可划分为 和两大类。 第二章 填空题: 1、脉冲编码调制包括、、三个步骤。 2、连续信号的多种离散表示法中,我们最常用的取样方法是。 3、若要将取样信号准确地恢复成原信号,取样频率必须满足定理。 4、黑白电视信号的带宽大约为5MHz,若按256级量化,则按奈奎斯特准则取样时的数据速率为。如果电视节目按25帧/s发送,则存储一帧黑白电视节目数据需内存容量。 5、量化器可分为和两大类。 6、量化器的工作特性可分为、、三个区域。 6、按照处理方法是否线性来判断,我们认为量化过程本身是。 7、我国数字电话网中压扩量化的对数函数采用曲线。 8、信号质量的主观度量方法中最常用的判决方法是。 9、对信号压缩系统的性能评价应从几个性能指标上综合评价,这些性能指标包括、、、。 简答题: 1、量化误差和噪声的本质区别是什么? 2、简述压扩量化的工作过程? 3、数据压缩中的“二次量化”是指什么?它和模数转换时的量化有什么区别? 证明题:

1、试导出以均方误差最小定义的最佳量化方法中量化判决电平k d 和量化输出电平k y 的表达式。 2、证明M-L 量化器的最小量化误差为:{}{}∑-=+≤<-=1 012 2min J k k k k d x d p y x E ε 第三章 填空题: 1、离散无记忆平稳信源的冗余度隐含在 。 2、对于联合信源,其冗余度除了各自本身的冗余度外还隐含在 。 3、离散有记忆信源的的理论极限是 。 4、在限失真编码理论中,使限失真条件下比特数最少的编码称为 。 问答题: 1、什么是平均自信息量(信息熵),平均条件自信息量(条件熵)以及平均互信息量?它们之间有什么关系? 2、简述率失真函数的基本含义,并指出它对信源编码的指导意义。 3、什么是最大离散熵?它对数据压缩有什么指导意义? 证明题: 2、证明 ()()|H Y X H Y ≤,并简述它对数据压缩的意义。 3、证明:()()()Y |X H X H Y X I -=;。 第四章 填空题: 1、统计编码主要是利用消息或消息序列 的分布特性,注重寻找 的最优匹配。 2、长度为L 1,L 2,…,L n 的m 进制唯一可译码存在的充分必要条件是 。

相关文档
最新文档