对数与对数函数讲义

对数与对数函数讲义
对数与对数函数讲义

对数与对数函数

课前双击巩固1.对数

概念如果a x=N(a>0且a≠1),那么x叫作以a为底N的,记作x=log a N,其中a 叫作对数的底数,N叫作真数,log a N叫作对数式

性质

底数的限制:a>0且a≠1 对数式与指数式的互化:a x=N?

负数和零没有

log a1=

log a a=1

对数恒等式:a log a N=

运算性质log a(M·N)=

a>0且a≠1,

M>0,N>0 log a M

N

=

log a M n=(n∈R)

换底公式换底公式:log a b=log c b

log c a

(a>0且a≠1,c>0且c≠1,b>0)

推论:lo g a m b n=,log a b= 1

log b a

2.对数函数的概念、图像与性质

概念函数y=log a x(a>0,a≠1)叫作函数

底数a>1 0

图像

定义域 值域

性质

过定点 ,即x=1时,y=0

在区间(0,+∞)上是 函数

在区间(0,+∞)上是 函数

3.反函数

指数函数y=a x

(a>0且a ≠1)与对数函数 互为反函数,它们的图像关于直线 对称.

常用结论

1.指数与对数的等价关系:a x

=N ?x=log a N.

2.互为反函数的两个函数的图像关于直线y=x 对称.

3.只有在定义域上单调的函数才存在反函数. 题组一 常识题

1.化简log a blog b clog c a 的结果是 .

2.设a=212,b=31

3,c=log 32,则a ,b ,c 的大小关系是 . 3. 若函数y=f (x )是函数y=2x 的反函数,则f (2)= .

4. 函数y=lo √2

(x 2

-4x+5)的单调递增区间是 .

题组二 常错题

◆索引:对数的性质及其运算掌握不到位;记混对数函数的定义域;对数函数的性质不能充分运用;忽略对底数的讨论致误.

5.有下列结论:①lg (lg10)=0;②lg (ln e )=0;③若lg x=1,则x=10;④若log 22=x ,则x=1;⑤若log m n ·log 3m=2,则n=9.其中正确结论的序号是

.

6.函数f (x )=log 2(2-x )的定义域是 .

7.设a=1

4

,b=log 98

5

,c=log 8√3,则a ,b ,c 的大小关系是 .

8.函数y=log a x (a>0,a ≠1)在[2,4]上的最大值与最小值的差是1,则a= .

课堂考点探究

探究点一 对数式的化简与求值

例题1 (1)已知2log a (M-2N )=log a M+log a N ,则M

N 的值为 .

(2)已知2a

=5b

=10,则

2a +2b

32

= .

[总结反思] (1)对数运算法则是在化为同底的情况下进行的,因此经常会用到换底公式及其推论.在对含有字母的对数式进行化简时,必须保证恒等变形.

(2)利用对数运算法则,在真数的积、商、幂与对数的和、差、倍之间进行转化. 变式题 (1)求值:

lg √27+lg8?3lg √10

lg1.2

= .

(2)设函数f (x )=3x

+9x

,则f (log 32)= . 探究点二 对数函数的图像及应用

例题2 (1) 函数y=ln cos x -π

2

2的大致图像是( )

图2-9-1

(2)已知函数f (x )=x 2

-log m x 在0,1

2上恒有f (x )<0成立,则实数m 的取值范围为 .

[总结反思]

(1)在研究对数函数图像时一定要注意其定义域,注意根据基本的对数函数图像作出经过平移、对称变换得到的函数的图像.

(2)一些对数型方程、不等式问题常转化为相应的函数图像问题,利用数形结合法求解. 变式题(1)已知函数f(x)是定义在R上的偶函数,且当x≥0时,f(x)=ln(x+1),则函数f(x)的大致图像为( )

图2-9-2

(2)函数f(x)=2x|log0.5x|-1的零点个数为( )

A.1

B.2

C.3

D.4

探究点三对数函数的性质及应用

考向1比较大小

例题3 (1)已知a=log0.34,b=log43,c=0.3-2,则a,b,c的大小关系是( )

A.c

B.b

C.a

D.a

(2)设a=log36,b=log48,c=log510,则( )

A.a>b>c

B.b>c>a

C.a>c>b

D.b>a>c

[总结反思]比较对数式的大小,一是将对数式转化为同底的形式,再根据对数函数的单调性进行比较,二是采用中间值0或1等进行比较,,

对数式,通过巡回转化进行比较.

考向2解简单对数不等式

例题4 (1)已知0

(2)设函数f(x)={log2x,x>0,

log1

2

(-x),x<0,若f(a)

[总结反思]对于形如log a f(x)>b的不等式,一般转化为log a f(x)>log a a b,再根据底数的范围转化为f(x)>a b或0log b g(x)的不等式,一般要转化为同底的不等式来解.

考向3对数函数性质的综合问题

例题5 (1)若函数f(x)=lo g1

2

(-x2+4x+5)在区间(3m-2,m+2)上单调递增,则实数m的取值范围为( )

A.[4

3,3] B.[4

3

,2]

C.[4

3,2) D.[4

3

,+∞)

(2)已知函数f(x)={(a-1)x+4?2a,x<1,

1+log2x,x≥1,

若f(x)的值域为R,则实数a的取值范围是( ) A.(1,2] B.(-∞,2]

C.(0,2]

D.[2,+∞)

[总结反思]利用对数函数的性质,求与对数函数有关的函数值域和复合函数的单调性问题,必须弄清三方面的问题:一是定义域,所有问题都必须在定义域内讨论;二是底数与1的大小关系;三是复合函数的构成,即它是由哪些基本初等函数复合而成的.另外,解题时要注意数形结合、分类讨论、转化与化归思想的使用.

强化演练

1.【考向1】已知a=log23+log2√3,b=log29-log2√3,c=log32,则a,b,c的大小关系是( )

A.a=b

B.a=b>c

C.a

D.a>b>c

2.【考向1】若实数a,b,c满足log a2

A.a

B.b

C. c

D.a

3.【考向2】已知f(x)是偶函数,且在[0,+∞)上是减函数,若f(lg x)>f(2),则x的取值范围是( )

,1)

A.(1

100

)∪(1,+∞)

B.(0,1

100

,100)

C.(1

100

D.(0,1)∪(100,+∞)

4.【考向3】若函数f(x)=log a(ax-3)在[1,3]上单调递增,则a的取值范围是( )

A.(1,+∞)

B.(0,1)

) D.(3,+∞)

C.(0,1

3

(2x)的最小值为.

5.【考向3】函数f(x)=log2√x·lo g

√2

参考答案

1.对数 x=log a N 对数 0 N log a M+log a N log a M-log a N nlog a M n

m

log a b

2.对数 (0,+∞) R (1,0) 增 减

3.y=log a x (a>0且a ≠1) y=x

1.1 [解析] 利用对数的换底公式可得结果为1.

2.c1,b>1,且a 6

=8,b 6

=9,所以a

4.(-∞,2) [解析] 因为0<√2

<1,所以y=lo g √2

单调递减,而函数y=x 2

-4x+5>0恒成立,且单调递

减区间为(-∞,2),所以函数y=lo g 1√2

(x 2

-4x+5)的单调递增区间是(-∞,2).

5.①②③④⑤ [解析] ①lg 10=1,则lg (lg10)=lg 1=0;②lg (ln e )=lg 1=0;③底的对数等于1,则x=10;④底的对数等于1;⑤log m n=

lgn

lgm

,log 3m=

lgm lg3

,则

lgn lg3

=2,即log 3n=2,故n=9.

6.(-∞,2) [解析] 由2-x>0,解得x<2,即函数f (x )的定义域为(-∞,2).

7.c>a>b [解析] a=1

4=log 9√94

=log 9√3log 98

5=b ,所以c>a>b.

8.2或1

2 [解析] 分两种情况讨论:(1)当a>1时,有log a 4-log a 2=1,解得a=2;(2)当0

log a 2-log a 4=1,解得a=12.所以a=2或1

2. 【课堂考点探究】

例题1 [思路点拨] 根据指数、对数的运算法则和代数运算的有关公式进行计算. (1)4 (2)2√2 [解析] (1)由题知{M -2N >0,

M >0,N >0,∴M>2N>0.由2log a (M-2N )=log a M+log a N ,得

log a (M-2N )2

=log a MN ,∴(M-2N )2

=MN ,∴M 2

-5MN+4N 2

=0,即(M-4N )(M-N )=0,∴M=4N 或M=N (舍去),∴M

N

=4.

(2)由2a

=5b

=10可得a=1lg2,b=1lg5,∴2a +2b =2(lg 2+lg 5)=2,∴(2a +2

b )32

=2√2.

变式题 (1)3

2 (2)6 [解析] (1)原式=

lg(33)1

2+lg 23-3lg(10)12

lg

3×2210

=3

2

(lg3+2lg2-1)lg3+2lg2?1=3

2.

(2)∵函数f (x )=3x

+9x

,∴f (log 32)=3log 32+9log 32=2+9log 94=2+4=6.

例题2 [思路点拨] (1)由条件利用余弦函数的值域和单调性以及复合函数的单调性得出结

论;(2)分别作出函数y=x 2

和y=log m x 的图像,利用图像的直观性确定实数m 的取值范围. (1)A (2)1

16

≤m<1 [解析] (1)在0,

π2

上,t=cos x 是减函数,则y=ln cos x 是减函数,且函数

值y<0,故排除B ,C ;在-π2

,0上,t=cos x 是增函数,则y=ln cos x 是增函数,且函数值y<0,故排除D.故选A.

(2)要使函数f (x )=x 2

-log m x 在0,

12

上恒有f (x )<0成立,则有x 2

12

上恒成立,则有

0

和y=log m x 的图像(如图所示).∵当x=12时,y=x 2

=1

4,∴只需

y=log m 12

≥1

4

=log m m 1

4,∴1

2

≤m 1

4,即116

≤m ,又∵0

≤m<1,∴实数m 的取值范围是1

16

≤m<1.

变式题 (1)C (2)B [解析] (1)先作出当x ≥0时,f (x )=ln (x+1)的图像,显然图像经过点(0,0),再作此图像关于y 轴对称的图像,可得函数f (x )在R 上的大致图像,如选项C 中图像所示. (2)函数f (x )=2x

|log 0.5x|-1的零点个数即方程|log 0.5x|=(12

)x

的解的个数,即函数y=|log 0.5x|与

函数y=(12

)x

图像交点的个数,作出两函数的图像(图略)可知它们有2个交点.

例题3 [思路点拨] (1)根据对数函数的性质确定a ,b ,c 的取值范围,然后确定其大小关系;(2)先将a ,b ,c 进行化简,整理成真数相同的对数式,再进行判断.

(1)D (2)A [解析] (1)∵a=log 0.34<0,0

>0.30

=1,∴a

(2)a=log 36=1+log 32,b=log 48=1+log 42,c=log 510=1+log 52,因为log 32>log 42>log 52,所以a>b>c.故选A.

例题4 [思路点拨] (1)分别利用指数函数与对数函数的单调性进行转化;(2)分a>0和a<0两种情况,将f (a )

(1) 3

.∵0

在R 上

是减函数,∴log b (x-3)>0,又∵00,log 2a

log 2(-a)>log 12(-a),即{a > 0,log 2a < -log 2a 或

{a < 0,

log 2(-a) > -log 2(-a),

解得0

(1)C (2)A [解析] (1)先保证对数有意义,即-x 2

+4x+5>0,解得-1

y=-x 2

+4x+5图像的对称轴为直线x=-4

2×(?1)

=2,由复合函数单调性可得,函数

f (x )=lo

g 12

(-x 2

+4x+5)的单调递增区间为(2,5),要使函数f (x )=lo g 12

(-x 2

+4x+5)在区间(3m-2,m+2)

上单调递增,只需{3m -2≥2,

m +2≤5,3m -2

解得4

3≤m<2.故选C.

(2)当x ≥1时,f (x )=1+log 2x ≥1,当x<1时,f (x )=(a-1)x+4-2a 必须是增函数,且最大值大于或等于1,才能满足f (x )的值域为R ,可得{a -1>0,

a -1+4-2a ≥1,解得a ∈(1,2].

强化演练

1.B [解析] 因为a=log 23+log 2 √3=log 23√3=3

2log 23>1,b=log 29-log 2 √3=log 23√3=a ,c=log 32c.

2.A [解析] 当log c 2<0时,根据不等式的性质和对数的换底公式可得log 2c0时,根据不等式的性质和对数的换底公式可得log 2a>log 2b>log 2c>0,可得a>b>c>1,选项C 中关系式可能成立;当log a 2<0,log b 2>0时,可得0c>1,此时a0时,可得

01,可得b

3.C [解析] 由偶函数的定义可知,f (x )=f (-x )=f (|x|),又f (x )在[0,+∞)上是减函数,所以不等式f (lg x )>f (2)可化为|lg x|<2,即-2

100

4.D [解析] 由于a>0且a ≠1,所以u=ax-3为增函数,所以a>1.又u=ax-3在[1,3]上恒为正,所以a-3>0,即a>3.

5.-14

[解析] 依题意得f (x )=12

log 2x ·(2+2log 2x )=(log 2x )2

+log 2x=log 2x+

12

2

-14

≥-1

4

,当

log 2x=-1

2

,即x=√22

时等号成立,所以函数f (x )的最小值为-1

4

.

对数函数知识点总结(供参考)

对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 说明:○1 注意底数的限制0>a ,且1≠a ; ○2 x N N a a x =?=log ; ○3 注意对数的书写格式. 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log = ; (2)a b b a log 1log =. (二)对数函数 1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函 数,其中x 是自变量,函数的定义域是(0,+∞). 注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:x y 2log 2=,5 log 5x y = 都不是对数函数,而只能称 其为对数型函数. ○ 2 对数函数对底数的限制:0(>a ,且)1≠a . 对数函数·例题解析 例1.求下列函数的定义域: (1)2log x y a =; (2))4(log x y a -=; (3))9(log 2 x y a -=.

指数函数与对数函数高考题

第二章 函数 三 指数函数与对数函数 【考点阐述】指数概念的扩充.有理指数幂的运算性质.指数函数.对数.对数的运算性质.对数函数. 【考试要求】(4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质.(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质.(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 【考题分类】 (一)选择题(共15题) 1.(安徽卷文7)设 232555 322555a b c ===(),(),() ,则a ,b ,c 的大小关系是 (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 【答案】A 【解析】2 5 y x =在0x >时是增函数,所以a c >,2()5x y =在0x >时是减函数,所以c b >。 【方法总结】根据幂函数与指数函数的单调性直接可以判断出来. 2.(湖南卷文8)函数y=ax2+ bx 与y= ||log b a x (ab ≠0,| a |≠| b |)在同一直角坐标系 中的图像可能是 【答案】D 【解析】对于A 、B 两图,|b a |>1而ax2+ bx=0的两根之和为 -b a ,由图知0<-b a <1得-11矛盾,选D 。 3.(辽宁卷文10)设525b m ==,且112a b +=,则m = (A (B )10 (C )20 (D )100 【答案】 D

解析:选A.211 log 2log 5log 102,10, m m m m a b +=+==∴= 又0,m m >∴= 4.(全国Ⅰ卷理8文10)设a= 3 log 2,b=In2,c=1 2 5 - ,则 A. a>,所以a=>,所以c,从而错选A,这也 是命题者的用苦良心之处. 【解析】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或 1b a = ,所以a+2b=2 a a + 又0f(1)=1+2 1=3,即a+2b 的取值范围是(3,+∞). 6.(全国Ⅰ卷文7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是 (A)(1,)+∞ (B)[1,)+∞ (C) (2,)+∞ (D) [2,)+∞ 【答案】C 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小 题时极易忽视a 的取值范围,而利用均值不等式求得a+b=12a a + ≥,从而错选D,这也是命 题者的用苦良心之处.

指数函数与对数函数经典讲义

指数函数与对数函数 重点:指数函数、对数函数的图像和性质;指、对数方程(含不等式)的解法;数学思想方法的运用. 难点:幂函数、指数函数和对数函数组成的复合函数的性质. 一、 指数与对数的运算法则 1、 指数的运算法则 ① m n m n a a a +=??② m m n n a a a -= ③ ()()n m mn m n a a a == ?④ 1 n a =2、 对数式与指数式的互换 log b a a N b N =?=(0a >且1a ≠)、(上式中b R ∈,0N >) 3、 对数的运算法则 (1)对数运算法则 ① ()log log log a a a M N M N ?=+ ② log log log a a a M M N N =- ③ log log n a a M n M = ? ? ④ 1 log log a a M n = (2)几个常用的恒等式 ① log a N a N =??② log N a a N = ③ log log log b a b N N a = (换底公式)? ④ 1log log a b b a = ⑤ log log m n a a n b b m = 例1、 求: 82log 9 log 3 的值. 解:82lg 9 log 9lg 9lg 22lg 3lg 22 lg8lg 3log 3lg833lg 233 2 lg lg lg = =?=?=. 二、 指数函数与对数函数

1、 指数函数与对数函数的图像和性质 指数函数 x y a =和对数函数log a y x =互为反函数,所以它们的图像关于y x =对称. 2、 指数函数与对数函数的图像的应用 例2、 在下列一次函数b ax y +=(10<

对数函数知识点及典型例题讲解

对数函数知识点及典型例题讲解 1.对数: (1) 定义:如果,那么称为,记作,其中称为对数的底,N称为真数. ①以10为底的对数称为常用对数,记作___________. ②以无理数为底的对数称为自然对数,记作_________. (2) 基本性质: ①真数N为 (负数和零无对数);②;③; ④对数恒等式:. (3) 运算性质: ① log a(MN)=___________________________; ② log a=____________________________; ③ log a M n= (n∈R). ④换底公式:log a N= (a>0,a≠1,m>0,m≠1,N>0) ⑤ . 2.对数函数: ①定义:函数称为对数函数,1) 函数的定义域为( ;2) 函数的值域为; 3) 当______时,函数为减函数,当______时为增函数; 4) 函数与函数互为反函数. ② 1) 图象经过点( ),图象在;2) 对数函数以为渐近线(当时,图象向上无限接近y轴;当时,图象向下无限接近y轴); 4) 函数y=log a x与的图象关于x轴对称. ③函数值的变化特征: ①②③①②③ 例1 计算:(1) (2)2(lg)2+lg·lg5+; (3)lg-lg+lg. 解:(1)方法一利用对数定义求值设=x,则(2+)x=2-==(2+)-1,∴x=-1.方法二利用对数的运算性质求解 = =(2+)-1=-1.

(2)原式=lg(2lg+lg5)+=lg(lg2+lg5)+|lg-1| =lg+(1-lg)=1. (3)原式=(lg32-lg49)-lg8+lg245 = (5lg2-2lg7)-×+ (2lg7+lg5) =lg2-lg7-2lg2+lg7+lg5=lg2+lg5 =lg(2×5)= lg10=. 变式训练1:化简求值. (1)log2+log212-log242-1; (2)(lg2)2+lg2·lg50+lg25; (3)(log32+log92)·(log43+log83). 解:(1)原式=log2+log212-log2-log22=log2 (2)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2. (3)原式=( 例2 比较下列各组数的大小. (1)log3与log5;(2)log1.10.7与(3)已知logb<loga<logc,比较2b,2a,2c的大小关系.解:(1)∵log3<log31=0,而log5>log51=0,∴log3<log5. (2)方法一∵0<<1,<,∴0>, ∴, 即由换底公式可得log1.10.7<方法二作出y=与y=的图象. 如图所示两图象与x=相交可知log1.10.7<为减函数,且, ∴b>a>c,而y=2x是增函数,∴2b>2a>2c. 变式训练2:已知0<a<1,b>1,ab>1,则log a的大小关系是() B. C. D. 解: C 例3已知函数f(x)=log a x(a>0,a≠1),如果对于任意x∈[3,+∞)都有|f(x)|≥1成立,试求a的取值范围. 解:当a>1时,对于任意x∈[3,+∞),都有f(x)>0. 所以,|f(x)|=f(x),而f(x)=log a x在[3,+∞)上为增函数, ∴对于任意x∈[3,+∞),有f(x)≥log a3. 因此,要使|f(x)|≥1对于任意x∈[3,+∞)都成立. 只要log a3≥1=log a a即可,∴1<a≤3. 当0<a<1时,对于x∈[3,+∞),有f(x)<0, ∴|f(x)|=-f(x). ∵f(x)=log a x在[3,+∞)上为减函数, ∴-f(x)在[3,+∞)上为增函数. ∴对于任意x∈[3,+∞)都有

指数函数和对数函数

指数函数和对数函数 知能目标 1. 理解分数指数幂的概念, 掌握有理指数幂的运算性质. 掌握指数函数的概念、图象和性质. 2. 理解对数的概念, 掌握对数的运算性质. 掌握对数函数的概念、图象和性质. 3. 能够运用指数函数和对数函数的性质解决某些简单的实际问题. 综合脉络 1. 以指数函数、对数函数为中心的综合网络 2. 指数式与对数式有如下关系(指数式化为对数式或对数式化为指数式的重要依据): 0a (N log b N a a b >=?=且)1a ≠ 指数函数与对数函数互为反函数, 它们的图象关于直线x y =对称, 指数函数与对数函数 的性质见下表: 3. 指数函数,对数函数是高考重点之一 指数函数,对数函数是两类重要的基本初等函数, 高考中既考查双基, 又考查对蕴含其中的函 数思想、等价转化、分类讨论等思想方法的理解与运用. 因此应做到能熟练掌握它们的图象与性 质并能进行一定的综合运用. (一) 典型例题讲解: 例1.设a >0, f (x)= x x e a a e -是R 上的奇函数. (1) 求a 的值; (2) 试判断f (x )的反函数f - 1 (x)的奇偶性与单调性.

例2. 是否存在实数a, 使函数f (x )=)x ax (log 2 a -在区间]4 ,2[上是增函数? 如果存在, 说明a 可以取哪些值; 如果不存在, 请说明理由. 例3. 已知x 满足≤+6x 2a a 4x 2x a a +++)1a ,0a ( ≠>, 函数y =)ax (log x a 1 log 2 a 12 a ? 的值域为]0 ,8 1[-, 求a 的值. (二) 专题测试与练习:

对数函数讲义(可直接使用).

一、 教学目标: 1.理解对数的概念,掌握对数的运算性质; 2.掌握对数函数的概念、图象和性质;能利用对数函数的性质解题. 二、教学重、难点: 运用对数运算性质进行求值、化简、证明、运用对数函数的定义域、单调性解题 三、命题规律: 主要考察指数式b a N =与对数式log a N b =的互化,对数函数的图像和性质或由对数函数复合成的函数,主要涉及比较大小、奇偶性、过定点、单调区间以及运用单调性求最值等,主要以填空为主。 四、教学内容: 【知识回顾】 1.对数的概念 如果 ,那么数b 叫做以a 为底N 的对数,记作 ,其中a 叫做对数的 ,N 叫做对数的 。 即指数式与对数式的互化:log b a a N b N =?= 2.常用对数:通常将以10为底的对数10log N 叫做常用对数,记作lg N 。 自然对数:通常将以无理数 2.71828e =???为底的对数叫做自然对数,记作ln N 。 3.对数的性质及对数恒等式、换底公式 (1)对数恒等式:①log N a a = (01,0)a a N >≠>且②log N a a = (01,0)a a N >≠>且 (2)换底公式:log a N =log log b b N a (3)对数的性质:①负数和零没有对数 ② 1的对数是零,即log 10a = ③底的对数等于1,即log 1a a = ④log log log a b c b c d ??=log a d

4.对数的运算性质 如果01,0,0a a M N >≠>>且,那么 (1)log ()a MN = ; (2)log a M N = ; (3)log n a M = ; (4)log n a m M = 。 (5)log log a b b a ?= ; (6)log a b =1log b a 5.对数函数 函数log (01)a y x a a =>≠且做对数函数,其定义域为(0,+∞),值域为(-∞,+∞).、 6.对数函数图像与性质 注:对数函数1log log (01)a a y x y x a a ==>≠与且的图像关于x 轴对称。 7.同真数的对数值大小关系如图 在第一象限内,图像从左到右相应的底逐渐增大, 即01c d a b <<<<< 8.对数式、对数函数的理解 ① 应重视指数式与对数式的互化关系,它体现了数学的转化思想,也往往是解决“指数、对数”问题的关键。 ② 在理解对数函数的概念时,应抓住定义的“形式”,像2log 2,log 2,3ln x y y x y x ===等函数均不符合形式log (01)a y x a a =>≠且,因此,它们都不是对数函数 ③ 画对数函数log a y x =的图像,应抓住三个关键点1(,1),(1.0),(,1)a a -

(完整版)高一对数函数知识点总复习

高一数学 对数与对数函数 一、 知识要点 1、 对数的概念 (1)、对数的概念: 一般地,如果 ()1,0≠>a a a 的b 次幂等于N, 就是 N a b =,那么数 b 叫做 以a 为底 N 的对数,记作 b N a =log ,a 叫做对数的底数,N 叫做真数 (2)、对数的运算性质: 如果 a > 0,a ≠ 1,M > 0, N > 0 有: ) ()() (3R)M(n nlog M log 2N log M log N M log 1N log M log (MN)log a n a a a a a a a ∈=-=+= (3)、重要的公式 ①、负数与零没有对数; ②、01log =a ,1log =a a ③、对数恒等式N a N a =log (4)、对数的换底公式及推论: I 、对数换底公式: a N N m m a log log log = ( a > 0 ,a ≠ 1 ,m > 0 ,m ≠ 1,N>0) II 、两个常用的推论: ①、1log log =?a b b a , 1log log log =??a c b c b a ② 、b m n b a n a m log log =( a, b > 0且均不为1) 佛山学习前线教育培训中心

2、 对数函数 (1)、对数函数的定义 函数x y a log =)10(≠>a a 且叫做对数函数; 它是指数函数x a y = )10(≠>a a 且的反函数对数函数x y a log = )10(≠>a a 且的定义域为),0(+∞,值域为),(+∞-∞ (2)、对数函数的图像与性质 log (01)a y x a a =>≠且的图象和性质

对数运算、对数函数经典例题讲义全

1.对数的概念 如果a x =N (a >0,且a ≠1),那么数x 叫做__________________,记作____________,其中a 叫做__________,N 叫做______. 2.常用对数与自然对数 通常将以10为底的对数叫做____________,以e 为底的对数叫做____________,log 10N 可简记为______,log e N 简记为________. 3.对数与指数的关系 若a >0,且a ≠1,则a x =N ?log a N =____. 对数恒等式:a log a N =____;log a a x =____(a >0,且a ≠1). 4.对数的性质 (1)1的对数为____; (2)底的对数为____; (3)零和负数__________. 1.有下列说法: ①零和负数没有对数; ②任何一个指数式都可以化成对数式; ③以10为底的对数叫做常用对数; ④以e 为底的对数叫做自然对数. 其中正确命题的个数为( ) A .1 B .2 C .3 D .4 2.有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x ,则x =100;④若e =ln x ,则x =e 2 .其中正确的是( ) A .①③ B .②④ C .①② D .③④ 3.在b =log (a -2)(5-a )中,实数a 的取值范围是( ) A .a >5或a <2 B .2

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数

指数函数与对数函数(讲义)

指数函数与对数函数(讲义) ? 知识点睛 1. 指数函数及对数函数的图象和性质: 2. 利用指数函数、对数函数比大小 (1)同底指数函数,利用单调性比较大小; (2)异底指数函数比大小,可采用化同底、商比法、取中间值、图解法; (3)同底数对数函数比大小,直接利用单调性求解;若底数为字母,需分类讨论; (4)异底数对数函数比大小,可化同底(换底公式)、寻找中间量(-1,0,1),或借助图象高低数形结合. 3. 换底公式及常用变形: log log log c a c b b a =(a >0,且a ≠1;c >0,且c ≠1;b >0) 1 log log a b b a = (a >0,且a ≠1;b >0,且b ≠1) log log m n a a n b b m = (a >0,且a ≠1;b >0,且b ≠1) log a b a b =(a >0,且a ≠1;b >0) ? 精讲精练 1. 若a ,b ,c ∈R +,则3a =4b =6c ,则( )

A .b a c 111+= B . b a c 122+= C .b a c 221+= D .b a c 212+= 2. 计算: (1)若集合{lg()}{0||}x xy xy x y =,,,,,则228log ()x y +=_________; (2)设0()ln 0x e x g x x x ?=?>?≤(), ()则1 (())2g g =_____________; (3)若2(3)6()log 6f x x f x x x +

高考指数函数与对数函数专题复习

例1.设a >0, f (x)=x x e a a e -是R 上的奇函数. (1) 求a 的值; (2) 试判断f (x )的反函数f - 1 (x)的奇偶性与单调性. 解:(1) 因为)x (f 在R 上是奇函数, 所以)0a (1a 0a a 1 0) 0(f >=?=-? =, (2) =-?∈++=--)x (f )R x (2 4 x x ln )x (f 121 -=++-24x x ln 2=++2 4x x ln 2)x (f 1--, ∴)x (f 1-为奇函数. 用定义法可证)x (f 1 -为单调增函数. 例2. 是否存在实数a, 使函数f (x )=)x ax (log 2 a -在区间]4 ,2[上是增函数? 如果存在, 说明a 可以取哪些值; 如果不存在, 请说明理由. 解:设x ax ) x (u 2-=, 对称轴a 21x = . (1) 当1a >时, 1a 0 )2(u 2 a 21>??????>≤; (2) 当1a 0<<时, 81a 00)4(u 4 a 21 ≤≥. 综上所述: 1a > 1.(安徽卷文7)设 232 555 322555a b c ===(),(),() ,则a ,b ,c 的大小关系是 (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 【答案】A 【解析】2 5 y x =在0x >时是增函数,所以a c >,2 ()5x y =在0x >时是减函数,所以c b >。 2.(湖南卷文8)函数y=ax2+ bx 与y= ||log b a x (ab ≠0,| a |≠| b |)在同一直角坐标系中的图像可 能是【答案】D 【解析】对于A 、B 两图,|b a |>1而ax2+ bx=0的两根之和为 -b a ,由图知0<-b a <1得-1

对数函数及其性质(讲义及答案)

对数函数及其性质(讲义) ?知识点睛 一、对数函数的定义 一般地,函数()叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 二、对数函数的图象和性质 1.对数函数y = log a x (a>0,且a≠1)的图象和性质: 01 图象 定义域(0,+∞) 值域R 性质 ①过定点(1,0),即x=1 时,y=0 ②在(0,+∞)上是减函数②在(0,+∞)上是增函数2. ①y = log a x ,②y = log b x ,③y = log c x ,④y = log d x , 则有0 log b x > log c x > log d x . 3.反函数 y = log a x 与y =a x互为反函数,其中a>0,且a≠1;互为反

1

3 log x 2 log 0.5 (3x - 2) 4 - x 2 1 a ? 精讲精练 1. 直接写出下列函数的定义域: (1) y = log 3 (x - 2) ; (2) y = ; (3) y = ; (4) y = 1 + . ln(x +1) 2. (1)已知 f (x ) 的定义域为[0,1],则函数 y = f (log 1 (3 - x )) 的 2 定义域是 ; (2) 已知函数 f (x ) = log 1 (2 - log 2 x ) 的值域是(-∞,0),则它 2 的定义域是 ; (3) 函数 f (x ) = log (x 2 + 6x +13) 的值域是 . 2 3. 已知 a >0,且 a ≠1,则函数 y = a x 与 y = log (-x ) 的图象只可 能是( ) A . B . C . D .

专题:对数函数知识点总结及类型题归纳

专题:对数函数知识点总结 1.对数函数的定义: 一般地,函数 x y a log =( )叫做对数函数 .定义域是 2. 对数函数的性质为 思考:函数log a y x =与函数x y a =)10(≠>a a 且的定义域、值域之间有什么关系? ___________________________________________________________________________ 对数函数的图象与指数函数的图象关于_______________对称。 一般的,函数y=a x 与y=log a x (a>0且a ≠1)互称相对应的反函数,它们的图象关于直线y=x 对称 y=f(x)存在反函数,一般将反函数记作y=f -1 (x) 如:f(x)=2x ,则f -1 (x)=log 2x,二者的定义域与值域对调,且图象关 于直线y=x 对称 函数与其反函数的定义域与值域对调,且它们的图象关于直线y=x 对称 专题应用练习 一、求下列函数的定义域

(1)0.2log (4);y x =-; (2)log 1a y x =- (0,1).a a >≠; (3)2(21)log (23)x y x x -=-++ (4)2log (43)y x =- (5) y=lg 1 1 -x (6) y=x 3log =log(5x-1)(7x-2)的定义域是________________ = )8lg(2x - 的定义域是_______________ 3.求函数2log (21)y x =+的定义域___________ 4.函数y=13 log (21)x -的定义域是 5.函数y =log 2(32-4x )的定义域是 ,值域是 . 6.函数5log (23)x y x -=-的定义域____________ 7.求函数2 log ()(0,1)a y x x a a =->≠的定义域和值域。 8.求下列函数的定义域、值域: (1)2log (3)y x =+; (2)2 2log (3)y x =-; (3)2log (47)a y x x =-+(0a >且1a ≠). 9.函数f (x )=x 1 ln (432322+--++-x x x x )定义域 10.设f(x)=lg x x -+22,则f )2 ()2(x f x +的定义域为 11.函数f(x)=)1(lo g 1 |2|2---x x 的定义域为 12.函数f(x)= 2 29)2(1x x x g --的定义域为 ; 13.函数f (x )= x 1 ln (432322+--++-x x x x )的定义域为 14 2 2 2 log log log y x =的定义域是 1. 设f (x )=lg(ax 2 -2x +a ), (1) 如果f (x )的定义域是(-∞, +∞),求a 的取值围; (2) 如果f (x )的值域是(-∞, +∞),求a 的取值围. 15.已知函数)32(log )(22 1+-=ax x x f (1)若函数的定义域为R ,数a 的取值围 (2)若函数的值域为R ,数a 的取值围

指数函数 和 对数函数公式 (全)

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,l o g 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01 且。 因为若a <0时,()y x =-4,当x = 1 4 时,函数值不存在。 a =0 ,y x =0,当x ≤0,函数值不存在。 a =1 时,y x =1对一切x 虽有意义,函数值恒为1,但y x =1的反函数不存在, 因为要求函数y a x =中的 a a >≠01且。 1、对三个指数函数y y y x x x ==?? ???=212 10,, 的图象的认识。 图象特征与函数性质: 图象特征 函数性质 (1)图象都位于x 轴上方; (1)x 取任何实数值时,都有a x >0; (2)图象都经过点(0,1); (2)无论a 取任何正数,x =0时,y =1; (3)y y x x ==210,在第一象限内的纵坐标都大于1,在第二象限内的纵坐标都小于1,y x =?? ? ? ?12的图象正好相反; (3)当a >1时,x a x a x x >><<<>?????0101, 则, 则 (4)y y x x ==210,的图象自左到右逐渐(4)当a >1时,y a x =是增函数,

指数函数与对数函数经典讲义

指数函数与对数函数经典讲义

指数函数与对数函数 重点:指数函数、对数函数的图像和性质;指、对数方程(含不等式)的解法;数学思想方法的运用. 难点:幂函数、指数函数和对数函数组成的复合函数的性质. 一、 指数与对数的运算法则 1、 指数的运算法则 ① m n m n a a a +=? ② m m n n a a a -= ③ ()()n m mn m n a a a == ④ 1 n n a a =2、 对数式与指数式的互换 log b a a N b N =?=(0a >且1a ≠)、(上式中b R ∈,0N >) 3、 对数的运算法则 (1)对数运算法则 ① ()log log log a a a M N M N ?=+ ② log log log a a a M M N N =- ③ log log n a a M n M = ④ 1 log log n a a M M n = (2)几个常用的恒等式 ① log a N a N = ② log N a a N = ③ log log log b a b N N a = (换底公式) ④ 1log log a b b a = ⑤ log log m n a a n b b m = 例1、 求: 82log 9 log 3 的值. 解:82lg 9 log 9lg 9lg 22lg 3lg 22 lg8lg 3log 3lg833lg 2332 lg lg lg ==?=?=.

二、 指数函数与对数函数 1、 指数函数与对数函数的图像和性质 指数函数x y a =和对数函数log a y x =互为反函数,所以它们的图像关于y x =对称. 指数函数 对数函数 一般形式 x y a = (0a >且1a ≠) log a y x = (0a >且1a ≠) 定义域 (),-∞+∞ ()0,+∞ 值域 ()0,+∞ (),-∞+∞ 图像 性质 (1)0y > (1)0x > (2)图像经过()0,1点 (2)图像经过()1,0点 指数函数 对数函数 性质 1a > 01a << 1a > 01a << 当0x >时, 1y > 当0x <时, 01y << 当1x >时, 0y > 当01x <<时, 0y < 单调递增 单调递减 单调递增 单调递减 2、 指数函数与对数函数的图像的应用 例2、 在下列一次函数b ax y +=(10< 01a << O x y 1 1a > 01 a <<

高一数学必修一对数及对数函数知识点总结

高一数学必修一对数及对数函数知识点总 结 数学是学习和研究现代科学技术必不可少的基本工具。以下是查字典数学网为大家整理的高一数学必修一对数及 对数函数知识点,希望可以解决您所遇到的相关问题,加油,查字典数学网一直陪伴您。 对数定义 如果a的x次方等于N(a>0,且a不等于1),那么数x叫做以a为底N的对数,记作x=logaN。其中,a叫做对数的底数,N叫做真数。 注: 1.以10为底的对数叫做常用对数,并记为lg。 2.称以无理数e(e=2.71828...)为底的对数称为自然对数,并记为ln。 3.零没有对数。 4.在实数范围内,负数无对数。在复数范围内,负数是有对数的。 对数公式 0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。/p p其中x 是自变量,函数的定义域是(0,+∞)。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,

同样适用于对数函数。/p p对数函数性质/p p align=" center="" img="" /> 定义域求解:对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0,得到x>1/2且x≠1,即其定义域为{x丨x>1/2且x≠1} 值域:实数集R,显然对数函数无界。 定点:函数图像恒过定点(1,0)。 单调性:a>1时,在定义域上为单调增函数; 奇偶性:非奇非偶函数 周期性:不是周期函数 对称性:无 最值:无 零点:x=1 注意:负数和0没有对数。 两句经典话:底真同对数正,底真异对数负。 要练说,得练听。听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。当我发现有的幼

指数函数和对数函数公式(全)

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a x ,y log a x 在 a 1及 0 a 1两种不同情况。 1、指数函数: y x 且a 叫指数函数。 定义:函数 aa 0 1 定义域为 R ,底数是常数,指数是自变量。 为什么要求函数 y a x 中的 a 必须 a 0且a 1 。 因为若 a 0时, y 4 x ,当 x 1 时,函数值不存在。 4 a 0 , y 0x ,当 x 0 ,函数值不存在。 a 时, y 1 x x 虽有意义,函数值恒为 1,但 1 对一切 y 1x 的反函数不存在, 因 为 要 求 函 数 y a x 中 的 a 0且 a 1 。 x 1、对三个指数函数 y 2 x , y 1 ,y 10x 的图象的 2 认识。 图象特征与函数性质: 图象特征 函数性质 ( 1)图象都位于 x 轴上方; ( 1) x 取任何实数值时,都有 a x 0 ; 2 0 1 ); ( 2)无论 a 取任何正数, x 0 时, y 1 ; ( )图象都经过点( , ( 3) y 2x , y 10 x 在第一象限内的纵坐 ( 3)当 a x 0,则 a x 1 1 时, 0,则 a x 1 标都大于 1,在第二象限内的纵坐标都小于 1, x 1 y 2 x x 0,则 a x 1 当 0 的图象正好相反; a 1时, 0,则 a x 1 x ( 4) y 2x , y 10 x 的图象自左到右逐渐 ( 4)当 a 1 时, y a x 是增函数,

对数函数知识点

对数函数知识点 1.对数函数的概念 形如)10(log ≠>=a a x y a 且的函数叫做对数函数. 说明:(1)一个函数为对数函数的条件是: ①系数为1; ②底数为大于0且不等于1的正常数; ③自变量为真数. 对数型函数的定义域: 特别应注意的是:真数大于零、底数大于零且不等于1。 2、由对数的定义容易知道对数函数)1,0(log ≠>=a a x y a 是指数函数)1,0(≠>=a a a y x 的反函数。 反函数及其性质 ①互为反函数的两个函数的图象关于直线x y =对称。 ②若函数)(x f y =上有一点),(b a ,则),(a b 必在其反函数图象上,反之若),(a b 在反函数图象上,则),(b a 必在原函数图象上。 ③利用反函数的性质,由指数函数)1,0(≠>=a a a y x 的定义域R ∈x ,值域0>y ,容易得到对数函数)1,0(log ≠>=a a x y a 的定义域为0>x ,值域为R ,利用上节学过的对数概念,也可得出这一点。 4

要 牢 记 x x x x y y y y )10 1 (,10,)21(,2====的反函 数 x y x y x y x y 10 12 12log ,lg ,log ,log ====的图象,并由此归纳出表中结论。 5、比较大小 比较对数的大小,一般遵循以下几条原则: ①如果两对数的底数相同,则由对数函数的单调性(底数1>a 为增;10<≠>a a a a ). 当121>>a a 时,曲线1y 比2y 的图象(在第一象限内)上升得慢,即当>x 1时,21y y <;当10<. 而在第一象限内,图象越靠近x 轴对数函数的底数越大(同[考题2]的含义) 当1012<<x 时,21y y <;当10<即在第四象限内,图象越靠近x 轴的对数函数的底数越小。 6、求参数范围 凡是涉及对数的底含参数的问题,要注意对对数的底数的分析,需要分类讨论时,一定要分类讨论。

相关文档
最新文档