盘龙区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载

五华区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

五华区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

五华区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知直线的参数方程为(为参数,为直线的倾斜角),以原点O 为极点,轴l 1cos sin x t y t αα=+⎧⎪⎨=+⎪⎩t αl x 正半轴为极轴建立极坐标系,圆的极坐标方程为,直线与圆的两个交点为,当C 4sin(3πρθ=+l C ,A B 最小时,的值为( )||AB αA .B .C .D .4πα=3πα=34πα=23πα=2. 把函数y=cos (2x+φ)(|φ|<)的图象向左平移个单位,得到函数y=f (x )的图象关于直线x=对称,则φ的值为( )A .﹣B .﹣C .D .3. 下列结论正确的是()A .若直线l ∥平面α,直线l ∥平面β,则α∥β.B .若直线l ⊥平面α,直线l ⊥平面β,则α∥β.C .若直线l 1,l 2与平面α所成的角相等,则l 1∥l 2D .若直线l 上两个不同的点A ,B 到平面α的距离相等,则l ∥α 4. 阅读下面的程序框图,则输出的S=()A .14B .20C .30D .555. 在抛物线y 2=2px (p >0)上,横坐标为4的点到焦点的距离为5,则该抛物线的准线方程为( )A .x=1B .x=C .x=﹣1D .x=﹣6. 已知函数f (x )=若f (-6)+f (log 26)=9,则a 的值为( ){log 2(a -x ),x <12x ,x ≥1)A .4B .3C .2D .17. 在等差数列{}n a 中,已知4816a a +=,则210a a +=( )A .12B .16C .20D .248. 在△ABC 中,若2cosCsinA=sinB ,则△ABC 的形状是()A .直角三角形B .等边三角形C .等腰直角三角形D .等腰三角形9. 若f (x )=x 2﹣2x ﹣4lnx ,则f ′(x )>0的解集为()A .(0,+∞)B .(﹣1,0)∪(2,+∞)C .(2,+∞)D .(﹣1,0)10.四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )A .96B .48C .24D .011.若()f x 是定义在(),-∞+∞上的偶函数,[)()1212,0,x x x x ∀∈+∞≠,有()()21210f x f x x x -<-,则()A .()()()213f f f -<<B .()()()123f f f <-<C .()()()312f f f <<D .()()()321f f f <-<12.设m 是实数,若函数f (x )=|x ﹣m|﹣|x ﹣1|是定义在R 上的奇函数,但不是偶函数,则下列关于函数f (x )的性质叙述正确的是( )A .只有减区间没有增区间B .是f (x )的增区间C .m=±1D .最小值为﹣3二、填空题13.已知数列{a n }满足a 1=1,a 2=2,a n+2=(1+cos 2)a n +sin 2,则该数列的前16项和为 .14.给出下列四个命题:①函数f (x )=1﹣2sin 2的最小正周期为2π;②“x 2﹣4x ﹣5=0”的一个必要不充分条件是“x=5”;③命题p :∃x ∈R ,tanx=1;命题q :∀x ∈R ,x 2﹣x+1>0,则命题“p ∧(¬q )”是假命题;④函数f (x )=x 3﹣3x 2+1在点(1,f (1))处的切线方程为3x+y ﹣2=0.其中正确命题的序号是 . 15.抛物线y 2=8x 上到顶点和准线距离相等的点的坐标为 . 16.设幂函数()f x kx α=的图象经过点()4,2,则k α+= ▲ .17.已知[2,2]a ∈-,不等式2(4)420x a x a +-+->恒成立,则的取值范围为__________.18.长方体ABCD ﹣A 1B 1C 1D 1的棱AB=AD=4cm ,AA 1=2cm ,则点A 1到平面AB 1D 1的距离等于 cm . 三、解答题19.双曲线C :x 2﹣y 2=2右支上的弦AB 过右焦点F .(1)求弦AB 的中点M 的轨迹方程(2)是否存在以AB 为直径的圆过原点O ?若存在,求出直线AB 的斜率K 的值.若不存在,则说明理由.20.已知函数y=x+有如下性质:如果常数t >0,那么该函数在(0,]上是减函数,在[,+∞)上是增函数.(1)已知函数f (x )=x+,x ∈[1,3],利用上述性质,求函数f (x )的单调区间和值域;(2)已知函数g (x )=和函数h (x )=﹣x ﹣2a ,若对任意x 1∈[0,1],总存在x 2∈[0,1],使得h(x 2)=g (x 1)成立,求实数a 的值. 21.已知函数f(x)=ax2+bx+c,满足f(1)=﹣,且3a>2c>2b.(1)求证:a>0时,的取值范围;(2)证明函数f(x)在区间(0,2)内至少有一个零点;(3)设x1,x2是函数f(x)的两个零点,求|x1﹣x2|的取值范围.22.如图,平面ABB1A1为圆柱OO1的轴截面,点C为底面圆周上异于A,B的任意一点.(Ⅰ)求证:BC⊥平面A1AC;(Ⅱ)若D为AC的中点,求证:A1D∥平面O1BC.23.如图,在五面体ABCDEF中,四边形ABCD是边长为4的正方形,EF∥AD,平面ADEF⊥平面ABCD,且BC=2EF,AE=AF,点G是EF的中点.(Ⅰ)证明:AG⊥平面ABCD;(Ⅱ)若直线BF与平面ACE所成角的正弦值为,求AG的长.24.已知数列{a n}和{b n}满足a1•a2•a3…a n=2(n∈N*),若{a n}为等比数列,且a1=2,b3=3+b2.(1)求a n和b n;(2)设c n=(n∈N*),记数列{c n}的前n项和为S n,求S n.五华区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】A【解析】解析:本题考查直线的参数方程、圆的极坐标方程及其直线与圆的位置关系.在直角坐标系中,圆C的方程为,直线的普通方程为,直线过定点,∵22((1)4x y +-=l tan (1)y x α-=-l M ,∴点在圆的内部.当最小时,直线直线,,∴直线的斜率为,∴||2MC <M C ||AB l ⊥MC 1MC k =-l 1,选A .4πα=2. 【答案】B【解析】解:把函数y=cos (2x+φ)(|φ|<)的图象向左平移个单位,得到函数y=f (x )=cos[2(x+)+φ]=cos (2x+φ+)的图象关于直线x=对称,则2×+φ+=k π,求得φ=k π﹣,k ∈Z ,故φ=﹣,故选:B . 3. 【答案】B【解析】解:A 选项中,两个平面可以相交,l 与交线平行即可,故不正确;B 选项中,垂直于同一平面的两个平面平行,正确;C 选项中,直线与直线相交、平行、异面都有可能,故不正确;D 中选项也可能相交.故选:B .【点评】本题考查平面与平面,直线与直线,直线与平面的位置关系,考查学生分析解决问题的能力,比较基础. 4. 【答案】C【解析】解:∵S 1=0,i 1=1;S 2=1,i 2=2;S 3=5,i 3=3;S 4=14,i 4=4;S 5=30,i=5>4退出循环,故答案为C .【点评】本题考查程序框图的运算,通过对框图的分析,得出运算过程,按照运算结果进行判断结果,属于基础题. 5. 【答案】C【解析】解:由题意可得抛物线y 2=2px (p >0)开口向右,焦点坐标(,0),准线方程x=﹣,由抛物线的定义可得抛物线上横坐标为4的点到准线的距离等于5,即4﹣(﹣)=5,解之可得p=2故抛物线的准线方程为x=﹣1.故选:C .【点评】本题考查抛物线的定义,关键是由抛物线的方程得出其焦点和准线,属基础题. 6. 【答案】【解析】选C.由题意得log 2(a +6)+2log 26=9.即log 2(a +6)=3,∴a +6=23=8,∴a =2,故选C.7. 【答案】B 【解析】试题分析:由等差数列的性质可知,16a 84102=+=+a a a .考点:等差数列的性质.8. 【答案】D【解析】解:∵A+B+C=180°,∴sinB=sin (A+C )=sinAcosC+sinCcosA=2cosCsinA ,∴sinCcosA ﹣sinAcosC=0,即sin (C ﹣A )=0,∴A=C 即为等腰三角形.故选:D .【点评】本题考查三角形形状的判断,考查和角的三角函数,比较基础. 9. 【答案】C【解析】解:由题,f (x )的定义域为(0,+∞),f ′(x )=2x ﹣2﹣,令2x ﹣2﹣>0,整理得x 2﹣x ﹣2>0,解得x >2或x <﹣1,结合函数的定义域知,f ′(x )>0的解集为(2,+∞).故选:C.10.【答案】B【解析】排列、组合的实际应用;空间中直线与直线之间的位置关系.【专题】计算题;压轴题.【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,求安全存放的不同方法的种数.首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况.然后求出即可得到答案.【解答】解:8种化工产品分4组,设四棱锥的顶点是P,底面四边形的个顶点为A、B、C、D.分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,(PA、DC;PB、AD;PC、AB;PD、BC)或(PA、BC;PD、AB;PC、AD;PB、DC)那么安全存放的不同方法种数为2A44=48.故选B.【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间几何与概率问题联系在一起有一定的综合性且非常新颖.11.【答案】D12.【答案】B【解析】解:若f(x)=|x﹣m|﹣|x﹣1|是定义在R上的奇函数,则f(0)=|m|﹣1=0,则m=1或m=﹣1,当m=1时,f(x)=|x﹣1|﹣|x﹣1|=0,此时为偶函数,不满足条件,当m=﹣1时,f(x)=|x+1|﹣|x﹣1|,此时为奇函数,满足条件,作出函数f(x)的图象如图:则函数在上为增函数,最小值为﹣2,故正确的是B,故选:B【点评】本题主要考查函数的奇偶性的应用,根据条件求出m的值是解决本题的关键.注意使用数形结合进行求解.二、填空题13.【答案】 546 .【解析】解:当n=2k﹣1(k∈N*)时,a2k+1=a2k﹣1+1,数列{a2k﹣1}为等差数列,a2k﹣1=a1+k﹣1=k;当n=2k(k∈N*)时,a2k+2=2a2k,数列{a2k}为等比数列,.∴该数列的前16项和S16=(a1+a3+…+a15)+(a2+a4+…+a16)=(1+2+...+8)+(2+22+ (28)=+=36+29﹣2=546.故答案为:546.【点评】本题考查了等差数列与等比数列的通项公式及前n项和公式、“分类讨论方法”,考查了推理能力与计算能力,属于中档题.14.【答案】 ①③④ .【解析】解:①∵,∴T=2π,故①正确;②当x=5时,有x2﹣4x﹣5=0,但当x2﹣4x﹣5=0时,不能推出x一定等于5,故“x=5”是“x2﹣4x﹣5=0”成立的充分不必要条件,故②错误;③易知命题p为真,因为>0,故命题q为真,所以p∧(¬q)为假命题,故③正确;④∵f ′(x )=3x 2﹣6x ,∴f ′(1)=﹣3,∴在点(1,f (1))的切线方程为y ﹣(﹣1)=﹣3(x ﹣1),即3x+y ﹣2=0,故④正确.综上,正确的命题为①③④.故答案为①③④. 15.【答案】 ( 1,±2) .【解析】解:设点P 坐标为(a 2,a )依题意可知抛物线的准线方程为x=﹣2a 2+2=,求得a=±2∴点P 的坐标为( 1,±2)故答案为:( 1,±2).【点评】本题主要考查了两点间的距离公式、抛物线的简单性质,属基础题. 16.【答案】32【解析】试题分析:由题意得11,422k αα==⇒=∴32k α+=考点:幂函数定义17.【答案】(,0)(4,)-∞+∞ 【解析】试题分析:把原不等式看成是关于的一次不等式,在2],[-2a ∈时恒成立,只要满足在2],[-2a ∈时直线在轴上方即可,设关于的函数44)2(24)4(x f(x)y 22+-+-=-+-+==x x a x a x a 对任意的2],[-2a ∈,当-2a =时,044)42(x )2(f(a)y 2>++--+=-==x f ,即086x )2(2>+-=-x f ,解得4x 2x ><或;当2a =时,044)42(x )2(y 2>-+-+==x f ,即02x )2(2>-=x f ,解得2x 0x ><或,∴的取值范围是{x|x 0x 4}<>或;故答案为:(,0)(4,)-∞+∞ .考点:换主元法解决不等式恒成立问题.【方法点晴】本题考查了含有参数的一元二次不等式得解法,解题时应用更换主元的方法,使繁杂问题变得简洁,是易错题.把原不等式看成是关于的一次不等式,在2],[-2a ∈时恒成立,只要满足在2],[-2a ∈时直线在轴上方即可.关键是换主元需要满足两个条件,一是函数必须是关于这个量的一次函数,二是要有这个量的具体范围.18.【答案】 【解析】解:由题意可得三棱锥B1﹣AA1D1的体积是=,三角形AB1D1的面积为4,设点A1到平面AB1D1的距离等于h,则,则h=故点A1到平面AB1D1的距离为.故答案为:.三、解答题19.【答案】【解析】解:(1)设M(x,y),A(x1,y1)、B(x2,y2),则x12﹣y12=2,x22﹣y22=2,两式相减可得(x1+x2)(x1﹣x2)﹣(y1+y2)(y1﹣y2)=0,∴2x(x1﹣x2)﹣2y(y1﹣y2)=0,∴=,∵双曲线C:x2﹣y2=2右支上的弦AB过右焦点F(2,0),∴,化简可得x2﹣2x﹣y2=0,(x≥2)﹣﹣﹣﹣﹣﹣﹣(2)假设存在,设A(x1,y1),B(x2,y2),l AB:y=k(x﹣2)由已知OA⊥OB得:x1x2+y1y2=0,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣①,所以(k2≠1)﹣﹣﹣﹣﹣﹣﹣﹣②联立①②得:k2+1=0无解所以这样的圆不存在.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣20.【答案】【解析】解:(1)由已知可以知道,函数f(x)在x∈[1,2]上单调递减,在x∈[2,3]上单调递增,f(x)min=f(2)=2+2=4,又f(1)=1+4=5,f(3)=3+=;f(1)>f(3)所以f(x)max=f(1)=5所以f(x)在x∈[1,3]的值域为[4,5].(2)y=g(x)==2x+1+﹣8设μ=2x+1,x∈[0,1],1≤μ≤3,则y=﹣8,由已知性质得,当1≤u≤2,即0≤x≤时,g(x)单调递减,所以递减区间为[0,];当2≤u≤3,即≤x≤1时,g(x)单调递增,所以递增区间为[,1];由g(0)=﹣3,g()=﹣4,g(1)=﹣,得g(x)的值域为[﹣4,﹣3].因为h(x)=﹣x﹣2a为减函数,故h(x)∈[﹣1﹣2a,﹣2a],x∈[0,1].根据题意,g(x)的值域为h(x)的值域的子集,从而有,所以a=.21.【答案】【解析】解:(1)∵f(1)=a+b+c=﹣,∴3a+2b+2c=0.又3a>2c>2b,故3a>0,2b<0,从而a>0,b<0,又2c=﹣3a﹣2b及3a>2c>2b知3a>﹣3a﹣2b>2b∵a>0,∴3>﹣3﹣>2,即﹣3<<﹣.(2)根据题意有f(0)=0,f(2)=4a+2b+c=(3a+2b+2c)+a﹣c=a﹣c.下面对c的正负情况进行讨论:①当c>0时,∵a>0,∴f(0)=c>0,f(1)=﹣<0所以函数f(x)在区间(0,1)内至少有一个零点;②当c≤0时,∵a>0,∴f(1)=﹣<0,f(2)=a﹣c>0所以函数f(x)在区间(1,2)内至少有一个零点;综合①②得函数f(x)在区间(0,2)内至少有一个零点;(3).∵x1,x2是函数f(x)的两个零点∴x1,x2是方程ax2+bx+c=0的两根.故x1+x2=﹣,x1x2===从而|x1﹣x2|===.∵﹣3<<﹣,∴|x1﹣x2|.【点评】本题考查了二次函数的性质,对于二次函数要注意数形结合的应用,注意抓住二次函数的开口方向,对称轴,以及判别式的考虑;同时考查了函数的零点与方程根的关系,函数的零点等价于对应方程的根,等价于函数的图象与x轴交点的横坐标,解题时要注意根据题意合理的选择转化.属于中档题.22.【答案】【解析】证明:(Ⅰ)因为AB为圆O的直径,点C为圆O上的任意一点∴BC⊥AC …又圆柱OO1中,AA1⊥底面圆O,∴AA1⊥BC,即BC⊥AA1…而AA1∩AC=A∴BC⊥平面A1AC …(Ⅱ)取BC中点E,连结DE、O1E,∵D为AC的中点∴△ABC中,DE∥AB,且DE=AB …又圆柱OO1中,A1O1∥AB,且∴DE∥A1O1,DE=A1O1∴A1DEO1为平行四边形…∴A1D∥EO1…而A1D⊄平面O1BC,EO1⊂平面O1BC∴A1D∥平面O1BC …【点评】本题主要考查直线与直线、直线与平面、平面与平面的位置关系;考查学生的空间想象能力及推理论证能力.23.【答案】【解析】(本小题满分12分)(Ⅰ)证明:因为AE=AF,点G是EF的中点,所以AG⊥EF.又因为EF∥AD,所以AG⊥AD.…因为平面ADEF⊥平面ABCD,平面ADEF∩平面ABCD=AD,AG⊂平面ADEF,所以AG⊥平面ABCD.…(Ⅱ)解:因为AG⊥平面ABCD,AB⊥AD,所以AG、AD、AB两两垂直.以A为原点,以AB,AD,AG分别为x轴、y轴和z轴,如图建立空间直角坐标系则A(0,0,0),B(4,0,0),C(4,4,0),设AG=t(t>0),则E(0,1,t),F(0,﹣1,t),所以=(﹣4,﹣1,t),=(4,4,0),=(0,1,t).…设平面ACE的法向量为=(x,y,z),由=0,=0,得,令z=1,得=(t,﹣t,1).因为BF与平面ACE所成角的正弦值为,所以|cos<>|==,…即=,解得t2=1或.所以AG=1或AG=.…【点评】本题考查线面垂直的证明,考查满足条件的线段长的求法,是中档题,解题时要认真审题,注意向量法的合理运用.24.【答案】【解析】解:(1)设等比数列{a n}的公比为q,∵数列{a n}和{b n}满足a1•a2•a3…a n=2(n∈N*),a1=2,∴,,,∴b1=1,=2q>0,=2q2,又b3=3+b2.∴23=2q2,解得q=2.∴a n=2n.∴=a1•a2•a3…a n=2×22×…×2n=,∴.(2)c n===﹣=,∴数列{c n}的前n项和为S n=﹣+…+=﹣2=﹣2+=﹣﹣1.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、递推式的应用、“裂项求和”,考查了推理能力与计算能力,属于中档题.。

石龙区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

石龙区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

石龙区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 全称命题:∀x ∈R ,x 2>0的否定是( )A .∀x ∈R ,x 2≤0B .∃x ∈R ,x 2>0C .∃x ∈R ,x 2<0D .∃x ∈R ,x 2≤02. 已知圆M 过定点)1,0(且圆心M 在抛物线y x 22 上运动,若x 轴截圆M 所得的弦为||PQ ,则弦长||PQ 等于( )A .2B .3C .4D .与点位置有关的值【命题意图】本题考查了抛物线的标准方程、圆的几何性质,对数形结合能力与逻辑推理运算能力要求较高,难度较大.3. 已知复数z 满足z •i=2﹣i ,i 为虚数单位,则z=( ) A .﹣1﹣2i B .﹣1+2iC .1﹣2iD .1+2i4. 函数g (x )是偶函数,函数f (x )=g (x ﹣m ),若存在φ∈(,),使f (sin φ)=f (cos φ),则实数m 的取值范围是( )A .() B .(,]C .() D .(]5. 下列正方体或四面体中,P 、Q 、R 、S 分别是所在棱的中点,这四个点不共面的一个图形是 ( )6. 已知函数f (x )的定义域为[a ,b],函数y=f (x )的图象如下图所示,则函数f (|x|)的图象是( )A.B.C.D.7.已知直线a平面α,直线b⊆平面α,则()A.a b B.与异面C.与相交D.与无公共点8.命题“若a>b,则a﹣8>b﹣8”的逆否命题是()A.若a<b,则a﹣8<b﹣8 B.若a﹣8>b﹣8,则a>bC.若a≤b,则a﹣8≤b﹣8 D.若a﹣8≤b﹣8,则a≤b9.若命题p:∃x∈R,x﹣2>0,命题q:∀x∈R,<x,则下列说法正确的是()A.命题p∨q是假命题B.命题p∧(¬q)是真命题C.命题p∧q是真命题 D.命题p∨(¬q)是假命题10.如图,空间四边形OABC中,,,,点M在OA上,且,点N为BC中点,则等于()A.B. C.D.11.直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为()A.B.C.D.12.已知在R上可导的函数f(x)的图象如图所示,则不等式f(x)•f′(x)<0的解集为()A.(﹣2,0)B.(﹣∞,﹣2)∪(﹣1,0)C.(﹣∞,﹣2)∪(0,+∞)D.(﹣2,﹣1)∪(0,+∞)二、填空题13x和所支出的维修费用y(万元)的统计资料如表:根据上表数据可得y与x之间的线性回归方程=0.7x+,据此模型估计,该机器使用年限为14年时的维修费用约为万元.14.满足关系式{2,3}⊆A⊆{1,2,3,4}的集合A的个数是.15.若在圆C:x2+(y﹣a)2=4上有且仅有两个点到原点O距离为1,则实数a的取值范围是.16.在△ABC中,点D在边AB上,CD⊥BC,AC=5,CD=5,BD=2AD,则AD的长为.17.设f(x)是(x2+)6展开式的中间项,若f(x)≤mx在区间[,]上恒成立,则实数m的取值范围是.18.递增数列{a n}满足2a n=a n﹣1+a n+1,(n∈N*,n>1),其前n项和为S n,a2+a8=6,a4a6=8,则S10=.三、解答题19.如图,M、N是焦点为F的抛物线y2=2px(p>0)上两个不同的点,且线段MN中点A的横坐标为,(1)求|MF|+|NF|的值;(2)若p=2,直线MN与x轴交于点B点,求点B横坐标的取值范围.20.已知函数2(x)1ax f x =+是定义在(-1,1)上的函数, 12()25f = (1)求a 的值并判断函数(x)f 的奇偶性(2)用定义法证明函数(x)f 在(-1,1)上是增函数;21.已知等差数列{a n }的首项和公差都为2,且a 1、a 8分别为等比数列{b n }的第一、第四项. (1)求数列{a n }、{b n }的通项公式;(2)设c n =,求{c n }的前n 项和S n .22.设函数f(x)=lg(a x﹣b x),且f(1)=lg2,f(2)=lg12(1)求a,b的值.(2)当x∈[1,2]时,求f(x)的最大值.(3)m为何值时,函数g(x)=a x的图象与h(x)=b x﹣m的图象恒有两个交点.23.设集合A={x|0<x﹣m<3},B={x|x≤0或x≥3},分别求满足下列条件的实数m的取值范围.(1)A∩B=∅;(2)A∪B=B.24.已知,其中e是自然常数,a∈R(Ⅰ)讨论a=1时,函数f(x)的单调性、极值;(Ⅱ)求证:在(Ⅰ)的条件下,f(x)>g(x)+.石龙区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】D【解析】解:命题:∀x ∈R ,x 2>0的否定是:∃x ∈R ,x 2≤0.故选D .【点评】这类问题的常见错误是没有把全称量词改为存在量词,或者对于“>”的否定用“<”了.这里就有注意量词的否定形式.如“都是”的否定是“不都是”,而不是“都不是”.特称命题的否定是全称命题,“存在”对应“任意”.2. 【答案】A【解析】过M 作MN 垂直于x 轴于N ,设),(00y x M ,则)0,(0x N ,在MNQ Rt ∆中,0||y MN =,MQ 为圆的半径,NQ 为PQ 的一半,因此2222222200000||4||4(||||)4[(1)]4(21)PQ NQ MQ MN x y y x y ==-=+--=-+又点M 在抛物线上,∴0202y x =,∴2200||4(21)4PQ x y =-+=,∴2||=PQ .3. 【答案】A【解析】解:由z •i=2﹣i 得,,故选A4. 【答案】A【解析】解:∵函数g (x )是偶函数,函数f (x )=g (x ﹣m ), ∴函数f (x )关于x=m 对称,若φ∈(,),则sinφ>cosφ,则由f(sinφ)=f(cosφ),则=m,即m==(sinφ×+cosαφ)=sin(φ+)当φ∈(,),则φ+∈(,),则<sin(φ+)<,则<m<,故选:A【点评】本题主要考查函数奇偶性和对称性之间的应用以及三角函数的图象和性质,利用辅助角公式是解决本题的关键.5.【答案】D【解析】考点:平面的基本公理与推论.6.【答案】B【解析】解:∵y=f(|x|)是偶函数,∴y=f(|x|)的图象是由y=f(x)把x>0的图象保留,x<0部分的图象关于y轴对称而得到的.故选B.【点评】考查函数图象的对称变换和识图能力,注意区别函数y=f(x)的图象和函数f(|x|)的图象之间的关系,函数y=f(x)的图象和函数|f(x)|的图象之间的关系;体现了数形结合和运动变化的思想,属基础题.7.【答案】D【解析】试题分析:因为直线a平面α,直线b⊆平面α,所以//a b或与异面,故选D.考点:平面的基本性质及推论.8.【答案】D【解析】解:根据逆否命题和原命题之间的关系可得命题“若a>b,则a﹣8>b﹣8”的逆否命题是:若a﹣8≤b ﹣8,则a≤b.故选D.【点评】本题主要考查逆否命题和原命题之间的关系,要求熟练掌握四种命题之间的关系.比较基础.9.【答案】B【解析】解:∃x∈R,x﹣2>0,即不等式x﹣2>0有解,∴命题p是真命题;x<0时,<x无解,∴命题q是假命题;∴p∨q为真命题,p∧q是假命题,¬q是真命题,p∨(¬q)是真命题,p∧(¬q)是真命题;故选:B.【点评】考查真命题,假命题的概念,以及p∨q,p∧q,¬q的真假和p,q真假的关系.10.【答案】B【解析】解:===;又,,,∴.故选B.【点评】本题考查了向量加法的几何意义,是基础题.11.【答案】A【解析】直线x﹣2y+2=0与坐标轴的交点为(﹣2,0),(0,1),直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点;故.故选A.【点评】本题考查了椭圆的基本性质,只需根据已知条件求出a,b,c即可,属于基础题型.12.【答案】B【解析】解:由f(x)图象单调性可得f′(x)在(﹣∞,﹣1)∪(0,+∞)大于0,在(﹣1,0)上小于0,∴f(x)f′(x)<0的解集为(﹣∞,﹣2)∪(﹣1,0).故选B.二、填空题13.【答案】7.5【解析】解:∵由表格可知=9,=4,∴这组数据的样本中心点是(9,4),根据样本中心点在线性回归直线=0.7x+上,∴4=0.7×9+,∴=﹣2.3,∴这组数据对应的线性回归方程是=0.7x﹣2.3,∵x=14,∴=7.5,故答案为:7.5【点评】本题考查线性回归方程,考查样本中心点,做本题时要注意本题把利用最小二乘法来求线性回归方程的系数的过程省掉,只要求a的值,这样使得题目简化,注意运算不要出错.14.【答案】4.【解析】解:由题意知,满足关系式{2,3}⊆A⊆{1,2,3,4}的集合A有:{2,3},{2,3,1},{2,3,4},{2,3,1,4},故共有4个,故答案为:4.15.【答案】﹣3<a<﹣1或1<a<3.【解析】解:根据题意知:圆x2+(y﹣a)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,两圆圆心距d=|a|,∴2﹣1<|a|<2+1,∴﹣3<a<﹣1或1<a<3.故答案为:﹣3<a<﹣1或1<a<3.【点评】本题体现了转化的数学思想,解题的关键在于将问题转化为:圆x2+(y﹣a)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,属中档题.16.【答案】5.【解析】解:如图所示:延长BC,过A做AE⊥BC,垂足为E,∵CD⊥BC,∴CD∥AE,∵CD=5,BD=2AD,∴,解得AE=,在RT△ACE,CE===,由得BC=2CE=5,在RT△BCD中,BD===10,则AD=5,故答案为:5.【点评】本题考查平行线的性质,以及勾股定理,做出辅助线是解题的关键,属于中档题.17.【答案】[5,+∞).【解析】二项式定理.【专题】概率与统计;二项式定理.【分析】由题意可得f(x)=x3,再由条件可得m≥x2在区间[,]上恒成立,求得x2在区间[,]上的最大值,可得m的范围.【解答】解:由题意可得f(x)=x6=x3.由f(x)≤mx在区间[,]上恒成立,可得m≥x2在区间[,]上恒成立,由于x2在区间[,]上的最大值为5,故m≥5,即m的范围为[5,+∞),故答案为:[5,+∞).【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,函数的恒成立问题,属于中档题.18.【答案】35.【解析】解:∵2a n=a n﹣1+a n+1,(n∈N*,n>1),∴数列{a n}为等差数列,又a2+a8=6,∴2a5=6,解得:a5=3,又a4a6=(a5﹣d)(a5+d)=9﹣d2=8,∴d2=1,解得:d=1或d=﹣1(舍去)∴a n=a5+(n﹣5)×1=3+(n﹣5)=n﹣2.∴a1=﹣1,∴S10=10a1+=35.故答案为:35.【点评】本题考查数列的求和,判断出数列{a n}为等差数列,并求得a n=2n﹣1是关键,考查理解与运算能力,属于中档题.三、解答题19.【答案】【解析】解:(1)设M(x1,y1),N(x2,y2),则x1+x2=8﹣p,|MF|=x1+,|NF|=x2+,∴|MF|+|NF|=x1+x2+p=8;(2)p=2时,y2=4x,若直线MN斜率不存在,则B(3,0);若直线MN斜率存在,设A(3,t)(t≠0),M(x1,y1),N(x2,y2),则代入利用点差法,可得y 12﹣y 22=4(x 1﹣x 2)∴k MN=, ∴直线MN 的方程为y ﹣t=(x ﹣3), ∴B 的横坐标为x=3﹣,直线MN 代入y 2=4x ,可得y 2﹣2ty+2t 2﹣12=0△>0可得0<t 2<12,∴x=3﹣∈(﹣3,3), ∴点B 横坐标的取值范围是(﹣3,3).【点评】本题考查抛物线的定义,考查点差法,考查学生分析解决问题的能力,属于中档题.20.【答案】(1)1a =,()f x 为奇函数;(2)详见解析。

云城区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

云城区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

云城区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知角θ的终边经过点P (4,m ),且sin θ=,则m 等于( )A .﹣3B .3C .D .±32. 如图,在棱长为1的正方体中,为棱中点,点在侧面内运动,若1111ABCD A B C D -P 11A B Q 11DCC D ,则动点的轨迹所在曲线为( )1PBQ PBD ∠=∠QA.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识,意在考查空间想象能力.3. 定义运算:,,a a ba b b a b≤⎧*=⎨>⎩.例如121*=,则函数()sin cos f x x x =*的值域为( )A .⎡⎢⎣B .[]1,1-C .⎤⎥⎦D .⎡-⎢⎣4. 某大学的名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽8车,每车限坐名同学(乘同一辆车的名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘44坐甲车的名同学中恰有名同学是来自同一年级的乘坐方式共有( )种.42A .B .C .D .24184836【命题意图】本题考查排列与组合的基础知识,考查学生分类讨论,运算能力以及逻辑推理能力.5. 阅读如图所示的程序框图,运行相应的程序.若该程序运行后输出的结果不大于20,则输入的整数i 的最大值为()A.3B.4C.5D.66.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A.钱B.钱C.钱D.钱7.某几何体的三视图如图所示,且该几何体的体积是,则正视图中的x的值是()A.2B.C.D.38.满足集合M⊆{1,2,3,4},且M∩{1,2,4}={1,4}的集合M的个数为()A.1B.2C.3D.49.下列命题中正确的是()A.复数a+bi与c+di相等的充要条件是a=c且b=dB.任何复数都不能比较大小C .若=,则z 1=z 2D .若|z 1|=|z 2|,则z 1=z 2或z 1=10.若命题p :∀x ∈R ,2x 2﹣1>0,则该命题的否定是( )A .∀x ∈R ,2x 2﹣1<0B .∀x ∈R ,2x 2﹣1≤0C .∃x ∈R ,2x 2﹣1≤0D .∃x ∈R ,2x 2﹣1>011.设方程|x 2+3x ﹣3|=a 的解的个数为m ,则m 不可能等于( )A .1B .2C .3D .412.若函数则“a=1”是“函数y=f (x )在R 上单调递减”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题13.如图所示是y=f (x )的导函数的图象,有下列四个命题:①f (x )在(﹣3,1)上是增函数;②x=﹣1是f (x )的极小值点;③f (x )在(2,4)上是减函数,在(﹣1,2)上是增函数;④x=2是f (x )的极小值点.其中真命题为 (填写所有真命题的序号).14.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2﹣5x+4=0的两个根,则S 6= .15.方程(x+y ﹣1)=0所表示的曲线是 .16.已知函数322()7f x x ax bx a a =++--在1x =处取得极小值10,则ba的值为 ▲ .17.如图所示,在三棱锥C ﹣ABD 中,E 、F 分别是AC 和BD 的中点,若CD=2AB=4,EF ⊥AB ,则EF 与CD所成的角是 .18.设函数f (x )=若f[f (a )],则a 的取值范围是 .三、解答题19.(本小题满分12分)在等比数列中,.{}n a 3339,22a S ==(1)求数列的通项公式;{}n a (2)设,且为递增数列,若,求证:.2216log n n b a +={}n b 11n n n c b b +=A 12314n c c c c ++++< 20.已知椭圆C : +=1(a >b >0)的左,右焦点分别为F 1,F 2,该椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+相切.(Ⅰ)求椭圆C 的方程;(Ⅱ)如图,若斜率为k (k ≠0)的直线l 与x 轴,椭圆C 顺次交于P ,Q ,R (P 点在椭圆左顶点的左侧)且∠RF 1F 2=∠PF 1Q ,求证:直线l 过定点,并求出斜率k 的取值范围.21.(本小题12分)在多面体中,四边形与是边长均为正方形,平面ABCDEFG ABCD CDEF a CF ⊥,平面,且.ABCD BG ⊥ABCD 24AB BG BH ==(1)求证:平面平面;AGH ⊥EFG (2)若,求三棱锥的体积.4a =G ADE -【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,间在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想.22.如图,四边形ABCD 与A ′ABB ′都是边长为a 的正方形,点E 是A ′A 的中点,AA ′⊥平面ABCD .(1)求证:A ′C ∥平面BDE ;(2)求体积V A ′﹣ABCD 与V E ﹣ABD 的比值.23.(本小题满分12分)已知圆与圆:关于直线对称,且点在圆上.M N 22235(35(r y x =++-x y =35,31(-D M (1)判断圆与圆的位置关系;M N (2)设为圆上任意一点,,,三点不共线,为的平分线,且交P M 35,1(-A )35,1(B B A P 、、PG APB ∠于. 求证:与的面积之比为定值.AB G PBG ∆APG ∆24.已知函数f (x )=的定义域为A ,集合B 是不等式x 2﹣(2a+1)x+a 2+a >0的解集.(Ⅰ) 求A ,B ;(Ⅱ) 若A ∪B=B ,求实数a 的取值范围.云城区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】B【解析】解:角θ的终边经过点P (4,m ),且sin θ=,可得,(m >0)解得m=3.故选:B .【点评】本题考查任意角的三角函数的定义的应用,基本知识的考查. 2. 【答案】C.【解析】易得平面,所有满足的所有点在以为轴线,以所在直//BP 11CC D D 1PBD PBX ∠=∠X BP 1BD 线为母线的圆锥面上,∴点的轨迹为该圆锥面与平面的交线,而已知平行于圆锥面轴线的平面截圆Q 11CC D D 锥面得到的图形是双曲线,∴点的轨迹是双曲线,故选C.Q 3. 【答案】D 【解析】考点:1、分段函数的解析式;2、三角函数的最值及新定义问题.4. 【答案】A【解析】分类讨论,有2种情形.孪生姐妹乘坐甲车,则有种. 孪生姐妹不乘坐甲车,则有12121223=C C C 种. 共有24种. 选A.12121213=C C C 5. 【答案】B【解析】解:模拟执行程序框图,可得s=0,n=0满足条件n <i ,s=2,n=1满足条件n <i ,s=5,n=2满足条件n<i,s=10,n=3满足条件n<i,s=19,n=4满足条件n<i,s=36,n=5所以,若该程序运行后输出的结果不大于20,则输入的整数i的最大值为4,有n=4时,不满足条件n<i,退出循环,输出s的值为19.故选:B.【点评】本题主要考查了循环结构的程序框图,属于基础题.6.【答案】B【解析】解:依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,则由题意可知,a﹣2d+a﹣d=a+a+d+a+2d,即a=﹣6d,又a﹣2d+a﹣d+a+a+d+a+2d=5a=5,∴a=1,则a﹣2d=a﹣2×=.故选:B.7.【答案】C解析:由三视图可知:原几何体是一个四棱锥,其中底面是一个上、下、高分别为1、2、2的直角梯形,一条长为x的侧棱垂直于底面.则体积为=,解得x=.故选:C.8.【答案】B【解析】解:∵M∩{1,2,4}={1,4},∴1,4是M中的元素,2不是M中的元素.∵M⊆{1,2,3,4},∴M={1,4}或M={1,3,4}.故选:B.9.【答案】C【解析】解:A.未注明a,b,c,d∈R.B.实数是复数,实数能比较大小.C.∵=,则z1=z2,正确;D.z1与z2的模相等,符合条件的z1,z2有无数多个,如单位圆上的点对应的复数的模都是1,因此不正确.故选:C.10.【答案】C【解析】解:命题p:∀x∈R,2x2﹣1>0,则其否命题为:∃x∈R,2x2﹣1≤0,故选C;【点评】此题主要考查命题否定的定义,是一道基础题;11.【答案】A【解析】解:方程|x2+3x﹣3|=a的解的个数可化为函数y=|x2+3x﹣3|与y=a的图象的交点的个数,作函数y=|x2+3x﹣3|与y=a的图象如下,,结合图象可知,m的可能值有2,3,4;故选A.12.【答案】A【解析】解:设g(x)=,h(x)=﹣x+a,则g(x),h(x)都是单调递减∵y=在(﹣∞,0]上单调递减且h(x)≥h(0)=1若a=1时,y=﹣x+a单调递减,且h(x)<h(0)=1∴,即函数y=f(x)在R上单调递减若函数y=f(x)在R上单调递减,则g(0)≤h(0)∴a≤1则“a=1”是“函数y=f(x)在R上单调递减”的充分不必要条件故选A【点评】本题以充分必要条件的判断为载体,主要考查了分段函数的单调性的判断,解题中要注意分段函数的端点处的函数值的处理二、填空题13.【答案】 ① 【解析】解:由图象得:f(x)在(1,3)上递减,在(﹣3,1),(3,+∞)递增,∴①f(x)在(﹣3,1)上是增函数,正确,x=3是f(x)的极小值点,②④不正确;③f(x)在(2,4)上是减函数,在(﹣1,2)上是增函数,不正确,故答案为:①.14.【答案】63【解析】解:解方程x2﹣5x+4=0,得x1=1,x2=4.因为数列{a n}是递增数列,且a1,a3是方程x2﹣5x+4=0的两个根,所以a1=1,a3=4.设等比数列{a n}的公比为q,则,所以q=2.则.故答案为63.【点评】本题考查了等比数列的通项公式,考查了等比数列的前n项和,是基础的计算题.15.【答案】 两条射线和一个圆 .【解析】解:由题意可得x2+y2﹣4≥0,表示的区域是以原点为圆心的圆的外部以及圆上的部分.由方程(x+y﹣1)=0,可得x+y﹣1=0,或x2+y2=4,故原方程表示一条直线在圆外的地方和一个圆,即两条射线和一个圆,故答案为:两条射线和一个圆.【点评】本题主要考查直线和圆的方程的特征,属于基础题.16.【答案】12考点:函数极值【方法点睛】函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f′(x)―→求方程f′(x)=0的根―→列表检验f′(x)在f′(x)=0的根的附近两侧的符号―→下结论.(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f′(x0)=0,且在该点左、右两侧的导数值符号相反.17.【答案】 30° .【解析】解:取AD的中点G,连接EG,GF则EG DC=2,GF AB=1,故∠GEF即为EF与CD所成的角.又∵FE⊥AB∴FE⊥GF∴在Rt△EFG中EG=2,GF=1故∠GEF=30°.故答案为:30°【点评】此题的关键是作出AD的中点然后利用题中的条件在特殊三角形中求解,如果一味的想利用余弦定理求解就出力不讨好了.18.【答案】 或a=1 .【解析】解:当时,.∵,由,解得:,所以;当,f (a )=2(1﹣a ),∵0≤2(1﹣a )≤1,若,则,分析可得a=1.若,即,因为2[1﹣2(1﹣a )]=4a ﹣2,由,得:.综上得:或a=1.故答案为:或a=1.【点评】本题考查了函数的值域,考查了分类讨论的数学思想,此题涉及二次讨论,解答时容易出错,此题为中档题. 三、解答题19.【答案】(1);(2)证明见解析.131622n n n a a -⎛⎫==- ⎪⎝⎭A 或【解析】试题分析:(1)将化为,联立方程组,求出,可得;3339,22a S ==1,a q 1,a q 131622n n n a a -⎛⎫==- ⎪⎝⎭A 或(2)由于为递增数列,所以取,化简得,{}n b 1162n n a -⎛⎫=⋅- ⎪⎝⎭2n b n =,其前项和为.()1111114141n n n c b b n n n n +⎛⎫===- ⎪++⎝⎭A ()1114414n -<+考点:数列与裂项求和法.120.【答案】【解析】(Ⅰ)解:椭圆的左,右焦点分别为F1(﹣c,0),F2(c,0),椭圆的离心率为,即有=,即a=c,b==c,以原点为圆心,椭圆的短半轴长为半径的圆方程为x2+y2=b2,直线y=x+与圆相切,则有=1=b,即有a=,则椭圆C的方程为+y2=1;(Ⅱ)证明:设Q(x1,y1),R(x2,y2),F1(﹣1,0),由∠RF1F2=∠PF1Q,可得直线QF1和RF1关于x轴对称,即有+=0,即+=0,即有x 1y 2+y 2+x 2y 1+y 1=0,①设直线PQ :y=kx+t ,代入椭圆方程,可得(1+2k 2)x 2+4ktx+2t 2﹣2=0,判别式△=16k 2t 2﹣4(1+2k 2)(2t 2﹣2)>0,即为t 2﹣2k 2<1②x 1+x 2=,x 1x 2=,③y 1=kx 1+t ,y 2=kx 2+t ,代入①可得,(k+t )(x 1+x 2)+2t+2kx 1x 2=0,将③代入,化简可得t=2k ,则直线l 的方程为y=kx+2k ,即y=k (x+2).即有直线l 恒过定点(﹣2,0).将t=2k 代入②,可得2k 2<1,解得﹣<k <0或0<k <.则直线l 的斜率k 的取值范围是(﹣,0)∪(0,).【点评】本题考查椭圆的方程和性质,主要是离心率的运用,注意运用直线和圆相切的条件,联立直线方程和椭圆方程,运用韦达定理,考查化简整理的运算能力,属于中档题和易错题.21.【答案】【解析】(1)连接,由题意,知,,∴平面.FH CD BC ⊥CD CF ⊥CD ⊥BCFG 又∵平面,∴.GH ⊂BCFG CD ⊥GH 又∵,∴……………………………2分EF CD A EF GH ⊥由题意,得,,,∴,14BH a =34CH a =12BG a =2222516GH BG BH a =+=,,22225()4FG CF BG BC a =-+=22222516FH CF CH a =+=则,∴.……………………………4分222FH FG GH =+GH FG ⊥又∵,平面.……………………………5分EF FG F = GH ⊥EFG ∵平面,∴平面平面.……………………………6分GH ⊂AGH AGH ⊥EFG22.【答案】【解析】(1)证明:设BD交AC于M,连接ME.∵ABCD为正方形,∴M为AC中点,又∵E为A′A的中点,∴ME为△A′AC的中位线,∴ME∥A′C.又∵ME⊂平面BDE,A′C⊄平面BDE,∴A′C∥平面BDE.(2)解:∵V E﹣ABD====V A′﹣ABCD.∴V A′﹣ABCD:V E﹣ABD=4:1.23.【答案】(1)圆与圆相离;(2)定值为2.【解析】试题分析:(1)若两圆关于直线对称,则圆心关于直线对称,并且两圆的半径相等,可先求得圆M 的圆心,,然后根据圆心距与半径和比较大小,从而判断圆与圆的位置关系;(2)因为点G 到AP 和BP DM r =MN 的距离相等,所以两个三角形的面积比值,根据点P 在圆M 上,代入两点间距离公式求和PAPB S S APG PBG =∆∆PB ,最后得到其比值.PA 试题解析:(1) ∵圆的圆心关于直线的对称点为,N 35,35(-N x y =)35,35(-M ∴,916)34(||222=-==MD r ∴圆的方程为.M 916)35()35(22=-++y x ∵,∴圆与圆相离.3823210)310()310(||22=>=+=r MN M N考点:1.圆与圆的位置关系;2.点与圆的位置关系.124.【答案】【解析】解:(Ⅰ)∵,化为(x ﹣2)(x+1)>0,解得x >2或x <﹣1,∴函数f (x )=的定义域A=(﹣∞,﹣1)∪(2,+∞);由不等式x 2﹣(2a+1)x+a 2+a >0化为(x ﹣a )(x ﹣a ﹣1)>0,又a+1>a ,∴x >a+1或x <a ,∴不等式x 2﹣(2a+1)x+a 2+a >0的解集B=(﹣∞,a )∪(a+1,+∞);(Ⅱ)∵A ∪B=B ,∴A ⊆B .∴,解得﹣1≤a≤1.∴实数a的取值范围[﹣1,1]. 。

盘龙区二中2018-2019学年高二上学期第二次月考试卷数学

盘龙区二中2018-2019学年高二上学期第二次月考试卷数学

盘龙区二中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知幂函数y=f (x )的图象过点(,),则f (2)的值为( )A .B .﹣C .2D .﹣22. 阅读右图所示的程序框图,若8,10m n ==,则输出的S 的值等于( ) A .28 B .36 C .45 D .1203. 已知△ABC 是锐角三角形,则点P (cosC ﹣sinA ,sinA ﹣cosB )在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4. 在等差数列{}n a 中,首项10,a =公差0d ≠,若1237k a a a a a =++++,则k =A 、22B 、23C 、24D 、255. 直线x ﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为( )A .B .C .D .6. 如图给出的是计算的值的一个流程图,其中判断框内应填入的条件是( )A .i ≤21B .i ≤11C .i ≥21D .i ≥117. 给出下列结论:①平行于同一条直线的两条直线平行;②平行于同一条直线的两个平面平行;③平行于同一个平面的两条直线平行;④平行于同一个平面的两个平面平行.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个8. 已知直线l :2y kx =+过椭圆)0(12222>>=+b ay x 的上顶点B 和左焦点F ,且被圆224x y +=截得的弦长为L ,若L ≥e 的取值范围是( ) (A ) ⎥⎦⎤⎝⎛550, ( B ) 0⎛⎝⎦ (C ) ⎥⎦⎤⎝⎛5530, (D ) ⎥⎦⎤⎝⎛5540, 9. 对“a ,b ,c 是不全相等的正数”,给出两个判断: ①(a ﹣b )2+(b ﹣c )2+(c ﹣a )2≠0;②a ≠b ,b ≠c ,c ≠a 不能同时成立,下列说法正确的是( )A .①对②错B .①错②对C .①对②对D .①错②错10.设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (﹣2)=0,当x >0时,xf ′(x )﹣f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(﹣∞,﹣2)∪(0,2)B .(﹣∞,﹣2)∪(2,+∞)C .(﹣2,0)∪(2,+∞)D .(﹣2,0)∪(0,2)11.若函数f (x )是奇函数,且在(0,+∞)上是增函数,又f (﹣3)=0,则(x ﹣2)f (x )<0的解集是( ) A .(﹣3,0)∪(2,3) B .(﹣∞,﹣3)∪(0,3) C .(﹣∞,﹣3)∪(3,+∞) D .(﹣3,0)∪(2,+∞)12.三个数60.5,0.56,log 0.56的大小顺序为( ) A .log 0.56<0.56<60.5 B .log 0.56<60.5<0.56 C .0.56<60.5<log 0.56 D .0.56<log 0.56<60.5二、填空题13.已知直线5x+12y+m=0与圆x 2﹣2x+y 2=0相切,则m= .14.对任意实数x ,不等式ax2﹣2ax ﹣4<0恒成立,则实数a 的取值范围是 . 15.已知α为钝角,sin (+α)=,则sin (﹣α)= .16.已知数列{a n }的前n 项和为S n ,a 1=1,2a n+1=a n ,若对于任意n ∈N *,当t ∈[﹣1,1]时,不等式x 2+tx+1>S n 恒成立,则实数x 的取值范围为 .17.【徐州市第三中学2017~2018学年度高三第一学期月考】函数()3f x x x =-+的单调增区间是__________.18.若函数f(x)=log a x(其中a为常数,且a>0,a≠1)满足f(2)>f(3),则f(2x﹣1)<f(2﹣x)的解集是.三、解答题19.(1)直线l的方程为(a+1)x+y+2﹣a=0(a∈R).若l在两坐标轴上的截距相等,求a的值;(2)已知A(﹣2,4),B(4,0),且AB是圆C的直径,求圆C的标准方程.20.已知直线l:(t为参数),曲线C1:(θ为参数).(Ⅰ)设l与C1相交于A,B两点,求|AB|;(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.21.选修4﹣4:坐标系与参数方程极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知直线l的参数方程为,(t为参数),曲线C的极坐标方程为ρsin2θ=8cosθ.(Ⅰ)求C的直角坐标方程;(Ⅱ)设直线l与曲线C交于A、B两点,求弦长|AB|.22.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:零件的个数x(个) 2 3 4 5加工的时间y(小时) 2.5 3 4 4.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程=x+,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?参考公式:回归直线=bx+a,其中b==,a=﹣b.23.已知△ABC的三边是连续的三个正整数,且最大角是最小角的2倍,求△ABC的面积.24.在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y﹣1)2=4和圆C2:(x﹣4)2+(y﹣5)2=4(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,求所有满足条件的点P的坐标.盘龙区二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】A【解析】解:设幂函数y=f (x )=x α,把点(,)代入可得=α,∴α=,即f (x )=,故f (2)==,故选:A .2. 【答案】C【解析】解析:本题考查程序框图中的循环结构.121123mn n n n n m S C m---+=⋅⋅⋅⋅=,当8,10m n ==时,82101045m n C C C ===,选C .3. 【答案】B【解析】解:∵△ABC 是锐角三角形,∴A+B >,∴A >﹣B ,∴sinA >sin (﹣B )=cosB ,∴sinA ﹣cosB >0, 同理可得sinA ﹣cosC >0, ∴点P 在第二象限. 故选:B4. 【答案】A【解析】1237k a a a a a =++++17672a d ⨯=+121(221)d a d ==+-, ∴22k =. 5. 【答案】A【解析】直线x ﹣2y+2=0与坐标轴的交点为(﹣2,0),(0,1),直线x ﹣2y+2=0经过椭圆的一个焦点和一个顶点;故.故选A .【点评】本题考查了椭圆的基本性质,只需根据已知条件求出a ,b ,c 即可,属于基础题型.6. 【答案】D【解析】解:∵S=并由流程图中S=S+故循环的初值为1 终值为10、步长为1故经过10次循环才能算出S=的值,故i ≤10,应不满足条件,继续循环 ∴当i ≥11,应满足条件,退出循环 填入“i ≥11”. 故选D .7. 【答案】B 【解析】考点:空间直线与平面的位置关系.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与直线平行的判定与性质、直线与平面平行的判定与性质的应用,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直线与直线平行和直线与平面平行的判定与性质是解答的关键.8. 【答案】 B【解析】依题意,2, 2.b kc ==设圆心到直线l 的距离为d ,则L =≥解得2165d ≤。

云龙区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析

云龙区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析

云龙区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.已知全集U={0,1,2,3,4},集合A={0,1,3},B={0,1,4},则(∁U A)∪B为()A.{0,1,2,4}B.{0,1,3,4}C.{2,4}D.{4}2.下列各组函数为同一函数的是()A.f(x)=1;g(x)=B.f(x)=x﹣2;g(x)=C.f(x)=|x|;g(x)=D.f(x)=•;g(x)=3.如图,在平面直角坐标系中,锐角α、β及角α+β的终边分别与单位圆O交于A,B,C三点.分别作AA'、BB'、CC'垂直于x轴,若以|AA'|、|BB'|、|CC'|为三边长构造三角形,则此三角形的外接圆面积为()A.B.C.D.π4.双曲线的焦点与椭圆的焦点重合,则m的值等于()A.12B.20C.D.5.若函数f(x)是奇函数,且在(0,+∞)上是增函数,又f(﹣3)=0,则(x﹣2)f(x)<0的解集是()A.(﹣3,0)∪(2,3)B.(﹣∞,﹣3)∪(0,3)C.(﹣∞,﹣3)∪(3,+∞)D.(﹣3,0)∪(2,+∞)6.若函数f(x)=log a(2x2+x)(a>0且a≠1)在区间(0,)内恒有f(x)>0,则f(x)的单调递增区间为()A.(﹣∞,)B.(﹣,+∞)C.(0,+∞)D.(﹣∞,﹣)7.已知三次函数f(x)=ax3+bx2+cx+d的图象如图所示,则=()A.﹣1B.2C.﹣5D.﹣38.阅读下面的程序框图,则输出的S=()A.14B.20C.30D.559.若函数f(x)=ax2+bx+1是定义在[﹣1﹣a,2a]上的偶函数,则该函数的最大值为()A.5B.4C.3D.210.已知向量=(1,),=(,x)共线,则实数x的值为()A.1B.C.tan35°D.tan35°11.函数f(x)=ax2+bx与f(x)=log x(ab≠0,|a|≠|b|)在同一直角坐标系中的图象可能是()A .B .C .D .12.设是偶函数,且在上是增函数,又,则使的的取值范围是( )()f x (0,)+∞(5)0f =()0f x >A .或B .或C .D .或50x -<<5x >5x <-5x >55x -<<5x <-05x <<二、填空题13.已知向量满足,,,则与的夹角为.b a ,42=2||=4)3()(=-⋅+【命题意图】本题考查向量的数量积、模及夹角知识,突出对向量的基础运算及化归能力的考查,属于容易题.14.某公司租赁甲、乙两种设备生产A B ,两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元.15.不等式的解集为 .16.(﹣2)7的展开式中,x 2的系数是 .17.【2017-2018第一学期东台安丰中学高三第一次月考】函数的单调递增区间为__________.()2ln f x x x =-18.已知线性回归方程=9,则b= .三、解答题19.在三棱锥S ﹣ABC 中,SA ⊥平面ABC ,AB ⊥AC .(Ⅰ)求证:AB ⊥SC ;(Ⅱ)设D ,F 分别是AC ,SA 的中点,点G 是△ABD 的重心,求证:FG ∥平面SBC ;(Ⅲ)若SA=AB=2,AC=4,求二面角A ﹣FD ﹣G 的余弦值.20.(本小题满分12分)已知圆,直线()()22:1225C x y -+-=.()()():211740L m x m y m m R +++--=∈(1)证明: 无论取什么实数,与圆恒交于两点;m L (2)求直线被圆截得的弦长最小时的方程.C L 21.已知函数f (x )=sin ωxcos ωx ﹣cos 2ωx+(ω>0)经化简后利用“五点法”画其在某一个周期内的图象时,列表并填入的部分数据如下表:x ①ππf (x )1﹣1(Ⅰ)请直接写出①处应填的值,并求函数f(x)在区间[﹣,]上的值域;(Ⅱ)△ABC的内角A,B,C所对的边分别为a,b,c,已知f(A+)=1,b+c=4,a=,求△ABC的面积.22.已知命题p:不等式|x﹣1|>m﹣1的解集为R,命题q:f(x)=﹣(5﹣2m)x是减函数,若p或q为真命题,p且q为假命题,求实数m的取值范围.23.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinA﹣sinC(cosB+sinB)=0.(1)求角C的大小;(2)若c=2,且△ABC的面积为,求a,b的值.24.已知椭圆E:=1(a>b>0)的焦距为2,且该椭圆经过点.(Ⅰ)求椭圆E的方程;(Ⅱ)经过点P(﹣2,0)分别作斜率为k1,k2的两条直线,两直线分别与椭圆E交于M,N两点,当直线MN 与y轴垂直时,求k1k2的值.云龙区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】A【解析】解:∵U={0,1,2,3,4},集合A={0,1,3},∴C U A={2,4},∵B={0,1,4},∴(C U A)∪B={0,1,2,4}.故选:A.【点评】本题考查集合的交、交、补集的混合运算,是基础题.解题时要认真审题,仔细解答.2.【答案】C【解析】解:A、函数f(x)的定义域为R,函数g(x)的定义域为{x|x≠0},定义域不同,故不是相同函数;B、函数f(x)的定义域为R,g(x)的定义域为{x|x≠﹣2},定义域不同,故不是相同函数;C、因为,故两函数相同;D、函数f(x)的定义域为{x|x≥1},函数g(x)的定义域为{x|x≤1或x≥1},定义域不同,故不是相同函数.综上可得,C项正确.故选:C.3.【答案】A【解析】(本题满分为12分)解:由题意可得:|AA'|=sinα、|BB'|=sinβ、|CC'|=sin(α+β),设边长为sin(α+β)的所对的三角形内角为θ,则由余弦定理可得,cosθ==﹣cosαcosβ=﹣cosαcosβ=sinαsinβ﹣cosαcosβ=﹣cos(α+β),∵α,β∈(0,)∴α+β∈(0,π)∴sinθ==sin(α+β)设外接圆的半径为R,则由正弦定理可得2R==1,∴R=,∴外接圆的面积S=πR2=.故选:A.【点评】本题主要考查了余弦定理,三角函数恒等变换的应用,同角三角函数基本关系式,正弦定理,圆的面积公式在解三角形中的综合应用,考查了转化思想和数形结合思想,属于中档题.4.【答案】A【解析】解:椭圆的焦点为(±4,0),由双曲线的焦点与椭圆的重合,可得=4,解得m=12.故选:A.5.【答案】A【解析】解:∵f(x)是R上的奇函数,且在(0,+∞)内是增函数,∴在(﹣∞,0)内f(x)也是增函数,又∵f(﹣3)=0,∴f(3)=0∴当x∈(﹣∞,﹣3)∪(0,3)时,f(x)<0;当x∈(﹣3,0)∪(3,+∞)时,f(x)>0;∴(x﹣2)•f(x)<0的解集是(﹣3,0)∪(2,3)故选:A.6.【答案】D【解析】解:当x∈(0,)时,2x2+x∈(0,1),∴0<a<1,∵函数f(x)=log a(2x2+x)(a>0,a≠1)由f(x)=log a t和t=2x2+x复合而成,0<a<1时,f(x)=log a t在(0,+∞)上是减函数,所以只要求t=2x2+x>0的单调递减区间.t=2x2+x>0的单调递减区间为(﹣∞,﹣),∴f(x)的单调增区间为(﹣∞,﹣),故选:D.【点评】本题考查复合函数的单调区间问题,复合函数的单调区间复合“同增异减”原则,在解题中勿忘真数大于0条件.7.【答案】C【解析】解:由三次函数的图象可知,x=2函数的极大值,x=﹣1是极小值,即2,﹣1是f′(x)=0的两个根,∵f(x)=ax3+bx2+cx+d,∴f′(x)=3ax2+2bx+c,由f′(x)=3ax2+2bx+c=0,得2+(﹣1)==1,﹣1×2==﹣2,即c=﹣6a,2b=﹣3a,即f′(x)=3ax2+2bx+c=3ax2﹣3ax﹣6a=3a(x﹣2)(x+1),则===﹣5,故选:C【点评】本题主要考查函数的极值和导数之间的关系,以及根与系数之间的关系的应用,考查学生的计算能力.8.【答案】C【解析】解:∵S1=0,i1=1;S2=1,i2=2;S3=5,i3=3;S4=14,i4=4;S5=30,i=5>4退出循环,故答案为C.【点评】本题考查程序框图的运算,通过对框图的分析,得出运算过程,按照运算结果进行判断结果,属于基础题.9.【答案】A【解析】解:函数f(x)=ax2+bx+1是定义在[﹣1﹣a,2a]上的偶函数,可得b=0,并且1+a=2a,解得a=1,所以函数为:f(x)=x2+1,x∈[﹣2,2],函数的最大值为:5.故选:A.【点评】本题考查函数的最大值的求法,二次函数的性质,考查计算能力.10.【答案】B【解析】解:∵向量=(1,),=(,x)共线,∴x====,故选:B.【点评】本题考查了向量的共线的条件和三角函数的化简,属于基础题.11.【答案】D【解析】解:A、由图得f(x)=ax2+bx的对称轴x=﹣>0,则,不符合对数的底数范围,A不正确;B、由图得f(x)=ax2+bx的对称轴x=﹣>0,则,不符合对数的底数范围,B不正确;C、由f(x)=ax2+bx=0得:x=0或x=,由图得,则,所以f(x)=log x在定义域上是增函数,C不正确;D、由f(x)=ax2+bx=0得:x=0或x=,由图得,则,所以f(x)=log x在定义域上是减函数,D正确.【点评】本题考查二次函数的图象和对数函数的图象,考查试图能力.12.【答案】B考点:函数的奇偶性与单调性.【思路点晴】本题主要考查函数的单调性、函数的奇偶性,数形结合的数学思想方法.由于函数是偶函数,所以定义域关于原点对称,图象关于轴对称,单调性在轴两侧相反,即在时单调递增,当时,y y 0x >0x <函数单调递减.结合和对称性,可知,再结合函数的单调性,结合图象就可以求得最后的(5)0f =(5)0f ±=解集.1二、填空题13.【答案】32π【解析】14.【答案】2300【解析】111]试题分析:根据题意设租赁甲设备,乙设备,则⎪⎪⎩⎪⎪⎨⎧≥+≥+≥≥14020y 10x 506y 5x 0y 0x ,求目标函数300y 200x Z +=的最小值.作出可行域如图所示,从图中可以看出,直线在可行域上移动时,当直线的截距最小时,取最小值2300.1111]考点:简单线性规划.【方法点晴】本题是一道关于求实际问题中的最值的题目,可以采用线性规划的知识进行求解;细查题意,设甲种设备需要生产天,乙种设备需要生产y 天,该公司所需租赁费为Z 元,则y x Z 300200+=,接下来列出满足条件的约束条件,结合目标函数,然后利用线性规划的应用,求出最优解,即可得出租赁费的最小值.15.【答案】 (0,1] .【解析】解:不等式,即,求得0<x ≤1,故答案为:(0,1].【点评】本题主要考查分式不等式、一元二次不等式的解法,属于基础题.16.【答案】﹣280解:∵(﹣2)7的展开式的通项为=.由,得r=3.∴x 2的系数是.故答案为:﹣280.17.【答案】⎛⎝【解析】18.【答案】 4 .【解析】解:将代入线性回归方程可得9=1+2b,∴b=4故答案为:4【点评】本题考查线性回归方程,考查计算能力,属于基础题.三、解答题19.【答案】【解析】(Ⅰ)证明:∵SA⊥平面ABC,AB⊂平面ABC,∴SA⊥AB,又AB⊥AC,SA∩AC=A,∴AB⊥平面SAC,又AS⊂平面SAC,∴AB⊥SC.(Ⅱ)证明:取BD中点H,AB中点M,连结AH,DM,GF,FM,∵D,F分别是AC,SA的中点,点G是△ABD的重心,∴AH过点G,DM过点G,且AG=2GH,由三角形中位线定理得FD∥SC,FM∥SB,∵FM∩FD=F,∴平面FMD∥平面SBC,∵FG⊂平面FMD,∴FG∥平面SBC.(Ⅲ)解:以A为原点,AB为x轴,AC为y轴,AS为z轴,建立空间直角坐标系,∵SA=AB=2,AC=4,∴B(2,0,0),D(0,2,0),H(1,1,0),A(0,0,0),G(,,0),F(0,0,1),=(0,2,﹣1),=(),设平面FDG的法向量=(x,y,z),则,取y=1,得=(2,1,2),又平面AFD 的法向量=(1,0,0),cos <,>==.∴二面角A ﹣FD ﹣G 的余弦值为.【点评】本题考查异面直线垂直的证明,考查线面平行的证明,考查二面角的余弦值的求法,解题时要注意空间思维能力的培养,注意向量法的合理运用.20.【答案】(1)证明见解析;(2).250x y --=【解析】试题分析:(1)的方程整理为,列出方程组,得出直线过圆内一点,即可L ()()4270x y m x y +-++-=证明;(2)由圆心,当截得弦长最小时, 则,利用直线的点斜式方程,即可求解直线的方程.()1,2M L AM ⊥1111](2)圆心,当截得弦长最小时, 则,()1,2M L AM ⊥由得的方程即. 12AM k =-L ()123y x -=-250x y --=考点:直线方程;直线与圆的位置关系.21.【答案】【解析】解:(Ⅰ)①处应填入.=.∵T=,∴,,即.∵,∴,∴,从而得到f (x )的值域为.(Ⅱ)∵,又0<A <π,∴,得,.由余弦定理得a 2=b 2+c 2﹣2bccosA==(b+c )2﹣3bc ,即,∴bc=3.∴△ABC 的面积.【点评】本小题主要考查三角函数的图象与性质、两角和与差的三角函数、解三角形等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题.22.【答案】【解析】解:不等式|x ﹣1|>m ﹣1的解集为R ,须m ﹣1<0,即p 是真 命题,m <1f (x )=﹣(5﹣2m )x 是减函数,须5﹣2m >1即q 是真命题,m <2,由于p 或q 为真命题,p 且q 为假命题,故p 、q 中一个真,另一个为假命题因此,1≤m <2.【点评】本题考查在数轴上理解绝对值的几何意义,指数函数的单调性与特殊点,分类讨论思想,化简这两个命题是解题的关键.属中档题.23.【答案】【解析】(本题满分为12分)解:(1)∵由题意得,sinA=sin(B+C),∴sinBcosC+sinCcosB﹣sinCcosB﹣sinBsinC=0,…(2分)即sinB(cosC﹣sinC)=0,∵sinB≠0,∴tanC=,故C=.…(6分)(2)∵ab×=,∴ab=4,①又c=2,…(8分)∴a2+b2﹣2ab×=4,∴a2+b2=8.②∴由①②,解得a=2,b=2.…(12分)【点评】本题主要考查了三角形内角和定理,三角函数恒等变换的应用,三角形面积公式,余弦定理在解三角形中的综合应用,考查了转化思想,属于基础题.24.【答案】【解析】解:(Ⅰ)由题意得,2c=2,=1;解得,a2=4,b2=1;故椭圆E的方程为+y2=1;(Ⅱ)由题意知,当k1=0时,M点的纵坐标为0,直线MN与y轴垂直,则点N的纵坐标为0,故k2=k1=0,这与k2≠k1矛盾.当k1≠0时,直线PM:y=k1(x+2);由得,(+4)y2﹣=0;解得,y M=;∴M(,),同理N(,),由直线MN与y轴垂直,则=;∴(k2﹣k1)(4k2k1﹣1)=0,∴k2k1=.【点评】本题考查了椭圆方程的求法及椭圆与直线的位置关系的判断与应用,属于中档题. 。

五华县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

五华县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

五华县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 函数在区间上的最大值为5,最小值为1,则的取值范围是( )2()45f x x x =-+[]0,m m A .B .C .D .[2,)+∞[]2,4(,2]-∞[]0,22. 已知集合A={0,1,2},则集合B={x ﹣y|x ∈A ,y ∈A}的元素个数为()A .4B .5C .6D .93. 如图,△ABC 所在平面上的点P n (n ∈N *)均满足△P n AB 与△P n AC 的面积比为3;1,=﹣(2x n +1)(其中,{x n }是首项为1的正项数列),则x 5等于( )A .65B .63C .33D .314. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a=3,,A=60°,则满足条件的三角形个数为()A .0B .1C .2D .以上都不对5. 有以下四个命题:①若=,则x=y .②若lgx 有意义,则x >0.③若x=y ,则=.④若x >y ,则 x 2<y 2.则是真命题的序号为( )A .①②B .①③C .②③D .③④6. 如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A .4B .8C .12D .20【命题意图】本题考查三视图、几何体的体积等基础知识,意在考查空间想象能力和基本运算能力.7. 在正方体中,是线段的中点,若四面体的外接球体积为,1111ABCD A B C D -M 11AC M ABD -36p 则正方体棱长为()A .2 B .3C .4D .5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力.8. 下列判断正确的是( )A .①不是棱柱B .②是圆台C .③是棱锥D .④是棱台9. 如图,三行三列的方阵中有9个数a ij (i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )A .B .C .D .10.在“唱响内江”选拔赛中,甲、乙两位歌手的5次得分情况如茎叶图所示,记甲、乙两人的平均得分分别、,则下列判断正确的是( )A .<,乙比甲成绩稳定B .<,甲比乙成绩稳定C .>,甲比乙成绩稳定D .>,乙比甲成绩稳定11.是z 的共轭复数,若z+=2,(z ﹣)i=2(i 为虚数单位),则z=()A .1+i B .﹣1﹣i C .﹣1+i D .1﹣i12.已知函数f (x )=若f (-6)+f (log 26)=9,则a 的值为( ){log 2(a -x ),x <12x ,x ≥1)A .4B .3C .2D .1二、填空题13.设是空间中给定的个不同的点,则使成立的点的个数有_________个.14.向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为 . 15.若P (1,4)为抛物线C :y 2=mx 上一点,则P 点到该抛物线的焦点F 的距离为|PF|= .16.(若集合A ⊊{2,3,7},且A 中至多有1个奇数,则这样的集合共有 个.17.当a >0,a ≠1时,函数f (x )=log a (x ﹣1)+1的图象恒过定点A ,若点A 在直线mx ﹣y+n=0上,则4m +2n 的最小值是 .18.将曲线向右平移个单位后得到曲线,若与关于轴对称,则1:C 2sin(),04y x πωω=+>6π2C 1C 2C x ω的最小值为_________.三、解答题19.(本小题满分12分)一个盒子里装有编号为1、2、3、4、5的五个大小相同的小球,第一次从盒子里随机抽取2个小球,记下球的编号,并将小球放回盒子,第二次再从盒子里随机抽取2个小球,记下球的编号.(Ⅰ)求第一次或第二次取到3号球的概率;(Ⅱ)设为两次取球时取到相同编号的小球的个数,求的分布列与数学期望.ξξ20.已知函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)设,若函数在上(这里)恰有两个不同的零点,求实数的取值范围.21.已知,且.(1)求sinα,cosα的值;(2)若,求sinβ的值.22.设不等式的解集为.(1)求集合;(2)若,∈,试比较与的大小。

铜梁区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析

铜梁区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知命题“p :∃x >0,lnx <x ”,则¬p 为( )A .∃x ≤0,lnx ≥xB .∀x >0,lnx ≥xC .∃x ≤0,lnx <xD .∀x >0,lnx <x2. 已知函数f (x )=,则的值为( )A .B .C .﹣2D .33. 已知命题p 和命题,若p q ∧为真命题,则下面结论正确的是( )A .p ⌝是真命题B .q ⌝是真命题C .p q ∨是真命题D .()()p q ⌝∨⌝是真命题 4. 已知M={(x ,y )|y=2x },N={(x ,y )|y=a},若M ∩N=∅,则实数a 的取值范围为( ) A .(﹣∞,1) B .(﹣∞,1] C .(﹣∞,0) D .(﹣∞,0]5. 计算log 25log 53log 32的值为( )A .1B .2C .4D .86. 若变量x ,y 满足:,且满足(t+1)x+(t+2)y+t=0,则参数t 的取值范围为( )A .﹣2<t <﹣B .﹣2<t ≤﹣C .﹣2≤t ≤﹣D .﹣2≤t <﹣7. 对于任意两个正整数m ,n ,定义某种运算“※”如下:当m ,n 都为正偶数或正奇数时,m ※n=m+n ;当m ,n 中一个为正偶数,另一个为正奇数时,m ※n=mn .则在此定义下,集合M={(a ,b )|a ※b=12,a ∈N *,b ∈N *}中的元素个数是( ) A .10个 B .15个 C .16个 D .18个8. 已知函数f (x )=m (x ﹣)﹣2lnx (m ∈R ),g (x )=﹣,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,则实数m 的范围是( )A .(﹣∞,]B .(﹣∞,)C .(﹣∞,0]D .(﹣∞,0)9. 如图是某工厂对一批新产品长度(单位:mm )检测结果的频率分布直方图.估计这批产品的中位数为( )A.20 B.25 C.22.5 D.22.7510.在△ABC中,角A,B,C所对的边分别为a,b,c,若(acosB+bcosA)=2csinC,a+b=8,且△ABC的面积的最大值为4,则此时△ABC的形状为()A.等腰三角形B.正三角形 C.直角三角形D.钝角三角形11.已知命题p:∀x∈R,32x+1>0,有命题q:0<x<2是log2x<1的充分不必要条件,则下列命题为真命题的是()A.¬p B.p∧q C.p∧¬q D.¬p∨q12.若a<b<0,则()A.0<<1 B.ab<b2C.>D.<二、填空题13.(﹣)0+[(﹣2)3]=.14.已知=1﹣bi,其中a,b是实数,i是虚数单位,则|a﹣bi|=.15.下列命题:①函数y=sinx和y=tanx在第一象限都是增函数;②若函数f(x)在[a,b]上满足f(a)f(b)<0,函数f(x)在(a,b)上至少有一个零点;③数列{a n}为等差数列,设数列{a n}的前n项和为S n,S10>0,S11<0,S n最大值为S5;④在△ABC中,A>B的充要条件是cos2A<cos2B;⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强.其中正确命题的序号是(把所有正确命题的序号都写上).16.数列{a n}是等差数列,a4=7,S7=.17.已知数列{a n}满足a n+1=e+a n(n∈N*,e=2.71828)且a3=4e,则a2015=.18.用描述法表示图中阴影部分的点(含边界)的坐标的集合为 .三、解答题19.某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),[90,100)后得到如图的频率分布直方图. (Ⅰ)求图中实数a 的值;(Ⅱ)根据频率分布直方图,试估计该校高一年级学生其中考试数学成绩的平均数;(Ⅲ)若从样本中数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率.20.(本题满分12分)在长方体1111D C B A ABCD -中,a AD AA ==1,E 是棱CD 上的一点,P 是棱1AA 上的一点.(1)求证:⊥1AD 平面D B A 11; (2)求证:11AD E B ⊥;(3)若E 是棱CD 的中点,P 是棱1AA 的中点,求证://DP 平面AE B 1.21.如图,在三棱锥 P ABC -中,,,,E F G H 分别是,,,AB AC PC BC 的中点,且,PA PB AC BC ==.(1)证明: AB PC ⊥; (2)证明:平面 PAB 平面 FGH .22.(本小题满分10分)选修4-5:不等式选讲 已知函数()()f x x a a R =-∈.(1)当1a =时,解不等式()211f x x <--;(2)当(2,1)x ∈-时,121()x x a f x ->---,求的取值范围.23.在直角坐标系xOy 中,以O 为极点,x 正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρcos ()=1,M ,N 分别为C 与x 轴,y 轴的交点.(1)写出C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程.24.已知和均为给定的大于1的自然数,设集合,,,...,,集合..。

云龙区二中2018-2019学年高二上学期数学期末模拟试卷含解析

云龙区二中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设集合M={(x ,y )|x 2+y 2=1,x ∈R ,y ∈R},N={(x ,y )|x 2﹣y=0,x ∈R ,y ∈R},则集合M ∩N 中元素的个数为( ) A .1B .2C .3D .42. 抛物线y=﹣8x 2的准线方程是( )A .y=B .y=2C .x=D .y=﹣23. 若复数(2+ai )2(a ∈R )是实数(i 是虚数单位),则实数a 的值为( ) A .﹣2 B .±2 C .0 D .24. “x ≠0”是“x >0”是的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5. 已知椭圆C :+=1(a >b >0)的左、右焦点为F 1、F 2,离心率为,过F 2的直线l 交C 于A 、B两点,若△AF1B 的周长为4,则C 的方程为( )A .+=1B .+y 2=1C .+=1D .+=16. 以过椭圆+=1(a >b >0)的右焦点的弦为直径的圆与其右准线的位置关系是( )A .相交B .相切C .相离D .不能确定 7. 下列关系正确的是( )A .1∉{0,1}B .1∈{0,1}C .1⊆{0,1}D .{1}∈{0,1}8. 函数()()f x x R Î是周期为4的奇函数,且在02[,]上的解析式为(1),01()sin ,12x x x f x x x ì-#ï=íp <?ïî,则1741()()46f f +=( ) A .716 B .916 C .1116 D .1316【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力.9. 已知d 为常数,p :对于任意n ∈N *,a n+2﹣a n+1=d ;q :数列 {a n }是公差为d 的等差数列,则¬p 是¬q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.将n 2个正整数1、2、3、…、n 2(n ≥2)任意排成n 行n 列的数表.对于某一个数表,计算某行或某列中的任意两个数a 、b (a >b )的比值,称这些比值中的最小值为这个数表的“特征值”.当n=2时,数表的所有可能的“特征值”的最大值为( )A .B .C .2D .311.在空间中,下列命题正确的是( ) A .如果直线m ∥平面α,直线n ⊂α内,那么m ∥nB .如果平面α内的两条直线都平行于平面β,那么平面α∥平面βC .如果平面α外的一条直线m 垂直于平面α内的两条相交直线,那么m ⊥αD .如果平面α⊥平面β,任取直线m ⊂α,那么必有m ⊥β12.给出下列两个结论:①若命题p :∃x 0∈R ,x 02+x 0+1<0,则¬p :∀x ∈R ,x 2+x+1≥0;②命题“若m >0,则方程x 2+x ﹣m=0有实数根”的逆否命题为:“若方程x 2+x ﹣m=0没有实数根,则m ≤0”;则判断正确的是( ) A .①对②错B .①错②对C .①②都对D .①②都错二、填空题13.将曲线1:C 2sin(),04y x πωω=+>向右平移6π个单位后得到曲线2C ,若1C 与2C 关于x 轴对称,则ω的最小值为_________.14.设直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π),对于下列四个命题:A .M 中所有直线均经过一个定点B .存在定点P 不在M 中的任一条直线上C .对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上D .M 中的直线所能围成的正三角形面积都相等其中真命题的代号是 (写出所有真命题的代号).15.若曲线f (x )=ae x +bsinx (a ,b ∈R )在x=0处与直线y=﹣1相切,则b ﹣a= . 16.经过A (﹣3,1),且平行于y 轴的直线方程为 .17.在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 是A 1D 1的中点,点P 在侧面BCC 1B 1上运动.现有下列命题:①若点P 总保持PA ⊥BD 1,则动点P 的轨迹所在曲线是直线;②若点P到点A的距离为,则动点P的轨迹所在曲线是圆;③若P满足∠MAP=∠MAC1,则动点P的轨迹所在曲线是椭圆;④若P到直线BC与直线C1D1的距离比为1:2,则动点P的轨迹所在曲线是双曲线;⑤若P到直线AD与直线CC1的距离相等,则动点P的轨迹所在曲线是抛物丝.其中真命题是(写出所有真命题的序号)18.定义:分子为1且分母为正整数的分数叫做单位分数.我们可以把1拆分为无穷多个不同的单位分数之和.例如:1=++,1=+++,1=++++,…依此方法可得:1=++++++++++++,其中m,n∈N*,则m+n=.三、解答题19.(本题满分12分)已知数列{a n}满足a1=1,a n+1=2a n+1.(1)求数列{a n}的通项公式;(2)令b n=n(a n+1),求数列{b n}的前n项和T n.20.已知f(x)=x3+3ax2+bx在x=﹣1时有极值为0.(1)求常数a,b的值;(2)求f(x)在[﹣2,﹣]的最值.21.某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100](Ⅰ)求图中x的值,并估计该班期中考试数学成绩的众数;(Ⅱ)从成绩不低于90分的学生和成绩低于50分的学生中随机选取2人,求这2人成绩均不低于90分的概率.22.求点A(3,﹣2)关于直线l:2x﹣y﹣1=0的对称点A′的坐标.23.在△ABC中,角A,B,C所对的边分别为a,b,c.已知b2+c2=a2+bc.(Ⅰ)求A的大小;(Ⅱ)如果cosB=,b=2,求a的值.24.某班50名学生在一次数学测试中,成绩全部介于50与100之间,将测试结果按如下方式分成五组:第一组[50,60),第二组[60,70),…,第五组[90,100].如图所示是按上述分组方法得到的频率分布直方图.(Ⅰ)若成绩大于或等于60且小于80,认为合格,求该班在这次数学测试中成绩合格的人数;(Ⅱ)从测试成绩在[50,60)∪[90,100]内的所有学生中随机抽取两名同学,设其测试成绩分别为m、n,求事件“|m﹣n|>10”概率.云龙区二中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】B【解析】解:根据题意,M ∩N={(x ,y )|x 2+y 2=1,x ∈R ,y ∈R}∩{(x ,y )|x 2﹣y=0,x ∈R ,y ∈R}═{(x ,y )|} 将x 2﹣y=0代入x 2+y 2=1, 得y 2+y ﹣1=0,△=5>0,所以方程组有两组解,因此集合M ∩N 中元素的个数为2个, 故选B .【点评】本题既是交集运算,又是函数图形求交点个数问题2. 【答案】A【解析】解:整理抛物线方程得x 2=﹣y ,∴p=∵抛物线方程开口向下,∴准线方程是y=,故选:A .【点评】本题主要考查抛物线的基本性质.解决抛物线的题目时,一定要先判断焦点所在位置.3. 【答案】C【解析】解:∵复数(2+ai )2=4﹣a 2+4ai 是实数,∴4a=0, 解得a=0. 故选:C .【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题.4. 【答案】B【解析】解:当x=﹣1时,满足x ≠0,但x >0不成立. 当x >0时,一定有x ≠0成立, ∴“x ≠0”是“x >0”是的必要不充分条件. 故选:B .5.【答案】A【解析】解:∵△AFB的周长为4,1∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C的方程为+=1.故选:A.【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.6.【答案】C【解析】解:设过右焦点F的弦为AB,右准线为l,A、B在l上的射影分别为C、D连接AC、BD,设AB的中点为M,作MN⊥l于N根据圆锥曲线的统一定义,可得==e,可得∴|AF|+|BF|<|AC|+|BD|,即|AB|<|AC|+|BD|,∵以AB为直径的圆半径为r=|AB|,|MN|=(|AC|+|BD|)∴圆M到l的距离|MN|>r,可得直线l与以AB为直径的圆相离故选:C【点评】本题给出椭圆的右焦点F,求以经过F的弦AB为直径的圆与右准线的位置关系,着重考查了椭圆的简单几何性质、圆锥曲线的统一定义和直线与圆的位置关系等知识,属于中档题.7.【答案】B【解析】解:由于1∈{0,1},{1}⊆{0,1},故选:B【点评】本题考查的知识点是元素与集合关系的判断,其中正确理解集合元素与集合关系的实质,即元素满足集合中元素的性质,是解答本题的关键.8.【答案】C9.【答案】A【解析】解:p:对于任意n∈N*,a n+2﹣a n+1=d;q:数列{a n}是公差为d的等差数列,则¬p:∃n∈N*,a n+2﹣a n+1≠d;¬q:数列{a n}不是公差为d的等差数列,由¬p⇒¬q,即a n+2﹣a n+1不是常数,则数列{a n}就不是等差数列,若数列{a n}不是公差为d的等差数列,则不存在n∈N*,使得a n+2﹣a n+1≠d,即前者可以推出后者,前者是后者的充分条件,即后者可以推不出前者,故选:A.【点评】本题考查等差数列的定义,是以条件问题为载体的,这种问题注意要从两个方面入手,看是不是都能够成立.10.【答案】B【解析】解:当n=2时,这4个数分别为1、2、3、4,排成了两行两列的数表,当1、2同行或同列时,这个数表的“特征值”为;当1、3同行或同列时,这个数表的特征值分别为或;当1、4同行或同列时,这个数表的“特征值”为或,故这些可能的“特征值”的最大值为.故选:B . 【点评】题考查类比推理和归纳推理,属基础题.11.【答案】 C【解析】解:对于A ,直线m ∥平面α,直线n ⊂α内,则m 与n 可能平行,可能异面,故不正确;对于B ,如果平面α内的两条相交直线都平行于平面β,那么平面α∥平面β,故不正确; 对于C ,根据线面垂直的判定定理可得正确;对于D ,如果平面α⊥平面β,任取直线m ⊂α,那么可能m ⊥β,也可能m 和β斜交,;故选:C .【点评】本题主要考查命题的真假判断与应用,考查了空间中直线与平面之间的位置关系、平面与平面之间的位置关系,同时考查了推理能力,属于中档题.12.【答案】C【解析】解:①命题p 是一个特称命题,它的否定是全称命题,¬p 是全称命题,所以①正确.②根据逆否命题的定义可知②正确. 故选C .【点评】考查特称命题,全称命题,和逆否命题的概念.二、填空题13.【答案】6【解析】解析:曲线2C 的解析式为2sin[()]2sin()6446y x x ππππωωω=-+=+-,由1C 与2C 关于x 轴对称知sin()sin()464x x πππωωω+-=-+,即1co s ()s i n ()s i n ()c o s ()06464x x ππππωωωω⎡⎤++-+=⎢⎥⎣⎦对一切x R ∈恒成立,∴1cos()06sin()06πωπω⎧+=⎪⎪⎨⎪=⎪⎩∴(21)6k πωπ=+,∴6(21),k k Z ω=+∈,由0ω>得ω的最小值为6. 14.【答案】BC 【解析】【分析】验证发现,直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π)表示圆x 2+(y ﹣2)2=1的切线的集合,A .M 中所有直线均经过一个定点(0,2)是不对,可由圆的切线中存在平行线得出,B .存在定点P 不在M 中的任一条直线上,观察直线的方程即可得到点的坐标.C .对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上,由直线系的几何意义可判断,D .M 中的直线所能围成的正三角形面积一定相等,由它们是同一个圆的外切正三角形可判断出.【解答】解:因为点(0,2)到直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)中每条直线的距离d==1,直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆x2+(y﹣2)2=1的切线的集合,A.由于直线系表示圆x2+(y﹣2)2=1的所有切线,其中存在两条切线平行,M中所有直线均经过一个定点(0,2)不可能,故A不正确;B.存在定点P不在M中的任一条直线上,观察知点M(0,2)即符合条件,故B正确;C.由于圆的所有外切正多边形的边都是圆的切线,所以对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上,故C正确;D.如下图,M中的直线所能围成的正三角形有两类,其一是如△ABB′型,是圆的外切三角形,此类面积都相等,另一类是在圆同一侧,如△BDC型,此一类面积相等,但两类之间面积不等,所以面积大小不一定相等,故本命题不正确.故答案为:BC.15.【答案】2.【解析】解:f(x)=ae x+bsinx的导数为f′(x)=ae x+bcosx,可得曲线y=f(x)在x=0处的切线的斜率为k=ae0+bcos0=a+b,由x=0处与直线y=﹣1相切,可得a+b=0,且ae0+bsin0=a=﹣1,解得a=﹣1,b=1,则b﹣a=2.故答案为:2.16.【答案】x=﹣3.【解析】解:经过A(﹣3,1),且平行于y轴的直线方程为:x=﹣3.故答案为:x=﹣3.17.【答案】①②④【解析】解:对于①,∵BD1⊥面AB1C,∴动点P的轨迹所在曲线是直线B1C,①正确;对于②,满足到点A的距离为的点集是球,∴点P应为平面截球体所得截痕,即轨迹所在曲线为圆,②正确;对于③,满足条件∠MAP=∠MAC1的点P应为以AM为轴,以AC1为母线的圆锥,平面BB1C1C是一个与轴AM平行的平面,又点P在BB1C1C所在的平面上,故P点轨迹所在曲线是双曲线一支,③错误;对于④,P到直线C1D1的距离,即到点C1的距离与到直线BC的距离比为2:1,∴动点P的轨迹所在曲线是以C1为焦点,以直线BC为准线的双曲线,④正确;对于⑤,如图建立空间直角坐标系,作PE⊥BC,EF⊥AD,PG⊥CC1,连接PF,设点P坐标为(x,y,0),由|PF|=|PG|,得,即x2﹣y2=1,∴P点轨迹所在曲线是双曲线,⑤错误.故答案为:①②④.【点评】本题考查了命题的真假判断与应用,考查了圆锥曲线的定义和方方程,考查了学生的空间想象能力和思维能力,是中档题.18.【答案】33.【解析】解:∵1=++++++++++++,∵2=1×2,6=2×3,30=5×6,42=6×7,56=7×8,72=8×9, 90=9×10, 110=10×11, 132=11×12,∴1=++++++++++++=(1﹣)+++(﹣)+,+==﹣+﹣=, ∴m=20,n=13, ∴m+n=33, 故答案为:33【点评】本题考查的知识点是归纳推理,但本题运算强度较大,属于难题.三、解答题19.【答案】解:(1)∵a n+1=2a n +1, ∴a n+1+1=2(a n +1), 又∵a 1=1,∴数列{a n +1}是首项、公比均为2的等比数列, ∴a n +1=2n , ∴a n =﹣1+2n ; 6分(2)由(1)可知b n =n (a n +1)=n •2n =n •2n ﹣1,∴T n =1•20+2•2+…+n •2n ﹣1,2T n =1•2+2•22…+(n ﹣1)•2n ﹣1+n •2n ,错位相减得:﹣T n =1+2+22…+2n ﹣1﹣n •2n=﹣n •2n=﹣1﹣(n ﹣1)•2n , 于是T n =1+(n ﹣1)•2n .则所求和为12nn 6分20.【答案】【解析】解:(1)∵f (x )=x 3+3ax 2+bx , ∴f'(x )=3x 2+6ax+b ,又∵f (x )在x=﹣1时有极值0,∴f'(﹣1)=0且f(﹣1)=0,即3﹣6a+b=0且﹣1+3a﹣b=0,解得:a=,b=1 经检验,合题意.(2)由(1)得f'(x)=3x2+4x+1,令f'(x)=0得x=﹣或x=﹣1,又∵f(﹣2)=﹣2,f(﹣)=﹣,f(﹣1)=0,f(﹣)=﹣,∴f(x)max=0,f(x)min=﹣2.21.【答案】【解析】解:(Ⅰ)由(0.006×3+0.01+0.054+x)×10=1,解得x=0.018,前三组的人数分别为:(0.006×2+0.01+0.018)×10×50=20,第四组为0.054×10×50=27人,故数学成绩的众数落在第四组,故众数为75分.(Ⅱ)分数在[40,50)、[90,100]的人数分别是3人,共6人,∴这2人成绩均不低于90分的概率P==.【点评】本题考查频率分布直方图及古典概型的问题,前者要熟练掌握直方图的基本性质和如何利用直方图求众数;后者往往和计数原理结合起来考查.22.【答案】【解析】解:设点A(3,﹣2)关于直线l:2x﹣y﹣1=0的对称点A′的坐标为(m,n),则线段A′A的中点B(,),由题意得B在直线l:2x﹣y﹣1=0上,故2×﹣﹣1=0 ①.再由线段A′A和直线l垂直,斜率之积等于﹣1得×=﹣1 ②,解①②做成的方程组可得:m=﹣,n=,故点A′的坐标为(﹣,).【点评】本题考查求一个点关于直线的对称点的坐标的方法,注意利用垂直及中点在轴上两个条件.23.【答案】【解析】解:(Ⅰ)∵b2+c2=a2+bc,即b2+c2﹣a2=bc,∴cosA==,又∵A∈(0,π),∴A=;(Ⅱ)∵cosB=,B∈(0,π),∴sinB==,由正弦定理=,得a===3.【点评】此题考查了正弦、余弦定理,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.24.【答案】【解析】解:(I)由直方图知,成绩在[60,80)内的人数为:50×10×(0.18+0.040)=29.所以该班在这次数学测试中成绩合格的有29人.(II)由直方图知,成绩在[50,60)内的人数为:50×10×0.004=2,设成绩为x、y成绩在[90,100]的人数为50×10×0.006=3,设成绩为a、b、c,若m,n∈[50,60)时,只有xy一种情况,若m,n∈[90,100]时,有ab,bc,ac三种情况,m n[5060[90100]事件“|m﹣n|>10”所包含的基本事件个数有6种∴.【点评】在频率分布直方图中,每一个小矩形都是等宽的,即等于组距,高是,所以有:×组距=频率;即可把所求范围内的频率求出,进而求该范围的人数.。

盘龙区高中2018-2019学年高二上学期第二次月考试卷数学

盘龙区高中2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.已知函数f(x)=log2(x2+1)的值域为{0,1,2},则满足这样条件的函数的个数为()A.8 B.5 C.9 D.272.(2014新课标I)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.3.以A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母构成分数,则这种分数是可约分数的概率是()A.B.C.D.4.已知平面向量与的夹角为,且||=1,|+2|=2,则||=()A.1 B.C.3 D.25.已知直线a平面α,直线b⊆平面α,则()A.a b B.与异面C.与相交D.与无公共点6.设i是虚数单位,若z=cosθ+isinθ且对应的点位于复平面的第二象限,则θ位于()A .第一象限B .第二象限C .第三象限D .第四象限7. S n 是等差数列{a n }的前n 项和,若3a 8-2a 7=4,则下列结论正确的是( ) A .S 18=72 B .S 19=76 C .S 20=80D .S 21=848. 已知函数()2sin()f x x ωϕ=+(0)2πϕ<<与y 轴的交点为(0,1),且图像上两对称轴之间的最小距离为2π,则使()()0f x t f x t +--+=成立的t 的最小值为( )1111] A .6π B .3π C .2π D .23π9. 已知抛物线C :24y x =的焦点为F ,定点(0,2)A ,若射线FA 与抛物线C 交于点M ,与抛 物线C 的准线交于点N ,则||:||MN FN 的值是( )A .B .C .1:D (1 10.执行下面的程序框图,若输入2016x =-,则输出的结果为( )A .2015B .2016C .2116D .204811.下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )A .B .C .D .12.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )A .1B .2C .3D .4二、填空题13.数据﹣2,﹣1,0,1,2的方差是 .14.已知x ,y 满足条件,则函数z=﹣2x+y 的最大值是 .15.过抛物线C :y 2=4x 的焦点F 作直线l 交抛物线C 于A ,B ,若|AF|=3|BF|,则l 的斜率是 . 16.若直线:012=--ay x 与直线2l :02=+y x 垂直,则=a .17.函数y=lgx 的定义域为 .18.8名支教名额分配到三所学校,每个学校至少一个名额,且甲学校至少分到两个名额的分配方案为 (用数字作答)三、解答题19.24.(本小题满分10分)选修4-5:不等式选讲. 已知函数f (x )=|x +1|+2|x -a 2|(a ∈R ). (1)若函数f (x )的最小值为3,求a 的值;(2)在(1)的条件下,若直线y =m 与函数y =f (x )的图象围成一个三角形,求m 的范围,并求围成的三角形面积的最大值.20.(本小题满分10分)选修4-5:不等式选讲 已知函数()()f x x a a R =-∈.(1)当1a =时,解不等式()211f x x <--;(2)当(2,1)x ∈-时,121()x x a f x ->---,求的取值范围.21.某同学在研究性学习中,了解到淘宝网站一批发店铺在今年的前五个月的销售量(单位:百件)的数据如(Ⅰ)该同学为了求出y关于x的回归方程=x+,根据表中数据已经正确算出=0.6,试求出的值,并估计该店铺6月份的产品销售量;(单位:百件)(Ⅱ)一零售商现存有从该淘宝批发店铺2月份进货的4件和3月份进货的5件产品,顾客甲现从该零售商处随机购买了3件,后经了解,该淘宝批发店铺今年2月份的产品都有质量问题,而3月份的产品都没有质量问题.记顾客甲所购买的3件产品中存在质量问题的件数为X,求X的分布列和数学期望.22.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:零件的个数x(个) 2 3 4 5加工的时间y(小时) 2.5 3 4 4.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程=x+,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?参考公式:回归直线=bx+a,其中b==,a=﹣b.23.(本小题满分12分)已知圆M 与圆N :222)35()35(r y x =++-关于直线x y =对称,且点)35,31(-D 在圆M 上.(1)判断圆M 与圆N 的位置关系;(2)设P 为圆M 上任意一点,)35,1(-A ,)35,1(B ,B A P 、、三点不共线,PG 为APB ∠的平分线,且交AB 于G . 求证:PBG ∆与APG ∆的面积之比为定值.24.在ABC ∆中已知2a b c =+,2sin sin sin A B C =,试判断ABC ∆的形状.盘龙区高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:令log2(x2+1)=0,得x=0,令log2(x2+1)=1,得x2+1=2,x=±1,令log(x2+1)=2,得x2+1=4,x=.2则满足值域为{0,1,2}的定义域有:{0,﹣1,﹣},{0,﹣1,},{0,1,﹣},{0,1,},{0,﹣1,1,﹣},{0,﹣1,1,},{0,﹣1,﹣,},{0,1,﹣,},{0,﹣1,1,﹣,}.则满足这样条件的函数的个数为9.故选:C.【点评】本题考查了对数的运算性质,考查了学生对函数概念的理解,是中档题.2.【答案】C【解析】解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx||sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选C.【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.3.【答案】D【解析】解:因为以A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母共可构成个分数,由于这种分数是可约分数的分子与分母比全为偶数,故这种分数是可约分数的共有个,则分数是可约分数的概率为P==,故答案为:D【点评】本题主要考查了等可能事件的概率,用到的知识点为:概率=所求情况数与总情况数之比.4. 【答案】D【解析】解:由已知,|+2|2=12,即,所以||2+4||||×+4=12,所以||=2;故选D .【点评】本题考查了向量的模的求法;一般的,要求向量的模,先求向量的平方.5. 【答案】D 【解析】试题分析:因为直线 a 平面α,直线b ⊆平面α,所以//a b 或与异面,故选D. 考点:平面的基本性质及推论. 6. 【答案】B【解析】解:∵z=cos θ+isin θ对应的点坐标为(cos θ,sin θ), 且点(cos θ,sin θ)位于复平面的第二象限,∴,∴θ为第二象限角,故选:B .【点评】本题考查复数的几何意义,考查三角函数值的符号,注意解题方法的积累,属于中档题.7. 【答案】【解析】选B.∵3a 8-2a 7=4, ∴3(a 1+7d )-2(a 1+6d )=4,即a 1+9d =4,S 18=18a 1+18×17d 2=18(a 1+172d )不恒为常数.S 19=19a 1+19×18d2=19(a 1+9d )=76,同理S 20,S 21均不恒为常数,故选B. 8. 【答案】A 【解析】考点:三角函数的图象性质.9.【答案】D【解析】考点:1、抛物线的定义;2、抛物线的简单性质.【方法点睛】本题主要考查抛物线的定义和抛物线的简单性质,属于难题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线距转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.本题就是将M到焦点的距离转化为到准线的距离后进行解答的.10.【答案】D【解析】试题分析:由于20160-<,由程序框图可得对循环进行加运算,可以得到2x =,从而可得1y =,由于20151>,则进行2y y =循环,最终可得输出结果为2048.1考点:程序框图. 11.【答案】C【解析】【知识点】样本的数据特征茎叶图 【试题解析】由题知:所以m 可以取:0,1,2. 故答案为:C 12.【答案】B【解析】解:设数列{a n }的公差为d ,则由a 1+a 5=10,a 4=7,可得2a 1+4d=10,a 1+3d=7,解得d=2, 故选B .二、填空题13.【答案】 2 .【解析】解:∵数据﹣2,﹣1,0,1,2,∴=,∴S 2= [(﹣2﹣0)2+(﹣1﹣0)2+(0﹣0)2+(1﹣0)2+(2﹣0)2]=2,故答案为2;【点评】本题考查方差的定义与意义:一般地设n 个数据,x1,x 2,…x n 的平均数,是一道基础题;14.【答案】 4 .【解析】解:由约束条件作出可行域如图,化目标函数z=﹣2x+y 为y=2x+z ,由图可知,当直线y=2x+z 过点A (﹣2,0)时, 直线y=2x+z 在y 轴上的截距最大,即z 最大,此时z=﹣2×(﹣2)+0=4. 故答案为:4.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.【答案】 .【解析】解:∵抛物线C 方程为y 2=4x ,可得它的焦点为F (1,0), ∴设直线l 方程为y=k (x ﹣1),由,消去x 得.设A (x 1,y 1),B (x 2,y 2),可得y 1+y 2=,y 1y 2=﹣4①. ∵|AF|=3|BF|,∴y 1+3y 2=0,可得y 1=﹣3y 2,代入①得﹣2y 2=,且﹣3y 22=﹣4, 消去y2得k 2=3,解之得k=±.故答案为:.【点评】本题考查了抛物线的简单性质,着重考查了舍而不求的解题思想方法,是中档题.16.【答案】1 【解析】试题分析:两直线垂直满足()02-12=⨯+⨯a ,解得1=a ,故填:1. 考点:直线垂直【方法点睛】本题考查了根据直线方程研究垂直关系,属于基础题型,当直线是一般式直线方程时,0:1111=++c y b x a l ,0:2222=++c y b x a l ,当两直线垂直时,需满足02121=+b b a a ,当两直线平行时,需满足01221=-b a b a 且1221c b c b ≠,或是212121c cb b a a ≠=,当直线是斜截式直线方程时,两直线垂直121-=k k ,两直线平行时,21k k =,21b b ≠.117.【答案】 {x|x >0} .【解析】解:对数函数y=lgx 的定义域为:{x|x >0}.故答案为:{x|x >0}.【点评】本题考查基本函数的定义域的求法.18.【答案】 15【解析】解:8名支教名额分配到三所学校,每个学校至少一个名额,则8人可以分为(6,1,1),(5,2,1),(4,3,1),(4,2,2),(3,3,2),∵甲学校至少分到两个名额,第一类是1种,第二类有4种,第三类有4种,第四类有3种,第五类也有3种,根据分类计数原理可得,甲学校至少分到两个名额的分配方案为1+4+4+3+3=15种 故答案为:15.【点评】本题考查了分类计数原理得应用,关键是分类,属于基础题.三、解答题19.【答案】【解析】解:(1)f (x )=|x +1|+2|x -a 2|=⎩⎪⎨⎪⎧-3x +2a 2-1,x ≤-1,-x +2a 2+1,-1<x <a 2,3x -2a 2+1,x ≥a 2,当x ≤-1时,f (x )≥f (-1)=2a 2+2, -1<x <a 2,f (a 2)<f (x )<f (-1), 即a 2+1<f (x )<2a 2+2, 当x ≥a 2,f (x )≥f (a 2)=a 2+1,所以当x =a 2时,f (x )min =a 2+1,由题意得a 2+1=3,∴a =±2. (2)当a =±2时,由(1)知f (x )=⎩⎪⎨⎪⎧-3x +3,x ≤-1,-x +5,-1<x <2,3x -3,x ≥2,由y =f (x )与y =m 的图象知,当它们围成三角形时,m 的范围为(3,6],当m =6时,围成的三角形面积最大,此时面积为12×|3-(-1)|×|6-3|=6.20.【答案】(1){}11x x x ><-或;(2)(,2]-∞-. 【解析】试题解析:(1)因为()211f x x <--,所以1211x x -<--, 即1211x x ---<-,当1x >时,1211x x --+<-,∴1x -<-,∴1x >,从而1x >;当112x ≤≤时,1211x x --+<-,∴33x -<-,∴1x >,从而不等式无解; 当12x <时,1211x x -+-<-,∴1x <-,从而1x <-;综上,不等式的解集为{}11x x x ><-或.(2)由121()x x a f x ->---,得121x x a x a -+->--, 因为1121x x a x a x x a -+-≥-+-=--,所以当(1)()0x x a --≥时,121x x a x a -+-=--; 当(1)()0x x a --<时,121x x a x a -+->--记不等式(1)()0x x a --<的解集为A ,则(2,1)A -⊆,故2a ≤-,-∞-.所以的取值范围是(,2]考点:1.含绝对值的不等式;2.分类讨论.21.【答案】【解析】解:(1),=5…且,代入回归直线方程可得∴=0.6x+3.2,x=6时,=6.8,…(2)X的取值有0,1,2,3,则,,,…0 1 2 3【点评】本题考查线性回归方程、离散型随机变量的分布列及其数学期望,考查学生分析解决问题的能力.22.【答案】【解析】解:(1)作出散点图如下:…(3分)(2)=(2+3+4+5)=3.5,=(2.5+3+4+4.5)=3.5,…(5分)=54,x i y i=52.5∴b==0.7,a=3.5﹣0.7×3.5=1.05, ∴所求线性回归方程为:y=0.7x+1.05…(10分) (3)当x=10代入回归直线方程,得y=0.7×10+1.05=8.05(小时).∴加工10个零件大约需要8.05个小时…(12分)【点评】本题考查线性回归方程的求法和应用,考查学生的计算能力,属于中档题.23.【答案】(1)圆与圆相离;(2)定值为2. 【解析】试题分析:(1)若两圆关于直线对称,则圆心关于直线对称,并且两圆的半径相等,可先求得圆M 的圆心,DM r =,然后根据圆心距MN 与半径和比较大小,从而判断圆与圆的位置关系;(2)因为点G 到AP 和BP 的距离相等,所以两个三角形的面积比值PAPBS S APG PBG =∆∆,根据点P 在圆M 上,代入两点间距离公式求PB 和PA ,最后得到其比值.试题解析:(1) ∵圆N 的圆心)35,35(-N 关于直线x y =的对称点为)35,35(-M , ∴916)34(||222=-==MD r , ∴圆M 的方程为916)35()35(22=-++y x .∵3823210)310()310(||22=>=+=r MN ,∴圆M 与圆N 相离.考点:1.圆与圆的位置关系;2.点与圆的位置关系.1∆为等边三角形.24.【答案】ABC【解析】试题分析:由2=,在结合2a b c=,根据正弦定理得出2a bcsin sin sinA B C==,=+,可推理得到a b c 即可可判定三角形的形状.考点:正弦定理;三角形形状的判定.。

红星区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

红星区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.抛物线y=4x2的焦点坐标是()A.(0,1)B.(1,0)C.D.2.若函数f(x)=﹣2x3+ax2+1存在唯一的零点,则实数a的取值范围为()A.[0,+∞)B.[0,3]C.(﹣3,0]D.(﹣3,+∞)3.直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为()A.B.C.D.4.设集合,,则( )ABCD5.设集合A={x|﹣2<x<4},B={﹣2,1,2,4},则A∩B=()A.{1,2}B.{﹣1,4}C.{﹣1,2}D.{2,4}6.函数y=2sin2x+sin2x的最小正周期()A.B.C.πD.2π7.定义在R上的奇函数f(x),满足,且在(0,+∞)上单调递减,则xf(x)>0的解集为()A.B.C.D.8.设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为()A.y2=4x或y2=8x B.y2=2x或y2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x 9. “”是“A=30°”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也必要条件10.实数x ,y 满足不等式组,则下列点中不能使u=2x+y 取得最大值的是()A .(1,1)B .(0,3)C .(,2)D .(,0)11.如图,在等腰梯形ABCD 中,AB=2DC=2,∠DAB=60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED 、EC 向上折起,使A 、B 重合于点P ,则P ﹣DCE 三棱锥的外接球的体积为()A .B .C .D .12.已知向量=(﹣1,3),=(x ,2),且,则x=( )A .B .C .D .二、填空题13.若命题“∀x ∈R ,|x ﹣2|>kx+1”为真,则k 的取值范围是 .14.设p :f (x )=e x +lnx+2x 2+mx+1在(0,+∞)上单调递增,q :m ≥﹣5,则p 是q 的 条件. 15.已知数列{a n }满足a 1=1,a 2=2,a n+2=(1+cos 2)a n +sin 2,则该数列的前16项和为 .16.已知,为实数,代数式的最小值是.x y 2222)3(9)2(1y x x y ++-++-+【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力.17.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()211{52128lnx x xf x m x mx x +>=-++≤,,,,若有三个零点,则实数m 的取值范围是________.()()g x f x m =-18.(﹣2)7的展开式中,x 2的系数是 .三、解答题19.等差数列{a n }的前n 项和为S n .a 3=2,S 8=22.(1)求{a n }的通项公式;(2)设b n =,求数列{b n }的前n 项和T n .20.已知函数f (x )=e ﹣x (x 2+ax )在点(0,f (0))处的切线斜率为2.(Ⅰ)求实数a 的值;(Ⅱ)设g (x )=﹣x (x ﹣t ﹣)(t ∈R ),若g (x )≥f (x )对x ∈[0,1]恒成立,求t 的取值范围;(Ⅲ)已知数列{a n }满足a 1=1,a n+1=(1+)a n ,求证:当n ≥2,n ∈N 时 f ()+f ()+L+f ()<n •()(e 为自然对数的底数,e ≈2.71828).21.(本题满分15分)若数列满足:(为常数, ),则称为调和数列,已知数列为调和数{}n x 111n nd x x +-=d *n N ∈{}n x {}n a列,且,.11a =123451111115a a a a a ++++=(1)求数列的通项;{}n a n a (2)数列的前项和为,是否存在正整数,使得?若存在,求出的取值集合;若不存2{}nna n n S n 2015n S ≥n 在,请说明理由.【命题意图】本题考查数列的通项公式以及数列求和基础知识,意在考查运算求解能力.22.某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x 年后数控机床的盈利总额y 元.(1)写出y 与x 之间的函数关系式;(2)从第几年开始,该机床开始盈利?(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.23.如图,边长为2的等边△PCD 所在的平面垂直于矩形ABCD 所在的平面,BC=,M 为BC 的中点.(Ⅰ)证明:AM ⊥PM ; (Ⅱ)求点D 到平面AMP 的距离.24.在△ABC中,D为BC边上的动点,且AD=3,B=.(1)若cos∠ADC=,求AB的值;(2)令∠BAD=θ,用θ表示△ABD的周长f(θ),并求当θ取何值时,周长f(θ)取到最大值?红星区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】C【解析】解:抛物线y=4x2的标准方程为x2=y,p=,开口向上,焦点在y轴的正半轴上,故焦点坐标为(0,),故选C.【点评】本题考查抛物线的标准方程,以及简单性质的应用;把抛物线y=4x2的方程化为标准形式,是解题的关键.2.【答案】D【解析】解:令f(x)=﹣2x3+ax2+1=0,易知当x=0时上式不成立;故a==2x﹣,令g(x)=2x﹣,则g′(x)=2+=2,故g(x)在(﹣∞,﹣1)上是增函数,在(﹣1,0)上是减函数,在(0,+∞)上是增函数;故作g(x)=2x﹣的图象如下,,g(﹣1)=﹣2﹣1=﹣3,故结合图象可知,a>﹣3时,方程a=2x﹣有且只有一个解,即函数f(x)=﹣2x3+ax2+1存在唯一的零点,故选:D.3.【答案】A【解析】直线x﹣2y+2=0与坐标轴的交点为(﹣2,0),(0,1),直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点;故.故选A.【点评】本题考查了椭圆的基本性质,只需根据已知条件求出a,b,c即可,属于基础题型. 4.【答案】C【解析】送分题,直接考察补集的概念,,故选C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

盘龙区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知实数y x ,满足不等式组⎪⎩⎪⎨⎧≤-≥+≤-5342y x y x x y ,若目标函数mx y z -=取得最大值时有唯一的最优解)3,1(,则实数m 的取值范围是( )A .1-<mB .10<<mC .1>mD .1≥m【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等.2. (2015秋新乡校级期中)已知x+x ﹣1=3,则x 2+x ﹣2等于( )A .7B .9C .11D .133. 已知点A (1,2),B (3,1),则线段AB 的垂直平分线的方程是( )A .4x+2y=5B .4x ﹣2y=5C .x+2y=5D .x ﹣2y=54. 设集合M={x|x >1},P={x|x 2﹣6x+9=0},则下列关系中正确的是( ) A .M=P B .P ⊊M C .M ⊊P D .M ∪P=R 5. 已知直线l的参数方程为1cos sin x t y t αα=+⎧⎪⎨=⎪⎩(t 为参数,α为直线l 的倾斜角),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin()3πρθ=+,直线l 与圆C 的两个交点为,A B ,当||AB 最小时,α的值为( )A .4πα=B .3πα=C .34πα=D .23πα=6. △ABC 中,A (﹣5,0),B (5,0),点C在双曲线上,则=( )A.B.C.D .±7. 已知lga+lgb=0,函数f (x )=a x 与函数g (x )=﹣log b x 的图象可能是( )A. B. C. D.8. 袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )A .至少有一个白球;都是白球B .至少有一个白球;至少有一个红球C .恰有一个白球;一个白球一个黑球D .至少有一个白球;红、黑球各一个9. 定义某种运算S=a ⊗b ,运算原理如图所示,则式子+的值为( )A .4B .8C .10D .1310.设m ,n 是正整数,多项式(1﹣2x )m +(1﹣5x )n 中含x 一次项的系数为﹣16,则含x 2项的系数是( ) A .﹣13 B .6 C .79 D .3711.已知点F 1,F 2为椭圆的左右焦点,若椭圆上存在点P 使得,则此椭圆的离心率的取值范围是( )A .(0,)B .(0,]C .(,]D .[,1)12.设n S 是等比数列{}n a 的前项和,425S S =,则此数列的公比q =( )A .-2或-1B .1或2 C.1±或2 D .2±或-1二、填空题13.【启东中学2018届高三上学期第一次月考(10月)】已知函数()f x xlnx ax =-+在()0e ,上是增函数,函数()22xa g x e a =-+,当[]03x ln ∈,时,函数g (x )的最大值M 与最小值m 的差为32,则a 的值为______.14.若复数34sin (cos )i 55z αα=-+-是纯虚数,则tan α的值为 .【命题意图】本题考查复数的相关概念,同角三角函数间的关系,意在考查基本运算能力. 15.已知正整数m 的3次幂有如下分解规律:113=;5323+=;119733++=;1917151343+++=;…若)(3+∈N m m 的分解中最小的数为91,则m 的值为 .【命题意图】本题考查了归纳、数列等知识,问题的给出比较新颖,对逻辑推理及化归能力有较高要求,难度中等.16.若函数()ln f x a x x =-在区间(1,2)上单调递增,则实数的取值范围是__________.17.当0,1x ∈()时,函数()e 1x f x =-的图象不在函数2()g x x ax =-的下方,则实数a 的取值范围是___________.【命题意图】本题考查函数图象间的关系、利用导数研究函数的单调性,意在考查等价转化能力、逻辑思维能力、运算求解能力.18.已知z ,ω为复数,i 为虚数单位,(1+3i )z 为纯虚数,ω=,且|ω|=5,则复数ω= .三、解答题19.如图,点A 是以线段BC 为直径的圆O 上一点,AD ⊥BC 于点D ,过点B 作圆O 的切线,与CA 的延长线相交于点E ,点G 是AD 的中点,连接CG 并延长与BE 相交于点F ,延长AF 与CB 的延长线相交于点P . (1)求证:BF=EF ;(2)求证:PA 是圆O 的切线.20.设函数f(x)=lnx﹣ax2﹣bx.(1)当a=2,b=1时,求函数f(x)的单调区间;(2)令F(x)=f(x)+ax2+bx+(2≤x≤3)其图象上任意一点P(x0,y0)处切线的斜率k≤恒成立,求实数a的取值范围;(3)当a=0,b=﹣1时,方程f(x)=mx在区间[1,e2]内有唯一实数解,求实数m的取值范围.21.已知集合A={x|x<﹣1,或x>2},B={x|2p﹣1≤x≤p+3}.(1)若p=,求A∩B;(2)若A∩B=B,求实数p的取值范围.22.已知数列{a n}共有2k(k≥2,k∈Z)项,a1=1,前n项和为S n,前n项乘积为T n,且a n+1=(a﹣1)S n+2(n=1,2,…,2k﹣1),其中a=2,数列{b n}满足b n=log2,(Ⅰ)求数列{b n}的通项公式;(Ⅱ)若|b1﹣|+|b2﹣|+…+|b2k﹣1﹣|+|b2k﹣|≤,求k的值.23.(本题满分12分)在长方体1111D C B A ABCD -中,a AD AA ==1,E 是棱CD 上的一点,P 是棱1AA 上的一点.(1)求证:⊥1AD 平面D B A 11; (2)求证:11AD E B ⊥;(3)若E 是棱CD 的中点,P 是棱1AA 的中点,求证://DP 平面AE B 1.24.已知函数f (x )=xlnx ,求函数f (x )的最小值.盘龙区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】C【解析】画出可行域如图所示,)3,1(A ,要使目标函数mx y z -=取得最大值时有唯一的最优解)3,1(,则需直线l 过点A 时截距最大,即z 最大,此时1>l k 即可.2. 【答案】A【解析】解:∵x+x ﹣1=3,则x 2+x ﹣2=(x+x ﹣1)2﹣2=32﹣2=7.故选:A .【点评】本题考查了乘法公式,考查了推理能力与计算能力,属于中档题.3. 【答案】B【解析】解:线段AB 的中点为,k AB ==﹣,∴垂直平分线的斜率 k==2,∴线段AB 的垂直平分线的方程是 y ﹣=2(x ﹣2)⇒4x ﹣2y ﹣5=0,故选B .【点评】本题考查两直线垂直的性质,线段的中点坐标公式,以及用直线方程的点斜式求直线方程的求法.4. 【答案】B【解析】解:P={x|x=3},M={x|x >1}; ∴P ⊊M . 故选B .5. 【答案】A【解析】解析:本题考查直线的参数方程、圆的极坐标方程及其直线与圆的位置关系.在直角坐标系中,圆C的方程为22((1)4x y +-=,直线l 的普通方程为tan (1)y x α=-,直线l 过定点M ,∵||2MC <,∴点M 在圆C 的内部.当||AB 最小时,直线l ⊥直线MC ,1MC k =-,∴直线l 的斜率为1,∴4πα=,选A .6. 【答案】D【解析】解:△ABC 中,A (﹣5,0),B (5,0),点C 在双曲线上,∴A 与B 为双曲线的两焦点,根据双曲线的定义得:|AC ﹣BC|=2a=8,|AB|=2c=10,则==±=±.故选:D .【点评】本题考查了正弦定理的应用问题,也考查了双曲线的定义与简单性质的应用问题,是基础题目.7. 【答案】B【解析】解:∵lga+lgb=0∴ab=1则b=从而g (x )=﹣log b x=log a x ,f (x )=a x与∴函数f (x )与函数g (x )的单调性是在定义域内同增同减 结合选项可知选B , 故答案为B8. 【答案】D【解析】解:从3个红球,2个白球,1个黑球中任取2个球的取法有:2个红球,2个白球,1红1黑,1红1白,1黑1白共5类情况, 所以至少有一个白球,至多有一个白球不互斥;至少有一个白球,至少有一个红球不互斥; 至少有一个白球,没有白球互斥且对立;至少有一个白球,红球黑球各一个包括1红1白,1黑1白两类情况,为互斥而不对立事件,故选:D【点评】本题考查了互斥事件和对立事件,是基础的概念题.9.【答案】C【解析】解:模拟执行程序,可得,当a≥b时,则输出a(b+1),反之,则输出b(a+1),∵2tan=2,lg=﹣1,∴(2tan)⊗lg=(2tan)×(lg+1)=2×(﹣1+1)=0,∵lne=1,()﹣1=5,∴lne⊗()﹣1=()﹣1×(lne+1)=5×(1+1)=10,∴+=0+10=10.故选:C.10.【答案】D【解析】二项式系数的性质.【专题】二项式定理.【分析】由含x一次项的系数为﹣16利用二项展开式的通项公式求得2m+5n=16 ①.,再根据m、n为正整数,可得m=3、n=2,从而求得含x2项的系数.【解答】解:由于多项式(1﹣2x)m+(1﹣5x)n中含x一次项的系数为(﹣2)+(﹣5)=﹣16,可得2m+5n=16 ①.再根据m、n为正整数,可得m=3、n=2,故含x2项的系数是(﹣2)2+(﹣5)2=37,故选:D.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.11.【答案】D【解析】解:由题意设=2x,则2x+x=2a,解得x=,故||=,||=,当P与两焦点F1,F2能构成三角形时,由余弦定理可得4c2=+﹣2×××cos∠F1PF2,由cos∠F1PF2∈(﹣1,1)可得4c2=﹣cos∠F1PF2∈(,),即<4c 2<,∴<<1,即<e 2<1,∴<e <1;当P 与两焦点F 1,F 2共线时,可得a+c=2(a ﹣c ),解得e==;综上可得此椭圆的离心率的取值范围为[,1)故选:D【点评】本题考查椭圆的简单性质,涉及余弦定理和不等式的性质以及分类讨论的思想,属中档题.12.【答案】D 【解析】试题分析:当公比1-=q 时,0524==S S ,成立.当1-≠q 时,24,S S 都不等于,所以42224==-q S S S , 2±=∴q ,故选D.考点:等比数列的性质.二、填空题13.【答案】52【解析】()1ln f x x a =--+',因为()f x 在()0e ,上是增函数,即()0f x '≥在()0e ,上恒成立,ln 1a x ∴≥+,则()max ln 1a x ≥+,当x e =时,2a ≥,又()22xa g x e a =-+,令xt e =,则()[]2,1,32a g t t a t =-+∈, (1)当23a ≤≤时,()()2max 112a g t g a ==-+,()()2min 2a g t g a ==,则()()max min 312g t g t a -=-=,则52a =,(2)当3a >时,()()2max 112a g t g a ==-+,()()2min 332a g t g a ==-+,则()()max min 2g t g t -=,舍。

相关文档
最新文档