PPT:支付宝背后的大数据技术——DataLab、Higo
阿里巴巴大数据之路——数据技术篇

阿⾥巴巴⼤数据之路——数据技术篇⼀、整体架构 从下⾄上依次分为数据采集层、数据计算层、数据服务层、数据应⽤层 数据采集层:以DataX为代表的数据同步⼯具和同步中⼼ 数据计算层:以MaxComputer为代表的离线数据存储和计算平台 数据服务层:以RDS为代表的数据库服务(接⼝或者视图形式的数据服务) 数据应⽤层:包含流量分析平台等数据应⽤⼯具⼆、数据采集(离线数据同步) 数据采集主要分为⽇志采集和数据库采集。
⽇志采集暂略(参考书籍原⽂)。
我们主要运⽤的是数据库采集(数据库同步)。
通常情况下,我们需要规定原业务系统表增加两个字段:创建时间、更新时间(或者⾄少⼀个字段:更新时间) 数据同步主要可以分为三⼤类:直连同步、数据⽂件同步、数据库⽇志解析同步 1.直连同步 通过规范好的接⼝和动态连接库的⽅式直接连接业务库,例如通过ODBC/JDBC进⾏直连 当然直接连接业务库的话会对业务库产⽣较⼤压⼒,如果有主备策略可以从备库进⾏抽取,此⽅式不适合直接从业务库到数仓的情景 2.数据⽂件同步 从源系统⽣成数据⽂本⽂件,利⽤FTP等传输⽅式传输⾄⽬标系统,完成数据的同步 为了防⽌丢包等情况,⼀般会附加⼀个校验⽂件,校验⽂件包含数据量、⽂件⼤⼩等信息 为了安全起见还可以加密压缩传输,到⽬标库再解压解密,提⾼安全性 3.数据库⽇志同步 主流数据库都⽀持⽇志⽂件进⾏数据恢复(⽇志信息丰富,格式稳定),例如Oracle的归档⽇志 (数据库相关⽇志介绍,参考:) 4.阿⾥数据仓库同步⽅式 1)批量数据同步 要实现各种各样数据源与数仓的数据同步,需要实现数据的统⼀,统⼀的⽅式是将所有数据类型都转化为中间状态,也就是字符串类型。
以此来实现数据格式的统⼀。
产品——阿⾥DataX:多⽅向⾼⾃由度异构数据交换服务产品,产品解决的主要问题:实现跨平台的、跨数据库、不同系统之间的数据同步及交互。
产品简介: 开源地址: 更多的介绍将会通过新开随笔进⾏介绍!(当然还有其他主流的数据同步⼯具例如kettle等!) 2)实时数据同步 实时数据同步强调的是实时性,基本原理是通过数据库的⽇志(MySQL的bin-log,Oracle的归档⽇志等)实现数据的增量同步传输。
大数据技术原理与应用ppt课件

• 在 TaskTracker 端,以 map/reduce task 的数目作 为资源的表示过于简单,没有考虑到 cpu/ 内存的占
用情况。
• MapReduce 框架在有任何重要的或者不重要的变化
( 例如 bug 修复,性能提升和特性化 ) 时,都会强
制进行系统级别的升级更新。强制让分布式集群系统
的每一个用户端同时更新。
完整最新ppt
26
Hadoop YARN MR调度
完整最新ppt
27
Yarn vs MR 1.0
• MR1.0
–Job Tracker
• 资源管理 • 任务调度、监控
• Yarn
–ResourceManager
• 调度、启动每一个 Job 所属的 ApplicationMaster、另 外监控 ApplicationMaster
完整最新ppt
Cite from Dean and Ghemawat (OSDI 2004)
17
MapReduce并行处理的基本过程
6.主节点启动每个 Map节点执行程序, 每个map节点尽可能 读取本地或本机架 的数据进行计算
7.每个Map节点处理读取的 数据块,并做一些数据整 理工作(combining, sorting 等)并将中间结果存放在 本地;同时通知主节点计 算任务完成并告知中间结 果数据存储位置
• 其中一个开源实现即Hadoop MapReduce
完整最新ppt
15
MapReduce并行处理的基本过程
1.有一个待处理的大 数据,被划分为大 小相同的数据块(如 64MB),及与此相应 的用户作业程序
2.系统中有一个负责调 度的主节点(Master), 以及数据Map和Reduce 工作节点(Worker)
大数据技术与应用实践-最新课件PPT

不适用非KV问题 不适用实时数据处理
大数据技术与应用.
Page27
目录
1. 大数据基础 2. 大数据关键技术 – Spark 3. 大数据与云 4. 大数据应用
大数据技术与应用.
Page28
交互式处理技术:Spark
内存计算
内存高速的数据传输速率 某些数据集已经能全部放在
内存 内存容量持续增长
Clojure,Java,Python,Ruby
支持本地模式
大数据技术与应用.
Page47
流式处理技术:Storm
示例
需求
实时计算10万多条路段的实时平均速度,并用不同颜色表示不同拥 堵程度,实现路况实时播报
秒级响应
数据量
6万多GPS定位仪,每15s发送一条位置信息 每天产生3.5亿条数据,空间300G左右
Page44
流式处理技术:Storm
流计算框架要求
高性能:每秒处理几十万条数据 海量数据处理 实时性:秒级、毫秒级 可伸缩性
大数据技术与应用.
Page45
流式处理技术:Storm
Storm分布式实时计算系统特征
编程模型简单
降低实时处理复杂性 提供Spout、Bolt操作原语
可扩展性
节点、工作进程、线程和任务多级并行
高可靠性
保证每个消息至少得到一次完整处理
大数据技术与应用.
Page46
流式处理技术:Storm
Storm分布式实时计算系统特征
高容错性
消息处理过程出现异常,Storm重新部署出现问题的处理单元 处理单元存储的中间状态被清除,应用负责管理
支持多种编程语言
大数据应用场景
非结构化、半结构化数据居多 要求系统能线性伸缩,即要处理更大规模数据,增加机器数量即
大数据培训课件(PPT 27页)

– 举例:商超的促销定价怎么做
处理大数据需要专门的技术方案
传统数据
• 数据库 • OLTP系统 • 中心式架构
大数据
• 数据仓库 • OLAP • 数据挖掘 • 云计算架构 • Hadoop
所以,马云说…
• “我们正从IT(信息技术)时代走向DT(数 据技术)时代”、“IT时代是制造,DT时 代是创造”。
理性面对 厘清思路
• 大数据来了?还是狼来了?大数据的本质 是“基于数据的决策”,摒弃“基于经验 的决策”,传统企业应当从客户端、产品 端、管理端寻找介入机会,切不可陷入技 术端陷阱。
– 举例:谷歌流感趋势预测饱受质疑
设立机构 转换职能
• 企业应当设立信息化部门,甚至设立大数 据开发管理部门,该部门不再是后勤支撑 角色,而是要总领性规划企业的数据战略。 支持通过数据整合颠覆公司低效的流程和 业务,信息化部门的职能从软硬件日常维 护转向助推商业逻辑重构。
我对大数据的理解
• 大数据是指超大规模的数据集合,往往还 具有类型多样、快速流转、和价值密度低 等特点,人们无法通过传统数据技术,以 可接受的代价来驾驭处理它。
两点认识
• 大数据的“大”不只是“数量大”,类型 多样、快速流转和价值密度低才是其有别 于传统“数据”概念的关键所在。
– 举例:NEC用脸部识别技术提升销售
• 2015.7 《国务院关于积极推进“互联网+”行动的指导意见》 • 2015.9 《国务院关于促进大数据发展行动纲要》 • 2015.5《安徽省人民政府办公厅关于促进电子政务协调发
展的实施意见》 • 2015.9 《安徽省委省政府关于加快调结构转方式促升级
大数据技术基础 PPT

2.4.2 数据的存储方式
大数据存储方式
➢ 开放系统的直连式存储(Direct Attached Storage, DAS)
直接连接于主机服务器的 一种储存方式。每一台主机服 务器有独立的储存设备,可以说是一种应用较为早的技 术实现。
DAS缺点: • 效率比较低 • 无法共享 • 数据保护流程复杂
支持Hadoop
2.1.1 Hadoop Hadoop技术架构
•经过多年的发展,Hadoop项目不断完善和成熟,目前已经包含多个子项目(如下图2-2所示) •除了核心的HDFS和MapReduce以外,Hadoop项目还包括Common、Avro、Zookeeper、HBase、Hive、Chukwa、Pig等子项目,它们提供了 互补性服务或在核心层上提供了更高层的服务
个人提供决策和服务,是大数据核心议题,也是云计算的最终方向。
3.数据采集
2.3 数据采集
数据采集:其实就是大数据抽取、转换和加载的过程 数据采集的工具:摄像头、麦克风等都是数据采集的工具。 数据采集的意义:足够的数据量是企业大数据战略建设的基础,数据采集成为大数据分析的前奏。数据采集是大数据价值挖掘中重
Facebook的Scribe
Facebook的Scribe
• Scribe是Facebook开源的日志手机系统,它能够从各种日志源上收集日 志,存储到一个中央存储系统上,以便于进行集中统计分析处理。它为日 志的“分布式收集,统一处理”提供了一个可扩展的,高容错的方案。
Hadoop的Chukwa
• chukwa 是一个开源的用于监控大型分布式系统的数据 收集系统。这是构建在 hadoop 的 hdfs 和 map/reduce 框架之上的,继承了 hadoop 的可伸缩 性和鲁棒性。Chukwa 还包含了一个强大和灵活的工 具集,可用于展示、监控和分析已收集的数据。
《阿里大数据架构》课件

2
阿里云实时计算引擎
阿里云实时计算引擎是一种实时数据分析和计算平台,提供实时数据处理和实时 智能服务。
3
TensorFlow在阿里的应用
阿里巴巴广泛使用TensorFlow进行机器学习和深度学习,在智能推荐和图像识 别等领域取得了重要成果。
大数据平台管理
阿里巴巴大数据 平台管理的架构
阿里巴巴建立了一套完善 的大数据平台管理架构, 实现了数据的集中管理和 资源的统一调度。
Storm流式计算引擎
Storm是一种分布式的实时流 式计算引擎,用于处理和分析 高速数据流。
Flink在流处理中的应用
阿里巴巴使用Flink进行实时流 处理,通过流计算实现业务实 时监控和分析。
实时智能架构
1
实时智能分析的概念和应用场景
实时智能分析是基于实时数据进行智能挖掘和分析,用于实时推荐、智能广告等 应用。
2 阿里巴巴大数据安全架构设计
阿里巴巴通过建立严格的安全架构和流程,确保数据在收集、存储和处理过程中的安全。
3 阿里云数据加密解决方案
阿里云提供多种数据加密解决方案,保护数据的机密性和完整性,防止数据泄露和篡改。
流处理架构
流处理的定义和应用场景
流处理是一种实时处理数据的 方式,广泛应用于实时推荐、 欺诈检测和实时分析等场景。
数据的写入和读取。
阿里云OSS存储
阿里云对象存储(OSS)是一种安全 可靠、高扩展性的云存储服务,用于 存储和管理大规模的非结构化数据。
HBase列式数据库
HBase是一种分布式、可扩展的列式 数据库,用于存储和查询大规模结构 化数据。
数据安全
1 数据安全的重要性
在大数据时代,数据安全是保护个人隐私和企业利益的关键,需要采取有效的安全措施。
大数据挖掘工具培训课件(ppt 36张)
4.1 Mahout
Mahout在各平台支持的机器学习算法
算法 聚类算法 Canopy 单机 — deprecated MapReduce — deprecated Spark — —
《大数据》配套PPT课件
H2O — —
k-means 模糊k-means 流k-means 谱聚类 分类算法 逻辑回归 朴素贝叶斯 随机森林 隐马尔可夫模型 多层感知器 协同过滤算法 基于用户的协同过滤 基于物品的协同过滤 基于ALS的矩阵分解 基于ALS的矩阵分解(隐式 反馈) 加权矩阵分解 降维算法 奇异值分解 Lanczos
《大数据》配套PPT课件
调用Mahout API运行k-means聚类算法,指定Hadoop配置信息、输入数据、 初始聚类中心,迭代2次得到聚类结果
8 of 44
4.1 Mahout
基于多维输入数据运行k-means算法 60维数据样本
《大数据》配套PPT课件
600条60维趋势数据(600行60列)
2008年之前
发 展 历 史
Apache Lucene开源搜索引擎的子项目 实现Lucene框架中的聚类以及分类算法
吸纳协调过滤项目Taste成为独立子项目
2010年以后
成为Apache顶级项目 实现聚类、分类和协同过滤等机器学习算法 既可以单机运行也可在Hadoop平台上运行
驱象人
目标:机器学习平台,提供类似R的DSL以支持线性代数运算(如分布式向量计 算)、大数据统计等基本功能
MLlib
运行在Spark平台上专为在集群上并行运行而设计
内存中更快地实现多次迭代,适用于大规模数据集
离散型 分类 逻辑回归 支持向量机(SVM) 朴素贝叶斯 决策树 随机森林 梯度提升决策树 (GBT) 聚类 k-means 高斯混合 快速迭代聚类(PIC) 隐含狄利克雷分布(LDA) 二分k-means 流k-means
大数据十大经典案例ppt课件
6
5“魔镜”预知石油市场走向
7
如果你对“魔镜”还停留在“魔镜魔镜,告诉我 谁是世界上最美的女人”,那你就真的out了。“魔 镜”不仅仅是童话中王后的宝贝,而且是真实世界 中的一款神器。其实,“魔镜”是苏州国云数据科 技公司的一款牛逼的大数据可视化产品,而且是国 内首款喔。
12
10 超市预知高中生顾客怀孕
明尼苏达州一家塔吉特门店被客户投诉,一位中 年男子指控塔吉特将婴儿产品优惠券寄给他的女 儿——一个高中生。但没多久他却来电道歉,因为 女儿经他逼问后坦承自己真的怀孕了。塔吉特百货 就是靠着分析用户所有的购物数据,然后通过相关 关系分析得出事情的真实状况。
13
9
7 大数据与乔布斯癌症治疗
乔布斯是世界上第一个对自身所有DNA和肿瘤DNA 进行排序的人。为此,他支付了高达几十万美元的费 用。他得到的不是样本,而是包括整个基因的数据文 档。医生按照所有基因按需下药,最终这种方式帮助 乔布斯延长了好几年的生命。
10
8 ห้องสมุดไป่ตู้巴马大选连任成功
2012年11月奥巴马大选连任成功的胜利果实也被 归功于大数据,因为他的竞选团队进行了大规模与 深入的数据挖掘。时代杂志更是断言,依靠直觉与 经验进行决策的优势急剧下降,在政治领域,大数 据的时代已经到来;各色媒体、论坛、专家铺天盖 地的宣传让人们对大数据时代的来临兴奋不已,无 数公司和创业者都纷纷跳进了这个狂欢队伍。
3意料之外:
胸部最大的 是新疆妹子
淘宝数据平台显示,购买最 多的文胸尺码为B罩杯。B罩杯 占比达41.45%,其中又以75B 的销量最好。其次是A罩杯, 购买占比达25.26%,C罩杯只 有8.96%。在文胸颜色中,黑 色最为畅销。以省市排名,胸 部最大的是新疆妹子。
51大数据介绍PPT课件
5、低成本: hadoop本身是运行在普通PC服务器组成的集群中进行大数据 的分发及处理工作的,这些服务器集群是可以支持数千个节点的。
Hadoop核心设计
MapReduce HDFS
Map:任务的分解 Reduce:结果的汇总
化
传统数据与大数据对比
数据规模 数据类型
数据与模式关系 处理对象
传统数据(DB) 小(MB) 单一(结构化)
现有模式后有数据 数据
大数据(BD) 大(GB、TP、PB) 繁多(结构化、半结构化、非结构化)
现有数据后有模式,模式种类繁多 各种类型
相关技术
分析技术:
• 数据处理:自然语言处理技术 • 统计和分析:A/B test;top N排行榜 • 数据挖掘:关联规则分析;分类;聚类
互联网(社交、搜索、电商)、移动 互联网(微博)、物联网(传感器、智慧 地球)、车联网、GPS、医学影像、安全监 控、金融(银行、股市、保险)、电信 (通话、短信)
大数据的定义
大数据(Big data或Megadata),或称巨量数 据、海量数据、大资料,指的是所涉及的数据量 规模巨大到无法通过人工在合理时间内截取、管 理、处理、并整理成为人类所能解读的形式的信 息。
例:报表
• 实时性:(毫秒级)storm 例:信用卡欺诈
• 交互式分析:(秒级)spark
数据挖掘
数据 挖掘
数据挖掘是指从大量的数据中通 过算法搜索隐藏于其中信息的过程
数据可视化
大数据主要应用技术---Hadoop
Hadoop是一个由Apache基金会所开发的分布式 系 统 基 础 架 构 Hadoop 的 框 架 最 核 心 的 设 计 就 是 : HDFS和MapReduce。HDFS为海量的数据提供了存储, 则MapReduce为海量的数据提供了计算。
《大数据平台介绍》课件
THANKS
大数据平台的应用场景
总结词:大数据平台广泛应用于商业智能、智慧城市 、金融风控等领域。
详细描述:大数据平台在许多领域都有广泛的应用。在 商业智能领域,企业利用大数据平台进行市场分析、用 户行为分析、销售预测等,以提升业务决策的准确性和 效率。在智慧城市领域,大数据平台用于城市管理、交 通监控、公共安全等方面,提高城市运行效率和公共服 务水平。在金融风控领域,大数据平台用于风险评估、 信贷审批、欺诈检测等,以提升金融业务的安全性和可 靠性。此外,大数据平台还在医疗健康、科学研究、智 能制造等领域得到广泛应用。
恢复策略
制定详细的数据恢复流程和预案,以便在数据丢失或损 坏时能够迅速恢复数据。
性能优化与升级方案
性能优化
根据大数据平台的运行情况,对系统性能进行优化,提高数据处理速度和系统稳定性。
升级方案
根据技术发展和业务需求,制定升级方案,确保大数据平台能够持续满足业务发展需求 。
06 大数据平台的发展趋势与展望
总结词
随着数据量的快速增长和数据处理需求的日益复杂,传统数据处理方式无法满足需求,因此大数据平台应运而生 。
详细描述
随着互联网、物联网、社交媒体等领域的快速发展,数据量呈爆炸式增长,同时数据处理需求也变得日益复杂。 传统数据处理方式在处理速度、效率、规模等方面存在局限性,无法满足大数据时代的需求。因此,大数据平台 作为一种新型的数据处理框架和工具,应运而生。
详细描述
大数据通常是指数据量巨大、难以用传统数据处理工具和方法处理的数据集合。它具有4V特性,即体 量(Volume)、速度(Velocity)、多样(Variety)和价值(Value)。体量指数据的规模庞大,速 度指数据处理速度快,多样指数据类型多样,价值指大数据具有很高的潜在价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注:本PPT来源于2013年11月第三届Oracle技术嘉年华,由支付宝DW/BI 高级架构师周卫林贡献。
我们预计目前支付宝的大数据技术已经上升到了一个新的台阶,但是我们仍然想把这个PPT分享出来,让大家了解一下,一个风靡全球的支付系统背后到底使用了什么样的大数据技术,以及支付宝大数据技术的实践,给新入场的朋友们作为参考。
正文如下:
支付宝之所以备受大家的喜爱,更重要的是支付宝的安全机制和使用便捷性。
但是,业界并不仅仅有支付宝一家支付产品,如今微信也已经推出了微支付。
周卫林表示,支付宝的安全性机制要比微信高,比如大家在一个会场开会,通过后台的数据分析,基于这个位置的交易被认为是熟人之间的交易,不需要特别的验证,背后有强大的技术支撑。
比如,在小区中,基于小区的地理位置信息,人与人之间的交易认为是家人之间的交易。
目前,支付宝平台每年的数据的增长量超过以往所有年份数据累加之和还要多。
不同的业务阶段,导致不同的数据诉求,业务模式在最开始的时候负责度比较高,随着业务的增长对于创新的要求比较高。
数据诉求分析
当前业务阶段的特点:
1、“能一眼看得见的山头不多了”,面临创新压力;
2、“生孩子容易,养孩子难”,如何做好精细化运营。
当前数据诉求的特点:
1、主要用户不再是管理层(需求固定),而是一线同学(需求不固定);
2、实
现手段,不能仅是报表(T+1天),数据需要对接生产系统(T+1秒)。
当前的主要矛盾:无法快速响应日常需求
1、数据分析师/ETL工程师满足不了日益旺盛的数据需求,成为资源瓶颈;
2、精细化运营带来数据粒度下降,业务发展带来数据指数增长,传统方案无法应对;
3、缺乏数据化运营的业务支撑平台。
传统BI产品存在的几个问题:
1、对大数据支持不够:亿级数据的Ad-hoc,玩不了;
2、有学习成本:比较专业,分析师也需要培训才能较好使用;
3、License贵:依据账号数收费,无法大面积开放;
4、需要二次开发:无法直接给一线人员使用,一般要二次封装,而且基本无技术支持。
思路:人人都会用的大数据分析工具
工具让数据的使用更简单,人人会使用数据,才是数据化运营的基础。
数据逻辑如果不通过可视化的效果很难展现出来支付宝结合用户的使用习惯,自己开发一套工具,通过工具解决瓶颈的问题。
如何让工具让数据使用更简单。
站在内部角度看到工具的迫切需求,主要是因为数据越来越多,传统的工具支撑需求有很大的难度。
HiGo特性介绍
演示环境说明:
数据量:18亿条记录,60个字段,占用空间1.4T机器量:3台,96G内存,2T SATA磁盘,6核*2 CPU分40个shard,每个shard4600万条记录
任意条件的统计汇总:求浙江和广东省 4钻店铺和5钻店铺的店铺数,申请贷款金额总和和申请贷款的笔数总和”
任意条件的多维度分组统计:从一年的贷款数据中,看淘宝和天猫每一天申请贷款总金额、申请贷款的笔数
任意条件的多维度分组统计,含count distinct:从一年的贷款数据中,看淘宝和天猫每一天申请贷款的用户数
Case when:从一年的贷款数据中,看淘宝和天猫每一天申请金额在100W以上的大额贷款的总额,以及所有贷款总额(包括小额)
下面是详细的PPT介绍:
域名新闻http://www.73.tt/yumingxinwen/ wvoprt57d。