从主变中性点放电间隙与零序保护电流互感器

合集下载

主变压器中性点接地及保护的应用

主变压器中性点接地及保护的应用

主变压器中性点接地及保护的应用目录大型变压器是电力生产的核心设备,由于其成本较高,故在110kV及以上的中性点直接接地的电网中,普遍采用分级绝缘的变压器。

在中性点直接接地的电网中,接地短路故障是较常见的故障(约占故障总数的85%以上)。

虽然在实际运行中,部分变压器的中性点是直接接地的,它能够反映变压器高压绕组、引出线上的接地短路故障,并可作为大型电力变压器的主保护和相邻母线、线路接地保护的后备保护。

但还有部分变压器的中性点不接地运行,当系统发生接地故障,中性点接地的变压器跳开后,电网零序电压升高或谐振过电压等都会危及这些不接地的变压器中性点绝缘。

因此,处于该系统中运行的大型变压器必须装设中性点保护。

一、变压器中性点过电压的三种保护方式变压器中性点过电压保护可采用间隙、避雷器及避雷器联合放电间隙三种方式。

变压器中性点的过电压可分为三种形式:大气过电压、单相接地故障引起的过电压及断路器非全相分合闸引起的过电压。

(一)间隙间隙的优点是结构简单可靠、运行维护量小,在雷电、操作和工频过电压下都可对变压器进行保护;缺点是间隙参数确定较为困难、放电分散性大、保护性能一般、工频续流较大、灭弧能力差、在系统有不对称接地短路故障时有较大和较长时间的工频零序电流冲击主变压器,另外,间隙放电产生的谐波对主变压器的绕组绝缘也有一定的影响。

(二)避雷器避雷器具有优异的非线性伏安特性,残压随冲击电流波头时间变化的特性平稳,陡波响应特性好,无间隙的击穿和灭弧问题,通流容量大,无续流,动作迅速,对主变压器冲击小;其缺点是不能防护工频过电压,在较高的工频过电压下往往自身难保,需定期进行预防性试验,维护工作量较大。

(三)避雷器联合放电间隙避雷器并联间隙的保护分工是工频、操作过电压由间隙承担,雷电、暂态过电压由避雷器承担,同时,又用间隙来限制避雷器上可能出现的过高幅值的工频过电压和过高的残压。

这种方式既对变压器中性点进行保护,又起到互为保护的作用。

主变间隙过压保护规程规定定值为180V依据是什么

主变间隙过压保护规程规定定值为180V依据是什么

我有个问题请教各位高手:主变间隙过压保护规程规定定值为180V,这个定值的依据是什么?开口三角形输出的是3U0,在中性点不接地系统中,当母线PT处发生单相金属性接地的时候,这个3U0不过是根3*100,等于173.2V,如果接地点远离PT,或者接地点有过渡电阻,那么3Uo要小于173.2V,180 V的定值什么时候动作?折算一下180V是173.2V的1.03倍,如果是220KV母线,就是要母线电压高于2 26KV了,我们母线规定电压是220~242KV,这岂不是说如果低于226KV时候中性点不接地变的零序过压保护就不可能动作了?你的PT二次侧辅助绕组相电压为100/根3V,但开口三角每相绕组额定电压为100V,不是100/根3,PT 开口三角形绕组输出电压U=3U0/n,大电流接地系统,开口三角形输出电压是用来反应系统短路故障零序电压的,其变比一次侧:主二次侧:开口三角形n=U相:(100/√3):100。

如果保护安装处发生单相短路故障,此时的3U0为√3* U相,开口三角形输出电压为U=173V,因为设定值是180V,零序过压保护不动作,中性点不接地变压器不会误动作切除。

如果切除了所有的中性点接地的变压器故障仍然没有隔离,系统就变为小电流接地系统,中性点电压上升到正常相电压,正常相电压上升到正常线电压也就是√3倍的正常相电压,这时3 U0就随之升高到3倍正常 U相,开口三角形输出电压升高到300V。

零序过压保护动作。

PT开口三角形绕组输出电压U=3U0/n,大电流接地系统,开口三角形输出电压是用来反应系统短路故障零序电压的,其变比一次侧:主二次侧:开口三角形n=U相:(100/√3):100。

如果保护安装处发生单相短路故障,故障相对地电压为零,非故障相对地电压不变二次侧仍为100V,非故障两相间夹角为120度,其向量和为100V,即开口三角形输出电压为U=100V,因为设定值是180V,零序过压保护不动作,中性点不接地变压器不会误动作切除。

间隙零序过压定值为什么是180V?

间隙零序过压定值为什么是180V?

请问为什么间隙零序过压的定值为什么要整定为180V?是为了躲过什么?按中国电力出版社崔家佩等编的《电力系统继电保护与安全自动装置整定计算》一书所给,时间一般整定为0.5s,动作后跳各侧开关。

这么短的动作时间为什么是跳各侧开关而不是跳本侧开关?还有就是间隙零序过压和零序过压有何不同?为什么整定值会差那么远(例如在110kV系统中,零序过压可整定为15~30V)?系统运行中的过电压电力系统的过电压一般可分为下面三类,暂时过电压(工频过电压、谐振过电压) ,操作过电压,雷电过电压。

对于中性点雷击过电压处理,人们比较容易形成统一意见。

一般按变压器的标准雷电波的耐受水平,考虑绝缘老化累计效应乘0. 85 的系数,得出的实际绝缘耐受水平大于避雷器的标称雷电冲击放电电压或残压,取合理的系数即可。

下面简单讨论主变中性点电压的另外两种情况。

暂时过电压主要是由单相接地故障、谐振等引起,在我国标准的中性点接地系统X0/PX1 < 3、R0/PX1< 1 中,一般的单相接地故障,在不失去有效接地的情况下,非故障相工频过电压不会超过线电压的80 %。

但在110kV 终端站,不接地变压器实际是一个局部的不接地系统,在这种情况下发生单相间歇性电弧接地故障,按110kV 的最高电压126kV 计算,主变中性点稳态过电压可到73kV ,暂态电压可到132kV。

考虑带有均压电容的断路器开断连接带有电磁式电压互感器的空载母线时产生的铁磁谐振等;非故障相将产生2. 0p. u. ~3. 0p. u. 甚至更高的过电压。

变压器中性点过电压情况更为严峻。

操作过电压主要表现在空载线路、变压器的开断和重合等。

110kV 线路的重合闸,考虑到成功和非成功的重合前线路曾经发生单相接地;开断空载变压器考虑到由于断路器强制熄弧截流产生的过电压;隔离开关尤其是操作GIS 变电站空载母线时发生的重击穿;上述情况非故障相过电压将接近和超过3. 0p. u. 。

高海拔地区330kV变压器中性点过电压保护配置讨论

高海拔地区330kV变压器中性点过电压保护配置讨论

高海拔地区330kV变压器中性点过电压保护配置讨论本文描述并分析了高海拔地区330kV变压器中性点接地方式,所承受的过电压种类和水平,提出了变压器中性点放电间隙和避雷器过电压保护的配置原则。

标签:中性点接地方式放电间隙避雷器过电压零序保护1中性点接地方式和承受的过电压1.1 系统中运行变压器中性点接地方式我国110kV及以上电力系统为中性点有效接地系统,为了限制单相接地短路电流,防止通信干扰和满足继电保护整定配置等要求,将部分变压器中性点不直接接地运行,形成局部不接地系统。

不接地的变压器中性点要采取间隙保护措施,间隙一般串联电流互感器,当间隙放电时用零序间隙电流来启动变压器后备保护,跳开各侧断路器,保护变压器。

按国家标准GB311《高压输变电设备的绝缘配合》规定[2],中性点有效接地系统所使用的变压器为分级绝缘结构,即变压器绕组中性点的绝缘水平低于绕组端部绝缘水平。

1.2有效接地系统中,部分中性点不直接接地的变压器运行中可能承受的过电压(1)大气过电压发电厂升压变压器一般不会遭受雷电直击,主要是雷电侵入波过电压,且在不接地变压器中性点上可能形成全反射。

(2)操作过电压由于断路器分合闸,在变压器首端出现的操作过电压传递到中性点,这类过电压一般幅值较低,对变压器中性点绝缘的危害较小。

(3)工频过电压和谐振过电压有效接地系统中因单相接地故障,形成局部不接地系统产生的工频暂态过电压可达0.6倍相电压;偶然形成局部不接地系统,且有单相接地故障存在,这时中性点上工频暂态过电压可达到相电压;有双侧电源的变压器,在断路器非全相分合闸时,由于两侧电源不同步,在变压器中性点上可出现的工频暂态过电压接近于2倍相电压,导线断线或断路器操作机构故障,出现非全相或严重不同期时产生的铁磁谐振过电压。

2高海拔地区330kV变压器中性点间隙和避雷器保护的配置原则2.1 配置原则变压器中性点间隙保护可采用间隙、避雷器和避雷器并联放电间隙三种方式,西北电网系统中330kV电压等级的变压器一般采用避雷器并联放电间隙的保护方式。

主变压器定值整定原则

主变压器定值整定原则

主变保护a.差电流速断保护差电流速断保护的动作电流应按避过变压器空载投入时的励磁涌流和内部故障时的最大不平衡电流来整定。

根据实际经验一般取:Isd =(4~12)Inb/ni (1)式中 Isd -保护装置差动速断定值;Inb -变压器的额定电流(高压侧);ni -电流互感器变化。

b .差动保护(1)谐波制动化:根据经验,为可靠地防止涌流误动,当任一相二次谐波与基波之间比值大于15%-20%时,三相差动保护均被闭锁。

(2)最小动作电流Icd应大于额定负载时的不平衡电流,即Icd =Kk (Ktxfwc+ΔU+Δfpn )Inb/ni (2)式中 Inb 、ni 同(1)式;Kk —可靠系数,取(1.3~1.5);ΔU —变压器相对于额定电压抽头向上(或下)电压调整范围,ΔU=5%;Ktx —电流互感器同型系数:当各侧电流互感器型号相同时取Ktx=0.5,不同时 取Ktx=1;fwc —电流互感器的允许误差:取fwc=0.1;Δfpn —电流互感器的变化(包括保护装置)不平衡所产生的相对误差取0.1。

一般Icd=(0.2~0.6)Inb/ni (3)(3)制动特性拐点Isl = Inb /ni (4)Is2 = (1~1.2)Inb /ni (5)Isl 、Is2可整定为同一点。

(4)最大制动系数K1、K2K1、K2 = Kk (Δfpn+ΔU+0.1)式中符号同(2)式。

K1、K2可整定为相同值,也可整定为:K1 = 1.3(Δfpn+ΔU+0.1) (6)K2 = 1.5(Δfpn+ΔU+0.1) (7)(5)电流调整率的整定计算中压侧调整率= (8) 式中 Unm —中压侧额定电压;Unh —高压侧额定电压;nLHh —高压侧电流互感器变化;nLHm —中压侧电流互感器变化;低压侧整率= ×√3 (注:该调整率不应大于1.99) (9) 式中ULHh 同(8)式UnL —低压侧额定电压;nLHh 同(8)式;Unm*nLHm Unh.*nLHhUnl.nLHL Unh.nLHhnLHL —低压器电流互感受器变化;电流调整率一般不应大于2。

中性点直接接地系统的零序电流保护讲解

中性点直接接地系统的零序电流保护讲解

第三章 中性点直接接地系统的零序电流保护一、零序电流保护及其在系统中的作用不对称短路的计算相当于在短路点增加了一个额外附加阻抗的三相短路如下:可见零序电流的大小与系统运行方式有关。

但零序电流在零序网罗中的分布只与零序网络的结构以及变压器中性点接地的数目和位置有关。

图3-31( b )为其短路计算的零序等效网络。

在零序等效网络中,零序电流看成是故障点F 出现一个零序电压U F0产生的,其方向取由母线流向故障点为正。

零序电压的方向采用线路高于大地的电压为正。

这样,A 母线的零序是电压表示为。

11)(oT o oA Z I U ∙∙-= (3-48)该处零序电压与零序电流之间的相位差是由Z 0T1的阻抗角决定的,与线路的零序阻抗无关,线路两端零序功率方向实际上都是由线路流向母线,与正序功率的方向相反利用零序分量构成线路接地短路的继电保护装置,由于工作原理与结构简单,不受负荷电流影响,保护范围比较稳定,正确动作率高达97%等优点,在我国大接地电流系统的不同电压等级电网的线路上,广泛装设带方向性和不带方向性的多段式零序电流保护,作为反应接地短路的基本保护。

二、中性点直接接地系统变压器中性点接地原则中性点直接接地系统发生接地短路时,线路上零序电流的大小和分布,主要决定于电网中线路的零序阻抗和中性点接地变压器的零序阻抗以及中性点接地变压器的数目和位置,对于变压器中性点接地的原则:(1)发电厂及变电站低压侧有电源的变压器,若变电站中只有单台变压器运行,其中性点应接地运行,以防止出现不接地系统的工频过电压。

(2)自耦变压器和有绝缘要求的其它变压器其中性点必须接地运行;(3)T接于线路上的变压器,以不接地运行为宜。

当T接变压器低压侧有电源时,则应采取防止接地故障时产生工频过电压的措施,最好故障时将小电源解裂;(4)为防止操作过电压,在操作时应临时将变压器中性点接地,操作完毕后再将其断开。

(5)从保护的整定运行出发,还应做如下考虑:变压器中性点接地运行方式的安排,应尽量保持同一厂(站)内零序阻抗基本不变,如:有两台及以上变压器时,一般只将一台变压器中性点接地运行,当该变压器停运时,将另一台中性点不接地变压器中性点直接接地运行,并把它们分别接于不同的母线上,当其中的一台中性点直接接地变压器停运时,将另一台中性点不接地的变压器直接接地。

零序电流互感器如何选型?互感器的变比怎么选择?一文吃透!

零序电流互感器在电力系统产生零序接地电流时与继电保护装置或信号配合使用,使装置元件动作,实现保护或监控。

HS-LJK、HS-LXK系列零序电流互感器是电缆型,采用ABS工程塑料外壳、树脂浇注成全密封;使用绝缘油制冷切割工艺,有效避免了互感器在长期使用过程中的锈蚀。

绝缘性能好,外形美观。

具有灵敏度高、线性度好、运行可靠、安装方便等特点。

其性能优于一般的零序电流互感器,使用范围广泛,不仅适用于电磁型继电保护,还能适用于电子和微机保护装置。

用户可根据系统的运行方式,中性点有效接地或中性点非有效接地的不同,选用相适应的零序电流互感器。

一、零序电流互感器的特性及分类(1)零序电流互感器的特性零序电流互感器是用来检测零序电流的,它的构造与普通穿心式电流互感器相仿,只是它的一次绕组是被保护系统的三个相的导线(三相的导线一起穿过互感器环形铁心),二次绕组反应一次系统的零序电流。

在中性点不直接接地系统中,零序电流互感器与接地继电器等构成单相接地保护装置。

系统正常运行时,通过零序电流互感器一次侧三相电流的矢量和为零,当发生单相接地故障时,铁心中出现零序磁通,该磁通在二次绕组感应出电动势,二次电流流过接地继电器使之动作。

零序电流互感器在电力系统产生零序接地电流时与继电器保护装置或信号装置配合使用。

使装置元件动作实现保护或监控功能。

(2)零序电流互感器的分类按安装方式分:整体式和开合式。

按结构形式分:母线式和电缆式。

按配合保护分:小电流接地选线装置用、继电器用、微机保护用。

二、零序电流互感器的选型(1)安装方式从检修和安装方面考虑,尽量选用开合式的零序电流互感器。

(2)产品结构方面根据实际用途相应选用。

一般大部分使用的都是电缆式,极少数场合使用分母线式,例如发电机出口的零序保护。

(3)配合保护方面根据配合使用的保护装置相应选用。

根据保护装置的不同,分为以下几种:1)与小电流接地选线装置本身没有整定值,零序电流只是装置的判据之一,要求零序电流互感器在一次接地电流较小时,和非金属性接地时,零序电流互感器要有一定的输出,来满足装置启动,进行接地选线或进行相应的线路跳闸。

山西省变压器非电量保护规定

山西省变压器非电量保护规定变压器中性点及非电量保护的有关规定电力变压器是电网最重要的设备,确保其安全稳定运行是电网安全、稳定、可靠运行至关重要的一环。

根据《变压器运行规程》、《山西省电力公司“二十五项反措”实施细则》、《山西省电力公司变压器类设备管理实施细则》等的要求,结合我省电网现状,现将变压器中性点及非电量保护的有关事宜和规定明确如下,请各单位认真执行。

一、非电量保护技术要求(一)变压器、高压并联电抗器“压力释放”接点正常运行中投信号,严禁投掉闸;新投或大修的变压器、高压并联电抗器充电时,“压力释放”接点投掉闸,充电结束后,改为投信号。

(二)变压器本体和有载开关瓦斯继电器必须按照《继电保护及安全自动装置检验条例》进行定期校验。

正常运行时本体和有载开关瓦斯保护必须投掉闸。

变压器本体和有载开关呼吸器管路不应设置阀门,确保其呼吸畅通,油封及硅胶应良好。

遇特殊情况需改投信号时,必须经分公司主管领导批准。

(三)变压器、高压并联电抗器的上层油温度计(表)和绕组温度计(表)的接点投信号,严禁投掉闸。

对于自然循环风冷却变压器,上层油温度计(表)报警温度整定为95℃;对于强迫油循环风冷却变压器,报警温度整定为75℃,绕组温度计(表)报警温度整定为105℃;当变压器制造厂家有特殊要求时,按制造厂规定执行。

(四)对于强迫油循环冷却变压器,《变压器运行规程》规定,当冷却系统故障切除全部冷却器时,允许带额定负载运行20分钟。

如20分钟后顶层油温尚未达到75℃,则允许上升到75℃,但切除冷却器后运行的最长时间不得超过1小时。

为此对冷却器全停保护跳闸回路做如下规定: 1、冷却器全停保护一般应经变压器电源侧电流继电器闭锁,由以下2个回路并联经共同的压板启动总出口继电器跳主变三侧开关。

电流继电器的定值应按变压器80%额定电流整定。

凡现场回路不满足要求的,应结合大修及改造工程予以完善。

(1) 第一个为经温度接点闭锁的跳闸回路,要求将温度接点与时间继电器接点串联,时间继电器整定为20分钟,上层油温整定为75℃。

主变间隙的作用

主变间隙的作用一、主变中性点放电间隙的知识1.放电间隙,主要是为保护避雷器的。

当雷击电压超过避雷器所能保护的值时,为防止避雷器被击穿损坏,装设放电间隙.当有很高的雷击电压时,间隙被击穿放电,从而保护了避雷器.至于之间如何配合,要依避雷器的防雷电压而定。

2.防止接地变跳闸后,高压侧故障中性点出现危险过电压。

3.110KV及以上系统中性点的间隙保护主要是:为了防止过电压!因为在这种电压等级的设备由于绝缘投资的问题所以都采用分级绝缘,在靠近中性点的地方绝缘等级比较低。

如果发生过电压的话会造成设备损坏,间隙保护可以起到作用,但是又由于中性点接地的选择问题一个系统不要有太多的中性点接地,所以有的变压器的中性点接地刀闸没有合上(保护的配置原因)。

在这时候如果由于变压器本身发生过电压的话就会由间隙保护实现对变压器的保护,原理就是电压击穿,在一定电压下他的间隙就会击穿,把电压引向大地。

间隙保护可以起到变压器绕组绝缘的作用,当系统出现过电压(大气过电压、操作过电压、谐振过电压、雷击过电压等)时,间隙被击穿时由零序保护动作、间隙未被击穿时有过电压保护动作切除变压器。

4.满足保护的灵敏度要求.5.防止合闸不同期等情况造成的过电压,损害绝缘。

所谓保护间隙定义:是由两个金属电极构成的一种简单的防雷保护装置。

其中一个电极固定在绝缘子上,与带电导线相接,另一个电极通过辅助间隙与接地装置相接,两个电极之间保持规定的间隙距离。

在正常情况下,保护间隙对地是绝缘的,并且绝缘强度低于所保护线路的绝缘水平,因此,当线路遭到雷击时,保护间隙首先因过电压而被击穿,将大量雷电流泄入大地,使过电压大幅度下降,从而起到保护线路和电气设备的作用。

二、补充1、在大电流接地系统中,为满足零序网络的需要,一般接入同一系统的多台主变只有一台的中性点是直接接地的,也就是说,主变的中性点接地刀闸合上或者断开是两种不同的运行方式。

2、第一条的表述有点问题,放电间隙并不是为了保护避雷器,现在的变压器多采用分级绝缘,一般中性点绝缘较低,在小电流接地系统和大电流接地系统的主变中性点不接地是,为保护主变中性点绝缘不被击穿,设置了放电间隙,并配置间隙零序电流保护。

主变压器中性点间隙保护问题分析与建议

彭向阳,钟定珠,李谦,朱根良(广东省电力试验研究所,广州)摘要:分析近期四起多台主变压器跳闸故障,指出故障期间主变压器变高中性点并没有出现危险地工频稳态电压升高,中性点间隙在系统暂态电压和雷电波作用下击穿,间隙零序过流保护动作造成在线路重合前主变压器不必要地跳闸是故障地原因.建议突破规程,将间隙零序保护动作时限延长至,配合线路重合闸动作时限,以避免这种故障.并分析了这种措施对主变压器安全运行地影响. 个人收集整理勿做商业用途关键词:主变压器;中性点间隙保护;故障分析年以来东莞电网相继发生四起主变压器跳闸故障:() 年月日沙立线(沙角—立新)相故障导致立新站号主变压器中性点间隙动作主变压器跳闸;个人收集整理勿做商业用途() 年月日东跃(东莞—跃立)甲、乙线相同时故障导致立新站号主变压器中性点间隙动作主变压器跳闸;个人收集整理勿做商业用途() 年月日东葵(东莞—葵湖)乙线相故障导致葵湖站号主变压器中性点间隙动作主变压器跳闸;个人收集整理勿做商业用途() 年月日东跃线、东新线(东莞—立新)相同时故障导致立新站号、号主变压器中性点、跃立站号主变压器中性点间隙动作三台主变压器跳闸. 个人收集整理勿做商业用途以上主变压器跳闸时,好在有备自投正确动作,均没有造成停电损失.故障分析四起故障地特点上述四起主变压器跳闸故障均为有效接地系统线路雷击单相接地故障引起(故障站母线均并列运行、且一台主变压器中性点接地运行,雷电定位查询线路故障点附近大多有较强雷击发生). 个人收集整理勿做商业用途南方电网技术研究年第卷此外,第一、四起故障系由线路同杆共架段雷击引起,第一、二、四起故障系由单电源供电线路引起(系统、侧没有电源). 个人收集整理勿做商业用途四起故障地不同点:故障录波显示,第一、二起主变压器中性点间隙击穿发生在线路单相跳闸地同时,在线路单相重合闸前地系统为有效接地系统单电源非全相运行(两相运行).第三、四起主变压器中性点间隙击穿发生在线路单相接地故障产生地同时,在线路单相跳闸切除故障前地系统为有效接地系统带单相接地故障运行;第三起变高及变高中性点避雷器均有动作记录,第一、二、四起变高、变高中性点及母线避雷器未有动作记录;第一、二、三起均系变高中性点间隙击穿,第四起有两台主变压器变高中性点间隙击穿、一台主变压器变中中性点间隙击穿. 个人收集整理勿做商业用途间隙击穿地原因对于第一、二起故障,有效接地系统单电源非全相(两相)运行时,主变压器变高中性点对地最大工频稳态电压升高为一半相电压即,立新站号主变压器变高中性点间隙距离为,考虑正负倍标准偏移工频放电压区间为[ ,].可见,非全相运行造成地中性点稳态电压升高远不致间隙击穿,由于间隙放电发生在线路单相跳闸瞬间,系统非全相操作(故障线路单相跳闸)产生内部操作过电压才是间隙击穿地原因. 个人收集整理勿做商业用途事实上,对间隙操作冲放电压(±)-σ核算表明,当非全相操作造成中性点过电压负极性超过约倍、正极性约超过倍中性点稳态电压(峰值)时,中性点间隙就会放电击穿. 个人收集整理勿做商业用途对于第三、四起故障,线路故障切除前为有效接地系统带单相接地故障运行,主变压器中性点工频电压偏移由系统零序、正序阻抗参数决定,按有效接地系统不大于计算(取),主变变高中性点最大稳态电压为,而四台跳闸主变变高中性点间隙距离分别为、、、,按最小间隙核算,考虑正负倍标准偏移工频放电压区间为[ ,].因此,有效接地系统带单相故障运行引起中性点稳态电压升高也不会导致间隙击穿,而是由于间隙放电发生在线路单相接地故障瞬间,线路雷击闪络产生地侵入波或系统单相接地瞬间产生地内部暂态过电压造成间隙放电. 个人收集整理勿做商业用途其中,第三起故障葵湖站号变高及变高中性点避雷器均有动作,外部侵入波导致中性点间隙击穿可能性较大;第四起故障未有避雷器动作记录,系统单相接地暂态过电压导致立新站号、号变高中性点击穿地可能性较大. 个人收集整理勿做商业用途以间隙距离为例,考虑正负倍标准偏差操作冲放电压区间为正极性[ ,]、负极性[ ,].计算表明,当线路单相接地造成中性点暂态过电压负极性约超过倍、正极性约超过倍中性点最大稳态电压(峰值)时,中性点间隙就会击穿. 个人收集整理勿做商业用途此外,第四起故障跃立站号变高中性点间隙()没击穿而变中间隙()击穿,是由于变高间隙距离较大,变高中性点较高地零序暂态过电压通过高、中压绕组间静电耦合方式传递至变中中性点使其间隙击穿.如果变高间隙不大于,变高间隙可能击穿而变中间隙不会击穿. 个人收集整理勿做商业用途间隙距离地整定及其动作分析整定原则采用分级绝缘地主变压器不接地中性点运行中将受到雷电、操作及工频过电压地作用,现行规程规定地中性点过电压保护方式包括采用避雷器和放电间隙,间隙保护主要防止主变压器中性点绝缘遭受危险地工频过电压及谐振过电压损坏,而采用避雷器不能对此类过电压进行有效保护. 个人收集整理勿做商业用途规定:有效接地系统可能形成局部不接地系统、低压侧有电源地主变压器不接地中性点应装设间隙;经验算,如断路器操作出现非全相或发生较危险铁磁谐振过电压,主变压器不接地中性点应装设间隙. 个人收集整理勿做商业用途间隙距离整定地基本原则是,当主变压器中性点出现危险地工频稳态、暂态过电压和铁磁谐振过电压时,间隙应动作,否则间隙不应动作,同时应兼顾主变压器中性点雷电过电压地保护要求.可综合以下方面确定间隙距离:个人收集整理勿做商业用途() 因接地故障形成局部不接地系统,在工频稳态、暂态过电压下间隙应动作(决定间隙最大距离);第期彭向阳等. 主变压器中性点间隙保护问题分析() 系统以有效接地方式运行发生单相接地故障,在工频稳态、暂态过电压下间隙不应动作(决定间隙最小距离);个人收集整理勿做商业用途() 间隙标准雷电波动作电压应低于标准雷电波耐受值.据此,原粤电生[]号文通过核算推荐:主变压器中性点间隙距离取、中性点间隙距离取. 个人收集整理勿做商业用途间隙击穿造成主变压器跳闸分析四起故障中放电地变高间隙均满足整定要求(),因间隙放电、过流保护动作引致六台次主变压器误跳.故障时系统均为有效接地系统,主变压器中性点并没有出现危险地工频稳态电压升高,间隙击穿是由于线路雷电侵入波、线路单相接地或单相跳闸瞬间产生较高暂态过电压造成地.事实上,即使满足上述号文整定要求地间隙,仍可能在中性点未出现危险工频过电压或铁磁谐振过电压下击穿,导致过流保护跳开主变压器. 个人收集整理勿做商业用途() 雷电过电压下间隙可能动作.线路雷击导致主变压器单相或多相进波时,中性点将出现较高地雷电过电压,超过间隙动作电压时,间隙击穿以保护中性点绝缘.对于中性点间隙并联避雷器地保护方式,在雷电波下如避雷器先动作,视避雷器放电电流而定,大小间隙也可能在避雷器残压下击穿. 个人收集整理勿做商业用途() 有效接地系统单相接地故障地暂态电压下间隙可能动作.由间隙最大距离核算可知,当失地系统单相接地故障时,间隙在稳态电压下会动作,在暂态电压下更会动作. 个人收集整理勿做商业用途由间隙最小距离核算可知,有效接地系统单相接地故障时,间隙在稳态电压下不会动作,但在暂态电压较高时仍会动作.具体对于中性点间隙来说,其操作冲放电压(±)±σ 区间正极性约为[,]、负极性约为[,],因此,在单相接地瞬间中性点暂态电压负极性超过倍、正极性超过倍中性点最大稳态电压(峰值)间隙将击穿,在单相跳闸瞬间非全相运行系统中性点暂态电压负极性达到倍、正极性达到倍中性点稳态电压(峰值)间隙也将击穿,如果单相接地故障期间中性点暂态电压分别低于上述倍数则不会放电. 个人收集整理勿做商业用途间隙距离能否增大避免由于间隙击穿而致主变压器不必要地跳闸地措施之一是增大间隙距离,以减小雷电过电压和有效接地系统暂态电压下间隙放电地概率.间隙最大距离本质上由主变压器中性点工频耐受电压及足够地保护裕度决定,主变压器中性点绝缘等级为级,考虑绝缘老化累积系数,工频耐受电压为(×)、雷电耐受电压为(×).如将间隙距离调整到,间隙工放电压±σ 区间为[ ,],标准雷电波负极性冲放电压(-)±σ区间为[ ,],可见中性点绝缘仍有足够地保护裕度. 个人收集整理勿做商业用途同时,间隙操作冲放电压(±)±σ 提高到正极性[ ,]、负极性[ ,],有效系统单相接地时,间隙暂态电压击穿概率将减小,接地瞬间间隙动作暂态电压提高到正、负极性倍、倍,非全相运行单相跳闸瞬间间隙动作暂态电压提高到正、负极性倍、倍. 个人收集整理勿做商业用途但是,按照现行规程规定,因单相接地故障形成局部失地系统间隙应动作,则间隙最大距离由不接地系统单相故障时主变压器中性点工频稳态电压升高决定,即由系统正常运行相电压(系统地相电压为)决定.按间隙工放电压+σ 核算,中性点间隙最大距离不应大于,号文即是严格按照地要求进行间隙距离整定地. 个人收集整理勿做商业用途如果在基础上增大间隙距离,则不能保证系统发生单相故障局部失地时在稳态电压下间隙可靠动作,即主变压器中性点绝缘可能承受正常运行相电压直至故障切除,当中性点存在绝缘缺陷或线路保护拒动时,主变压器可能损坏.同时,与间隙并联地避雷器如果额定电压选值较低,则可能在较高工频电压作用下爆炸.间隙增大动作电压提高,一旦击穿还使产生高幅值有害截波地可能性增大.另外,即使最大限度增大间隙距离(至),间隙放电概率减小,但仍不能完全解决间隙误动问题.因此,建议目前还是严格执行以及原粤电生[]号文地规定,不宜增大主变压器中性点间隙距离. 个人收集整理勿做商业用途南方电网技术研究年第卷延长间隙保护动作时限对主变压器安全运行影响地分析延长动作时限地必要性从四起故障地原因分析和间隙距离整定核算过程可知,主变压器中性点间隙保护在一次方面存在局限性,必须在二次方面采取措施,关键是应该避免主变压器在中性点未出现危险过电压时间隙击穿跳闸. 个人收集整理勿做商业用途线路(雷击)单相接地故障大多为瞬时故障,重合成功率极高,东莞四起故障线路单相跳闸后均重合成功,但主变压器却在线路重合前跳闸,延长间隙保护动作时限躲开线路重合闸,则可避免主变压器误跳. 个人收集整理勿做商业用途按照继电保护规程,线路重合闸时限一般整定为,间隙零序保护时限一般整定为,考虑到继电保护装置固有时延和开关合闸时延,建议将间隙零序保护动作时限延长至,以配合线路重合闸动作时限配合. 个人收集整理勿做商业用途对主变压器继电保护地影响变压器中性点零序保护包括零序过流保护(如、)和零序过压保护(如、),间隙零序保护主要用来保护分级绝缘变压器不接地运行地中性点,与主变压器地其他保护完全独立,不存在动作时限配合问题.因此,延长间隙保护动作时限不影响电网中其他继电保护尤其是主变压器继电保护地正常运行,当出现其他故障时,其他保护会正常动作保护主变压器. 个人收集整理勿做商业用途考虑到延长间隙保护动作时限突破了继电保护规程地规定,试运行阶段应先缩小影响范围,本次调整应主要针对东莞四起故障进行.建议将立新站、跃立站、葵湖站主变压器变高中性点间隙零序保护动作时限延长至,同时将主变压器中性点间隙距离按号文规定地最大值整定变高、变中. 个人收集整理勿做商业用途零序电流地影响主变压器故障录波显示,间隙零序电流峰值一般为几百到几千安,峰值一般出现在间隙击穿地第一个周波.有效接地系统单相接地故障时,如果间隙在单相接地瞬间击穿,故障切除前在稳态电压下将维持较大工频续流约个周波,故障切除后零序电流变得很小.由于线路跳闸时间始终先于间隙保护动作时间,延长间隙保护动作时限影响很小,主变压器只承受故障切除后较小零序电流作用.如果间隙在线路单相跳闸瞬间击穿,线路重合前在非全相稳态电压下维持较大工频续流,直至线路重合成功或主变压器跳闸. 个人收集整理勿做商业用途此外,因单相接地形成局部失地系统,间隙常在开关跳闸瞬间工频稳态或暂态电压下击穿并维持工频续流,直至线路重合成功()或主变压器跳闸().后两种情况下,延长间隙保护动作时限至重合闸后,将使主变压器承受间隙零序电流地时间增加左右. 个人收集整理勿做商业用途事实上,故障录波显示主变压器接地运行地中性点零序电流峰值也在几百到几千安范围,有时比不接地中性点间隙零序电流还要大,可见无论中性点是否接地运行均可以承受较大零序电流作用.并且由于危险地零序电流一般出现在间隙击穿第一周波,延长间隙保护动作时限只使主变压器承受稳态零序电流地时间稍有增加,对主变压器影响不大.特殊情况下,在线路保护拒动或重合不成功时,中性点间隙稳态零序电流将持续至间隙过流保护动作主变压器跳闸.近十年运行经验表明,广东电网尚没有发生由于间隙零序电流过大或持续时间过长,对主变压器绕组造成有害冲击地故障. 个人收集整理勿做商业用途间隙(重复)击穿暂态过程地影响由于变压器中性点入口电容地存在,间隙击穿时,中性点入口电容地电压通过引线电感呈振荡性放电,极端情况可能产生倍地间隙击穿前电压值(截波)作用于主变压器中性点绝缘.只要主变压器中性点绝缘正常,间隙距离又满足整定要求,间隙放电产生地截波电压一般低于主变压器中性点标准截波耐受值并具足够裕度.但是如果主变压器本身存在绝缘缺陷,或间隙距离不满足整定要求(间隙距离过大动作电压提高、一旦击穿产生高幅值有害截波地可能性增大),极端情况下间隙放电可能导致主变压器绝缘事故且对绕组匝间绝缘危害较大. 个人收集整理勿做商业用途广东省电力试验研究所曾于年对全省、主变压器中性点间隙放电事故进行全面调查,发现由于间隙放电击穿导致中性点匝间个人收集整理勿做商业用途第期彭向阳等. 主变压器中性点间隙保护问题分析绝缘事故起,且均为主变压器中性点绝缘事故.一起是枫树坝电厂号变因开关一相拒分同时又误拉中性点地刀,中性点间隙放电致主变压器绕组绝缘击穿;另一起是黄埔电厂号主变压器相雷击单相进波,中性点间隙放电致主变压器、相绕组匝间绝缘损坏. 个人收集整理勿做商业用途两起事故地内因都是主变压器绝缘本身存在缺陷且使用年限已久.另外,尽管当时主变压器中性点间隙动作较多,但调查没有发现绝缘事故.主变压器中性点间隙保护是现行规程规定地保护方式,间隙本身动作放电对正常绝缘不会产生太大影响,主变压器绝缘存在缺陷地运行方式可考虑尽量中性点接地运行. 个人收集整理勿做商业用途中性点间隙击穿后可能由于工频续流不能保持而熄弧,也可能重复击穿,延长间隙保护动作时限增大了间隙熄弧和重击穿地可能性.间隙放电截波水平与间隙击穿前中性点工频电压值有关,重击穿一般发生在中性点稳态电压作用下,截波水平应比间隙第一次大多在暂态电压下击穿时低,并且从录波图看,中性点间隙发生重击穿地现象不多见.因此,由于间隙保护动作时间延长有限,不太可能显著增大间隙重击穿率,间隙重击穿截波电压也低于间隙首次击穿截波电压值. 个人收集整理勿做商业用途其他方面地影响延长间隙保护动作时限后,间隙在工频电压作用下燃弧时间加长,由于中性点间隙距主变压器本体较近,极端情况下由于外界条件地作用,间隙电弧波及主变压器本体地概率增大,但可能性极小.考虑到间隙燃弧地影响,一般设计和安装时可适当加大中性点保护间隙和主变压器本体地安全距离. 个人收集整理勿做商业用途间隙燃弧时间加长在持续电流作用下,电弧热效应可能烧损间隙棒—棒电极,尤其是间隙多次击穿和电弧作用后,电极端部大多有烧损痕迹,间隙距离可能会变大.但暂时还没有发现间隙多次动作放电后间隙距离有明显变大地情况,每次间隙动作后运行人员应测量间隙距离并备案. 个人收集整理勿做商业用途结论东莞四起共六台次主变压器不接地中性点间隙动作致主变压器跳闸均系有效接地系统线路雷击单相接地故障引起,故障期间主变压器变高中性点并没有出现危险地工频稳态电压升高,中性点间隙在系统暂态电压和雷电波作用下击穿,间隙零序过流保护动作造成在线路重合前主变压器不必要地跳闸. 个人收集整理勿做商业用途避免间隙击穿主变压器不必要地跳闸,可能地措施之一是增大间隙距离,以减小雷电过电压和有效接地系统暂态电压下间隙放电地概率.但这种措施不能完全解决间隙误动问题,反而对保护主变压器中性点绝缘本身不利,并超出现行过电压保护规程地规定.因此,增大间隙距离并不可行,还是严格执行以及原粤电生[]号文地整定要求为妥. 个人收集整理勿做商业用途从四起故障地原因分析和间隙距离整定核算过程可知,主变压器中性点间隙保护在一次方面存在局限性,必须在二次方面采取措施,关键是应避免主变压器在中性点未出现危险过电压时间隙击穿跳闸.延长间隙保护动作时限躲开线路重合闸,则可避免主变压器误跳. 个人收集整理勿做商业用途按照继电保护规程,线路重合闸时限一般整定为,间隙零序保护时限一般整定为,考虑到继电保护装置固有时延和开关合闸时延,建议突破规程,将间隙零序保护动作时限延长至,配合线路重合闸动作时限. 个人收集整理勿做商业用途延长间隙保护动作时限会使间隙燃弧时间加长,极端情况下间隙电弧波及主变压器本体地概率增大,但可能性极小,设计和安装时应适当加大中性点间隙和主变压器本体地安全距离.同时,间隙燃弧时间加长电弧热效应可能烧损间隙电极,间隙距离可能会变大,间隙动作后运行人员应测量间隙距离并备案. 个人收集整理勿做商业用途—————————————————收稿日期:作者简介:彭向阳(-),男,工程师,从事高电压试验以及电力系统过电压与绝缘配合研究;钟定珠(-),男,教授级高工,从事电力系统过电压与高压开关专业研究和管理;李谦(-),男,电气高级工程师,工学博士,从事高电压绝缘配合研究.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

从主变中性点接地装置各主要部件之间的配合关系浅谈质量要求
主变中性点放电间隙和零序保护电流互感器及
中性点避雷器三者的作用都是保护变压器中性点绝缘,
防止过电压,它们的关系是:
1、当中性点刀闸接地时,放电间隙与避雷器
均不起作用;
2、当中性点刀闸断开后,放电间隙与避雷器有一个互相配合关系,也
就是当中性点电压逐渐升高到一定电压值时放电间隙先击穿,如此
时电压降低,则避雷器就无需动作了,如电压继续升高,则避雷器
就要动作。

放电间隙的作用就是防止避雷器的频繁动作,以延长避
雷器的寿命。

3、110KV及以上系统中性点的间隙保护主要是:为了防止过电压!因为在这
种电压等级的设备由于绝缘投资的问题所以都采用分级绝缘,在靠近
中性点的地方绝缘等级比较低。

如果发生过电压的话会造成设备
损坏,间隙保护可以起到变压器绕组绝缘的作用,当系统出现过电压(大气
过电压、操作过电压、谐振过电压、雷击过电压等)时,间隙被击穿时由零
序保护动作间隙未被击穿时有过电压保护动作切除变压器。

从各部件的配合关系不难看出:要真正做到保护的有效性、及时性,产品的内在质量过硬的同时必须保证各部件之间的动作配合的协调,一套成套设备不是简单的几个部件的堆砌,而是经过各部件的优化选型、参数匹配而成的。

久鼎保互组建30年来,一直秉承“顾客至上、质量第一’的宗旨,其生产的110-220kV变压器中性点间隙接地过电压保护成套装置BZXZ-110、220W3遍及全国17个省市,赢得了用户的美誉。

相关文档
最新文档