数值分析简单习题
(完整版)数值分析整理版试题及答案,推荐文档

9
1
xdx T4
h[ 2
f
1
3
2 k 1
f
xk
f
9]
2[ 1 2 3 5 7 9] 2
17.2277
(2)用 n 4 的复合辛普森公式
由于 h 2 , f x
x
,
xk
1
2k k
1, 2,3,
x
k
1
2
2k k
0,1, 2,3,所以,有
2
3
9
1
xdx S4
h[ 6
f
1
若 span1, x,则0 (x) 1 ,1(x) x ,这样,有
2
1
0 ,0 1dx 1
0
1,1
1 0
x2dx
1 3
0
,1
1,0
1
0
xdx
1 2
1
f ,0 exdx 1.7183
0
1
f ,1 xexdx 1
0
所以,法方程为
1
1
1
2 1
a0
a1
1.7183 1
1 0
1
23
2 1
a0
a1
6 1
12
3
再回代解该方程,得到
a1
4
,
a0
11 6
故,所求最佳平方逼近多项式为
S1*
(
x)
11 6
4x
例 3、 设 f (x) ex , x [0,1] ,试求 f (x) 在[0, 1]上关于 (x) 1 , span1, x的最
佳平方逼近多项式。 解:
1
4
x1
1 5
数值分析练习题

第一章绪论1若误差限为0.5 10,,那么近似数0.003400有几位有效数字?(有效数字的计算) 解: X * =0.3400x10,, x —x * W 1x10, = 1x10工'2 2故具有3位有效数字。
2理=3.14159…具有4位有效数字的近似值是多少?(有效数字的计算) 解:二=0.314159…10,欲使其近似值二*具有4位有效数字,必需n -n <-x101^,兀一一 x10^ <n 兰兀十一疋10,,即 3.14109 兰兀 <3.142092 2 2第二章插值法6已知函数值f (0) =6, f (1) =10, f ⑶=46, f (4) = 82, f (6) = 212 ,求函数的四阶均差f[0, 1, 3, 4, 6]和二阶均差f[4,1, 3]。
(均差的计算)解:采用列表法来计算各阶均差,有1从表中可查得:f[0,1,3, 4,6] 。
根据均差的对称性,f[4,1,3] = f[1,3,4] =615第三章函数逼近与曲线拟合解得:a 1 =丄(e-e 二),a 22第四章数值积分与数值微分12 求积公式o f (x)dx 讥f (0) A 1 f (1) - B 0 f (0),试确定系数 A , A 及B 。
,使该求积公式具有尽可能高的代数精确度,并给出代数精确度的次数。
(代数精度的应用和计算)A o A i =1 A iB o =1/2 A 1 =1/3J] 4 . 4 . 4 . 4 . 1 J 4^!171 =0.6970 4 2 4 5 6 7 2 8 16801 (f, J = e x dx =e —e‘J法方程组为0 2 I 1 = 1,(f, 2) = j xe x dx = 2e‘e —e 」「°拙2」l 2e线性最佳平方逼近多项式为:p( x)1 1e-e ex 。
23解:分别取f (x) = 1, x , x,使求积公式准确成立,有2解得:A 。
数值分析练习题及答案

数值分析练习题及答案数值分析练习题及答案数值分析是应用数学的一个分支,它研究如何使用数值方法解决实际问题。
在数值分析的学习过程中,练习题是非常重要的一部分,通过练习题的完成,我们可以更好地理解和掌握数值分析的原理和方法。
本文将给出一些数值分析的练习题及其答案,希望对读者有所帮助。
一、插值与拟合1. 插值是指根据已知数据点的函数值,通过某种方法推导出在这些数据点之间的函数值。
请问插值的目的是什么?答案:插值的目的是通过已知数据点的函数值,推导出在这些数据点之间的函数值,以便于我们在这些数据点之间进行计算和分析。
2. 拟合是指根据已知数据点的函数值,通过某种方法找到一个函数,使得该函数与这些数据点尽可能接近。
请问拟合的目的是什么?答案:拟合的目的是通过已知数据点的函数值,找到一个函数,使得该函数与这些数据点尽可能接近,以便于我们对数据的趋势和规律进行分析和预测。
二、数值积分1. 数值积分是指通过数值方法计算一个函数在某个区间上的积分值。
请问数值积分的应用领域有哪些?答案:数值积分在科学计算、工程设计、金融分析等领域都有广泛的应用。
例如,在物理学中,数值积分可以用来计算物体的质心、重心等重要物理量;在金融分析中,数值积分可以用来计算期权的价格和风险价值等。
2. 辛普森法则是一种常用的数值积分方法,它通过将积分区间划分为若干个小区间,并在每个小区间上使用一个二次多项式来逼近被积函数。
请问辛普森法则的原理是什么?答案:辛普森法则的原理是通过将积分区间划分为若干个小区间,并在每个小区间上使用一个二次多项式来逼近被积函数。
然后,通过对这些小区间上的二次多项式进行积分,最后将这些积分值加起来,就可以得到整个积分区间上的积分值。
三、数值微分1. 数值微分是指通过数值方法计算一个函数在某个点处的导数值。
请问数值微分的作用是什么?答案:数值微分的作用是通过数值方法计算一个函数在某个点处的导数值,以便于我们对函数的变化趋势和规律进行分析和预测。
数值分析第四版习题及答案

第四版数值分析习题第一章绪论设x>O,x 的相对误差为S ,求In x 的误差. 设x 的相对误差为2%,求x n 的相对误差. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位 ,试指出它们是几位有效数字: x = 1.1021, x^ = 0.031, x^ = 385.6, x^ = 56.430, x^ = 7 1.0.利用公式(3.3)求下列各近似值的误差限:(i)x *+x ;+x 4,(ii)x *x ;x ;,(iii )x ;/x ;,其中 x ;,x ;,x 3,x ;均为第 3题所给的数.计算球体积要使相对误差限为 1%,问度量半径R 时允许的相对误差限是多少 ?设\)=28,按递推公式AY n =Y n d- _ .783100( n=1,2,…)计算到Y 00.若取7783衣27.982(五位有效数字),试问计算^00将有多大误差? 求方程X 2 -56X • 1 =0的两个根,使它至少具有四位有效数字 (■ 783沁27.982).\ ------ d x 当N 充分大时,怎样求N 1 x? 正方形的边长大约为 100 cm ,应怎样测量才能使其面积误差不超过 s *2设 2 假定g 是准确的,而对t 的测量有土 0.1秒的误差,证明当t 增加时s 的绝对 误差增加,而相对误差却减小. 序列{yn}满足递推关系y n _ 10y n _ 1(n=1,2,…),若y0 _ X 2 1.41 (三位有效数字),计算到y 10时误差有多大?这个计算过程稳定吗?计算f = c- 2 一1)6,取' 2 : 1.4,利用下列等式计算,哪一个得到的结果最好?f (x) =1 n (x X -1),求 f(30)的值.若开平方用六位函数表,问求对数时误差有多大改用另一等价公式ln(x_ Jx 2 T) = -ln(x +Jx 2 +1)计算,求对数时误差有多大?1. 2. 3. 4.5. 6.7.8.9.10.11.12.13.21 cm1 (、2 1)61 (32 . 2)3,99 -70、2.?若根据(2.2)定义的范德蒙行列式,令证明V n (x)是n 次多项式,它的根是X 0^L ,X nJ ,且当x= 1 , -1 , 2时,f(x)= 0 , -3,4 ,求f(x)的二次插值多项式.给出cos x,0 ° < x 90。
数值分析试题及答案

数值分析试题及答案一、选择题(每题2分,共20分)1. 以下哪个算法是数值分析中用于求解线性方程组的直接方法?A. 牛顿法B. 高斯消元法C. 梯度下降法D. 蒙特卡洛方法答案:B2. 插值法中,拉格朗日插值法和牛顿插值法的共同点是:A. 都是多项式插值B. 都使用差商C. 都只适用于等距节点D. 都需要预先知道所有数据点答案:A3. 在数值积分中,辛普森(Simpson)公式比梯形公式的误差:A. 更大B. 更小C. 相同D. 无法比较答案:B4. 以下哪个是数值稳定性分析中常用的方法?A. 条件数B. 收敛性C. 收敛速度D. 误差分析答案:A5. 在求解常微分方程的数值解时,欧拉方法属于:A. 单步法B. 多步法C. 隐式方法D. 显式方法答案:A6. 以下哪个是数值分析中求解非线性方程的迭代方法?A. 高斯-约当消元法B. 牛顿-拉弗森方法C. 雅可比迭代法D. 高斯-赛德尔迭代法答案:B7. 线性插值公式中,如果给定两个点\( (x_0, y_0) \)和\( (x_1, y_1) \),插值多项式是:A. \( y = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0) \)B. \( y = y_0 + \frac{y_1 - y_0}{x_0 - x_1}(x - x_0) \)C. \( y = y_0 + \frac{x - x_0}{x_1 - x_0}(y_1 - y_0) \)D. \( y = y_1 + \frac{x_1 - x}{x_1 - x_0}(y_0 - y_1) \)答案:C8. 以下哪个是数值分析中用于求解特征值问题的算法?A. 幂法B. 共轭梯度法C. 牛顿法D. 欧拉法答案:A9. 在数值微分中,使用有限差分法来近似导数时,中心差分法的误差:A. 与步长成正比B. 与步长的平方成正比C. 与步长的立方成正比D. 与步长的四次方成正比答案:B10. 以下哪个是数值分析中用于求解线性最小二乘问题的算法?A. 梯度下降法B. 牛顿法C. 奇异值分解法D. 共轭梯度法答案:C二、简答题(每题10分,共30分)1. 简述数值分析中病态问题的特点及其对算法的影响。
数值分析习题

习题11. 填空题(1) 为便于算法在计算机上实现,必须将一个数学问题分解为 的 运算; (2) 在数值计算中为避免损失有效数字,尽量避免两个 数作减法运算;为避免误差的扩大,也尽量避免分母的绝对值 分子的绝对值; (3) 误差有四大来源,数值分析主要处理其中的 和 ; (4) 有效数字越多,相对误差越 ; 2. 用例1.4的算法计算10,迭代3次,计算结果保留4位有效数字.3. 推导开平方运算的误差限公式,并说明什么情况下结果误差不大于自变量误差.4. 以下各数都是对准确值进行四舍五入得到的近似数,指出它们的有效数位、误差限和相对误差限.95123450304051104000003346087510., ., , ., .x x x x x -==⨯===⨯5. 证明1.2.3之定理1.1.6. 若钢珠的的直径d 的相对误差为1.0%,则它的体积V 的相对误差将为多少。
(假定钢珠为标准的球形)7. 若跑道长的测量有0.1%的误差,对400m 成绩为60s 的运动员的成绩将会带来多大的误差和相对误差.8. 为使20的近似数相对误差小于0.05%,试问该保留几位有效数字.9. 一个园柱体的工件,直径d 为10.25±0.25mm,高h 为40.00±1.00mm,则它的体积V 的近似值、误差和相对误差为多少. 10 证明对一元函数运算有r r xf x f x k x k f x εε'≈=()(())(),()其中 并求出157f x x x ==()tan ,.时的k 值,从而说明f x x =()tan 在2x π≈时是病态问题.11. 定义多元函数运算111,,(),n ni i i i i i S c x c x εε====≤∑∑其中求出S ε()的表达式,并说明i c 全为正数时,计算是稳定的,i c 有正有负时,误差难以控制. 12. 下列各式应如何改进,使计算更准确:111 11212 11-cos23 14 00xy x x xy x xy x x y p p q p q -=-++===>>(),()()()(),()(),(,,)习题21. 填空题(1) Gauss 消元法求解线性方程组的的过程中若主元素为零会发生 ;. 主元素的绝对值太小会发生 ;(2) Gauss 消元法求解线性方程组的计算工作量以乘除法次数计大约为 . 平方根法求解对称正定线性方程组的计算工作量以乘除法次数计大约为 ;(3) 直接LU 分解法解线性方程组时的计算量以乘除法计为 , 追赶法解对角占优的三对角方程组时的计算量以乘除法计为 ; (4) ,⎪⎪⎭⎫⎝⎛=2011A =1A , =2A , =)(A ρ ; (5) 1100>⎪⎪⎭⎫⎝⎛=t t A , )(A ρ , 2cond ()A = ; (6) 0>>>⎪⎪⎪⎭⎫⎝⎛=a b c c b a A , )(A ρ , 2cond ()A = ; 2.用Gauss 消元法求解下列方程组b Ax =⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛---=101,112221111)1(b A , ⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎭⎫⎝⎛=1111,4321343223431234)2(b A 3.用列主元消元法解下列方程组b Ax =.⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛---=674,5150710623)1(b A ⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=6720,5616103423221020)2(b A 4. 用Gauss -Jordan 消元法求:1011012111-⎪⎪⎪⎭⎫ ⎝⎛-- 5.用直接LU 分解方法求1题中两个矩阵的LU 分解,并求解此二方程组.6.用平方根法解方程组b Ax =321422131116,A b ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭7. 用追赶法解三对角方程组b Ax =⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------=00001,2100012100012100012100012b A8.证明:(1)单位下三角阵的逆仍是单位下三角阵.(2)两个单位下三角阵的乘积仍是单位下三角阵.9.由111211----=n L L L L ,(见(2.18)式),证明:⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-111111,321323121n n n n n l l l ll l l L10.证明向量范数有下列等价性质:∞∞∞∞≤≤≤≤≤≤xn x xxn x x x n x x 21212)3()2()1(11.求下列矩阵的()12,,,A A A A ρ∞.()()5131312110212326;.A A ⎛⎫⎛⎫⎪== ⎪ ⎪-⎝⎭⎪⎝⎭12.求()2cond A()()10099129998cos sin ;.sin cos A A θθθθ-⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭13.证明:(1)若A 是正交矩阵,即T A A I =, 则()2cond 1A =;(2)若A 是对称正定阵, 1λ是A 的最大特征值, n λ是最小特征值,则()12cond nA λλ=. 习题31. 填空题:(1) 当A 具有严格对角线优势或具有对角优势且 时,线性方程组Ax =b 用Jacobi 迭代法和Gauss -Seidel 迭代法均收敛;(2) 当线性方程组的系数矩阵A 对称正定时, 迭代法收敛.(3) 线性方程组迭代法收敛的充分必要条件是迭代矩阵的 小于1; SOR 法收敛的必要条件是 ;(4) 用迭代法求解线性方程组,若q = ρ (B ), q 时不收敛, q 接近 时收敛较快, q 接近 时收敛较慢; (5)1112,A ⎛⎫= ⎪⎝⎭J B = ;S B = ; ()J B ρ= ; ()S B ρ= .2.用Jacobi 迭代法和Gauss -Seidel 迭代法求解方程组(1) ⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛453210*********x x x ; (2)⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---7161411151118321x x x 各分量第三位稳定即可停止.3.用SOR 法解方程组,取0.9ω=,与取1ω= (即Gauss-Seidel 法)作比较.1233215573132573x x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭. 4.下面是一些方程组的系数阵,试判断它们对Jacobi 迭代法,Gauss-Seidel 迭代法的收敛性(1)⎪⎪⎪⎭⎫ ⎝⎛211231125; (2)⎪⎪⎭⎫ ⎝⎛2321;(3)212121212⎛⎫⎪⎪ ⎪-⎝⎭; (4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----210012*********2; (5)⎪⎪⎪⎪⎪⎭⎫⎝⎛------------101111511111011115 ; (6)112211221122111⎛⎫ ⎪ ⎪ ⎪⎝⎭. 5.方程组0,0,2211212122211211≠≠⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛a a b b x x a a a a证明用Jacobi 迭代法收敛的充要条件是:122112112<=a a a a r . 6.设为实数;a a a a a a a A ,111⎪⎪⎪⎭⎫ ⎝⎛=(1)若A 正定,a 的取值范围;(2)若Jacobi 迭代法收敛,a 的取值范围.习题41. 填空题:(1) 幂法主要用于求一般矩阵的 特征值,Jacobi 旋转法用于求对称矩阵的 特征值;(2) 古典的Jacobi 法是选择 的一对 元素将其消为零;(3) QR 方法用于求 矩阵的全部特征值,反幂法加上原点平移用于一个近似特征值的 和求出对应的 . 2.用幂法求矩阵.⑴⎪⎪⎪⎭⎫ ⎝⎛111132126, ⑵⎪⎪⎪⎭⎫⎝⎛---20101350144按模最大的特征值和对应的特征向量,精确到小数三位.3.已知: ⎪⎪⎪⎭⎫⎝⎛---=1321291111111A取t =15,作原点平移的幂法,求按模最大特征值.4. ⎪⎪⎪⎭⎫ ⎝⎛=10141101414A用反幂法加原点平移求最接近12的特征值与相应的特征向量,迭代三次.5.若A 的特征值为t n ,,,,21λλλ 是一实数,证明:t i -λ是tI A -的特征值,且特征向量不变.6.已知()321,,Tx =求平面反射阵H 使()00,*,Ty Hx ==,即使x 的1,3两个分量化零.7. ⎪⎪⎪⎭⎫ ⎝⎛=612133231A试用Jacobi 旋转法求作一次旋转,消去最大的非对角元,写出旋转矩阵,求出θ角和结果.8.设 ()()()()⎪⎪⎭⎫⎝⎛=⨯⨯⨯⨯222322333100T T T 已知λ是1T 的特征值,相应的特征向量为()Ta a a 321,,,证明λ也是T 的特征值,相应的特征向量为()Ta a a 0,0,,,321.9. 证明定理4.5.10. 证明(4.21)中的s A 和1+s A 相似.习题51.填空题(1) 用二分法求方程310x x +-=在[0,1]内的根,迭代一次后,根的存在区间为 ,迭代两次后根的存在区间为 ;(2) 设()f x 可微,则求方程()x f x =根的Newton 迭代格式为 ;(3) 2()(5)x x C x ϕ=+-,若要使迭代格式1()k k x x ϕ+=局部收敛到α=C 取值范围为 ;(4) 用迭代格式1()k k k k x x f x λ+=-求解方程32()10f x x x x =---=的根,要使迭代序列{}k x 是二阶收敛,则k λ= ;(5) 迭代格式12213k k kx x x +=+收敛于根α= ,此迭代格式是 阶收敛的.2.证明Newton 迭代格式(5.10)满足12()lim2()k k kf f εαεα+→∞''=-'3. 方程3291860, [0,)x x x x -+-=∈+∞的根全正实根,试用逐次扫描法(h =1),找出它的全部实根的存在区间,并用二分法求出最大实根,精确到0.01.4.用二分法求下列方程的根,精度0.001ε=.(1) 340 [2,1]x x x -+=∈-- (2) 1020 [0,1]x e x x +-=∈5.用迭代法求3250x x --=的正根,简略判断以下三种迭代格式:(1) 3152k k x x +-=; (2) 1252k k x x +=- ; (3)1k x +=在02x =附近的收敛情况,并选择收敛的方法求此根.精度410ε-=.6. 方程x e x-=(1) 证明它在(0,1)区间有且只有一个实根; (2) 证明 ,,,101==-+k ex kx k ,在(0,1)区间内收敛;(3) 用Newton 迭代法求出此根,精确到5位有效数字. 7.对方程3310x x --=,分别用(1) Newton 法0(2)x =;(2) 割线法01(2, 1.9)x x ==求其根.精度410ε-=.8.用迭代法求下列方程的最小正根(1) 5420x x --=; (2) 2tan 0x x -=; (3) 2sin x x = 9.设有方程 230xx e -=(1) 以1h =,找出根的全部存在区间;(2) 验证在区间[0,1]上Newton 法的区间收敛定理条件不成立; (3) 验证取00.21x =, 用Newton 法不收敛;(4) 用Newton 下山法,取00.21x =求出根的近似值,精度410ε-=.10.分别用Jacobi 法,Gauss —Seidel 法求解非线性方程组22230250x y x y +-=⎧⎨+-=⎩在(1.5,0.7)附近的根,精确到410-.11.分别用Newton 法,简化Newton 法求解非线性方程组s i nc o s 01x y x y +=⎧⎨+=⎩在(0,1)附近的根,精确到410-.习题61.填空题(1) 设53()1f x x x x =+++,则[0,1]f ,[0,1,2]f = ,[0,1,2,3,4,5]f = ;[0,1,2,3,4,5,6]f = .(2) 设01(),(),,()n l x l x l x 是以节点0,1,2,…,n 的Lagrange 插值基函数,则()njj jl x ==∑ ;0()njj jl k ==∑ .(3) 设(0)0,(1)16,(2)46,[0,1]f f f f ====则 ,[0,1,2]f = ,()f x 的二次Newton 插值多项式为 .2.已知函数2)(x ex f -=的数据如下试用二次,三次插值计算=0.35,=0.55的近似函数值,使其精度尽量地高. 3.利用x sin 在3,4,6,0πππ=x 及2π处的值,求5sin π的近似值,并估计误差.4计算积分⎰=xdt ttx f 0sin )(, 当)(x f =0.45时的x 的取值. 5.试用Newton 插值求经过点(-3,-1),(0,2),(3,-2),(6,10)的三次插值多项式.6.求满足)()(),()(1100x f x P x f x P ==及)()(00x f x P '='的次数不超过2次的插值多项式)(x P ,并给出其误差表达式.7.设i x 是互异节点,)(x l j 是Lagrange 插值基函数(n j ,,2,1,0 =),证明(1)1)(0≡∑=nj jx l;(2)k nj jk j x x l x≡∑=0)( (n k ,,2,1,0 =);(3)0)()(0≡-∑=nj j k jx l x x(n k ,,2,1,0 =).8.设有如下数据试计算此表中函数的差分表,并分别利用Newton 向前,向后插值公式求出它的插值多项式. 9.试构造一个三次Hermite 插值多项式使其满足5.0)1( ,2)1( ,5.0)0( ,1)0(='=='=f f f f10.已知函数)(x f 的数据表分别用x =0.75的近似值. 11.对函数()sin f x x =进行分段线性插值,要求误差不超过5105.0-⨯,问步长h 应如何选取.12用三转角插值法求满足下述条件的三次样条插值函数(1) 0000.1)25.0(='S ,6868.0)53.0(='S (2) 2)25.0(-=''S , 6479.0)53.0(=''S 13. 证明定理6.6.习题81.填空题(1) 1n +个点的插值型数值积分公式()()nbj j aj f x dx A f x =≈∑⎰的代数精度至少是 ,最高不超过 .(2) 梯形公式有 次代数精度,Simpson 公式有 次代数精度. (3) 求积公式20()[(0)()][(0)()]2hhf x d xf f h h f f h α''≈++-⎰中的参数α=时,才能保证该求积公式的代数精度达到最高,最高代数精度为 .2.确定下列求积公式的求积系数和求积节点,使其代数精度尽量高,并指出其最高代数精度. (1) )2()()0()(21020h f A h f A f A dx x f h++≈⎰ (2))](3)(2)1([)(2111x f x f f A dx x f ++-≈⎰-(3)1123111()(1)33f x dx A f A f A f -⎛⎫⎛⎫=-+-+ ⎪ ⎪⎝⎭⎝⎭⎰ (4) )1()0()()(321111f A f A x f A dx x f ++≈⎰- (5))()()(212x f x f dx x f +≈⎰3.分别利用复化梯形公式,复化Simpson 公式,复化Cotes 公式计算下列积分 (1) ⎰+1024dx x x(n =8)(2) ⎰10dx x (n =10)(3) ⎰-12dx ex (n =10)(4) (n =6)(5)⎰20sin πdx xx(n =8) 4.用Romberg 公式计算积分(1) ⎰-1022dx e x π (精度要求510-=ε) (2) ⎰+404cos 1dx x (精度要求510ε-=)5.分别取节点数为2,3,4利用Gauss -Legendre 求积公式计算积分 (1) ⎰-+44211dx x , (2) ⎰-10dx e x , (3) 311dx x ⎰ 6.利用Gauss 型求积公式,分别取节点数2,3,4计算积分 (1) ⎰+∞-0dx x e x , (2) ⎰+∞∞--+dx x e x212 7.用节点数为4的Gauss -Laguerre 求积公式和Gauss -Hermite 求积公式计算积分 ⎰+∞-=02dx e I x 的近似值,并与准确值2π=I 作比较.8.分别用两点公式与三点公式求2)1(1)(x x f +=在x =1.0,x =1.2的导数值,并估计误差,其中)(x f 的数据由下表给出9.已知)(x f x e -=的数据如下取=0.1,=0.2,分别用二点、三点公式计算=2.7处的一阶和二阶导数值.习题91.填空题(1) 解初值问题的Euler 法是 阶方法,梯形方法是 阶方法,标准R -K 方法是 阶方法.(2) 解初值问题()20(),(0)1y x x y y '=-=时,为保证计算的稳定性,若用经典的四阶R -K 方法,步长0h << .采用Euler 方法,步长h 的取值范围为 ,若采用Euler 梯形方法,步长h 的取值范围为 若采用Adams 外推法,步长h 的范围为 ,若采用Adams 内插法,步长h 的取值范围为 .(3) 求解初值问题Euler 方法的局部截断误差为 Euler 梯形方法的局部截断误差为 , Adams 外推法的局部截断误差为 Adams 内插法的局部截断误差为 .2.对初值问题⎪⎩⎪⎨⎧=≤≤-+='0)0(1021122y x y x y试用Euler 法取步长h =0.1和h =0.2计算其近似解,并与准确解21x y x=+进行比较. 3.利用Euler 预测-校正法和四阶经典R -K 方法,取步长h =0.1,求解方程⎪⎩⎪⎨⎧=≤≤+='1)0(10y x y x y 并与准确解x e x x y 21)(+--=进行比较.4.用待定系数法推导二步法公式)85(12111-++-++=i i i i i f f f h y y 并证明它是三阶公式,求出它的局部截断误差.5.用Adams 预测-校正法求解⎪⎩⎪⎨⎧=≤≤-='1)0(102y x y y 并与准确解1()1y x x=+进行比较. 6.用Euler 中点公式计算0 2.5(0)1y yx y '⎧=-≤≤⎨=⎩取步长h =0.25,与准确解x e y -=比较,并说明中点公式是不稳定的.7.写出用经典的R -K 方法及Adams 预测-校正法解初值问题⎪⎩⎪⎨⎧==+='+-='0)0(,1)0(782z y yz x z z y y的计算公式.8.写出用Euler 方法及Euler 预测-校正法解二阶常微分方程初值问题⎩⎨⎧='==+''0)0(,1)0(0sin y y y y的计算公式.9.证明用单步法1,(,)22i i i i i i h h y y hf x y f x y +⎛⎫=+++ ⎪⎝⎭解方程ax y 2-='的初值问题,可以给出准确解.。
《数值分析》习题课

1 1 1 = 1− + − +L 4 3 5 7
∑ ( −1)
k =1
n
k −1
1 | S n − |≤ 4 2n + 1
π
1 2k − 1
10/18
应用牛顿迭代法于方程 x3 – a = 0, 导出求立方根的迭代公式,并讨论其收敛性 并讨论其收敛性。 导出求立方根的迭代公式 并讨论其收敛性。2-6* * Nhomakorabea*
13/18
练习1 练习 将割线法修改为单点迭代公式 f ( xn ) x n+1 = x n − ( x n − x0 ) f ( xn ) − f ( x0 ) 试分析该算法的收敛性. 试分析该算法的收敛性
14/18
练习2 设计多项式乘积(卷积 卷积)算法 练习 设计多项式乘积 卷积 算法 Pn(x)=a1xn + a2xn-1+ ···+ anx + an+1 Pm(x)=b1xm + b2xm-1+ ···+ bmx + bm+1 表示P 用 [a1 a2 ··· an an+1] 表示 n(x) 用 [b1 b2 ··· bm bm+1] 表示 m(x) 表示P 用 [c1 c2 ··· cn+m cn+m+1] 表示 Pn(x)×Pm(x)
2k
1 f ( x) = − a = 0 x
1 − axk = (1 − ax0 )
1 2k x k = [1 − (1 − ax 0 ) ] a
12/18
所以,当 迭代公式收敛。 所以 当| 1 – a x0| < 1 时,迭代公式收敛。
的二重根,分析牛顿迭代法的 例5. 若 x*是f(x)=0的二重根 分析牛顿迭代法的 的二重根 收敛性? 收敛性? 解: 由于 f(x)=(x – x*)2g(x)
数值分析练习题附答案

目录一、绪论------------------------------------------------------------------------------------- 2-2二、线性方程组直接解法列主元高斯LU LDL T GG T-------------------- 3-6二、线性方程组迭代法----------------------------------------------------------------- 7-10 三、四、非线性方程组数值解法二分法不动点迭代---------------------- 11-13五、非线性方程组数值解法牛顿迭代下山弦截法----------------- 14-15六、插值线性插值抛物线插值------------------------------------------------ 16-18七、插值Hermite插值分段线性插值-----------------------------------------19-22八、拟合------------------------------------------------------------------------------------ 23-24九、数值积分----------------------------------------------------------------------------- 25-29十、常微分方程数值解法梯形欧拉改进----------------------------------- 30-32 十一、常微分方程数值解法龙格库塔------------------------------------------ 33-35绪论1-1 下列各数都是经过四舍五入得到的近似值 ,试分别指出它们的绝对误差限,相对误差限和有效数字的位数.X 1 =5.420, X 2 =0.5420, X 3 =0.00542, X 4 =6000, X 5 =0.6×105注:将近似值改写为标准形式X 1 =(5*10-1+4*10-2+2*10-3+0*10-4)*101 即n=4,m=1 绝对误差限|△X 1|=|X *1-X 1|≤ 12×10m-n =12×10-3 相对误差限|△r X 1|= |X∗1−X1||X∗1|≤|X∗1−X1||X1|= 12×10-3/5.4201-2 为了使101/2 的相对误差小于0.01%, 试问应取几位有效数字?1-3 求方程x 2 -56x+1=0的两个根, 使它们至少具有4位有效数字( √783≈27.982)注:原方程可改写为(x-28)2=783线性方程组解法(直接法)2-1用列主元Gauss消元法解方程组解:回代得解:X1=0 X2=-1 X3=12-2对矩阵A进行LU分解,并求解方程组Ax=b,其中解:(注:详细分解请看课本P25)A=(211132122)→(211(1/2)5/23/2(1/2)3/23/2)→(2111/25/23/21/2(3/5)3/5)即A=L×U=(11/211/23/51)×(2115/23/23/5)先用前代法解L y=P b 其中P为单位阵(原因是A矩阵未进行行变换)即L y=P b 等价为(11/211/23/51)(y1y2y3)=(111)(465)解得 y 1=4 y 2=4 y 3=35再用回代解Ux =y ,得到结果x即Ux =y 等价为(2115/23/23/5)(x 1x 2x 3)=(y 1y 2y 3)=(443/5) 解得 x 1=1 x 2=1 x 3=1即方程组Ax=b 的解为x =(111)2-3 对矩阵A 进行LDL T 分解和GG T 分解,求解方程组Ax=b,其中A=(164845−48−422) , b =(123)解:(注:课本 P 26 P 27 根平方法)设L=(l i j ),D=diag(d i ),对k=1,2,…,n,其中d k =a kk -∑l kj 2k−1j=1d jl ik =(a ik −∑l ij l kj k−1j=1d j )/ d k 即d 1=a 11-∑l 1j 20j=1d j =16-0=16因为 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=a 21/ d 1=416=14 所以d 2=a 22-∑l 2j 21j=1d j =5-(14)2d 1=4同理可得d 3=9 即得 D=(1649)同理l 11=(a 11−∑l ij l 1j 0j=1d j )/ d 1=1616=1=l 22=l 33 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=416=14 l 31=(a 31−∑l 3j l 1j 0j=1d j )/ d 1=816=12 l 32=(a 32−∑l 3j l 2j 1j=1d j )/ d 2=−4−12×14×164=−64=-32即L=(114112−321) L T=(114121−321) 即LDL T分解为A=(114112−321)(1649)(114121−321)解解:A=(164845−48−422)→(41212−32−33)故得GG T分解:A=(4122−33)(4122−33) LDL T分解为A=(114112−321)(1649)(114121−321) 由(114112−321)(y 1y 2y 3)=(123) ,得(y 1y 2y 3)=(0.250.8751.7083)再由(4122−33)(x 1x 2x 3)=(0.250.8751.7083) ,得(x 1x 2x 3)=(−0.54511.29160.5694)2-4 用追赶法求解方程组:解:(4−1−14−1−14−1−14−1−14)→(4−14−1154−415−15615−1556−120956−56209−1780209)由(4−1154−15615−120956−1780209)(y1y2y3y4y5)=(100200),得(y1y2y3y4y5)=(256.66671.785700.4784753.718)再由(1−141−4151−15561−562091)(x1x2x3x4x5)=(256.66671.785700.4784753.718),得(x1x2x3x4x5)=(27.0518.20525.769314.87253.718)线性方程组解法(迭代法)2-1 设线性方程组{4x 1−x 2+2x 3=1−x 1−5x 2+x 3=22x 1+x 2+6x 3=3(1) 写出Jacobi 法和SOR 法的迭代格式(分量形式) (2) 讨论这两种迭代法的收敛性(3) 取初值x (0)=(0,0,0)T ,若用Jacobi 迭代法计算时,预估误差 ||x*-x (10)||∞ (取三位有效数字)解:(1)Jacobi 法和SOR 法的迭代格式分别为Jacobi 法迭代格式SOR(2)因为A 是严格对角占优矩阵,但不是正定矩阵,故Jacobi 法收敛,SOR 法当0<ω≤1时收敛.⎪⎪⎪⎩⎪⎪⎪⎨⎧+--=-+-=+-=+++216131525151412141)(2)(1)1(3)(3)(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x xx x ⎪⎪⎪⎩⎪⎪⎪⎨⎧-++-=+-+-=+-+-+=++++++)216131()525151()412141()(3)1(2)1(1)(3)1(3)(3)(2)1(1)(2)1(2)(3)(2)(1)(1)1(1k k k k k k k k k k k k k k k x x x x x x x x x x x x x x x ωωω(3)由(1)可见||B ||∞=3/4,且取x (0)=(0,0,0)T ,经计算可得x (1)=(1/4,-2/5,1/2)T ,于是||x (1)-x (0)||∞=1/2,所以有2-2 设方程组为{5x 1+2x 2+x 3=−12−x 1+4x 2+2x 3=202x 1−3x 2+10x 3=3试写出其Jacobi 分量迭代格式以及相应的迭代矩阵,并求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重点考察内容第一章:基本概念第二章:Gauss消去法,Lu分解法第三章:题型:具体题+证明,误差分析三个主要迭代法,条件误差估计,范数的小证明第四章:掌握三种插值方法:拉格朗日,牛顿,厄尔米特,误差简单证明,构造复合函数第五章:最小二乘法计算第六章:梯形公式,辛普森(抛物线)公式,高斯公式三个重要公式,误差分析高斯求积公式的构造第七章:几种常用的迭代格式构造,收敛性证明第九章:基本概念(收敛阶,收敛条件,收敛区域等)简单欧拉法第一章误差1. 科学计算中的误差来源有4个,分别是 _________ , ________ , ________ , ________ 。
2. 用Taylor 展开近似计算函数f (x ) :、f (x 0) f'(x 0)(x-x 0),这里产生是什么误差?3. 0.7499作3的近似值,是位有效数字,65.380是舍入得到的近似值,有 几4位有效数字,相对误差限为 _______ . 0.0032581是四舍五入得到的近似值,有 ________ 位有效数字.4. 改变下列表达式,使计算结果比较精确:(1) —|x|=1( 2) +J 1-丄,|x|=11 +2x 1 +x Y x Y x1「cosx(3), x=0,|x| 1. (4) sin : -sin :, 一—■x5. 采用下列各式计算(、、2-1)6时,哪个计算效果最好?并说明理由。
1 1(1) 6 ( 2) 99-70,2( 3) (3-2、月)6( 4) 3(V2+1)6(3 + 2问36. 已知近似数x *有4位有效数字,求其相对误差限。
上机实验题:kx匸 Xx1、 利用Taylor 展开公式计算 e,编一段小程序,上机用单精度计算 e 的函数k£k !值.分别取x =1, 5, 10, 20, -1,-5,-10,-15,-20,观察所得结果是否合理,如不合 理请分析原因并给出解决方法.1 n2、 已知定积分I n— dx,n =0,1,2,…,20,有如下的递推关系 ‘° x +6可建立两种等价的计算公式11(1) I n 61 nd ,取 I 。
=0.154;(2) I nv 一(1 - n I n ),取 I 20 = 0.n6nX n '(x 6) -6x n 'dx来计算11,12,13」4厂丄9,编程比较哪种计算的数值结果好,并给出理论分析第二章插值法1. 已知f(0) =2, f(1) = _1,那么差商f[1,0]= ____________ .2. n阶差商与导数的关系是仃心为,…,人]= ____________________ .3. 由导数和差商的关系知,f[X j,X j]= __________________ 。
4. 已知函数f (x)在x =3,1,4的值分别是4,6,9,试构造Lagrange插值多项式。
5. 取节点X。
=0,为=1,x^2 ,对应的函数值和导数值分别为f(X0)= 1,f(x,) =2, f '(x,) =2,试建立不超过二次的插值多项式。
(如果将最后一个条件改为f '(X2)二2,插值多项式如何计算?)6•已知f(0) =1, f(1)=2, f'(1)=3, f(2) =9,试建立不超过3次的插值多项式,并写出插值余项•7. 设f(x)・ C4[a,b],求三次多项式P3(x),使之满足插值条件p(xj = f(xj, "0,1,2p'(N)二f '(xj8. 设R(x)是过《,疋的一次插值多项式,f(x)w C2[a,b],其中[a,b]是包含x°,X1的任一区间。
试证明:对任一给定的x • [a,b],在(a,b )上总存在一点,使得f牡)R(x) = f (x) -R(x) (x -x d(x-x )。
2!9. 证明关于互异节点{xj雋的Lagra nge插值基函数{l i X总满足恒等式I0(x) l1(x「l n(x)=1上机习题:1. 绘制4题的Lagrange的插值函数的图像。
第三章数据拟合1. 数据拟合与插值的区别是什么?2.最小二乘原理是使偏差 5i 的 ______________ 达到最小3. 求过点(2,3 ), (0,1 ), (3,5 )的线性拟合函数。
4. 用最小二乘法求一形如y 二a ,bx 2的多项式,使与下列数据相拟合X19 25 31 38 44 y19.032.349.073.397.8第四章线性方程组的直接解法1. 线性方程组的解法大致可分为 _______________ , _________2. 平方根法和1。
「分解法要求系数矩阵A 满足 ______________ 。
3. 上三角和下三角方程组的解法分别称为 ______________ ,4. 严格对角占优矩阵的定义是什么?5.试求下面矩阵的杜利特尔分解21 3(2)457'-2 85」2 16 -1 '10 2上机实验题:1. 编程实现列主元的高斯消去法2. 编程实现LU 分解法第五章线性方程组的迭代解法6.用列主元高斯消去法求解方程组15 04-2 0-2卩八3 x 2 6妝」「1〕13。
7.用LU 分解法解方程组一们1 o■2J(1)1 X 2厂 7氏」1. 向量x =(3,2, _1,_7)T,计算||x|1 , ||x|2 , ||X||::.3 1 -22. A= 0 1 0,计算||A||i, ||A|2 , |内匚.J 2 6」3. A = 2 0,分别计算A的谱半径珥A),条件数cond.(A) , ||A|1||0 3 ' 14. 矩阵A的范数与谱半径的关系为____________________________ 。
5. 求解AX=b的迭代格式x(f = Bx(k)+g收敛的充分必要条件。
6. SOR迭代法收敛的一个必要条件是松驰因子_________________________________________________________________________。
7. 写出下面方程的Jacobi迭代格式10x1 - x? - 2 x^ — 7-x-i 10x2 -2x3 =8_x2 5x3 =48. 给定下列方程组,判断对它们构造的Jacobi迭代公式和Gauss-Seidel迭代公式是否收敛(1)5x「2x3二72x1 x> =815x1 - 5x2 x3 = 2 (2)-5x1 12x^8IX1 X3 = 59.对下列方程组建立收敛的简单迭代公式(提示:先调整方程组)_1 63 -24 1 6 x2= T丄X3」10.给定方程组-2捲1 x2 1 「1〕2 '1j(1) 分别写出Jacobi迭代公式和Gauss-Seidel迭代公式。
(2) 证明Jacobi迭代法收敛,而Gauss-Seidel迭代法发散上机实验题:10捲一x2-2X3 = 71.求解方程组:-x-i 10x2 _2x3 =8_ x〔- x? 5 X3 二4以x(0)=(1,1,1)T为初值,当||x(k °-x(k)11/10^时迭代终止。
(1) 编写Jacobi迭代法程序(2) 编写Gauss-Seidel迭代法程序第六章数值积分与数值微分1. f b f(x)dx的梯形求积公式是,Simpson公式是,其代数精度分别为a____ , __ 02. n点Gauss求积公式的代数精度为 ___________ .3. 确定下列求积公式中的待定系统,使得求积公式的代数精度尽量的高,并指明代数精度h(1) 上f(x)dx :Af(-h) AJ(0) Af(h)1 1(2) . J(x)dx [f(-1) 2f(xJ 3f(X2)]A31(3) .°f(x)dx :人f(0) Af(1) B°f'(0)14. 分别用梯形公式、Simpson公式、Cotes公式、Gauss求积公式计算积分e x dx,并估计各种方法的误差。
15. 写出f(x)dx二点和三点的Gauss-Legendre求积公式.・-16. 分别用复化梯形公式和复化Simps on公式计算下列积分.1 x0 厂dx, (n =8)04 x1 17. 确定求积公式(° f(x)dx肚(才)+A f (1)的求积公式,并求其代数精度。
8. 构造如下形式的Gauss求积公式:+19. 构造如下形式的Gauss求积公式:.f(x)dx生Af(X0)+ Af(X1).上机实验题:1.编程实现五点Gauss积分算法。
第七章非线性方程与非线性方程组的解法1. 求解非线性方程的根,牛顿法的收敛阶是 _________ 割线法的收敛阶是 _______________2. 确定下列方程的有根区间⑴ 2x ‘ —7x 2 =0(2) e 公 x -2=03. 试用牛顿法和弦截法建立计算-,(c = 0)的迭代格式。
c5•建立计算a, (a 0)的牛顿迭代格式,并求 .10,保留4位有效数字。
(迭代求解3次即可)6. 用不动点迭代法计算 2 '2、、2 2的近似值.17. 设初值冷=0,计算—,(a = 0)的迭代格式试证:a & 1 = xk(2 -ax k),k = 0,1,2,。
(1) 此迭代格式二阶收敛.(2) 此迭代格式收敛的充分必要条件为|1 - ax o 卜:1.上机实验题:1.用割线法求方程x 32x 210^2^ 0的根,要求|x k--x k 卜:10』第八章 常微分方程初值问题的数值解法「V’ = X + V1. 求解常微分方程 F y 的Euler 公式为,其局部截断误差I.V (0) =1的阶数为 __________ 整体截断误差的阶数为 ___________ .(设步长为h) 2. 应用向前欧拉格式求解初值问题y'=x -y 1, V(0) -14.试建立计算1_ ■/a(a ■ 0)的两种收敛的迭代格式取步长h = 0.1,将计算结果与精确解y = x • 对照.。