钢箱梁桥设计_桥梁工程毕业设计

钢箱梁桥设计_桥梁工程毕业设计
钢箱梁桥设计_桥梁工程毕业设计

钢箱梁桥设计

目录

1.绪论 (3)

2.设计概述 (4)

2.1桥孔布置 (5)

2.2截面尺寸及拟定 (5)

2.2.3箱梁面板厚度设置 (6)

2.2.4箱梁腹板宽度设置 (7)

3.主梁截面几何特性计算 (7)

4.主梁内力计算 (8)

4.1恒载内力计算 (8)

4.1.1一期恒载内力 (9)

4.1.2二期恒载内力 (10)

4.1.3总恒载内力 (11)

4.2活载内力计算 (12)

4.2.1横向分布系数的计算 (12)

4.2.2主梁内力影响线及加载 (13)

4.3内力组合 (20)

4.3.1承载能力极限状态 (20)

5.第二体系的计算 (21)

5.1桥面板的局部应力计算 (21)

5.2截面几何特征值的计算 (22)

5.3纵横肋的弯矩计算 (26)

5.3.1活载的弯矩计算 (26)

5.3.2恒载的弯矩计算 (27)

5.3.3横肋弹性变形附加弯矩计算 (28)

5.4纵肋截面的应力计算 (30)

6.应力检算 (31)

小结 (33)

参考文献 (34)

致谢 (35)

附录A (36)

BRIDGE TO THE FUTURE (36)

桥梁走向未来 (45)

1. 绪论

世界上第一钢箱梁桥是1850年英国建造的britania铁桥路桥。该桥架设在Conway-Britania间的Menai海峡上,跨度142m。可是由创始人George Stephenson提出的薄避闭口截面形式的桥梁在100年间却很少再被采用。第2次世界大战后,在西德,随着对被炸毁的莱茵河桥修复工程的展开,在50年代初期接连假设了若干近代的箱梁桥,打破了Britania桥的跨长记录。箱梁桥的飞速增加主要是由于下述理由:

⑴由于箱梁桥的抗扭刚度和抗扭强度均较大,适用于曲线桥。直线桥在偏心活荷载作用下,其横向的荷载分配是良好的。即在单室箱梁桥中,两个腹板弯曲应力相差很少,上下翼缘弯曲应力也几乎相等。

⑵箱梁桥的翼缘宽度要比工形截面板梁桥大的多。因而,薄的翼缘也能很好的抵抗弯曲应力。工形板梁桥随着跨度加大,翼缘板要加厚,且需要高强度钢,从而连接就困难了。而箱梁因为翼缘薄这就不成其为问题了。一般来讲,箱梁和同跨度工形梁桥相比,梁的高度低。且有轻快美感。梁高跨比较小就具有十分是用的价值。

⑶进来,随着安装机械大型化,分块架设法正在迅速发展。箱梁适于用分块架设安装,可以提高安装效率,缩短工期。

⑷从箱梁的结构来看,无论是承受竖直偏心荷载,都能作为一个空间结构来抵抗外力,能发挥各个杆件的理学性能,没有所谓的零杆。箱梁在所有荷载作用下,各杆件按空间结构力分担作用力,一个杆件可以起几种作用。箱梁上翼缘起的作用有:①钢桥面板作用,将车轮荷载传递给主梁;②在竖直荷载作用下,作为主梁翼缘抵抗弯曲;③在偏心荷载作用下,作为闭口薄壁截面抵抗扭转。

另一方面,下翼缘除了起⑵、⑶作用外,在水平荷载作用下,还起平纵联作用。因而力学性能好,设计可达到经济的效果。

⑸箱梁的内部作为维修管理用的通道是很和使得不需要特殊的脚手架便可在内部进行观察、油漆和补修。

⑹电缆、水管、煤气管等附属设备容易在箱梁内部通过。

⑺箱梁不是密封的,与外面大气隔绝,不和海边、河上的湿气接触,有利于防止锈蚀。

⑻由于加劲杆、横联、节点板等几乎全设置在内部,箱梁外部显得很平滑。因而维修管理,油漆作业很容易,灰尘难以滞留,外观轻巧美观。

⑼由于梁的高度低,整个结构纤细,轻快而优美。

连续钢箱梁桥的截面形式很多,一般应根据桥梁的跨径、宽度、梁高度、支撑形式、总体布置和施工方法等方面综合确定,合理选择主梁的截面形式,对减轻桥梁自重、节约材料、简化施工和改善截面受力性能是十分重要的。目前连续钢箱梁桥的截面形式主要有:板式、肋梁式和箱形截面梁。其中,板式、肋梁式截面构造简单、施工方便,箱形截面具有良好的抗弯和抗剪性能,是预应力混凝土连续梁桥的主要截面形式。本设计采用箱(单厢三室),主要出于以下几点考虑:首先,箱形截面整体性好,结构刚度大;其次,抗扭能力强,同时箱形截面能提供较大的顶板翼缘悬臂,底板宽度相应较窄,可大幅度减小下部结构工程量。采用变高度主要是适应连续梁内力变化的需要。

设计具体分为以下几步:

⑴桥式方案的比选及施工方案拟定;

⑵上部结构截面形式及截面尺寸的拟定;

⑶上部结构截面几何特性计算;

⑷上部结构计算图式及有限元单元的划分;

⑸上部结构永久作用效应的计算(一期横载、二期横载分开计算);

⑹上部结构可变作用效应的计算;

①影响线计算及绘制;

②影响线加载;

⑺上部结构内力组合的计算及包络图的绘制;

⑻主梁的各项检算

①承载能力极限状态强度计算

②正常使用极限状态应力计算

说明:本设计中影响线的绘制是通过spap90来进行检验,

通过本次设计,对以前和专业知识进行了一次系统的复习,加深了我的理论知识和水平,但由于时间关系,设计中还存在不少问题,恳请各位老师斧正。

2. 设计概述

连续钢箱梁桥,由于构造简单,预制和安装方便,在桥梁建设中得到了广泛的应用。然而但这种简支体系的跨径超过40-50m时,跨中恒载弯矩和活载弯矩将会迅速增大,

致使梁的截面尺寸合自重显著增加,这样不但材料耗费大,并且给施工带来困难。因此,对于向本设计的较大跨径的桥梁,就宜采用在内力分布方面较为合理的结构体系,本设计采用连续钢箱梁桥,连续钢箱梁桥由于跨越能力大、施工方法灵活、适应性强、结构刚度大、抗地震能力强、通车平顺性好以及造型美观等特点,目前在世界各地得到广泛的应用。

2.1桥孔布置

本桥为连续钢箱梁桥,从已建桥梁实例的统计资料分析,跨径大于100m的连续钢箱梁桥有90%以上是采用变截面梁。因为大跨桥梁在外载荷自重作用下,支点界面将出现较大的负弯矩,从绝对值来看,支点截面的负弯矩大于跨中界面的正弯矩,因此采用变截面梁能负荷量的内力分布规律,另外变高度梁使梁体外型和谐,节约材料并赠大桥下净空。在跨径布置上,为了减少便跨跨中正弯矩,宜采用不等跨不止,这样便于施工。孔径为35m+45m+35m,实际桥长采用115m,桥梁结构计算图示见图2-1。

图2-1 桥梁计算图示

2.2 截面尺寸及拟定

2.2.1截面形式及梁高

主梁高度通常是通过技术经济比较确定的,应考虑经济、梁重、建筑高度以及净空要求等,在标准设计中还应考虑标准化,提高梁的互换性。

桥梁上部结构横截面采用变截面箱型截面,截面形式为单厢三室,主要出于以下几点考虑:首先,箱形截面整体性好,结构刚度大;其次,箱梁的顶、底板可以提供足够活载变形;另外,抗扭能力强,同时箱形截面能提供较大的顶板翼缘悬臂,底板宽度相应较窄,可大幅度减小下部结构工程量。

箱形截面主要有顶板、底板、腹板与加劲构件组成

钢桥面板若仅考虑强度,则其厚度只需6mm左右,但薄板的刚度过小,在活载作用下自身变形过大,因此设计时桥面板不小于10mm。此桥设计顶班、底板均取14mm。

此桥为6车道,设计荷载:城-A级,桥面较宽,荷载较大,应设计成单箱多室箱梁桥合适,此桥采用单箱三室箱梁截面,

此桥设计成U 形闭口截面,内部截面纵肋受到保护,不易生锈板厚可用到6mm 。

纵肋主要其起加劲作用,其间距与钢桥面板的厚度相关,此桥取300mm ,底板也要设纵横肋,纵肋间距可校顶板纵肋间距大,取400mm ;横肋于顶板位置相同,以组成横向联接系,增加横向刚度。

箱梁设置一定数量的横隔板以增加其整体作用。横隔板的位置和尺寸由计算而定,一般其间距可达10-15m ,在跨中和支承处必须设置横隔板,此桥边跨的横隔板间距为2m 。

箱梁高度的确定方法:h=l/25。所以此桥的箱高采用2000mm 。

主梁横截面构造图如图2-2:

图2-2 主梁横截面构造图(单位:cm )

2.2.2箱梁板面曲线方程

当按正交异性板分析第Ⅱ结构体系的应力时,板曲面的微分方程为 (2-1):

),(24422444y x p y

D y x H x D y x =??+???+??ωωω (2-1) 式中:ω(x,y )——正交异性板的中间面内各点在z 方向的挠度(mm );

P (x,y) ——垂直板面的分布荷载(MPa );

t

EI D x x =——板在x 方向的抗弯刚度(mm Nmm /2); a EI D y

y =——板在y 方向的抗弯刚度(mm Nmm /2);

H ——正交异性板的有效抗弯刚度(mm Nmm /2);

E ——钢材的弹性模量(mm N /);

t,a ——横肋的间距及纵肋的间距(mm),

2.2.3箱梁面板厚度设置

整体支架施工的连续梁桥,中撑处负弯矩比较大,箱梁底板厚度需要适当的加厚,以提供必要的受压面积;同时,跨中正弯矩比较大,应避免该区底板过厚而增加恒载弯矩,支点处板面厚度δ=20cm,

2-4

中孔其余部分底板厚度均按14cm设置,按上述思路设置的底板厚度如图

2.2.4箱梁腹板宽度设置

图2-5 箱梁腹板构造示意图(单位:mm)

3 主梁截面几何特性计算

截面几何特征的计算是结构内力计算、以及挠度计算的前提。以往的设计大都通过手工计算来完成,其方法虽然简单但计算工作量很大,如果将这项工作编程通过计算机来完成,不仅可以把设计者从繁重的简单计算中解放出来,而且有助于设计者习惯于编程,同时也便于正确地应用或检验现有的一些桥梁设计软件。毛截面几何特征的计算方法有很多种,常用的有节线法、分块面积法等,可以根据截面类型选用具体的计算方法。本设计采用分块面积法。本设计所用的截面比较复杂,所以变成计算的优点尤为明显,截面几何特征计算采用分块面积法。本桥为恒截面,截面特性相同,截面规则,截面特

性可运用Excel来进行计算比较简单。截面特性计算结果见下表3-1:

表3-1 截面几何特性计算结果

4 主梁内力计算

鉴于满堂支架施工的连续梁桥产生的恒载徐变二次力的计算比较复杂,目前情况下的主梁内力计算主要包括以下几个方面:恒载内力计算、活载内力计算、温度次内力计算及支座沉降次内力计算。本设计主要考虑恒载内力计算(一期恒载,二期恒载)、活载内力计算,不考虑温度次内力计算和支座沉降次内力计算。

利用结构力学(力法原理)可计算出等截面连续梁在恒载、活载等作用下的内力。

4.1 恒载内力计算

主梁恒载内力包括主梁自重(前期恒载或一期恒载)引起的主梁自重内力S G1和后期恒载(如桥面铺装、人行道、灯柱和防护拦等桥面系)引起的主梁后期恒载内力S G2,总称为主梁恒载内力。主梁自重是在结构逐步形成的过程中作用于桥上的,因而它的计算于施工方法有密切的关系。特别是在大、中跨预应力混凝土超静定梁桥的施工中不断有体系转换过程,在计算主梁自重内力时必须分阶段进行,有一定的复杂性。而后期恒载作用于桥上时,主梁结构已形成最终体系,这部分内力可直接应用结构内力影响线进行计算。随着预应力工艺、悬臂施工方法等的发展,预应力混凝土两瞧的施工方法得到不断创新和发展。主梁自重内力计算方法可归为两大类:

1:在施工过程中结构不发生体系转换;

2:在施工过程中结构发生体系转换。

本设计施工方法为满堂支架法,对于满堂支架建造过程没有体系转换,故恒载内力可按结构力学方法计算,此设计采用有限元法计算。

一期集度计算:5.781?=A q

=1.2×78.5

=94.2kN/m (为均布荷载集度)

1q ——一期恒载集度;

4.1.1一期恒载内力

一期荷载内力由力法计算得出,其结果为下图所示(图4-1):

(a ) 结构体系 单位(m )

(b )剪力图 单位(kN )

(c)弯矩图单位(kN·m)

图4-1 一期荷载内力图

4.1.2二期恒载内力

q=桥面铺装集度+防撞护栏集度

二期恒载集度计算:

2

=(0.0.8×21+0.08×23)×25+0.27×4×25

= 111.8 (kN/m)

式中,A——截面面积;0.08分别为铺装沥青混凝土厚度和钢筋混凝土面板铺装厚度;0.27表示护栏按每10m为0.27m3混凝土计。

二期荷载内力由力法计算得出,其结果为下图所示(图4-2):

(a)结构体系单位(m)

(b)剪力图单位(kN)

(c )弯矩图 单位(k N ·m )

图4-2 二期荷载内力图

4.1.3总恒载内力

总的恒载集度计算:i q =1q +2q

=94.2+111.8

=206(kN/m )

总的恒载(包括一期恒载和二期恒载)内力由力法计算得出,其大小如下图所示(图4-3)

(a )结构体系 单位(m )

(b )剪力图 单位(kN )

(c)弯矩图单位(k N·m)

图4-3 总荷载内力图

4.2 活载内力计算

活载内力由基本可变荷载中的车辆荷载和人群产生。在使用阶段,结构以成为最终

体系,其纵向的力学计算图式是明确的。但此时主梁的横向也连成了整体,因此荷载在横向对各片主梁的分配用横向分配系数m考虑,从而把一个空间结构的力学计算问题转化成平面问题。

主梁活载内力计算分为两步:

第一步求某一主梁的横向分布系数m i;

第二步应用主梁内力影响线,给荷载乘以横向分布系数。

4.2.1横向分布系数的计算

本梁为单箱三室,有四片腹板组成,可划分为四个单元,每片腹板作为一个主梁,求主梁①的横向分布系数m。

按照汽车车辆横向排列的规定,两列汽车横向位置如图4-3s所示。边轮离缘石不小于0.5m,因此,它离①号梁的距离为5.75-1=4.75m,八个轮压的合力R=4P,它的位置

离边轮为6.85-1=5.85m,即距①号梁的距离为6.85-5.75=1.1m,其合力R的影响线纵标-

,可用η1和η4之间的线性内插求得。

图4-4 1号梁荷载横向分布系数计算(尺寸单位:cm )

则m c0=0.626

考虑到箱梁按整体设计计算,故其做为整体等于受力二向分布系数为: m c =4×m c0=2.51

4.2.2主梁内力影响线及加载

连续梁桥为超静定结构,活载内力计算以影响线为基础,对等截面连续梁桥或截面按某种规律变化的连续梁,可用有限元计算绘制影响线。也可用结构矩阵程序进行计算绘制。进行影响线加载时,如采用手工计算,一般将车辆荷载的最大轮载质量置于影响线的最大竖向坐标处,即可求出最大活载内力。当直接在内力影响线上加载时

(4-1)

式中,p S ——主梁最大活载内力; ()1μ+——汽车荷载冲击系数,对于本次设计取()1μ+=1.3;

ξ——汽车荷载折减系数;

i m ——荷载横向分布系数;

i P ——车队各轮载质量;

i y ——主梁内力影响线中纵坐标。

()1p i i i

S m Py μξ=+∑

本设计加载的种类有城-A级。

上部结构可变作用效应组合的计算:

均布荷载:

q=4m cξηq

=4×2.51×0.55×1×10

=56.1kN/m

集中荷载:

P=4m

ξηp

c

=4×2.55×0.55×1×300

=925.65 kN/m

主梁内力影响线及加载如下图所示(图4-5):

(a)主梁布置图单位(m)

m in

max

(b)B截面弯矩最不利位置影响线加载图

min

max

(c)C截面弯矩最不利位置影响线加载图

max

min

(d )D 截面弯矩最不利位置影响加载图

Q A (min )

Q A (

max )

(e )A 截面剪力最不利位置影响线加载

Q C (min )

Q C (max

(f )C 截面剪力最不利位置影响线加载

Q B 左(min )

Q B 左(max

(g )B 左截面剪力最不利位置影响线加载

Q B右(min)

Q B右(max)

(h)B右截面剪力最不利位置影响线加载

Q D(min)

Q D(max)

(i)D截面剪力最不利位置影响线加载

图4-5 弯矩、剪力最不利位置影响线加载

弯矩包络图计算如下图所示(图4-6):

(a)梁的受力类型、位置

(b)恒载弯矩图

(c)集中荷载作用在左边跨夸中时梁弯矩图

(d)集中荷载作用在中跨夸中时梁弯矩图

(e)集中荷载作用在右边跨夸中时梁弯矩图

(f)均布荷载作用在左边跨时梁弯矩图

(g)均布荷载作用在中跨时梁弯矩图

(h)均布荷载作用在右边跨时梁弯矩图

(i)弯矩包络图

图4-6 弯矩包络图单位(kN·m)剪力包络图计算如下图所示(图4—7):

(a)荷载类型、位置

(b)恒载剪力图

(c)均布荷载作用在左边跨左部时剪力图

(d)均布荷载作用在右边跨右部时剪力图

(e)均布荷载作用在左边跨右部时剪力图

(f)均布荷载作用在右边跨左部时剪力图

(g)均布荷载作用在中跨左部时剪力图

(h)均布荷载作用在中跨右部时剪力图

(i)剪力包络图

图4-7 剪力包络图单位(kN)

4.3 内力组合

结构内力是荷载效应的必然结果。桥梁结构按极限状态设计时,有正常使用极限状态和承载能力极限状态两种设计方法。对于这两种极限状态,应按照相应的荷载组合规律进行内力组合。对于预应力混凝土连续梁桥,同一截面因不同荷载作用所产生的内力可能同号,也可能异号,所以要考虑不同的荷载安全系数进行内力组合。

说明:对于混凝土连续梁来说,控制设计的常常是弯矩,它影响预应力钢筋的布置,因此,以下的内力组合均是按弯矩来进行计算.

4.3.1承载能力极限状态

当结构重力产生的效应与汽车(或挂车)荷载产生的效应同号时:

桥梁工程课程设计(拱桥)

2015桥梁工程课程设计任务书 空腹式等截面悬链线无铰拱设计 一、设计资料 1.设计标准 设计荷载:汽车荷载公路-I 级,人群荷载3.5kN/m2 桥面净空净-8+2×(0.75m+0.25 m)人行道+安全带 净跨径L0=50m 净高f0=10m 净跨比f0/L0=1/5 2.材料数据与结构布置要求 拱顶填料平均厚度(包括路面,以下称路面)hd=0.5m,材料容重γ1=22.0kN/m3 主拱圈材料容重(包括横隔板、施工超重)γ2=25.0kN/m3 拱上立柱(墙)材料容重γ2=25kN/m3 腹孔拱圈材料容重γ3=23kN/m3 腹孔拱上填料容重γ4=22kN/m3 主拱圈实腹段填料容重γ1=22kN/m3 本桥采用支架现浇施工方法。主拱圈为单箱六室截面,由现浇30号混凝土浇筑而成。拱上建筑采用圆弧腹拱形式,腹拱净跨为5m,拱脚至拱顶布置6跨。 3.设计计算依据 交通部部颁标准《公路桥涵设计通用规范》(JTG D60-2004) 交通人民出版社 交通部部颁标准《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004) 交通人民出版社 交通部部颁标准《公路圬工桥涵设计规范》(JTG D61-2005) 交通人民出版社 《公路设计手册-拱桥(上)》人民交通出版社,2000.7 二、课程设计内容 1. 确定主拱圈截面构造尺寸,计算拱圈截面的几何、物理力学特征值; 2. 确定主拱圈拱轴系数m 及拱上建筑的构造布置和几何构造尺寸; 3. 结构恒载计算; 4. 主拱结构内力计算(永久作用、可变作用); 5. 温度变化、混凝土收缩徐变引起的内力; 6. 主拱结构的强度和稳定计算; 7. 拱上立柱(墙)的内力、强度及稳定性计算;

钢管混凝土拱桥设计毕业设计

第1章设计资料 1.1 基本资料及设计依据 1.1.1 基本数据 课题内容: 一、勘察资料: 1.建桥理由 云南普洱市规划的需要,建桥后将大大减少市中区车流量,改善市区交通。该桥位于云南普洱市,跨越小黑江。 2.河流及水文情况 历史最高水位:1020.8米;通航水位: 995.5米;常年水位: 988.0米;低水位: 979.2米; 3.当地建筑材料情况 砂石、钢材均可供应。 4.气象情况 最高温度:41℃;最低温度:5.1℃;最大风速:43m/s; 5.地质情况 基岩以紫红色粉砂质泥岩和泥质砂岩为主,覆盖层5~12m。 二、桥位横断面地形资料 桩号地面标高桩号地面标高 K1 +212.69 1031.60 +328.22 976.02 +225.40 1021.40 +342.23 975.22 +228.44 1021.36 +346.23 975.02 +231.55 1017.87 +369.26 974.52 +236.45 1014.43 +372.26 973.02 +244.22 1005.68 +393.29 972.52 +249.90 1000.42 +414.62 971.52 +255.46 995.10 +422.92 979.02 +259.39 993.98 +424.90 981.50 +271.75 988.88 +426.19 982.08

+274.13 984.87 +428.55 983.43 +277.66 982.60 +432.02 987.12 +282.41 979.02 +441.74 994.03 +306.21 976.02 +457.50 999.19 +310.22 976.02 +465.3 1006.50 +473.50 1012.60 +481.20 1021.30 +489.70 1027.91 课题任务要求: 对沙塘坝大桥进行设计,其设计标准为: 1.设计荷载:公路—I级; 2.行车道宽:12m+2×1.5m(人行道); 3.通航标准:内河通航标准四级; 主要参考文献(由指导教师选定): 公路桥涵设计通用规范(JTG D60—2004) 公路圬工桥涵设计规范(JTG D61—2005) 公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62—2004)公路桥涵地基与基础设计规范(JTG D63—2007) 公路桥涵设计手册——梁桥(上、下册) 公路桥涵设计手册——拱桥(上、下册) 公路桥涵设计手册——基本资料 公路桥涵设计手册——墩台与基础 桥梁工程(上册)——范立础编 桥梁工程(下册)——顾安邦编 桥梁施工与组织管理(上、下册)黄绳武编 12.桥梁毕业设计指导书

桥梁工程毕业设计开题报告

一、毕业设计(论文)课题背景(含文献综述) (一)课题背景 目的:为了进一步发展及改善交通状况,桥梁在我国大量建设,桥梁设计及施工组织是当前技术复杂,综合性很强的难点,同时又是提高质量,减少事故的重点。是与众多因素相关的综合技术模式一个系统工程问题。它与场地工程地质勘察,支护结构设计,施工开挖,基坑稳定,降水,施工管理,现场监测,相邻场地施工相互影响等密切相关。 (二)文献综述 2.1 梁桥发展现状 一、板式桥 板式桥是公路桥梁中量大、面广的常用桥型,它构造简单、受力明确,可以采用钢筋混凝土和预应力混凝土结构;可做成实心和空心,就地现浇为适应各种形状的弯、坡、斜桥,因此,一般公路、高等级公路和城市道路桥梁中,广泛采用。尤其是建筑高度受到限制和平原区高速公路上的中、小跨径桥梁,特别受到欢迎,从而可以减低路堤填土高度,少占耕地和节省土方工程量。 实心板一般用于跨径13m以下的板桥。因为板高较矮,挖空量很小,空心折模不便,可做成钢筋混凝土实心板,立模现浇或预制拼装均可。 空心板用于等于或大于13m跨径,一般采用先张或后张预应力混凝土结构。先张法用钢绞线和冷拔钢丝;后张法可用单根钢绞线、多根钢绞线群锚或扁锚,立模现浇或预制拼装。成孔采用胶囊、折装式模板或一次性成孔材料如预制薄壁混凝土管或其他材料。 钢筋混凝土和预应力混凝土板桥,其发展趋势为:采用高标号混凝土,为了保证使用性能尽可能采用预应力混凝土结构;预应力方式和锚具多样化;预应力钢材一般采用钢绞线。板桥跨径可做到25m,目前有建成35~40m跨径的桥梁。在我看来跨径太大,用材料不省,板高矮、刚度小,预应力度偏大,上拱高,预应力度偏小,可能出现下挠;若采用预制安装,横向连接不强,使用时容易出现桥面纵向开裂等问题。由于吊装能力增大,预制空心板幅宽有加大趋势,1.5m 左右板宽是合适的。

钢箱梁桥介绍

钢桁梁 由于钢材具有强度高、材质均匀、塑性及韧性良好和可焊性好等诸多优点;因此,用钢材建造的桥梁一一钢桥具有如下特点: (1)跨越能力大。由于钢材的强度高,在相同的承载能力条件下;与钢筋混凝土桥梁相比,钢桥构件的截面较小,所以钢桥的自重较轻, 最适合于建造大跨度的桥梁。 (2)最适合于工业化制造。钢桥构件一般都是在专业化的工厂由专用设备加工制作,不受季节的限制,加工制造速度快、精度高,质量容易得到控制,因而工业化制造程度高。 (3)便于运输。由于钢桥构件的自重较轻,特别是在交通不便的山区便于汽车运输。 (4)安装速度快。钢桥构件便于用悬臂施工法拼装,有成套的设备可用,拼装工艺成熟。 (5)钢桥构件易于修复和更换。 (6)钢材易锈蚀,故钢桥的养护费用高。另外,钢桥须防火,在列车通过时噪音大,故不宜在闹市区建造铁路钢桥。 钢桥可以根据不同的条件要求建成多种形式,其种类比其他材料制造的桥梁更多,主要可分为梁式体系、拱式体系及组合体系。

1. 梁式体系 按力学图式分梁式体系又可分为简支梁、连续梁、悬臂梁;按主梁的构造 形式分有板梁桥、桁梁桥、箱梁桥、结合梁桥。 2. 拱式体系 按力学图式分拱式体系可分为有推力拱和无推力拱;按拱肋的构造形 式分有版式、桁式、箱式。 3. 组合体系 这类桥型包括吊桥和斜拉桥,都是利用高强钢索来承重,吊桥(又称悬索桥)的承重构件是高强度钢索,恒载轻,跨越能力大。斜拉桥的承重构件是斜拉索和梁,其钢梁可以是板式、桁式或箱式,恒载较轻,风动力性能较吊桥好,故发展很快。 钢桥主体结构所用的钢材主要是碳素钢和低合金钢。20世纪50年代我国钢桥主要采用普通碳素钢一A3钢,该钢材由于含碳量较高 (0.14?0.22% ),可焊性差,只能进行铆接连接,如武汉长江大桥的主桥采用A3钢,该桥为连续铆接钢桁梁。用 A3钢建造大跨度桥梁时,构件截面尺寸大,从而增加用钢量并使钢桥的自重加大,因此, 20世纪50年代后期,我国开始研究在钢桥上采用能够焊接的国产高强度低合金钢一16q钢和16Mnq钢,如南京长江大桥采用16Mnq , 屈服点为 340MPa ,它比用A3钢节约钢材约15%。20世纪70年代,我国又成功研制出强度更高的15MnVNq钢,屈服点是420MPa ,又比用16Mnq钢节约钢材10%以上。21世纪,我国研制出另一种新型的桥梁用钢一14MnNbq

浅谈钢箱梁人行桥设计

浅谈钢箱梁人行桥设计 发表时间:2018-05-23T09:57:39.307Z 来源:《基层建设》2018年第6期作者:韩洁[导读] 摘要:主要介绍钢箱梁人行桥设计及结构选型。 深圳高速工程顾问有限公司广东深圳 518000 摘要:主要介绍钢箱梁人行桥设计及结构选型。从平面、立面、断面设计几个方面,通过有限元模拟计算从计算模型、荷载、钢主梁、上部结构基频、上部结构抗倾覆稳定性、局部计算等方面分析阐述钢箱梁人行桥的设计要点,控制因素。为类似桥梁工程设计提出合理化建议。 关键词:钢箱梁人行桥;初步设计及结构选型;有限元计算;设计要点;控制因素引言 随着城市建设的不断发展,市政交通网络的覆盖,越来越多的人行天桥、立交桥出现在了城市交通密集的地区,不仅解决了行人过街的安全问题,同时加强了建筑物之间的联系。钢桥具有跨越能力大、自重小、强度高、可加工性能好且施工快捷等优点,这使得大中城市里人行桥设计多选用钢结构。而城市建筑密集、现场条件复杂、景观要求高等因素使得人行桥设计细节考虑尤为重要。本文将以一个实际钢箱梁人行桥工程为背景,辅以空间有限元结构分析软件MIDAS CIVIL进行计算。对其设计过程中的心得来进行阐述,为类似工程设计提供借鉴。 1.桥梁概况及设计标准 1.1设计条件 项目地处城市核心区,人行桥从北侧高层建筑附近跨越城市二级河道连接两岸绿地。 工程规模:桥长不超过35m,桥宽不超过5m,河道蓝线宽度22m,泄洪驳坎宽约12m,批复要求:构筑物不得侵入驳坎范围,桥台不得进入蓝线范围。桥梁净空:2.5m;河道水位(m):4,5m; 1.2设计标准 设计荷载:4.5kPa; 设计安全等级:二级; 环境类别:Ⅱ类 抗震设防烈度: 6度 2.初步设计及结构选型 本桥定位为园区景观桥梁,方案设计中需遵循的以下几个原则:符合科韵路整体规划要求。 服从桥梁总体造型的要求。 坚持以人为本,人与自然合谐的原则。 构造创新独特、结构新颖。 桥梁设计同周边环境统一建筑力求少破坏自然地形。 2.1平面设计 基于上述设计条件,结合两岸环境及景观要求,桥梁平面设计位于半径为46.9米圆曲线上,桥梁全长34.0米,受河道蓝线及驳坎限制,跨径布置分两跨布置,跨径为9.0+25=34米,桥墩置于左侧驳坎边缘。 2.2立面设计 人行桥梁需考虑净空要求,需设置纵坡,纵坡值在满足净空及经济安全的前提下,本桥设置双侧8%纵坡,并在坡顶处设置R=100米圆弧曲线过渡;桥梁大跨处设置通航孔,高度2.5米,宽度4米。 2.3断面设计 钢箱梁断面设计是本桥结构设计的控制性因素,包括梁宽、梁高、桥面横向布置、悬臂造型等诸多因素。考虑由于通行量大不,桥梁全宽定为3.0米;桥面布置为0.25米+2.5米+0.25米=3米; 3.有限元模拟计算 3.1计算模型 本方案主桥静力计算将结构离散成空间杆系模型,采用空间有限元结构分析软件MIDAS CIVIL进行计算。纵桥向设置一个固定支座,其余均为活动支座,模型中支座位置与施工图一致,有限元模型中采用节点弹性连接(刚性)与一般支承实现。模型中单位没有特殊说明处,应力均以MPa为单位。

桥梁工程重点 (2)

1.箱型拱桥及肋拱桥主拱圈及拱上建筑的构造。 肋拱:肋拱桥的组成:肋拱的拱圈由两条或多条分离、平行的拱肋所组成,通常多为无铰拱,也可用两铰拱,材料通常是混凝土或钢筋混凝土。 拱肋形式:拱肋的截面形式主要与跨径有关。为便于施工,小跨径的肋拱桥多采用矩形截面,这种截面拱肋的经济性相对较差;大、中跨径拱肋桥常做成工字形截面,以减轻结构自重并改善截面受力,但这种截面拱肋的横向刚度较小;跨径大、截面宽的肋拱桥,还可采用箱形截面拱肋,以提高拱肋横向受力和抗扭性能,节省更多的圬工量,但结构构造及施工较复杂;采用钢筋混凝土材料的拱肋,是一种抗压性能好、子中小、塑性及疲劳等性能优良的结构构造。 箱形拱:主拱圈:可以由一个单箱单室或多室箱组成,也可以由两个或几个分离单室箱组成。 特点:截面抗弯、抗扭刚度大,拱圈整体性好;单条箱肋稳定性好,能单箱肋成拱,便于无支架施工;箱形截面能适应主拱圈各截面抵抗正负弯矩的需要;自重相对较轻;制作要求较高,吊装设备较多,主要适用于大跨径拱桥。 拱上建筑:实腹式拱上建筑构造:组成:拱腹填料、侧墙、护拱、变形缝、防水层、泄水管及桥面系等。 空腹式拱除了具有实腹式拱上建筑相同的构造外,还具有腹孔和腹孔敦。 4.拱桥伸缩缝、变形缝有何区别,怎样设置。 通常是在相对变形(位移或转角)较大的未知处设置伸缩缝,而在相对变形较小处设置变形缝。 实腹式拱桥的绳索风通常设在两拱脚的上方,并应在横桥方向贯通、向上延伸侧墙全高直至人行道及栏杆,伸缩缝一般做成直线形,以使构造简单、施工方便。 对于空腹、拱式拱上结构,一般将紧靠桥墩(台)的第一个腹拱圈做成三铰拱,并在靠墩台的拱铰上方的侧墙、人行道及栏杆上设置伸缩缝,在其余两铰上方的侧墙、人行道及栏杆设变形缝。 空腹、梁式拱上结构可采用连续桥面构造,但在拱脚上方应通过腹孔墩等措施,使其能相对桥墩(台)伸缩变形,在近拱顶出的连续桥面也应设置伸缩装置。 5.不等跨连续拱桥的处理方法。 (1)采用不同的矢跨比;(2)采用不同的拱脚标高;(3)调整拱上建筑的恒载重量;(4)采用不同类型的拱跨结构。6.什么事合理拱轴线,常用拱轴线形有哪几种。 合理拱轴线:采用拱上各种荷载作用下的压力线,即拱轴线与压力线吻合,此时无弯矩作用,充分利用圬工材料的抗压性能。拱轴线种类:圆弧线、悬连线、抛物线 7.拱轴系数的意义,悬链线拱轴线形方程推推导P358,均布荷载作用的压力线(对应三铰拱)。P361 拱轴系数:拱脚处恒载集度与拱顶处恒载集度的比值。 8.m与y l/4/f的关系。P361y l/4/f增大,m减小。 10.空腹式悬链线拱桥采用五点重合法确定拱轴系数。 拱轴系数m的求解1)假定初始的m0;2)根据已知的矢跨比和拱轴系数,查得相应的半拱悬臂自重对1/4截面和拱脚截面的弯矩,进一步计算整个拱上建筑对1/4截面和拱脚截面的弯矩;3)由下式计算新的拱轴系数m,并与m0比较。相差不大,则可。 11.不考虑弹性压缩时在自重、活载、弹性压缩、温度变化、混凝土收缩分别作用时主拱圈弯矩的分布规律。P365—373 自重:实腹拱恒载弯矩为零;空腹拱由于拱轴线与恒载压力线有偏离,空腹式悬链线无铰拱拱顶、拱脚和1/4点都有恒载弯矩,还应计入偏离l/8和3l/8截面的不利影响。 活载:任意截面弯矩影响线:M=M0-Hy±X3x+X1P370 温度变化:根据拱圈材料的物理性能,当大气温度高于拱圈合拢温度(拱圈施工合拢时的温度)时,将引起拱体先谷底膨胀;防止,当大气温度比合拢温度低时,则引起拱体相对收缩。 混凝土收缩:混凝土收缩作用于温度下降相似,通常将混凝土收缩折算为温度的额外降低。 12.提高和降低拱轴系数对主拱圈的拱脚、拱顶弯矩有何影响,为什么? 当m增大时,拱轴线抬高;反之,当m减小时,拱轴线降低。原因y l/4与m成反比。 13.拱桥稳定性计算的种类:(1)稳定性验算——防止出现面内失稳:采用无支架施工或在拱上建筑完成之前托架的拱桥;(2)横向稳定性验算——防止出现面外失稳:拱圈宽度小于跨径的1/20

桥梁工程毕业设计——钢筋砼拱桥

1 方案拟定与比选 1.1 工程背景介绍及使用要求 1.1.1 工程背景介绍 魏家寨至竹子公路工程(以下简称魏竹公路)是提高国道209线在保靖县迁陵镇地段通行能力、满足保靖县迁陵镇发展规划、解决保靖县酉水桥危桥问题、实现国家西部大开发战略所需要的重要工程。酉水二桥是魏竹公路的关键工程。 1.1.2 工程使用要求 保靖县魏竹公路酉水二桥,必须遵照“安全、使用、经济、美观”的基本原则进行设计,同时应充分考虑建造条件的先进性以及环境保护和可持续发展的要求。 (1)公路等级:山岭重丘区二级公路。计算行车速度:40Km/h; (2)桥梁全长:305m; (3)桥面宽的布置:净9m+2×(2.25人行道+0.25人性栏杆); (4)桥下通航等级:6级; (5)地震:不设防。 1.2设计依据及参考书: 《公路工程技术标准》JTG B01-2003 《公路桥涵设计通用规范》JTG D60-2004 《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004 《公路圬工桥涵设计规范》JTG D61-2005 《桥梁计算示例集》易建国,顾安邦编著. 人民交通出版社。 1.3施工方案的确定。 1.3.1方案拟定: 设计方案一:钢筋混凝土拱桥 设计方案二:单塔斜拉桥

设计方案三:连续梁桥 1.3.2方案比选 表1-1方案比选表 梁结构的经济性、实用性、安全性、美观性和施工的难易程度为考虑因素,综合个设计方案的优缺点,最终选定一个最优方案:钢筋混凝土拱桥。

2 毛截面几何特性计算 2.1 基本资料 2.1.1 主要技术指标 桥型布置:37m+2×126m+16m悬链线箱形拱桥 桥面净宽:0.25m(人行栏杆)+2.25m(人行道)+2×4.5m(双车道)+2.25m(人行道)+ 0.25m(人行栏杆) 设计荷载:公路—Ⅱ级 桥面纵坡:双向2 % 图2.1 拱脚横截面(单位:cm) 图2.2 拱顶截面(单位:cm) 2.1.2 材料规格

钢箱梁桥施工方案培训资料(doc 97页)

钢箱梁桥施工方案培训资料(doc 97页)

施工组织设计方案 1.总体施工组织布置及规划 1.1工程概况 1.1.1工程简介 该桥梁位于合浦工业大道里程K4+427.235处,为跨越现有铁道及规划铁道而设,桥梁起点位于道路里程K4+394.735处,桥梁终点位于道路里程K4+461.735处,是一跨L=45米钢-混凝土组合梁桥,桥梁总长度67米,总宽度57米,其断面组合为4(人行道)+7(轻型车道)+0.5(分隔带)+15.5(机动车道)+3(分隔带)+15.5(机动车道)+0.5(分隔带)+7(轻型车道)+4(人行道)=57(米),因此,设计将桥梁以中心线分为独立的两幅,桥梁上部结构及下部结构完全分开,按组合梁的布置为依据,上部结构结构组合梁中间断开0.4米,下部结构桥台中间预留2厘米的沉降缝。 1.1.2主要技术标准 (1)设计荷载:城—A级,人群3.5千牛/平方米。 (2)地震烈度:6度,基本地震加速度0.05g;抗震设防烈度:7度。 (3)设计基准期:100年。 (4)桥下净空:8.7米。 (5)安全等级:一级。 (6)桥面总宽度:57米。 1.1.3建设项目所在地区特征 1.1.3.1自然特征、地质情况 合浦工业大道跨铁路立交桥主线里程中心桩号为K4+427.235,垂直跨过合浦-北海铁路。桥位区地处冲、洪积平原的剥蚀残丘部位,现为

林地,地形起伏不大,测得钻孔地面高程为28.49~30.15m。 本次勘察查明,钻探深度内主要分布有第四系中统北海组(Q2b al+bl)高液限粘土质中砂、低液限粘土质粗砂、含细粒土粗砾砂及湛江组(Q1Z al)粘土等,未见基岩。现从上往下描述: (1)高液限粘土质中砂③:棕红色,成分主要是石英质中、粗砂及粘性土,湿,可塑状-松散状,无光泽反应,无摇振反应,干强度低,韧性低,下部含粗砂增多,呈厚层状,整个场地均有分布,层厚4.00~10.50m,平均7.22m,与下伏地层岩性界线不明显。 (2)低液限粘土质粗砂④:黄、土黄色,由粘性土及粗砂组成,混少量砾砂及中细砂,稍密状,稍湿,干土强度低,无摇振反应,为中压缩性土。各钻孔均见到;层厚0.80~2.50m,平均1.47m。与下伏地层岩性界线不明显。 (3)粗砾砂⑤:浅灰白、浅黄杂色,湿~饱和,稍~中密状,成分以石英质粗、砾颗粒为主,平均粒径d50=0.85,粒径以0.5~2.0mm 者居多,其次为砾及圆砾约占30%,粘粒约占14%;不均匀系数C u=32.9,曲率系数C c=1.66,颗粒级配良好,粗颗粒呈次磨圆状,厚度变化大,为12.40~19.00m不等,整个场地均有分布,与下伏地层岩性界线明显。该层中局部夹约0.5m厚含细砂粘土透镜体⑤1(灰白黄色、呈条带可塑状),在底有10厘米厚含铁质圆砾层分布。 (4)高液限粘土⑨:上部浅黄红、下部黄白色,主要成分为高岭土,局部混细砂、中砂,干土强度中等-较高,厚层状,湿、硬塑状,局部可塑,揭露最小厚度7.30m,最大厚度12.30m,该层未钻穿。整个场地均有分布。1.1.3.2气象及水文概况 沿线属亚热带湿润季风气候,直接承受印度洋及太平洋水汽补充。其气候特点是温暖湿润,雨量充沛,夏季长而炎热,冬季短偶有奇寒,有明

大跨径曲线连续钢箱梁桥设计

黑龙江交通科技 HEILONGJIANG JIAOTONG KEJI 2019年第7期(总第305期) No. 7,2019(Sum No. 305) 大跨径曲线连续钢箱梁桥设计 向红,曾爱 (贵州省交通规划勘察设计研究院股份有限公司,贵州贵阳550008) 摘要:针对下穿高速铁路,上跨河流和工厂的山岭重丘复杂地形条件,采用大跨径曲线钢箱梁桥进行跨越,对主跨144 m U 曲线连续钢箱梁进行了设计和计算,为山区交通、地形复杂条件下的城市道路连续钢箱梁桥设计提供参考。 关键词:大跨径;曲线梁;钢箱梁 中图分类号:U442 文献标识码:A 文章编号:1008 -3383(2019)07 -0128 -08 1工程概况 某大桥工程方案左、右两幅分别下穿高铁,同 时跨越河流及污水处理厂,为了避让,采用S 型曲 线分别穿越。左/右幅桥梁全长390/442 m,其余为 路基段。全线地形以山岭重丘为主,地势起伏较 大,结合沿线情况与功能、景观、环保等要求,分别 采用不同的结构形式与施工方案进行比较。在新 建桥型及跨径的选择上要充分考虑地形地势、现有 铁路桥墩及污水处理厂、所跨河流的影响,在桥梁 下部结构设计中应综合考虑场区地质情况和施工 条件等因素。考虑到连续钢箱梁结构方案在适应 场区特点,环境保护要求、保证施工工期方面优势 比较明显,因此将连续钢箱梁结构作为本桥施工图 设计方案。道路等级为城市主干道,单幅桥宽 n m,荷载标准为城市-A 级,设计时速50 km/h 。 2主桥上部钢结构设计 左/右幅主桥分采用(86 +140 +80)/(77 + 2 x 190 +77 ) m 变截面连续钢箱梁,引桥采用跨径为 40 m 等截面钢箱梁°下面仅介绍左幅(80 +140 + 86) m 三跨变截面连续钢箱梁° 左幅主桥跨中及端部断面中心梁高3 500 mm , 主墩顶断面中心梁高6 500 mm,梁高按二次抛物线 变化。主桥钢箱梁采用单箱单室断面,顶宽 19 000 mm,底板宽8 102 mm ,单侧悬臂宽(3 000 ~ tw ) m 叫tw 为腹板厚。桥面横坡均为0 5% ,通过 箱室内外侧腹板高度来调整形成,箱梁底板在横桥 向保持水平,钢板在箱梁内侧对齐。 主桥根据受力区域不同,不同梁段分别采用不 同厚度的钢板,全桥顶板统一采用厚度为22 mm 钢 板。距主梁根部中心线左右25 m 范围内,腹板厚 度为22 mm,其余区段腹板厚度为22 mm °距主梁 根部中心线左右25 m 范围内,底板厚度为32 mm ° 对于142 m 主跨去除20 m 范围后,其余区段底板 厚度为22 mm °对于边跨,在25~40 m 范围内底板 厚度为24 mm,其余区段厚度22 mm ° 顶板主要采用U 型加劲肋,悬臂边缘采用开口 肋,U 肋板厚8mm °底板加劲肋在主墩顶两侧范围 内,采用250 x22 mm,其余区段分别采用220 x 22 mm 和no X n mm °腹板水平加劲肋250 X 22 mm 和106 X n mm °为了节约钢材用量、减少自 重及施工操作空间方便性,梁高小于2.2 m 时箱室 内设置挖空横隔板,其余横隔板采用V 型横撑的形 式。为提高其整体和局部稳定性,除设置一定数量 的纵、横向加劲肋外,支座支撑处各设置实腹式横 隔板两道并开入孔。 主桥用钢采用Q345qD,全桥采用焊接工艺。全桥 划分为n 个梁段,最大梁段重量246.3 w 采用工厂制 造,预装检验合格后,运至现场拼装形成整体。 3主桥上部结构验算 3.】主梁验算 采用Midas Civil 和桥梁博士分别进行计算,全 桥划分为320个单元,全桥施工阶段共有2个,第1 阶段为安装钢箱梁阶段,第2阶段为施工桥面铺装 等二期恒载°两个软件的计算结果吻合较好,下面 仅给出主要计算结果° 承载能力极限状态,最大拉应力为06 MPa (出现 跨中截面的底板下缘),最大压应力为102 MPa(出现 墩顶截面的底板下缘);最大主拉应力为02 MPa,最大 主压应力为102 MPa,最大应力幅60 MPa (在距墩顶根 部约「4的底板处),满足规范要求。 正常使用状态,在汽车活载作用下的正负挠度 绝对值之和为19.8 cm,小于「500(L = 142 m ),满 足《公路桥梁钢结构设计规范》(JTG D62 -2215)) (以下简称规范)中的4. 2. 3条规定。恒载挠度通 过设置预拱度消5° 3.2主梁腹板验算 根据有限元计算结果,最大剪应力t = 86- 8 MPa ,结构重要性系数Y /=0 1,规范腹板剪应 力应满足 Y /T=95.5 MPa WEg #) =190 MPa ,满足要 (下转第no 页) 收稿日期:2019 -08 -29 作者简介:向红(1975 -),男,贵州遵义人,博士,高级工程师,研究方向:桥梁结构行为与工程应用 -195 -

弯桥研究现状综述

弯桥研究现状综述

目录 1.1弯桥概述 (1) 1.2研究现状 (2) 参考文献 (7)

弯桥研究现状综述 1.1弯桥概述 弯桥通常指桥面中心线在平面上为曲线的桥梁。在各类桥梁结构中,平面弯桥是特殊的一类,无论梁桥、拱桥、斜拉桥还是悬索桥,都有弯桥的工程实例。在各类弯桥结构中,以梁式弯桥最多,斜拉桥次之,拱桥和悬索桥较少。梁式弯桥多的原因是大多数弯桥跨径都在100m以下,这种跨径采用梁式结构无论设计、施工还是经济性都具有优势。超过100m跨径的弯桥,斜拉桥则加入竞争。拱式弯桥多见于低等级路线上的小桥或涵洞,以石桥为主。悬索桥则特殊少见。 图1-1 北京四元桥图1-2 杭州上石立交桥 弯桥,目前大致可分为五种情况:①以直代曲弯桥;②现浇结构弯桥; ③高墩弯桥;④砟道小半径弯桥;⑤钢混结构弯桥。 弯桥的出现大致归为两个原因:①跨越地形地物的需要。山区道路的展线一般要顺应地形,因此路线设计以曲线为主,尤其是高等级公路对线型要求较高,不可避免地要出现大量弯桥斜桥。②线路设计的需要。在高速公路或城市立交的出口或转向,会将常出现弯桥或砟道弯桥。弯桥的出现时桥梁设计发展的必然结果,它一方面给桥梁设计增加了难度,另一方面也使桥梁与自然更为融合,增加了视觉美感。弯桥的发展某种意义上体现了一个国家经济及交通的发展。在国外交通发达的国家中,不仅城市出

现多层次立交枢纽,而且在高速公路、快速干道上,多层次立交桥比比皆是。目前国内交通基础建设也是如此,不仅公路上采用弯桥,铁路上同样采用弯桥。与直桥相比,弯桥的建设并不经济,且在施工工艺方面还有其特殊要求。但就整条线路而言,采用弯桥使线形美观流畅,行车舒适,避免了桥和线路成直角接线,减少了车辆急拐弯造成的行车事故,这种社会效益是不可估量的。 1.2研究现状 据资料显示,最初的曲线梁桥是德国1914年建成的一座铁路钢桁架桥。上世纪70年代以来,曲线梁桥随着钢筋混凝土、预应力混凝土结构的广泛应用在国外城市立交及公路桥梁建设得以大量修建,其中最具代表性的如1972年建造的加拿大西尔维尓路桥、1974年建成的瑞士Cailon桥、法国于1976年完成的Let Naweiliai桥、1982年建成的加拿大弓河桥、美国于1983年建成的北卡罗莱纳州莱茵海湾高架桥等。另外1987年竣工的日本Aomori Bridge为三跨预应力混凝土连续箱梁桥,全桥长496m,其最小半径仅有40m。20世纪90年代后西方发达国家应用的曲线梁桥材料主要以钢板、钢箱梁和钢-混凝土组合梁为主。随着曲线梁桥的大量修建,应运而生发展的施工方法也多种多样,如现浇、悬臂施工、顶推等方法在曲线桥的设计和施工中均得到了较多应用并日趋成熟,表1-1为部分国外已建成的曲线梁桥。 对于曲线梁桥的研究以及应用方面我国起步都晚于国外,因此与国外比存在不小差距。国际上曲线梁桥在70年代得到大发展,而国内是在80年代以后才慢慢赶超;特别是在1979年美国著名的汉斯教授第一次被邀请来到国内介绍了弯梁桥的设计理论后,我国对弯桥的研究及应用才有了迅猛的发展,在之后的公路和城市工程建设中,曲线梁桥开始得以大量修建,而这其中又尤以城市立交发展最快,特别是北京、天津、广州、深圳等一线大城市的立交、高架工程及高速公路工程中,修建了诸多具有代表性的曲线梁桥,使得我国的曲线梁桥的理论研究和工程实践中取得了丰硕的成果。如北京市四元桥、东便门立交桥、天津市蝶形立交桥等。90年代以后,由于对曲线桥理论研究的日趋深入,从而设计和施工水平得到进一步的提高,更是修建了大量的曲线梁桥。

拱桥设计计算说明书书

目录 一、设计背景 (1) (一)概述 (1) (二)设计资料 (1) 1、设计标准 (1) 2、主要构件材料及其参数 (1) 3、设计目的及任务 (2) 4、设计依据及规范 (2) 二、主拱圈截面尺寸 (4) (一)拟定主拱圈截面尺寸 (4) 1、拱圈的高度 (4) 2、拟定拱圈的宽度 (4) 3、拟定箱肋的宽度 (4) 4、拟定顶底板及腹板尺寸 (4) (二)箱形拱圈截面几何性质 (5) 三、确定拱轴系数 (6) (一)上部结构构造布置 (6) 1、主拱圈 (6) 2、拱上腹孔布置 (7) (二)上部结构恒载计算 (8) 1、桥面系 (8) 2、主拱圈 (8) (三)拱上空腹段 (9) 1、填料及桥面系的重力 (9) 2、盖梁、底梁及各立柱重力 (9) 3、各立柱底部传递的力 (9) (四)拱上实腹段 (9) 1、拱顶填料及桥面系重 (9) 2、悬链线曲边三角形 (10) 四、拱圈弹性中心及弹性压缩系数 (12) (一)弹性中心 (12) (二)弹性压缩系数 (12) 五、主拱圈截面内力计算 (13) (一)结构自重内力计算 (13) 1、不计弹性压缩的恒载推力 (13) 2、计入弹性压缩的恒载内力 (13) (二)活载内力计算 (13) 1、车道荷载均布荷载及人群荷载内力 (13) 2、集中力内力计算 (15) (三)温度变化内力计算 (17) 1、设计温度15℃下合拢的温度变化内力 (18) 2、实际温度20℃下合拢的温度变化内力 (18)

(四)内力组合 (19) 1、内力汇总 (19) 2、进行荷载组合 (19) 六、拱圈验算 (21) (一)主拱圈正截面强度验算 (21) 1、正截面抗压强度和偏心距验算 (21) (二)主拱圈稳定性验算 (22) 1、纵向稳定性验算 (22) 2、横向稳定性验算 (22) (三)拱脚竖直截面(或正截面)抗剪强度验算 (22) 1、自重剪力 (22) 2、汽车荷载效应 (23) 3、人群荷载剪力 (24) 4、温度作用在拱脚截面产生的内力 (24) 5、拱脚截面荷载组合及计算结果 (25) 七、裸拱验算 (26) (一)裸拱圈自重在弹性中心产生的弯矩和推力 (26) (二)截面内力 (26) 1、拱顶截面 (26) 2、1 4 截面 (26) 3、拱脚截面 (26) (三)强度和稳定性验算 (27) 八、总结 (28) 九、参考文献 (29)

桥梁工程毕业设计开题报告样本

毕业设计(论文)开题报告 题目: 茶庵铺互通式立体交叉K65+687跨线桥 方案比选与施工图设计 √论文□课题类别: 设计□ 学生姓名: 周伟其 学号: 18030222 班级: 桥土07-02班 专业( 全称) : 土木工程( 桥梁工程方向) 指导教师: 韩艳 3月

独塔双跨式斜拉桥也是一种较常见的孔跨布置方式, 由于它的主孔跨径一般比双塔三跨式的主孔跨径小, 适用于跨越中小河流和城市通道。 独塔双跨式斜拉桥的主跨跨径与边跨跨径之比一般为1.25~2, 但多数接近1.52, 两跨相等时, 由于失去了边跨及辅助墩对主跨变形的有效约束作用, 因而这种形式较少采用。 斜拉桥与悬索桥一样, 很少采用三塔四跨式或多塔多跨式。原因是多塔多跨式斜拉桥中的中间塔塔顶没有端锚索来限制它的变位。因此, 已经是柔性结构的斜拉桥或悬索桥采用多塔多跨式将使结构柔性进一步增大, 随之而来的是变形过大。 2.2.4斜拉桥的施工工艺及描述 主梁施工 主梁除钢主梁和叠合梁采用工厂加工制作, 现场起吊拼装形成外, 预应力混凝土主梁大多采用挂篮现浇或支架现浇, 少数也有采用预制拼装法完成。挂篮悬浇法由于其造价较低, 且主梁线形易于控制, 采用较为广泛。在中国, 挂篮悬浇从后支点发展大前支点(也称”牵索式挂篮”) , 从小节距发展到大节距, 从轻型发展到超轻型从节段施工周期15天发展到最快4天, 技术已经逐渐成熟。牵索式挂篮的采用提高了挂篮承载能力, 加快了施工速度。 索塔及索塔基础施工 当前中国斜拉桥无论采用H形, 倒Y形, 还是钻石形索塔, 均采用钢筋混凝土结构。钢筋混凝土索塔的形成, 主要取决于支架和模板工艺。近年来大多采用简易支架或无支架施工法; 索塔施工模板、提模、翻模及爬模工艺, 其中爬模造价较低, 浇注节段高达6~9米, 施工速度快, 外观较光滑。斜拉桥因为其跨径较大使得主塔墩基础竖向荷载相应较大, 从而基础工程相应较大。索塔基础一般采用桩基础、钢围堰、沉井、或围堰加桩基础施工方法。 拉索施工 拉索的加工一般采用热剂PE防护法在工厂或现场加工。拉索锚头有热铸和冷铸两种, 大多采用冷铸锚头。拉素大多系整束集中防护张拉, 但也有个别采用平行钢绞线分束防护张拉。斜拉索的张拉、牵引与张拉。随着斜拉桥的跨径增大, 拉索长度和质量随之增大, 其张拉、牵引及张挂的力度与难度随之增大。一般采用放盘法自下而上牵引到位或采用整盘吊装上梁后牵引上塔。

钢箱梁顶推施工工艺介绍

钢箱梁顶推施工工艺介绍 位于济南小清河项目难点施工为架设3片钢箱梁(垂直于桥向),每片由5节(沿桥向)钢箱梁组成,共约600吨。采用先轮箱纵移到钢箱梁对应的跨位,再利用自锁爬行顶推小车横移至梁位处,落梁就位(中间9节钢箱梁)。两头的钢箱梁利用大吨位吊车和已经就位好的钢箱梁对接架设。很好地解决了单片整体吊装钢箱梁接头变形影响问题。 1、工程概况 1.1小清河桥位于济南小清河上,与老桥紧挨。新桥下部为钻孔桩基础、圆柱形墩身,上部主跨为钢箱梁,跨距65m。新桥由3片钢箱梁组成(垂直于桥向),每片5节(沿桥向)。每两片钢箱梁间距3m,再用桥面板焊接成整体、钢箱梁面板上铺设沥青混凝土,边跨为砼现浇箱梁,主跨钢箱梁与边跨砼箱梁通过预应力钢绞线连成整体。钢箱梁在工厂加工成型后运至施工现场。 1.2难点施工主要内容为:由中间3节钢箱梁组成的3片钢箱梁的安装就位(共9节),共计360吨。中资路桥采用的施工方案为先沿桥向纵移到钢箱梁对应的跨位,再横移钢箱梁至梁位处下落就位。为横移钢箱梁,在河中钢箱梁4个接处下方,设置4个临时支墩。同时可以作为钢箱梁需调拱使用。 2、施工流程 济南小清河钢箱梁顶推施工流程为:施工准备(材料和设备进场)→横移轨道和纵移轨道的铺设→轮箱纵移钢箱梁→落到自锁爬行顶推小车上→横移钢箱梁就位→钢箱梁对接→钢箱梁调拱 3、施工工艺 3.1轮箱纵移施工工艺 3.1.1主要设备:轮箱 3.1.2纵移轨道铺设在老桥路基上铺设轨道,轨距3.2m,用P50钢轨,轨道下用1.25m短枕木,间距80cm,每10m设轨距拉杆一道。轨距拉杆可用4m方木完成。轮箱按轨距布设好后,钢箱梁用50吨的汽车吊吊放在轮箱上,准备纵向移动。 3.1.3钢箱梁纵移启动轮箱,低速运转,将钢箱梁纵移至对应跨位。为保证横移时钢箱梁的精确位置,运梁轨道要严格顺直,并与新桥桥轴线平行,且钢梁运至老桥上时,要正对其桥跨位置。要求测量定位准确。同时,为保证老桥的承载,轨道必须设置在老桥主拱上方。 3.1.4落梁至横移轨道纵移到位后,在两端梁下轮箱上安放千斤顶,顶起钢箱梁,在纵移轨道上安放延伸横移轨道,自锁爬行钢箱梁顶推小车安放至钢箱梁两头下方的横移轨道上。为防止钢箱梁滑移,在自锁爬行顶推设备上搭设一层至两层枕木,千斤顶落下钢箱梁至自锁爬行顶推小车上,横移钢箱梁。拆除纵移轨道上的横移轨道,退出轮箱,进行下片钢箱梁的纵移。为保证钢梁的精确就位,两端的横移轨道要严格顺直并严格垂直桥轴线,两轨道严格平行。 3.2顶推横移施工工艺 3.2.1主要设备:自锁爬行钢箱梁顶推小车。 3.2.2横移轨道铺设在搭设好的临时支墩轨道梁上铺设间距80cm的短枕木,在枕木上铺设50型钢轨,轨距为55cm。 3.2.3钢箱梁横移钢箱梁放置在自锁爬行顶推小车上,两台设备同步慢速将整片钢梁横向推

长沙火星北路浏阳河大桥拱桥施工图设计毕业设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

桥梁工程毕业设计中存在的问题

桥梁工程毕业设计中存在的问题 一、桥型方案设计 (一)共性问题 1.桥孔布置大跨化,没有顾及净空、经济性问题,或者出现多种不同跨度 的布置、非标准跨径的布置等等;主桥与引桥的布置形式; 2.对不同桥型、不同建筑材料的桥梁,跨度适用范围及相应的施工方法不 够了解,如混凝土拱桥,120m跨与240m跨、300m跨,究竟如何拟定截面形式和施工方法; 3.截面尺寸拟定不够合理,如墩台、盖梁、承台厚度、箱梁截面的腹板和 顶板; 4.桥台、桥墩基础的埋深,桥台长度的拟定方法,基础襟边长度。 5.连续梁桥、连续刚构桥边中跨比值,边、中跨确定方法; 6.独塔斜拉桥的边中跨之比、索距、主梁形式,无索区长度等等,索塔构 造; 7.工程制图,比例问题、小尺寸(基础襟边、台帽尺寸)的(随意)绘制、 字体大小、标注、构造线与标注线的粗细与区分。 8.剖断线、中心线、阴影线的表示方式。 (二)梁桥 1.T梁断面构造与横向布置; 2.桥墩、桥台的构造形式及与其高度的关系 3.连续刚构桥中方案中未顾及桥墩高度相差悬殊的情况,可采取连续—— 固接的方式; 4.薄壁墩顺桥向宽度和箱梁高度的关系,箱梁横桥向宽度的拟定。 (三)拱桥 1.多箱室拱桥的适用范围(缆索吊装法、跨径应在200m以内); 2.拱上建筑的形式、跨度、高度及其布置; 3.立柱底座、立柱纵横向宽度的确定方法;

4.中承式拱桥固定横梁的构造与位置; 5.多跨不等跨拱桥的桥墩构造; 6.钢管混凝土拱肋构造、横截面形式与高度拟定 (四)斜拉桥 1.独塔和双塔斜拉桥桥跨布置 2.边跨、中跨无索区长度 3.主梁横截面形式 4.索塔构造 (五)悬索桥 1.适用范围 2.矢跨比 3.主梁构造 4.索塔与索鞍构造 5.吊杆间距 (六)工程量统计 1.混凝土体积、土石方开挖量计算 2.钢筋、预应力筋的估算 二、结构计算 1.施工方案 2.参数确定 3.计算模型的简化与施工阶段划分 4.模型输入与计算、正确性判断 5.控制截面的选取 6.内力组合、估束、极限状态验算 三、工程制图 1.图框与比例 2.字体选择与大小 3.制图与技巧(对称性、复制、镜像、切割、偏移等等命令,图层) 4.标注(对齐、连续性标注、辅助线)

连续钢箱梁桥设计方法研究

总第281期 2017年第2期交通科技Transportation Science &- Technology Serial No . 281No . 2 Apr . 2017DOI 10. 3963/j . issn . 1671-7570. 2017. 02. 019 连续钢箱梁桥设计方法研究 余祥亮 (中铁大桥局集团有限公司设计分公司武汉430050) 摘要针对连续钢箱梁桥设计中三体系叠加理论的精度问题,以广东省某高速公路连续钢箱梁 设计为工程背景,分别采用三体系叠加理论和空间板单元整体建模进行计算分析对比,得出2种 计算方法纵向应力结果较吻合的结论,而三体系叠加理论计算简便、建模周期短,建议结构设计试 算时优先采用。 关键词钢箱梁三体系叠加法板单元法桥梁设计 1 工程概况广东某高速公路主线上跨宝安大道采用66. 5 m +95 m +66. 5m 连续钢箱梁,箱梁顶宽23. 75 m 、底宽17. 81 m 、翼缘悬臂长3 m ,梁高2. 5? 4.5 m ,梁高变化采用圆曲线。主桥立面布置见 图1。箱梁采用单箱四室结构,顶板厚度根据受 力不同分为16,20,24,30 mm 4种;底板厚度为16,20,24,30 mm 4 种;腹板厚度为 14,20 mm 2种。顶板、底板、腹板不同板厚对接时厚度变化 都在箱梁外侧进行,保持箱梁内侧平顺。钢箱梁 每3 m 设一道纵向横隔板,在支座附近横隔板加 密,以增强其整体刚度。顶板采用U 形纵肋、底 板和腹板采用球扁钢纵肋。箱体及分块节段间连 接全部采用焊接。2主要技术标准1) 道路等级。局速公路。 2) 桥幅宽度布置。主桥为整体式,桥幅宽 度:0? 5 m (防撞护栏)+22. 75 m (行车道)+0? 5 m (防撞护栏)=23. 75 m 。 3) 设计行车速度。100 km /h 。 4) 设计荷载。公路-I 级。 收稿日期:2016-12-275) 行车道数量。单向4车道+辅助车道。 6) 桥面横坡。2%。 7) 桥梁结构设计使用年限:1〇〇年。8) 地震动峰值加速度。0. 10心3结构设计3.1方法一。三体系叠加理论计算钢桥面由顶板和纵横向加劲肋组成,作为主 梁的一部分参与主梁共同受力。钢桥中采用的钢 桥面板,一般纵肋布置较密,横肋分布较疏, 桥面

相关文档
最新文档