LED驱动隔离与非隔离的区别

LED驱动隔离与非隔离的区别
LED驱动隔离与非隔离的区别

LED恒流驱动电源类别

1.直流入-直流出(DC/DC)

1.1按照输入输出电压关系又可分为以下几种:

a.升压型恒流驱动

b.降压型恒流驱动

c.升降压型恒流驱动

d.单电感式

e.双电感式

2.交流输入直流输出AC/DC

2.1AC/DC恒流源的分类

a.非隔离型(在特定情况下符合安规要求)

b.隔离型(符合安规要求)

主要从4个方面进行对比:

1.安全性

先介绍下什么是隔离吧,隔离电源是指输入和输出通过变压器实现电气连接的,变压器的转换过程是:电-磁-电,没有和大地连接,所以不会发生触电危险。而非隔离电路是输入电源通过升降压之后直接加在了LED负载上,有触电危险。所以要过什么UL,CE这些安规认证,非隔离就麻烦了,绝缘及爬电距离不够,只能从灯具物理结构设计了。灯管是可以接受的,也有全塑的,但球泡这类基本是铝外壳,这样PCB板与外壳得加强绝缘,本来球泡电源可用空间极小,这样再加上严格的爬电要求,很难做。

带隔离变压器或者电气隔离的LED驱动电源意味着LED可以直接用手接触而不会触电。而无隔离变压器的LED驱动电源虽仍可以借助防护外壳实现部分机械绝缘,但此时的LED在工作时并不能直接接触。

阻容降压电源为非隔离,高压恒流驱动是隔离的,低压恒流驱动是非隔离的。

因为低压恒流驱动是低压,虽然是非隔离,但基本不会对人有伤害。

作为一个让最终用户能安全使用的产品,一定会考虑绝缘与隔离的可靠性。

2.性能

非隔离由于少了变压的能损耗,效率一般能达到91%以上,而且有更高的功率因素。而隔离一般能效在88%,视功率而定,所以隔离电源发热也比较大。

非隔离拥有更少的元器件稳定性却比较差,可是为什么呢?原因是非隔离电路对于浪涌十分敏感,抑制能力差。事实上就是指非隔离电源,在批量出货时,返修率高于隔离LED驱动电源,大都是因为炸坏。而隔离电源炸坏的机率要小不少,非隔离的一般在2%至3%左右。很多电网电压不稳,非隔离会300V直通输出,击坏芯片,烧坏LED负载。隔离也会,现象就是芯片,MOS管,恒流环路全烧坏,但隔离相对少得多。所以非隔离防浪涌的压敏电阻必不可少,没有压敏能质保的都是浮云。

3.成本与体积

相比隔离电源,非隔离电源主要是减少了变压器,以最少的用料来设计架构,做到相同的产品功能,所以非隔离成本有较大的优势。这估计就是非隔离电源在中国很吃香的原因了,哈哈。

4.带载范围

一般来讲隔离电源的输出带载范围为30-42V,非隔离带载范围可以为30-84V。众多LED厂家在选择电源的时候为了整体的适应性都要求电源能够适应全电压9 0-265V输入,带载范围也要求高达84V,这样的选择是存在一定风险和隐患的。90V输入的时候电源可能丧失恒流功能,THD这些。

非隔离适合做高压小电流,做大电流成本并不比隔离的便宜。

综合比较,这两种电源各有优势,非隔离电源侧重于较高的功率因素及效率,减少了能源的损耗,而隔离电源重视生命的安全和日光灯整体的使用安全性,在功率因素及效率方面略逊于非隔离电源,因此不同的先择也是见仁见智。

(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

MOS管驱动变压器隔离电路分析和应用

MOS管驱动变压器隔离电路分析和应用 今天在研究全桥电路,资料和书上谈到的,大多数基于理想的驱动器(立即充电完成)。这里 一篇幅把MOS管驱动的来龙去脉搞搞清楚。 预计要分几个篇幅: 1.MOS管驱动基础和时间功耗计算 2.MOS管驱动直连驱动电路分析和应用 3.MOS管驱动变压器隔离电路分析和应用 4.MOS管网上搜集到的电路学习和分析 今天主要分析MOS管驱动变压器隔离电路分析和应用和MOS管驱动基础和时间功耗计算。 参考材料: 《Design And Application Guide For High Speed MOSFET Gate Drive Circuits》是一份很好的材料《MOSFET 驱动器与MOSFET 的匹配设计》也可以借鉴。 首先谈一下变压器隔离的MOS管驱动器: 如果驱动高压MOS管,我们需要采用变压器驱动的方式和集成的高边开关。 这两个解决方案都有自己的优点和缺点,适合不同的应用。 集成高边驱动器方案很方便,优点是电路板面积较小,缺点是有很大的导通和关断延迟。 变压器耦合解决方案的优点是延迟非常低,可以在很高的压差下工作。常它需要更多,缺点是需要很多的元件并且对变压器的运行有比较深入的认识。 变压器常见问题和与MOS管驱动相关的问题: 变压器有两个绕组,初级绕组和次级绕组实现了隔离,初级和次级的匝数比变化实现了电压缩放,对于我们的设计一般不太需要调整电压,隔离却是我们最注重的。 理想情况下,变压器是不储存能量的(反激“变压器”其实是耦合电感)。不过实际上变压器还是储存了少量能量在线圈和磁芯的气隙形成的磁场区域,这种能量表现为漏感和磁化电感。对于功率变压器来说,减少漏感可以减少能量损耗,以提高效率。MOS管驱动器变压器的平均功率很小,但是在开通和关闭的时候传递了很高的电流,为了减少延迟保持漏感较低仍然是必须的。 法拉第定律规定,变压器绕组的平均功率必须为零。即使是很小的直流分量可能会剩磁,最终导致磁芯饱和。这条规则对于单端信号控制的变压器耦合电路的设计有着重大影响。 磁芯饱和限制了我们绕组的伏秒数。我们设计变压器必须考虑最坏情况和瞬时的最大的伏秒数。(在运行状态下,最坏情况和瞬时的,最大占空比和最大电压输入同时发生的情况),唯一我们确定的是变压器有一个稳定的电源电压。 对于单端应用的功率变压器来说,很大一部分开关周期需要保留来保证磁芯的正确复位(正激变换器)。复位时间大小限制电路运行的占空比。不过由于采用交流耦合实现了双向磁化,即使对于单端

普遍使用的非隔离型降压式电源设计及分析

普遍使用的非隔离型降压式电源设计及分析 非隔离降压型是现在普遍使用的电源结构,其几乎占了日光灯电源百分之九十以上。很多人都以为不隔离电源只有降压型一种,一说不隔离,就想到降压型,就想到说对灯不安全-指电源损坏后。其实降压型只是一种,还有两种基本结构,即升压,和升降压,即BOOST AND BUCK-BOOST,后两种电源即使损坏。不会影响到LED,有这种好处。 ?降压式电源也有其好处,主要第一点,适合用于220,但不适用于110,因为110V本来电压就低,一降就更低了,那样输出的电流大,电压低,效率做不太高。 ?降压式220V交流,整流滤波后约三百伏,经过降压电路,一般将电压降到直流150V左右,这样即可实现高压小电流输出,效率可以做高。一般用MOS做开关管,做这种规格的电源,我的经验是,可以做到百分之九十那样差不多,再往上也困难。原因很简单,芯片一般自损会有零点五W到一W,而日光灯管电源不过就是十W左右。所以不可能再往上走。现在电源效率这个东西很虚,很多人都是吹,实际根本达不到。常见有些人说什幺3W 的电源效率做到百分之八十五了,而且还是隔离型的。 ?告诉大家,即便是跳频模式的,空载功耗最小,也要0。3W,还什幺输出3W低压,能到百分之八十五,其实有百分之七十算很好了,反正现在很多人吹牛不打草稿,可以忽悠住外行,不过现在做LED的懂电源的也不多。?我说过,要效率高,首先就要做非隔离的,然后输出规格还要高压小电流,可以省去功率元件的导通损耗,所以象这种LED电源的主要损耗,一就是芯片自有损耗,这个损耗一般有零点几W到一W的样子,还有一个就是开关损耗了,用MOS做开关管可以显着减小这个损耗,用三极管开关损耗

SM7075-18非隔离式小家电电源芯片7V0.1A_18V0.35A_Buck方案

SM7075-18 非隔离Buck (7V/0.1A;18V/0.35A)方案简介_V1.0 芯片概述 SM7075-18是采用电流模式PWM控制方式的功率开关芯片,集成高压启动电路和高压功率管,为低成本开关电源系统提供高性价比的解决方案。 芯片应用于BUCK系统方案,支持18V输出电压,很方便的应用于小家电产品领域。并提供了过温、过流、过压、欠压等完善的保护功能,保证了系统的可靠性。 SM7075-18芯片应用领域:电磁炉、电饭煲等小家电产品电源。 系统规格 输入电压 85Vac~264Vac 输出规格 (7V/0.1A;18V/0.35A) 恒压精度 7V: ±1.42%;18V: ±2.73% 方案优势 ◆系统元器件少,成本低,调试简单; ◆系统空载功耗低、转换效率高; 系统BOM NO. 元件类型 型号描述 位号 1 保险丝 FUS-RST-1A-250V F1 2 线绕电阻 RES-22R-5%-2W R1 3 插件二极管 DIO-REC-DO41-1.00A-1KV-IN4007 D1 4 插件二极管 DIO-REC-DO41-1.00A-1KV-IN4007 D2 5 插件二极管 DIO-REC-DO41-1.00A-1KV-IN4007 D3 6 插件二极管 DIO-REC-DO41-1.00A-1KV-IN400 7 D4 7 插件二极管 DIO-FAS-DO41-1.00A-600V-BYV26C D5 8 插件二极管 DIO-FAS-DO41-1.00A-1KV-UF4007 D6 9 插件二极管 DIO-FAS-DO41-1.00A-1KV-FR107 D7 10 电解电容 CAP-ELE-4.7u-400V-Ф8*12 C1 11 电解电容 CAP-ELE-4.7u-50V-Ф5*11 C2 12 电解电容 CAP-ELE-100u-16V-Ф6*12.5 C3 13 电解电容 CAP-ELE-220u-25V-Ф6.5*12 C4 14 变压器 TR-EE10卧式/1.6mH(140T:65T) T1 15 芯片 IC-SM7075-18-TO252 U1 系统电路图 图1 系统应用原理图 测试数据(输入电压220Vac条件下) 纹波测试 7V:96mV;18V:124mV 空载功耗 30mW 转换效率 75.5% 启动时间 194mS 实物图及PCB图 图2 系统方案板正面图 图3 系统方案板背面图 图4 PCB bottomlayer - 1 -

隔离非隔离三种常用LED驱动电源详解

三种常用LED驱动电源详解 时间:2014-5-30 LED电源有很多种类,各类电源的质量、价格差异非常大,这也是影响产品质量及价格的重要因素之一。LED驱动电源通常可以分为三大类,一是开关恒流源,二是线性IC电源,三是阻容降压电源。 1、开关恒流源 采用变压器将高压变为低压,并进行整流滤波,以便输出稳定的低压直流电。开关恒流源又分隔离式电源和非隔离式电源,隔离是指输出高低电压隔离,安全性非常高,所以对外壳绝缘性要求不高。非隔离安全性稍差,但成本也相对低,传统节能灯就是采用非隔离电源,采用绝缘塑料外壳防护。开关电源的安全性相对较高(一般是输出低压),性能稳定,缺点是电路复杂、价格较高。开关电源技术成熟,性能稳定,是目前LED照明的主流电源。 图1:开关恒流隔离式日光灯管电源

图2:开关恒流隔离式电源原理图 图3:开关恒流非隔离式球泡灯电源 图4:开关恒流非隔离式电源原理图 2、线性IC电源 采用一个IC或多个IC来分配电压,电子元器件种类少,功率因数、电源效率非常高,不需要电解电容,寿命长,成本低。缺点是输出高压非隔离,有频闪,要求外壳做好防触电隔离保护。市面上宣称无(去)电解电容,超长寿命的,均是采用线性IC电源。IC驱电源具有高可靠性,高效率低成本优势,是未来理想的LED驱动电源。

图5:线性IC电源 图6:线性IC电源原理图 3、阻容降压电源 采用一个电容通过其充放电来提供驱动电流,电路简单,成本低,但性能差,稳定性差,在电网电压波动时及容易烧坏LED,同时输出高压非隔离,要求绝缘防护外壳。功率因数低,寿命短,一般只适于经济型小功率产品(5W以内)。功率高的产品,输出电流大,电容不能提供大电流,否则容易烧坏,另外国家对高功率灯具的功率因数有要求,即7W以上的功率因数要求大于0.7,但是阻容降压电源远远达不到(一般在0.2-0.3之间),所以高功率产品不宜采用阻容降压电源。市场上,要求不高的低端型的产品,几乎全部是采用阻容降压电源,另外,一些高功率的便宜的低端产品,也是采用阻容降压电源。 图7:阻容降压电源

非隔离小功率电源芯片方案选型

非隔离小功率电源芯片方案选型 非隔离小功率电源芯片LED供电照明驱动系列产品,系统采用Buck、Boost或Buck-Boost拓扑结构,仅需电感而无需变压器,整 体BOM成本低。内部集成钲铭科电子高精度的恒流技术,高压自启 动及供电技术和高功率因数控制技术等专利技术。可通过EFT、雷击、 浪涌等可靠性测试,可通过3C、UL、CE等认证。 非隔离小功率电源芯片主要应用于球泡灯、射灯、灯丝灯、吸顶灯、筒灯、T5/T8日光灯等LED照明驱动领域。 非隔离小功率电源芯片方案选型如下: IC name Topology MOSFET Ptype/Lout PF Eff Package Application SM7305PB BUCK集成550V5-9w/120mA>0.5>88%SOP8,SOT2 3-6 球泡,筒灯 SM7315P BUCK集成730V5-9w/120mA>0.5>88%SOP8,SOT2 3-6 球泡、灯芯合一、灯 丝灯 SM7317P BUCK集成730V9-18w/120mA>0.5>90%SOP8球泡、灯芯合一、灯丝灯 SM7307BUCK集成550V5-18w/150mA>0.5>88%DIP8/SOP8T5、T8、球泡灯SM7320BUCK集成550V8-24w/300mA>0.5>90%DIP8/SOP8T5、T8、球泡灯 SM7301C BUCK/BUCK- BOOST 外置 5-12w/100-30 0mA >0.5>80%SOP8 可控硅调光球泡、T 管

SM736X BUCK集成500V3-9w/60mA>0.5>92%TO-92蜡烛灯、球泡灯

光耦隔离(驱动)电路-v1.0..

光耦隔离(驱动)电路 (V1.0) 一、本文件的内容及适用范围 本文详细分析了非线性光耦的结构、重要参数,并以此为依据讲解了光耦的应用设计原则及隔离(驱动)电路的设计步骤与方法,最后对单片集成数字隔离器做了简单介绍。适用于作为艾诺公司开发工程师新项目硬件开发过程、产品设计修改过程、产品问题分析过程、工程师培训的指导性模块与参考文件。 本文中的“光耦”指非线性光耦。本文中的过程与方法不能完全应用于线性光耦。 二、光耦 光电耦合器optical coupler/optocoupler,简称光耦。是设计上输入与输出之间用来电气隔离并消除干扰的器件。因线性光耦特有其特点及设计方法,本文在此仅单独讨论在公司产品上广泛应用非线性光耦。 2.1 光耦在公司仪表上的主要应用 根据光耦的类型在公司仪表上主要有以下几个方面的应用: 1、数字信号隔离:非线性光耦,如6N137对高速数字信号如SPI、UART等接口的隔离。 2、模拟信号隔离传递:线性光耦。隔离&驱动:普通输出型,如TLP521对IO信号的隔离;达林顿输出型主要用于需要大驱动电流的场合,如继电器的驱动和隔离。 2.2 公司主要应用的主要非线性光耦类别、型号及参数特点 主要类别: 1、通用型:TLP521、PC817等。 2、数字逻辑输出型(高速、带输出控制脚):6N137及其变种HCPL06系列等。 3、达林顿输出型:4N30、4N33等。 4、推挽输出型(MOS、IGBT驱动专用):TLP250、HCPL316等 艾诺公司截止到2010年12月常用光耦型号统计及分类见表格《艾诺光耦201012.XLS》。 2.4 光耦基础知识 1、光耦结构及原理示意 光耦的主要构成部分:LED(电->光)、光电管(光->电)、电流放大(Hfe)部分。

开关电源非隔离高低压混合布板方式

开关电源非隔离高低压混合布板方式变频器的研发,这是一款低成本紧凑式小功率变频器,因为低成本而且紧凑式,所以单片机没有采用光耦隔离而 是直接驱动,此外因为低成本紧凑要求,采用双面板,并 且按键,指示灯,数码管都跟高压区交织混合在一起。 因为以前没有做变频器的经验,所以采购了市场上的同类产品作为参考,恢复了电路图并且基于对方的控制时序,样机很快就出来了,测试也没有发现什么问题,感觉难度 不大,比较顺利,于是我也就没怎么管,让同事直接负责。 去年年底亿曼那边反馈,长期测试下发现按键偶尔会乱跳,比如按“+”键,结果“-”键也会起作用,而电路设计中不应该出现这个问题,考虑到当时我为了简化设计,去掉了 一些电容,于是想着这个问题可能是因为去掉的电容引起的,所以开年之后调整了电路设计,在按键这儿加了滤波 电容,让按键的硬件设计足够稳定,之前是采用软件滤波 来实现。此外局部改进了单片机的供电设计,原来的辅助 电源310VDC通过开关电源(VIPERA12A)转到15VDC,15VDC再通过开关电源(MC34063)转到3.3VDC,我把后级15VDC转3.3VDC改成了更低成本更可靠的AMS1117,提高可靠性。因为开关电源存在上电冲击的可能,改成模 拟电源可靠性可以提高。此外为了解决高温带来的小电解 电容失效,改用瓷片电容替换小电解电容。

本来期望这个版本会比较好的,板子回来焊接调试好交给亿曼测试,很快亿曼反馈按键问题还是存在,这个问题不仅没解决,反而更频繁了,这一下引起我的重视,因为马上要下批量订单了,这些看起来无关痛痒的乌云,往往会酿成大祸。但是当时的第一反应应该是软件设计存在bug,让负责软件的同事好好分析一下。 因为有多个变频器项目在运行,其中有一个箱式的变频器,面板上有数码管和按键,它跟功率板分离的,两者通过较长的排线连接,一般的设计方式是在面板上放一颗stm8这类的单片机,两者通讯连接,而我们考虑到低成本,也为了简化设计,不想在面板上加单片机,但这样因为较长的引线,会出现较强的干扰进入功率板的单片机中。于是专门跟硬件设计人员讲解这类强干扰PCB的设计方式,尤其强调如何抗干扰。 这个时候,负责软件的同事找不出按键问题,于是把问题矛头引向了硬件,恰好硬件人员听了我的抗干扰设计原理,想到原来的板子按键中有两颗滤波电容的位置就放在高压区内,于是怀疑是否是这个电容引起的,参考我给的方案,把这两颗电容移入单片机所在的地平面内,靠近单片机,这个按键乱的问题就消失了,之后长期测试都没有发现,于是把这个结果告诉我,我过来看了一下,确实是PCB布线不规范,按键线被高频高压干扰了导致的问题。

非隔离降压型电源设计方案

非隔离降压型电源设计方案 一款不带变压器的宽电压、低成本、非隔离式AC/DC降压转换器 ——输出持续电流500mA(2.5~12W) 【关键词摘要】非隔离恒流恒压AC/DC电源芯片XD308H BUCK电路220V转5V220V转12V220V转24V380V转5V380V转12V380V转24V 【概述】非隔离AC-DC电源芯片XD308H设计组成的降压恒流恒压电路,采用了BUCK电路拓扑结构,常用于小家电控制板电源以及工业控制电源供电。其典型电路规格包含24V/500mA、12V/500mA和5V/500mA等,满足六级能效要求。可通过雷击、EFT、浪涌等可靠性测试,可通过UL、CE、3C等认证。其特点是:电路简单、BOM成本低(外围元件数目极少:无需变压器、光耦),电源体积小、无异常噪音、损耗小发热低。 1)220V转24V降压电路:输入32~380Vac,输出24V/500mA电源方案 如图所示的电路为一个典型的输出为24V/500mA的非隔离电源。它通常应用于家用电器的(电饭煲、洗衣机及其它白色家电)。此电路还适合于其它非隔离供电的应用,比如LED驱动、智能电表、加热器以及辅助电源和工业控制等。

220V转24V降压电路输入级由保险电阻RF1、防雷压敏电阻RV1、整流桥堆D1、EMI滤波电容C4和C5以及滤波电感L2组成。保险电阻RF1 为阻燃可熔的绕线电阻,它同时具备多个功能:a)将桥堆D1的浪涌电流限制在安全的范围;b)差模噪声的衰减;c)在其它任何元件出现短路故障时,充当输入保险丝的功能(元件故障时必须安全开路,不应产生任何冒烟、冒火及过热发光现象)。压敏电阻RV1用于防雷保护,提高系统可靠性。功率处理级由宽电压高效率电源芯片XD308H、续流二极管D2、输出电感 L1及输出电容C3构成。 2)220V转12V降压电路:输入32~380Vac,输出12V/500mA电源方案如图所示的电路为一个典型的输出为12V/500mA的非隔离电源。它通常应用于家用电器的(电饭煲、洗衣机及其它白色家电)。此电路还适合于其它非隔离供电的应用,比如LED驱动、智能电表、加热器以及辅助电源和工业控制等。

几种隔离LED驱动电源方案[附电路图]

几种隔离LED驱动电源方案[附电路图] 在全球能源短缺、环保要求不断提高的背景下,世界各国均大力发展绿色节能照明。LED照明作为一种革命性的节能照明技术,正在飞速发展。然而,LED驱动电源的要求也在不断提高。高效率、高功率因数、安全隔离、符合EMI标准、高电流控制精度、高可靠性、体积小、成本低等正成为LED驱动电源的关键评价指标。 LED驱动电源的具体要求 LED是低压发光器件,具有长寿命、高光效、安全环保、方便使用等优点。对于市电交流输入电源驱动,隔离输出是基于安全规范的要求。LED驱动电源的效率越高,则越能发挥LED高光效,节能的优势。同时高开关工作频率,高效率使得整个LED驱动电源容易安装在设计紧凑的LED灯具中。高恒流精度保证了大批量使用LED照明时的亮度和光色一致性。 10W以下功率LED灯杯应用方案 目前10W以下功率LED应用广泛,众多一体式产品面世,即LED驱动电源与LED灯整合在一个灯具中,方便了用户直接使用。典型的灯具规格有GU10、E27、PAR30等。针对这一应用,我们设计了如下方案(见图1) 图1:基于AP3766的LED驱动电路原理图 该方案特点如下: 1. 基于最新的LED专用驱动芯片AP3766,采用原边控制方式,无须光耦和副边电流控制电路,实现隔离恒流输出,电路结构简单。通过电阻R5检测原边电流,控制原边电流峰值恒定,同时控制开关占空比,保持输出二极管D1的导通时间和整个开关周期时间比例恒定,实现了输出电流的恒定。 2. AP3766采用专有的“亚微安启动电流”技术,仅需0.6μA的启动电流,因此降低了启动电阻R1和R2上的功耗,提高了系统效率。典型5W应用效率大于80%,空载功耗小于30mW。 3. AP3766采用恒流收紧技术实现垂直的恒流特性,恒流精度高。 4. 电路元件数量少,AP3766采用SOT-23-5封装,体积小,整个电路可以安装在常用规格灯杯中。 5. 安全可靠,隔离输出,具有输出开路保护、过压保护及短路保护功能。 6. 功率开关管采用三极管,省去了高压场效应管,系统成本低。 图2为该方案的5W应用电路样机实物照片。图3是基于AP3766的5W LED驱动装置实物照片。图4为基于AP3766的5W LED驱动电路满载效率随交流输入电压变化曲线。图5为基于AP3766的5W LED驱动电路满载输出IV特性曲线。 10~60W功率LED路灯、LED直管灯应用方案 IEC国际电工委员会对照明灯具提出明确的谐波要求,即IEC61000-3-2标准。因此对于较大功率LED照明应用,采用功率因数校正(PFC)控制技术成为必需。对于60W以下应用,有高性价比单级PFC控制方案,该方案电路原理图。 图6:基于AP166+AP4313的LED驱动电路原理图 该方案特点有: 1.单级PFC方案,只用一级反激式电路拓扑,同时实现功率因数校正和隔离恒流输出。元件数量少、体积小、性价比高。 2.高功率因数,采用有源功率因数校正控制芯片AP1661,功率因数PF>0.9,满足IEC61000-3-2谐波标准。

光耦隔离驱动电路

光耦隔离和驱动电路如下图所示:

2008-09-01,17:02:33 资料邮件 回复引用回 编辑删除 2008-09-01,17:资料邮件回复引用回 编辑删除

编辑删除2008-09-01,17:资料邮件回复引用回 编辑删除2008-09-01,17:资料邮件回复引用回 编辑删除2008-09-01,17:资料邮件回复引用回 编辑删除2008-09-01,17:资料邮件回复引用回

编辑删除2008-09-01,17:21:1资料邮件回复引用回 编辑删除2008-09-01,17:资料邮件回复引用回 编辑删除2008-09-01,17:资料邮件回复引用回 2008-09-01,17:资料邮件回复引用回 编辑删除

编辑删除2008-09-01,19:资料邮件回复引用回 ↑↑↑↑↑↑↑↑↑↑↑↑ 抱歉本贴的回复数太多,为了减轻网络流量,只显示帖子正文的前后各10个回复。本贴的正文内容中间隐藏了14个回复。你需要点击此处才能查看全部内容。 对为你带来的访问不便表示歉意。不过我们仍会坚持即使没有登录,仍能共享我们网站的所有资料。你没有登录后就能消除这个访问上的不便(可增加到显示60个回复)。 如果你是新用户请先注册。注册是免费的,并且手续简单只需要填写用户名与口令。 ↓↓↓↓↓↓↓↓↓↓↓↓ 2003 星城织梦 编辑删除2011-03-01,22:1资料邮件回复引用回

编辑删除2011-03-01,22:2资料邮件回复引用回 编辑删除2011-03-02,08:资料邮件回复引用回 2011-03-02,08:资料邮件回复引用回编辑删除

非隔离降压型电源设计方案

非隔离降压型电源设计方案 非隔离降压型电源是现在普遍使用的电源结构,几乎占了日光灯电源百分之九十以上。很多人都以为非隔离电源只有降压型一种,每每一说到不隔离,就想到降压型,就想到说对灯不安全(指电源损坏)。其实降压型不只是一种,还有两种基本结构,即升压,和升降压,即BOOST AND BUCK- BOOST,后两种电源即使损坏。不会影响到LED 的好处。降压式电源也有其好处,它适合用于220,但不适用于110,因为110V 本来电压就低,一降就更低了,那样输出的电流大,电压低,效率做不太高。降压式220V 交流,整流滤波后约三百伏,经过降压电路,一般将电压降到直流150V 左右,这样即可实现高压小电流输出,效率可以做得较高。一般用MOS 做开关管,做这种规格的电源,我的经验是,可以做到百分之九十那样差不多,再往上也困难。原因很简单,芯片一般自损会有0.5W 到1W,而日光灯管电源不过就是10W 左右。所以不可能再往上走。现在电源效率这个东西很虚,很多人都是吹,实际根本达不到。 常见有些人说什么3W 的电源效率做到百分之八十五了,而且还是隔离型的。告诉大家,即便是跳频模式的,空载功耗最小,也要0.3W,还什么输 出3W 低压,能到百分之八十五,其实有百分之七十算很好了,反正现在很多人吹牛不打草稿,可以忽悠住外行,不过现在做LED 的懂电源的也不多。 我说过,要效率高,首先就要做非隔离的,然后输出规格还要高压小电流,可以省去功率元件的导通损耗,所以象这种LED 电源的主要损耗,一就 是芯片自有损耗,这个损耗一般有零点几W 到一W 的样子,还有一个就是开关损耗了,用MOS 做开关管可以显著减小这个损耗,用三极管开关损耗就大很多。所以尽量不要用三极管。还有就是做小电源,最好不要太省,不要用

型非隔离负电压DCDC开关电源的设计word文档

0 引言 随着电子技术的飞速发展,现代电子测量装置往往需要负电源为其内部的集成电路芯片与传感器供电。如集成运算放大器、电压比较器、霍尔传感器等。 负电源的好坏很大程度上影响电子测量装置运行的性能,严重的话会使测量的数据大大偏离预期。目前,电子测量装置的负电源通常采用抗干扰能力强,效率高的开关电源供电方式。以往的隔离开关电源技术通过变压器实现负电压的输出,但这会增大负电源的体积以及电路的复杂性。而随着越来越多专用集成DC/DC控制芯片的出现,使得电路简单、体积小的非隔离负电压开关电源在电子测量装置中得到了越来越广泛的应用。因此,对非隔离负电压开关电源的研究具有很高的实用价值。 传统的非隔离负电压开关电源的电路拓扑有以下两种,如图1、图2所示。图3是其滤波输出电容的充电电流波形。由图3可见,采用图2结构的可获得输出纹波更小的负电压电源,并且在相同电感峰值电流的情况下其带负载能力更强。由于图2的开关器件要接在电源的负极,这会使得其控制电路会比图1来得复杂,因此在市场也没有实现图2电路结构(类似于线性稳压电源调节芯片7915功能)的负电压开关电源控制芯片。 为了弥补现有非隔离负电压开关电源技术的不足,以获得一种带负载能力强、输出纹波小的非隔离负电压开关电源,本文提出一种采用Boost开关电源控制芯片LT1935及分立元件实现了图2所示原理的基于峰值电流控制的新型非隔离负电压DC/DC开关电源。 图1 传统的非隔离负电压开关电源电路结构1

图2 传统的非隔离负电压开关电源电路结构2 图3 两种开关电源滤波电容的充电电流波形 1 工作原理分析 本文设计的非隔离负电压DC/DC开关电源如图4所示,负电源工作在连续电流模式。当电源控制器LT1935内部的功率三极管导通时,直流电源给输出电感L1和输出电容C1充电。当电源控制器LT1935内部的功率三极管关断时,输出电感L1中的电流改由通过肖特基二极管VD1提供的低阻抗回路继续给输出电容C1充电直至下一个周期电源控制器LT1935内部的功率三极管再次导通。可见电容C1在输出电感L1储存能量和释放能量的过程中均获得充电,从而减小了输出纹波电压。同时,在CCM条件下,输出电流在LT1935

非隔离电源与隔离电源的特点分析

隔离电源与非隔离电源风云争霸 虽说这不是新的问题,但最近一段时间,无论在各大论坛还是在一些场合,常有人会问及,也有跟身边的一些各电源论坛牛人版主交流交换过意见,说明确实有必要说说。 回答这个问题,主要从以下几个方面 1. 安全性 隔离电源是使用变压器将220V电压通过变压器将电压降到较低的电压,然后再整流成直流电输出供电使用。因为变压器的主线圈承受220V电压,次级线圈只承受输出的低交流电压,并且主次线圈之间并不直接连接,所以称为隔离电源。变压器的转换过程是:电-磁-电,没有和大地连接,所以不会发生触电危险。 而非隔离电源是用220V直接输入到电子电路,在通过电子元件降压输出,输入输出是通过电子元件直接连接的,所以称非隔离电源;两者从表面上看就是有无变压器的区别。LED非隔离设计仅限于双绝缘产品,例如灯泡的替代产品,其中LED和整个产品都集成并密封在非导电塑料中,因此,最终用户并没有任何触电的危险。二级产品都是隔离型的,价格相对比较昂贵。非隔离电路是输入电源通过升降压之后直接加在了LED负载上,有触电危险存在。 所以要通过安规认证,比如3C、UL、CE等,非隔离就麻烦,一般生产厂家没有绝对的设计技术实力,一般不好通过。因为绝缘及爬电距离不够,只能从灯具物理结构设计了。灯管是可以接受的,也有全塑的,比如,通常LED和铝散热器之间的绝缘也就靠铝基板的印製板的薄膜绝缘。虽然这个绝缘层可以耐2000V 高压,但有时螺丝孔的毛刺会产生所谓的爬电现象,使得难以通过CE认证。 但作为完整的LED照明灯具产品,产品表面使用者能接触到的部分一定要经过隔离,不能让人触电。而从产品整个系统而言,隔离是不可避免的,区别只是设置隔离的位置不同。 作为一个让最终用户能安全使用的产品,一定会考虑绝缘与隔离的可靠性。 注意:这里牛逼大侠提醒,有些厂家为节省成本,采用在主线圈上直接抽头提取低电压的办法,这种办法看似有变压器,实际没有次级线圈,不能算是隔离电源! 2.电性能

LED中驱动电源隔离与非隔离区别(精)

目前在一般的 led 照明市场上,存在非隔离设计和隔离型驱动电源之分。 非隔离设计仅限于双绝缘产品,例如灯泡的替代产品,其中 LED 和整个产品都集成并密封在非导电塑料中,因此,最终用户并没有任何触电的危险。二级产品都是隔离型的,价格相对比较昂贵, 但在用户可以接触到 LED 和输出接线的地方 (通常在LED 照明和路灯照明应用的情况下 ,这种产品必不可少。 带隔离变压器或者电气隔离的 led 驱动电源意味着 LED 可以直接用手接触而不会触电。而无隔离变压器的 LED 驱动电源虽仍可以借助防护外壳实现部分机械绝缘,但此时的 LED 在工作时并不能直接接触。绝缘型灯泡在今后将成为主流。 物理设计决定着驱动器是隔离式还是非隔离式。安全规则通常要求使用两个独立的隔离层。设计师可以选择两种物理隔离层,即塑料散光罩和玻璃护罩, 并使用非隔离式电源。如果物理隔离成本太高、存在机械困难或者吸收太多光,就必须在电源中解决电气隔离问题。隔离式电源通常要比同等功率水平的非隔离式电源大一些。照明灯设计师必须在他们所设计的每款产品中进行大量的成本及设计优化工作。 由于适用于不同的应用, 是采用隔离的绝缘变压器还是采用隔离的防护灯罩外壳, 设计者在不同的角度考虑永远会有不同的见解。通常, 他们会从多方面去分析, 例如成本与制造工艺、效率和体积、绝缘可靠性和安全规范的要求,等等。带变压器的驱动成本较高,但也相应让 led 灯具变得更加实用,能够满足终端用户偶然接触LED 的需要。当白炽灯玻璃外壳很容易被损坏时,一个 E27型号的普通灯泡可被替换成为 LED 灯。此外,在工业区或者是办公设备应用中的灯具并不需要接触到终端用户,如路灯和商场照明,这时的 LED 灯也确实需要隔离变压器。作为一个让最终用户能安全使用的产品, 一定会考虑绝缘与隔离的可靠性。作为完整的产品,产品表面使用者能接触到的部分一定要经过隔离,不能让人触电。而从产品整个系统而言, 隔离是不可避免的, 区别只是设置隔离的位置不同。有些设计者采用隔离的变压器设计, 因此他们可以简化散热和灯罩的设计。如果用非隔离的驱动设计, 在灯壳等

低成本非隔离ACDC降压转换器电源方案

无变压器的低成本非隔离式AC/DC降压转换器方案 【关键词摘要】非隔离AC/DC电源芯片XD308H BUCK电路无变压器220V转5V220V转12V220V转24V380V转5V380V转12V380V转24V 【概述】非隔离AC-DC电源芯片降压电路,一般采用BUCK电路拓扑结构,常见于小家电控制板电源以及工业控制电源供电。其典型电路规格包含5V/500mA、12V/500mA和24V/500mA等,满足六级能效要求。可通过EFT、雷击、浪涌等可靠性测试,可通过3C、UL、CE等认证。其特点是:电路简单、BOM成本低(外围元件数目极少:无需变压器、光耦),电源体积小、无音频噪音、损耗小发热低。 1)220V转5V降压电路:输入12~380Vac,输出5V/500mA 如图1所示的电路为一个典型的输出为5V/500mA的非隔离电源。它通常应用于家用电器的(电饭煲、洗衣机及其它白色家电)。此电路还适合于其它非隔离供电的应用,比如LED驱动、智能电表、加热器以及辅助电源和工业控制等。 电源系统带有各种保护,包括过热保护(OTP)、VCC欠压闭锁(UVLO)、过载保护(OLP)、短路保护(SCP)等。电路特点:无噪音,发热低。220V转5V降压电路输入级由保险电阻RF1、防雷压敏电阻RV1、整流桥堆D1、EMI滤波电容C4和C5以及滤波电感L2组成。保险电阻RF1为阻燃可熔的绕线电阻,它同时具备多个功能:a)将桥堆D1的浪涌电流限制在安全的范围;b)差模噪声的衰减;c)在其它任何元件出现短路故障时,充当输入保险丝的功能(元件故障时必须安全开路,不应产生任何冒烟、冒火

及过热发光现象)。压敏电阻RV1用于防雷保护,提高系统可靠性。功率处理级由宽电压高效率电源芯片XD308H、续流二极管D2、输出电感L1及输出电容C3构成。 2)220V转12V降压电路:输入32~380Vac,输出12V/500mA 如图2所示的电路为一个典型的输出为12V/500mA的非隔离电源。它通常应用于家用电器的(电饭煲、洗衣机及其它白色家电)。此电路还适合于其它非隔离供电的应用,比如LED驱动、智能电表、加热器以及辅助电源和工业控制等。 电源系统带有各种保护,包括过热保护(OTP)、VCC欠压闭锁(UVLO)、过载保护(OLP)、短路保护(SCP)等。电路特点:无噪音,发热低。220V转12V降压电路输入级由保险电阻RF1、防雷压敏电阻RV1、整流桥堆D1、EMI滤波电容C4和C5以及滤波电感L2组成。保险电阻RF1 为阻燃可熔的绕线电阻,它同时具备多个功能:a)将桥堆D1的浪涌电流限制在安全的范围;b)差模噪声的衰减;c)在其它任何元件出现短路故障时,

20170502-开关电源中的变压器隔离驱动电路(一)

开关电源中的变压器隔离驱动电路(一) 普高(杭州)科技开发有限公司 张兴柱 博士 图1是非常常用的隔离驱动电路,其原边类似于正激变换器中的接法,第三绕组c N 和 (gs V 图1: 隔离驱动电路#1 二极管c D 串联用来对原边激磁电感的去磁,一般情况下,可选择p c N N =,且将c N 和p N 双股并绕。副边绕组s N 与二极管2D 、三极管2Q 及3R 、4R 来恢复原边驱动信号的波形,并实现隔离,其中调节4R 的大小,可以调节隔离驱动信号的驱动能力,2Q 与3R 的作用是保证MOSFET S1在断开瞬间,其门源电荷上电压的快速放电,以便提高 S1的关断速度。5R 与1ZD 则是用来保护S1免受损坏的两个元件,加5R 后,可避免在控制电路还没有工作,功率级已经加电时因S1的DG 电容和GS 电容所引起的 S1之误导通及相应的损坏,其阻值可选为5K~50K ;加ZD2是用来保证各种动态下S1的GS 电压不会超过其规定的最大值,以避免S1的门源损坏,其稳压值可取18V 左右。原边的Q1既可用MOSFET ,也可用三极管,电阻1R 和2R 的选择比较容易,在Q1用MOSFET 时,1R 可取几十到数百殴姆,2R 可取几千殴姆。 上述隔离驱动电路在p c N N =时,能隔离的驱动信号,其最大占空比要小于0.5,否则其变压器会因为伏秒不平衡而饱和。所以这种隔离驱动电路多用在二极管去磁双正激变换器和对称驱动半桥变换器中。如前面所说的,隔离驱动变压器的设计可先按原则选好铁芯的材料和铁芯的形状及尺寸,然后按下面的公式计算匝数: 8_max 10×?×= s c s cc p f BA V D N (匝) 其中:r B B B ?=?max ,sat B B

工程师详解非隔离式开关电源PCB布局设计技巧

工程师详解非隔离式开关电源PCB布局设计技巧 一个良好的布局设计可优化效率,减缓热应力,并尽量减小走线与元件之间的噪声与作用。这一切都源于设计人员对电源中电流传导路径以及信号流的理解。 当一块原型电源板首次加电时,最好的情况是它不仅能工作,而且还安静、发热低。然而,这种情况并不多见。 开关电源的一个常见问题是“不稳定”的开关波形。有些时候,波形抖动处于声波段,磁性元件会产生出音频噪声。如果问题出在印刷电路板的布局上,要找出原因可能会很困难。因此,开关电源设计初期的正确PCB布局就非常关键。 电源设计者要很好地理解技术细节,以及最终产品的功能需求。因此,从电路板设计项目一开始,电源设计者应就关键性电源布局,与PCB布局设计人员展开密切合作。 一个好的布局设计可优化电源效率,减缓热应力;更重要的是,它最大限度地减小了噪声,以及走线与元件之间的相互作用。为实现这些目标,设计者必须了解开关电源内部的电流传导路径以及信号流。要实现非隔离开关电源的正确布局设计,务必牢记以下这些设计要素。 布局规划 对一块大电路板上的嵌入dc/dc电源,要获得最佳的电压调节、负载瞬态响应和系统效率,就要使电源输出靠近负载器件,尽量减少PCB走线上的互连阻抗和传导压降。确保有良好的空气流,限制热应力;如果能采用强制气冷措施,则要将电源靠近风扇位置。 另外,大型无源元件(如电感和电解电容)均不得阻挡气流通过低矮的表面封装半导体元件,如功率MOSFET或PWM控制器。为防止开关噪声干扰到系统中的模拟信号,应尽可能避免在电源下方布放敏感信号线;否则,就需要在电源层和小信号层之间放置一个内部接地层,用做屏蔽。 关键是要在系统早期设计和规划阶段,就筹划好电源的位置,以及对电路板空间的需求。有时设计者会无视这种忠告,而把关注点放在大型系统板上那些更“重要”或“让人兴奋”的电路。电源管理被看作事后工作,随便把电源放在电路板上的多余空间上,这种做法对高效率而可靠的电源设计十分不利。 对于多层板,很好的方法是在大电流的功率元件层与敏感的小信号走线层之间布放直流地或直流输入/输出电压层。地层或直流电压层提供了屏蔽小信号走线的交流地,使其免受高噪声功率走线和功率元件的干扰。 作为一般规则,多层PCB板的接地层或直流电压层均不应被分隔开。如果这种分隔不可避免,就要尽量减少这些层上走线的数量和长度,并且走线的布放要与大电流保持相同的方向,使影响最小化。

非隔离式开关电源PCB布局设计技巧

非隔离式开关电源PCB布局设计技巧一个良好的布局设计可优化效率,减缓热应力,并尽量减小走线与元件之间的噪声与作用。这一切都源于设计人员对电源中电流传导路径以及信号流的理解。 当一块原型电源板首次加电时,最好的情况是它不仅能工作,而且还安静、发热低。然而,这种情况并不多见。 开关电源的一个常见问题是“不稳定”的开关波形。有些时候,波形抖动处于声波段,磁性元件会产生出音频噪声。如果问题出在印刷电路板的布局上,要找出原因可能会很困难。因此,开关电源设计初期的正确PCB布局就非常关键。 电源设计者要很好地理解技术细节,以及最终产品的功能需求。因此,从电路板设计项目一开始,电源设计者应就关键性电源布局,与PCB布局设计人员展开密切合作。 一个好的布局设计可优化电源效率,减缓热应力;更重要的是,它最大限度地减小了噪声,以及走线与元件之间的相互作用。为实现这些目标,设计者必须了解开关电源内部的电流传导路径以及信号流。要实现非隔离开关电源的正确布局设计,务必牢记以下这些设计要素。 布局规划 对一块大电路板上的嵌入dc/dc电源,要获得最佳的电压调节、负载瞬态响应和系统效率,就要使电源输出靠近负载器件,尽量减少PCB走线上的互连阻抗和传导压降。确保有良好的空气流,限制热应力;如果能采用强制气冷措施,则要将电源靠近风扇位置。 另外,大型无源元件(如电感和电解电容)均不得阻挡气流通过低矮的表面封装半导体元件,如功率MOSFET或PWM控制器。为防止开关噪声干扰到系统中的模拟信号,应尽可能避免在电源下方布放敏感信号线;否则,就需要在电源层和小信号层之间放置一个内部接地层,用做屏蔽。 关键是要在系统早期设计和规划阶段,就筹划好电源的位置,以及对电路板空间的需求。有时设计者会无视这种忠告,而把关注点放在大型系统板上那些更“重要”或“让人兴奋”的电路。电源管理被看作事后工作,随便把电源放在电路板上的多余空间上,这种做法对高效率而可靠的电源设计十分不利。 对于多层板,很好的方法是在大电流的功率元件层与敏感的小信号走线层之间布放直流地或直流输入/输出电压层。地层或直流电压层提供了屏蔽小信号走线的交流地,使其免受高噪声功率走线和功率元件的干扰。

DCDC开关电源的设计

引言 随着电子技术的飞速发展,现代电子测量装置往往需要负电源为其内部的集成电路芯片与传感器供电。如集成运算放大器、电压比较器、霍尔传感器等。 负电源的好坏很大程度上影响电子测量装置运行的性能,严重的话会使测量的数据大大偏离预期。目前,电子测量装置的负电源通常采用抗干扰能力强,效率高的开关电源供电方式。以往的隔离开关电源技术通过变压器实现负电压的输出,但这会增大负电源的体积以及电路的复杂性。而随着越来越多专用集成DC/DC控制芯片的出现,使得电路简单、体积小的非隔离负电压开关电源在电子测量装置中得到了越来越广泛的应用。因此,对非隔离负电压开关电源的研究具有很高的实用价值。 传统的非隔离负电压开关电源的电路拓扑有以下两种,如图1、图2所示。图3是其滤波输出电容的充电 电流波形。由图3可见,采用图2结构的可获得输出纹波更小的负电压电源,并且在相同电感峰值电流的情况下其带负载能力更强。由于图2的开关器件要接在电源的负极,这会使得其控制电路会比图1来得复杂,因此在市场也没有实现图2电路结构(类似于线性稳压电源调节芯片7915功能)的负电压开关电源控制芯片。 为了弥补现有非隔离负电压开关电源技术的不足,以获得一种带负载能力强、输出纹波小的非隔离负电压开关电源,本文提出一种采用Boost开关电源控制芯片LT1935及分立元件实现了图2所示原理的基于峰值电 流控制的新型非隔离负电压DC/DC开关电源。 图1 传统的非隔离负电压开关电源电路结构1 图2 传统的非隔离负电压开关电源电路结构2

图3 两种开关电源滤波电容的充电电流波形 1 工作原理分析 本文设计的非隔离负电压DC/DC开关电源如图4所示,负电源工作在连续电流模式。当电源控制器 LT1935内部的功率三极管导通时,直流电源给输出电感L1和输出电容C1充电。当电源控制器LT1935内部的功率三极管关断时,输出电感L1中的电流改由通过肖特基二极管VD1提供的低阻抗回路继续给输出电容C1充电直至下一个周期电源控制器LT1935内部的功率三极管再次导通。可见电容C1在输出电感L1储存能量和释放能量的过程中均获得充电,从而减小了输出纹波电压。同时,在CCM条件下,输出电流在LT1935内部功率三极管的导通和关断期间均通过输出电感L1,这很大程度上抑制了输出电流的波动,降低了输出纹波电流的影响,进而大大增加系统的带负载能力和效率。 反馈控制回路采用了峰值电流控制。相比传统的电压控制,峰值电流控制一方面能很好的改善电源的动态响应,另一方面还能实现快速的过电流保护,很大程度上提高了系统的可靠性。由于采用了电源控制器 LT1935,其内部集成了峰值电路控制电路和斜坡补偿电路,非隔离负电压DC/DC开关电源反馈回路设计即转换为补偿网络设计,进而大大简化了反馈回路的设计。 为防止过高的直流电源对电源控制器的危害,这里使用稳压管VD2和VD3实现过电压保护。

LED驱动电源隔离与非隔离的区别

LED驱动电源隔离与非隔离的区别 目前在一般的LED照明市场上,存在非隔离设计和隔离型驱动电源之分。非隔离设计仅限于双绝缘产品,例如灯泡的替代产品,其中LED和整个产品都集成并密封在非导电塑料中,因此,最终用户并没有任何触电的危险。二级产品都是隔离型的,价格相对比较昂贵,但在用户可以接触到LED和输出接线的地方(通常在LED照明和路灯照明应用的情况下),这种产品必不可少。 带隔离变压器或者电气隔离的LED驱动电源意味着LED可以直接用手接触而不会触电。而无隔离变压器的LED驱动电源虽仍可以借助防护外壳实现部分机械绝缘,但此时的LED在工作时并不能直接接触。 物理设计决定着驱动器是隔离式还是非隔离式。安全规则通常要求使用两个独立的隔离层。设计师可以选择两种物理隔离层,即塑料散光罩和玻璃护罩,并使用非隔离式电源。如果物理隔离成本太高、存在机械困难或者吸收太多光,就必须在电源中解决电气隔离问题。 隔离式电源通常要比同等功率水平的非隔离式电源大一些。照明灯设计师必须在他们所设计的每款产品中进行大量的成本及设计优化工作。由于适用于不同的应用,是采用隔离的绝缘变压器还是采用隔离的防护灯罩外壳,设计者在不同的角度考虑永远会有不同的见解。 通常,他们会从多方面去分析,例如成本与制造工艺、效率和体积、绝缘可靠性和安全规范的要求,等等。带变压器的驱动成本较高,但也相应让LED灯具变得更加实用,能够满足终端用户偶然接触LED的需要。当白炽灯玻璃外壳很容易被损坏时,一个E27型号的普通灯泡可被替换成为LED灯。 此外,在工业区或者是办公设备应用中的灯具并不需要接触到终端用户,如

路灯和商场照明,这时的LED灯也确实需要隔离变压器。 作为一个让最终用户能安全使用的产品,一定会考虑绝缘与隔离的可靠性。作为完整的产品,产品表面使用者能接触到的部分一定要经过隔离,不能让人触电。而从产品整个系统而言,隔离是不可避免的,区别只是设置隔离的位置不同。有些设计者采用隔离的变压器设计,因此他们可以简化散热和灯罩的设计。如果用非隔离的驱动设计,在灯壳等结构上就必须考虑可靠的绝缘要求。因此作为电源驱动,隔离与非隔离的方案一直都同时存在。 中国LED驱动电源制造商们可能面对的主要挑战是找到低成本的AC/DC驱动器,从而满足在低成本电源系统中实现更严格的功率因子和效率表现。未来,在空间受限且存在散热困难的系统(比如LED灯具)中使用高质量、高可靠性的电源,将不再免费。然而,在最终用户使用过许多某款寿命在10,000小时左右的灯泡之前,要想证明其质量高是相当困难的事情。 隔离和非隔离LED驱动电源方案各有优缺点。我们认为,ClassII将是主流,因为它简化了LED散热问题。ClassI或II系统依赖接地系统,在大多数情况下,跟安装地点很有关系。ClassII较常见,它要求双级或加强型隔离,也即需要变压器磁性绕组、绝缘带和物理隔绝。ClassI系统要求一个接地外壳和(或)机械障碍,而这时ClassII系统不需要的。 目前有好几个趋势正在推动LED照明市场的发展。首先是高亮度LED效率的不断改善和非常高效率的高可靠性恒流LED驱动电源的不断涌现,其次是全球立法禁止白炽灯照明(由于其低效率)和CFL节能灯的逐步淡出(如果打破的话,它会流出对环境有害的水银)。这些因素综合起来正使得LED照明成为一个长期的发展趋势。当然,低系统成本(包括LED、热管理系统和LED驱动器)永远是

相关文档
最新文档