一类Filippov碰摩转子系统的非光滑分析
径向-轴向碰摩双盘转子-机匣系统的数值仿真分析

= 0. 5 2 5m ,
1 2 45 0 N/r d, . 6 X 1 a
= 3. X 1 0 0 N/m ,
=
3 0 X 1 N/m ,p = 0. 51 . 0 el 0 mm ,
e p 2=0 0 0 . 2 mm,p 卢 l=3 。卢 2=2 。 0 ,p 0,
】 = 2 = 一 8 8 68 X 1 2 】 . 6 0 N/m ,
Z = 0. 3 5m , = 2. X 1 E 1 0”N/m
,
G = 8 0 X 1 N/m , = 2 01 6 0一 m , . 0。 . 0 X 1
,
L =9 8 7X 1 ~ 4 l 2 1 1 0 N m, . 1 0 m , l= 2= . 4 X1 /
碰摩 弯扭耦 合系统具有很强 的非 线性 , 拟周 期和混沌是 系统 碰摩 的主要特征 。系统参 数的改变对系统 响应 的特征有较 大 的影 响 , 随转速 的增 大表现为“ 周期一 拟周期一周期一拟 周期一 周期一 混沌” 的演变 过程 。偏 心 比较小 时 , 系统为周 期 1 运动 , 超过某一值后 , 系统直接演化 为混沌运动 , 或演变为拟周期 运动 , 并最终进 入混沌 。碰摩时谐波成 分存 在 , 静子 的频 率成分较转 子更 为丰富 , 主要分布在两个 区域 , 1 工频 及其周 围的高低频率 成分 , 工频及 其周 围的频率成分 。静 即 倍 3倍
= 0. 8mm , O1 = 0.1 r = 0. 2m 。 5, 2
=
法适用于时间序列无噪声 , 空间 中小 向量 的演 变高 切 度非线性的信号 , 计算结果对 噪声较为敏感 , 其应用受 到一定限制。Jeba 方法适用于时间序列有噪声 , ooi n 切 空 间 中小 向量 的演 变 接近 线性 的信 号 。本 文 采 用 Wo f
磁场中受垂直激励非线性单摆的动力学分析

磁场中受垂直激励非线性单摆的动力学分析
慕云田;李险峰
【期刊名称】《兰州交通大学学报》
【年(卷),期】2024(43)3
【摘要】在结合能量采集等生活实际应用领域的基础上,构建了一个在磁场中的单摆模型,并深入分析了其动力学行为,旨在为工程摆设备的工作性能参数的优化选择提供理论支持。
首先通过势能函数导出了势阱曲线,并探讨了势阱和势垒对系统动力特性的影响。
然后采用Melnikov函数方法,不仅求解了系统的同宿轨迹和产生Smale意义上混沌的临界条件,还揭示了单摆系统振幅与系统频率之间的关系,并提出了计算同宿分岔曲线的数值方法,成功绘制了分岔曲线。
最后通过综合运用单参数分岔、Lyapunov指数、相轨迹图、庞加莱截面图以及双参数平面上的分岔图等分析工具,展示了摆动系统演进至混沌的两种路径:倍周期分岔和鞍结分岔。
此外,还揭示了这类单摆系统的全局运动规律,如倍周期分岔、吸引子倍增、鞍结分岔等,进一步明确了相关参数对工程系统工作性能的影响及其作用机制。
【总页数】11页(P116-126)
【作者】慕云田;李险峰
【作者单位】兰州交通大学数理学院
【正文语种】中文
【中图分类】O322
【相关文献】
1.索受外激励作用下索拱结构非线性动力学分析
2.移动磁场作用下的通电导线的非线性动力学分析
3.1∶1内共振条件下受基础激励屈曲梁的非线性振动和分岔分析
4.受垂直激励和水平约束的单摆系统亚谐共振分岔与混沌
5.受轴向基础激励悬臂梁非线性动力学建模及周期振动
因版权原因,仅展示原文概要,查看原文内容请购买。
求解不可分离非凸非光滑问题的线性惯性ADMM算法

求解不可分离非凸非光滑问题的线性惯性ADMM算法
刘洋;刘康;王永全
【期刊名称】《计算机科学》
【年(卷),期】2024(51)5
【摘要】针对目标函数中包含耦合函数H(x,y)的非凸非光滑极小化问题,提出了一种线性惯性交替乘子方向法(Linear Inertial Alternating Direction Method of Multipliers,LIADMM)。
为了方便子问题的求解,对目标函数中的耦合函数H(x,y)进行线性化处理,并在x-子问题中引入惯性效应。
在适当的假设条件下,建立了算法的全局收敛性;同时引入满足Kurdyka-?ojasiewicz不等式的辅助函数,验证了算法的强收敛性。
通过两个数值实验表明,引入惯性效应的算法比没有惯性效应的算法收敛性能更好。
【总页数】10页(P232-241)
【作者】刘洋;刘康;王永全
【作者单位】华东政法大学智能科学与信息法学系;上海理工大学管理学院
【正文语种】中文
【中图分类】TP301.6
【相关文献】
1.求解一类非凸非光滑问题的惯性邻近交替极小化算法
2.正则化交替方向乘子算法求解非凸不可分离问题
3.求解一类非凸非光滑约束优化问题的邻近滤子束算法
4.
非凸非光滑优化问题的惯性Bregman ADMM的收敛性分析5.非凸非光滑不可分离优化的线性对称邻近ADMM收敛性分析
因版权原因,仅展示原文概要,查看原文内容请购买。
转子系统碰摩故障的理论与实验研究

式 中. 、 分别为碰 摩力 在 、, F F l方向 的分 量 ; F 分 F 、
0 前
言
别 为油膜力在 、 方向的分量 。 y
性研摩的 者究均用 ll — 的问“前学研点利线 1【 _ + } 】 理究转混 热题。国 的重是非 论碰目沌 点 内 篓 子 ‘ ._ _ I I
分析结果保持基本一致, 所给出的结论可以作为碰摩转子故障诊断的依据。
关键词 : 碰摩 ; 非线性 ; 混沌 ; 故障诊断
分类号 :H13 T 1 文献标识码 : A 文章 编号 :0 15 8 (07 O -0 70 10 ・8 4 2 0 103 -3 J
T e r i a dE p r e tl eerho u a l o oo ytm h oe c n x ei na R sac nR b F ut f tr s t m R S e
( 空军雷达学院电子对抗 系, 武汉 40 1 ) 30 9
摘要 : 针对发生全周碰摩故 障的转子 一短油膜轴承 系统 , 从数值 仿 真和实验验证两 个方 面研 究 了碰摩转子 的非线 性特征和故障特征 。在理论 上运用 R neK t u g. ut a方法对 运动方程 求取数值解 , 通过周期分 岔图及 轴心轨迹 图研究 其非线性 特征 ; 在实验上通过对转子碰摩模型系统 的实验数据进行频谱分析研 究其故 障特征。数值仿真 和实验 的
维普资讯
第4 9卷 第 1 期
20 0 7年 2月
汽
轮
机
技 术
Vo . 9 No 1 14 . F b. 0 7 e 20
T URB N E HNOL IET C OGY
转子 系统碰摩故 障 的理论与实验研究
滚动轴承-转子系统非线性动力响应分析

第1 期
《 燃
气
轮
机
技
术》
V0 1 . 26 No .1 Ma r .,201 3
2 0 1 3年 3月
GAS TUR BI NE I ECHNoL0GY
滚 动 轴 承一 转 子 系统 非线 性 动 力 响应 分 析
陶海亮 , 潘 波 , 高 庆 。 , 郭 宝亭 , 谭春 青 ,
剪切效应 、 回转效应 、 转子 几何 参数等影 响 因素 , 对滚 动轴 承模 型考虑 了非线 性赫兹 接触及 由滚 动轴承 支承
刚度变化而产生 的 V C ( V a r y i n g C o m p l i a n e e ) 振 动。运用 N e w m a r k—B法 获得 了连续转 子 的系统响应 , 利 用时
域波形 、 分岔 图、 P o i n c a r e映射 图和频谱 图分析 了该 转子系统 的非线 性动力 学行为 。结 果表明 : 由于不 同参数
的影响 , 转 子碰摩 系统具有 丰富 的非线 性现 象 。本模 型 考虑 了更 多 的影 响 因素 , 可 为复 杂转子 的非 线性 设
计、 故 障诊 断提供 更为准确合理 的理论参 考。 关 键 词: 转子 ; 滚动轴 承 ; 连续模型 ; 非线性 ; 分 岔
基 金项 目: 国家 8 6 3计划重点项 目( 2 0 0 7 A A 0 5 0 5 0 2 ) 作者简 介 : 陶海亮 ( 1 9 8 6一 ) 男, 博士生 , E - m a i l : t a o h i a l i a n g @m a i l . e t p . a c . c a 。
1 6
燃气轮机技术
l Y
含摩擦滑移铰多体系统动力学的lcp建模及数值方法

含摩擦滑移铰多体系统动力学的lcp建模及数值方法近年来,越来越多的研究者对多体系统动力学及其相关问题展开了深入研究,其中最为重要的一类是含摩擦滑移铰的多体系统的动力学问题。
由于在多体系统的运动学和动力学分析中,摩擦滑移铰的存在会使问题得到极大的复杂性,传统的泛函分析和经典数值方法就不能有效求解其宏观性质。
因此,对于含摩擦滑移铰的多体系统,如何用数学模型准确描述摩擦力是十分重要的。
关于含摩擦滑移铰的动力学问题,Lubliner等人提出了LCP(滞后多体接触问题)模型,该模型具有简洁明了、参数简单、变量节约的优点。
LC P模型通过构建函数来简述多体系统的速度、位移、加速度等表达式,解决多体交互力的问题。
针对LCP模型,采用数值方法进行求解的主要方法有费尔曼法(FEM)、有限元法(FEM)、单个矩阵表示法(SMRM)和统一求解法(USFM)等。
其中,费尔曼法通过将摩擦力表示为函数式,利用半定规划法对摩擦力函数求解极值,以获取两个接触物体之间的摩擦力,并运用拉格朗日乘子法将概括为非线性规划,使得数值计算方法更加精确。
有限元法通过将多体系统动力学问题转化为表面问题来求解,不仅可以获得一般的运动学和动力学的结果,还可以估计多体系统的热特性。
单个矩阵表示法将多体系统的动力学问题转换为一维、二维或者三维形式,简化了数学模型和求解程序,提高效率,并易于实现。
统一求解法是建立在位移向量和加速度向量上的一种作用矩阵形式,以解决多体系统的摩擦力。
总的来说,对于有摩擦滑移铰的多体系统,LCP模型可以更好地描述摩擦力,而选用不同的数值方法可以更好地求解LCP模型的数值结果。
然而,存在的问题是多体系统的动力学数值求解面临着计算复杂度大、精度低以及时间耗费长等问题,需要进一步加强多体系统动力学性质理论和实验研究,为有效地研究多体系统动力学和摩擦滑移铰提供有效的技术支持。
以上,就是关于《含摩擦滑移铰多体系统动力学的lcp建模及数值方法》的简述,希望能够给大家带来一些帮助。
弹性机匣双盘碰摩转子系统的稳定性

1 1 轴 承 回转动 力特性 . 在燃气 涡轮 发 动 机 等旋 转 机 械 中 , 由于制 造 误 差
等原 因 , 滚动 球 轴 承 的 内外 圈与 滚 动 体 之 间 实 际上 可 能存在 有微 小 间隙 。如 果 滚 动体 直 径 不 相 同 , 在 大 则
的滚 动体插 入方 向上 , 向间 隙变小 刚度增大 △ , 径 而在
kj妻 七 d1 2 l  ̄
4 摹
塞 中
;
・ :
嗣r 屯 J口 jU _ 棚 { f . } l 1
册。
s
匣作为 统一 的 整体 , 究 其 碰 摩 的动 力 学 特 性 。本 文 研
分析计及 机 匣弹 性 、 陀螺 力 矩并 同 时考 虑 轴 承 刚 别为 转 子 1到两 端 轴承 的距 Z i ,,)
离 和转子 2悬 臂长 度 , E为 转轴 的弹性模 量 , i , , =12 3 为转轴 的轴惯 性 矩 , . i , ) 别 为转 子 i ) 6 ( =1 2 分 与 机 匣之 间的间 隙 和碰 摩 时 的 摩 擦 系数 , i , ) k ( =1 2 分
基 金项 目 :国家 自然 科 学 基金 资 助 重 点 项 目(0 3 00 ; 家 高 技 术 研 5551) 国
究 发展 计 划 项 目 (0 6 A 4 4 8 。 2 0 A 0 Z 0 )
其垂 直方 向上径 向问 隙变 大 刚度 减小 △ , 即在 相互 垂 直方 向上存 在轴承 刚度 差 , 图 2所 示 。这种 轴 承 如 刚度差 随转 动坐标 系 7 ( = , ) 7 i 3 4 以滚 动体 的公转 角
中的 和 Y 。
蟊
应 的影 响 , 更不 应该 忽略 转子 圆盘 的陀 螺力 矩 的影 响 。 目前 尚没有 同 时考 虑 机 匣 弹性 、 匣与 定 子 问 的弹 性 机 联 接 、 承刚 度 差 和 陀螺 力 矩 等对 悬 臂 双 盘 转 子 系 统 轴 稳 定性 的综合 影响 的研 究 。为此需 要将 转 子 与机
一类非线性系统有限时间流形吸引的浸入与不变控制

一类非线性系统有限时间流形吸引的浸入与不变控制黄显林;张旭;卢鸿谦【摘要】本文对一类非线性系统,提出了一种设计渐近稳定控制律的有效方法.其中,通过更新系统浸入与不变流形理论的应用方法,流形的吸引坐标可以在有限时间内收敛到平衡点.为了得到闭环系统的稳定性,增广系统的各个信号被证明是有界的.本文得出的一个重要成果是流形吸引有限时间的计算方法.此外,在施加了有限时间流形吸引控制器之后,流形对外部有界未知扰动具有不敏感性.最后利用车摆系统来论述所提出的控制方法的设计步骤,以及通过仿真验证控制器的性能.【期刊名称】《控制理论与应用》【年(卷),期】2015(032)012【总页数】7页(P1592-1598)【关键词】非线性系统;系统浸入;不变流形;有限时间;外部扰动【作者】黄显林;张旭;卢鸿谦【作者单位】哈尔滨工业大学控制理论与制导技术研究中心,黑龙江哈尔滨150001;哈尔滨工业大学控制理论与制导技术研究中心,黑龙江哈尔滨150001;哈尔滨工业大学控制理论与制导技术研究中心,黑龙江哈尔滨150001【正文语种】中文【中图分类】TP273Over the past few decades,stabilization control in finite time for nonlinear systems,for affine nonlinear systems in particular,has played animportant role in the control field.Natural nonlinearities and diversity of nonlinear systems are the most significant constraints onapplicability.Many research groups have devoted themselves to identifying reliable stabilizing control laws and applying them successfully to various systems.Acosta et al.,for example,proposed an interconnection and damping assignment passivity-based control(IDA-PBC)for underactuated mechanical systems.This algorithm was derived from the passivity-based theory in order to provide a natural procedurethat shapeskineticand potential energy[1-3].Themost crucial issue which remains is effectively solving a partial differential equation(PDE).As degree of freedom(DOF)increases,IDA-PBC implementation becomes increasingly complex.Thus,considering calculation difficulties,this algorithm is only applicable for the lower-order nonlinear systems.A sliding mode control was proposed to stabilize a class of underactuated systems in cascaded form[4-5].One of the promising and effective control methods is the immersion and invariance(I&I)theorem,proposed by Astolfi and Ortega in 2003[6-7],which has been further developed in additional studies[8-11].System immersion is based on the nonlinear regular theory,where the required mappings can integrate the desired dynamical behavior with the reduced-order systems toward the high-order systems.Manifold invariance is derived from geometric nonlinearity to ensure the stability of closed-loop systems.Immersion and invariance control is not needed for the Lyapunov candidate function in the controller design phase.A notable advantage ofthis approach is the perfect decoupling calculation between manifold attractivity and invariance.Recently,researchers have evaluated the use of I&I for tracking control on a pneumatic actuator with a proven tracking theorem[12].Manjarekar et al.applied I&I to stabilize a single machine infinite bus(SMIB)system using a controllable series capacitor(CSC)[13].This technique has also been applied to tendon-controlled systems with variable stiffness[14].An adaptive-state feedback controller was designed for n-dimensional nonlinear systems in feed-back form,as well [15].An adaptive regulation via state feedback for discrete-time nonlinear systems in a parametric strict-feedback form has also been proposed[16].In actuality,the off-the-manifold coordinate converges to equilibrium in the exponential form such that the distance from the state space of closed-loop systems to the manifold is rendered asymptotically attractive.However,low convergence rate may decrease the transient performance of closed-loop systems.Furthermore,robustness of stabilization cannot be theoretically ensured due to external pared to asymptotically stable manifold,finite-time attractivity controls possess the following properties:first,it shows better convergence performance around the equilibrium point,and second,it has better disturbance rejection erformance[17].In one relative study [18],two globally stable control algorithms for robust stabilization of spacecraft in the presence of control input saturation,parametric uncertainty,and external disturbances were proposed,and fast andaccurate response was designed.In another study[19],a finite-time control technique for a rigid spacecraft with external disturbances was proposed.This work mainly focuses on the finite-time attractivity-based immersion and invariance stabilizing control for a class of nonlinear systems.A detailed procedure for designing the immersion and invariance controller is provided.Mapping can be obtained by selecting a target system and solving a partial differential equation.The stability proof of closed-loop systems accounting for the boundedness of actual states is described.The finite time is computed,in which the manifold is rendered attractive;The manifold does remain insensitive to bounded unknown disturbance under the proposed method.Simulation results validate the stabilizing control laws,based on this novel technique,through a cart-pendulum system.The proposed algorithms are computationally simple and involve straightforward tuning.Preliminary results of the immersion and invariance theorem for an affine nonlinear system are described in Section 2.Section 3 describes the primary results of the finite-time attractivity-based immersion and invariance controllerdesignforanonlinearsystemclass,andprovides the stability proof and the computations of finite time.An analysis of the disturbance rejection is also described in Section 3.The controller performance is demonstrated by a cart-pendulum system in Section 4,and Section 5 provides concluding remarks.2.1 System descriptionIn this section,a class of nonlinear systems are considered as follows:with state xi∈R for i=1,2,3,input u∈R,the vector fields f2(x1),f3(x1),g2(x1):R→R and an equilibrium x*(t)to be asymptotically stabilized.The functions f2(x1),g2(x1),and f3(x1)are assumed to be known.The finite-time attractivity of manifold based immersion and invariance control requires the following assumption on the continuity of f2(x1),g2(x1),and f3(x1).Assumption 1For each i=2,3,the functions fi(x1),g2(x1)and their derivatives are continuous and bounded on any compact set D⊂R.The main objective for this work is to design a control law to asymptotically stabilize system(1)based on the I&I theorem,while making the manifold attractive in finite time.2.2 Preliminary results Thissectionrecalledthefundamentaltheorem,serving asprincipaltoolofthe immersionand invarianceapproach.Theorem 1[6]Consider an affine nonlinear systemwith x∈Rn,u∈Rmand an equilibrium point x*∈Rnto be stabilized.Let p<n,and assume that there exist smooth mappings α(.):Rp→Rp,π(.):Rp→Rn,c(.): Rp→Rm,φ(.):Rn→Rn-p,ψ(.):Rn×(n-p)→Rm,such that the following hold.H1)Target system.The target systemwith ξ∈Rphas a globally asymptotically stable equilibrium ξ*∈Rpandx*=π(ξ*).H2)Immersion condition.For all ξ∈Rp,H3)Implicit manifold.The following set identityholds.H4)Manifold attractivity and trajectory boundedness. All trajectories of the systemare bounded and satisfyThen x*is a globally asymptotically stable equilibrium of the closed-loop systemTaken from[20],this theorem provides us an explicit procedure to design stabilizing control laws for a class of nonlinear systems.The objective is to find a manifold M={x∈Rn|x=π(ξ),ξ∈Rp}based on the system(2)and the target dynamics(3).This manifold can be rendered invariant and attractive,and such that the welldefined restriction of the closed-loop system to M is described by the target system.Note that the control inputu that makes the manifold invariant is not unique,since it is uniquely defined only on M.One possible control,that drives the off-the-manifold coordinates z to zero and keeps the system bounded,is selected.The I&I concept is illustrated for p=2 and n=3 in Fig.1.This section details the procedures for modified immersion and invariance control for a class of nonlinear systems.3.1 Controller designFirst,the conditions of Theorem 1 must be verified.Step 1The objective here is to find a target dynamics and immerse it into the original system(1).The dimension of this target dynamics is strictly lower than the original system.From Eq.(1),the target dynamics arewhere ξ1,ξ2∈R are two states of system(12),V(ξ1): R→R is potential energy,and R(ξ1,ξ2):R×R→R is a damping injection function.To ensure that the target dynamics have an asymptotically stable equilibrium at the origin,the following assumption is required.Assumption 21)The damping injection function R(ξ1,ξ2)is positive definite,i.e.R(0,0)≥0.2)The potential energy function V(ξ1)satisfiesA Lyapunov function is defined as follows:The derivative of this positive function along the solution of(12)is According to Assumption 2,≤0 for t>0.Therefore,the target dynamic system(12)has an asymptotically stable equilibrium at ξ1=0,ξ2=0. Step 2From the system(1),the immersion condition of Theorem 1 requires rank(π(ξ))=2,so that a natural choice of the mapping π(ξ)can be provided bywhere x1=π1(ξ)=ξ1,x2=π2(ξ)=ξ2,and π3(ξ1,ξ2):R×R→R is an unknown mapping.From Eqs.(4)-(6),the relationships on the manifold M defined in(22)are as follows:where c(π(ξ))is a controller that ensures the manifold M is invari ant.This controller is not used,however,because the manifold M cannot be rendered attractive.In other words,c(π(ξ))cannot make an off-the-manifold coordinate,the distance from x to π(ξ),converge to zero in finite time.After replacing the controller c(π(ξ))from(17)into(16)and making a few rearrangements,a partial differential equation(PDE)to bewhere the funtion(x)is defined asAccording to Theorem 1,the PDE(18)could be solved only ifand R(x1,x2)are known.Two degrees of freedom(DOF)and R(x1,x2),are then added.The mappingπ3(ξ)playsanimportantroleincontrollerdesign,where the following assumption is necessary.Assumption 3There exist a mapping π3and positive constant σ>0 such thatis independent of x2,and consequently,|(0)|≥σ>0.If Assumption 3 holds,the PDE(18)can be solved by selectingEqs.(21)and(22)provide a selection of 1-dimensional mapping functions π3so that Assumption 3 holds.The explicit form of π3can be obtained in terms of the specified nonlinear systems.Step 3The application of the set identity(7)permits the derivation of the following implicit manifold:Step 4The off-the-manifold coordinate z=φ(x) is defined as follows:Then,considering a Lyapunov candidate function:which can be differentiated along the solutions of(1)and(12),and produces the following after straightforward computations:The stabilizing controller ψ(x,φ(x))for the system(1)is obtained from Eq.(25)as such that the off-the-manifold coordinate converges to equilibrium at z=0 in finite time. The explicit form of the controller follows:where the parameter γ is a positive constant,and sgn(.) denotes a sign function,i.e.Substituting(26)into(25)yieldsAll trajectories of the closed-loop systemremain bounded,because the stabilizing controller is obtained.In the following section,a summary of of this method is proposed and the proof of stability is described.3.2 Stability analysisStabilization can be summarized via the finite-time attractivity-based immersion and invariance control as follows.Proposition 1Consider a class of nonlinear systems(1)that satisfies Assumption 1,and equilibrium x*(t).Then,all trajectories of closed-loop system(1)and off-the-manifold dynamics are bounded,andx*(t)holds. Prior to the stability proof,an assumption is necessary.Assumption 4There existsϵ1,ϵ2,ϵ3>0,such thatProofStability analysis is completed by proving that there exists a set of initial conditions(x(0),z(0))such that the corresponding trajectories x(t)of (29)are bounded. From(20)and(21)and after some simple calculations,all trajectories of the system(29)can be rewritten as follows:Consider a positive definite functionthe derivative of which,along the trajectories of(30),isAll trajectories of the system(29)are bounded on t∈(0,∞).Two cases should be considered:1,andCase 1In this case,z(t)<z(0),and Eq.(32)satisfies the following:where the second inequality follows from Young’s inequality.In other words,the above inequality shows that the system energy is bounded.Case 2In this case,z(t)=0,and(z)≤is easily obtained.Hence there exists a ball around zero and a finite time tf,where all trajectories starting from all initial conditions converge in the ball at tf,then converge to equilibrium asymptotically.The boundedness of x3is expressed asAccording to the boundedness of x1,x2,then x3∈L∞.3.3 Speed of manifold responseIn this section,the finite time tf,from which the offthe-manifold coordinate z can be rendered attractive,is computed.Proposition 2Considering a manifold(7),all trajectories of the n-dimensional closed-loop systems converge to the manifold M in finite time tffor any initial condition z(0)=z0,and the attractivity of the manifold is described bProofDue to the fact thatwhere∥.∥represents the Euclidean normis defined bythe derivative along the trajectories of˙z=-Σ(z)γ is provided byThen,Integrating the differential inequality,According toTherefore,the finite time tfis provided byand the off-the-manifold coordinate z(t)converges to equilibrium at tffrom an initial condition z0.Remark 1The dimension of the manifold dynamics(23)is one,so that the attractivity of finite time is3.4 Disturbance rejectionThis section analyzes the disturbance rejection using the proposed finite-time control law.A class of nonlinear systems in the presence of bounded unknown disturbance is described as follows:where all variables are defined above.With regards to this study’s objective,an Assumption is necessary.Assumption5Ingeneral,theexternaldisturbance d(t)is time-varying and bounded,i.e.,∥d(t)∥≤δ,where δ is a positive constant.By selecting the controller(26),the derivative of H2(z)is rewritten asThe design parameter γ is set to γ≥δ to ensure that the term(γ-δ)∥z∥is positive,so(z)≤0.When computing the finite time,the disturbance must also be considered.From Eq.(45),the finite time tfis expressed as follows:whereis defined as=min{γi}.Therefore,the attractivity of finite time for the manifold coordinate(23)isRemark 2The manifold is insensitive to unknown bounded disturbance.Accordingly,the robustness of stabilization of the nonlinear system(1)with the proposed finite-time controller can be ensured.This section describes the construction of a cartpendulum system as an example of mastering the modified I&I technique(see Fig.2).A partial feedback linearization stage is assumed to have been applied [21].After normalization,the state equation becomes:where x1and x2∈R are the pendulum angle with respect to the upright vertical axis and its velocity,respectively,x3∈R is the velocity of the cart,and u∈R is the control input.The positive consta nts a>0 and b>0 are physical parameters.The equilibrium to be stabilized is the upward position of the pendulum after the cart stops,which corresponds to x*=0.The state equation(49)has the same form as the system(1),i.e.:andAssumption1isautomaticallysatisfied.FromEq.(26),the I&I stabilizing control law is specified by the following:where π3andare obtained based on Assumptions 2-3.plays a fundamental role in the stabilization of closedloop systems.Select the following:with k1>0,k2>0,so the stabilizing control law for the cart-pendulum system becomeswith γ>0.Replacing the explicit form f2(x),g2(x)and f3(x),the stability proof can be completed.(This procedure is omitted for brevity.)Note that V has an isolated global minimum at zero andis a constant.The controller is not globally defined because x1has a singularity atThe proposed stabilizing control law was implemented on a MATLAB Simulink simulation.It was assumed that a=24.5,b= 2.5.The domain of attractionfor the cart-pendulum system wasThe initial conditions were x(0)=-0.1,0,0),and parameters were k1=5,k2=3,and γ=5.Simulation results are shown in Figs.3-5. Fig.3 shows that the state variables x1,x2,andx3converge to zero at time t=5s,with the proposed I&Imethod.Convergencetozeroatahighspeedwasachieved. Fig.4 displays the curves of the corresponding input of the system(1).Fig.5 shows that the off-the-manifold coordinate z converged to equilibrium in finite timetf.From z(0)=x3(0)-π3(x1(0),x2(0))=7.354,the finite time tf=1.47s isobtained by replacing the initial condition in(45).Simulation results conducted for disturbance d(t)= 5cos(1.5t+)at 10~15s are shown in Figs.6-8.Parameters were k1=5,k2=3,and γ=9.A slight fluctuation in x1can be observed at 10~15s in Fig.6,the amplitude of which is about 0.5 rad.Fig.7 shows that the control input converged to zero after a sine disturbance at 10~15s,whereas the response curve oscillated at the zero point.Fig.8 shows that manifold z was rendered insensitive to bounded disturbance.The mode of the system response was inclined to chatter along z=0,as shown in Figs.4 and 7.The reason for manifold chatter is that the attractivity speed was limited,and inertia existed in the system.Rejecting manifold chatter is the primary objective of our laboratory’s future research.Remark 3The off-the-manifold coordinate depicted in Figs.5 and 8 converged to zero in finite time with the proposed I&I method.That said,manifold chatter directly affected the control input and reduced the performance of the closedloop system(1).This study developed a finite-time attractivity-based immersion and invariance control for a class of nonlinear systems.This novel approach modified the standard immersion and invariance theorem and focused on computations of finite time.The controller design was detailed above,and stability proofs were provided.A manifold was successfully designed to be insensitive to bounded unknown disturbance by implementing the finite-time attractivity controller.Controller performance was demonstrated usinga cart-pendulum system with various simulations. Clearly,the proposed control algorithm is effective for this class of nonlinear systems.[1]ACOSTA J,ORTEGA R,ASTOLFI A,et al.Interconnection and damping assignment passivity-based control of mechanical systems with underactuation degree one[J].IEEE Transactions on Automatic Control,2005,50(12):1936-1955.[2]ORTEGA R,SPONG M,GOMEZ-ESTERN F.Stabilization of a class of uneractuated mechanical systems via interconnection and damping assignment[J].IEEE Transactions on Automatic Control,2002,47(8):1218-1232.[3]ORTEGA R,CANSECO E.Interconnection and damping assignment passivity-based control:a survey[J].European Journal of Control,2004,10(5):432-450.[4]MUSKE K,ASHRAFIUON H,NERSESOV S,et al.Optimal sliding mode cascade control for stabilization of underactuated nonlinear systems [J].Journal of Dynamic Systems,Measurement,and Control,2012,134(2):1-11.[5]XU R,¨OZG¨UNER¨U.Sliding mode control of a class of underactuated systems[J].Automatica,2008,44(1):233-241.[6]ASTOLFI A,ORTEGA R.Immersion and invariance:a new tool for stabilization and adaptive control of nonlinear systems[J].IEEE Transactions on Automatic Control,2003,48(4):590-606.[7]ASTOLFI A,KARAGIANNIS D,ORTEGA R.Nonlinear and Adaptive Control with Applications[M].London:Springer,2008.[8]LIU X,ORTEGA R,SU H,et al.Immersion and invariance adaptive control of nonlinear parameterized nonlinear systems[J].IEEE Transaction on Automatic Control,2010,55(9):2209-2214.[9]DONAIRE A,PEREZ T,TEO Y.Robust speed tracking control of synchronous motors using immersion and invariance[C]//IEEE Conference on Industrial Electronics and Applications.Singapore:[s.n.],2012:1482-1487.[10]SARRAS I,ACOSTA J,ORTEGA R.Constructive immersion and invariance stabilization for a class of underactuated mechanical systems [J].Automatica,2013,49(5):1442-1448.[11]KEMMETM¨ULLER W,KUGI A.Immersion and invariance-based impedance control for electrohydraulic systems[J].International Journalof Robust and Nonlinear Control,2010,20(7):725-744.[12]RAPP P,KL¨UNDER M,SAWODNY O,et al.Nonlinear adaptive and tracking control of a pneumatic actuator via immersion and invariance[C]//IEEE Conference on Decision and Control.Maui,HI:[s.n.],2012:4145-4151.[13]MANJAREKAR N,BANAVAR R,ORTEGA R.Stabilization of a synchronous generator with a controllable series capacitor via immersion and invariance[J].International Journal of Robust and Nonlinear Control,2012,22(8):858-874.[14]THOMAS W,CHRISTIAN O,GERD H.Immersion and invariance control for an antagonistic joint with nonlinear mechanical stiffnes[C]//IEEE Conference on Decision and Control.Atlanta,GA:[s.n.],2010:1128-1135.[15]KARAGIANNIS D,ASTOLFI A.Nonlinear adaptive control of systems in feedback form:an alternative to adaptive backstepping[J]. Systems&Control Letters,2008,57(9):733-739.[16]YALC¸IN Y,ASTOLFI A.Immersion and invariance adaptive control for discrete time systems in strict feedback form[J].Systems& Control Letters,2012,61(12):1132-1137.[17]BHAT S,BERNSTEIM D.Geometric homogeneity with applications to finite-time stability[J].Mathematics of Control,Signals and Systems,2005,17(2):101-127.[18]BOSKOVI`C J,LI S,MEHRA R.Robust adaptive variable structure control of spacecraft under control input saturation[J].Journal of Guidance,Control,and Dynamics,2001,24(1):14-22.[19]LI S,DING S,LI Q.Global set stabilisation of the spacecraft attitude using finite-time control technique[J].International Journal of Control,2009,82(5):822-836.[20]ACOSTA J,ORTEGA R,ASTOLFI A,et al.A constructive solution for stabilization via immersion and invariance:The cart and pendulum system [J].Automatica,2008,44(9):2352-2357.[21]TEEL A.A nonlinear small gain theorem for analysis of systems with saturation[J].IEEE Transactions on Automatic Control,1996,41(9):1256-1270.黄显林(1956-),男,教授,博士生导师,目前研究方向为飞行器导航、制导与控制技术、非线性系统鲁棒控制、复杂系统自适应控制方法、欠驱动控制系统的研究,E-mail:********************;张旭(1986-),男,博士研究生,目前研究方向为高阶非线性系统控制方法、系统浸入与不变流形理论、拮抗肌腱式机械手的控制方法、超视距捷联/红外复合制导技术,E-mail:********************;卢鸿谦(1975-),男,副教授,目前研究方向包括非线性控制与应用、组合导航与控制技术、恒拉力控制系统,E-mail:******************.。