圆形地下连续墙计算书

圆形地下连续墙计算书
圆形地下连续墙计算书

圆形地下连续墙计算书

1 工程概述

前庄铁路大洋河特大桥100#-109#墩位于主河槽中,主墩承台为二层,一层平面尺寸为11.3×7.3米,高度为2.5米,二层平面尺寸为9×5,高度为1米,主墩桩基为10根Φ1.25米钻孔桩。承台底标高为-4.44m、-4.94m、-5.44m,按筑岛顶标高为4.0m考虑,开挖深度在8.64m—9.64m之间,以上10个承台开挖深度大,采用混凝土沉井为围护结构的方式施工。

承台、墩身具体布置如下:

100-103、109号墩平面图

104-105、108号墩平面图

106-107号墩平面图

各墩具体参数表

2 基坑土特性及取值

本计算中土层参数根据设计图提供的土层资料,按经验取值如下:

各层土特性取值表

本工程土压力计算对于粘性土采用水土合算法,对于砂性土采用水土分算法,基坑外考虑有长臂挖掘机作用(参考机型:ZE230LC),荷载按条形荷载考虑,取值为挖掘机接地比压40Kpa。

钢板桩承受孔隙水压力、有效主动土压力及有效被动土压力。

主、被动土压力系数:

粘土:Ka=tg2(45-25

2

)=0.406,ka=0.637

Kp=tg2(45+25

2

)=2.463,kp=1.57

中砂:Ka=tg2(45-28

2

)=0.361,ka=0.601

Kp=tg2(45+28

2

)=2.605,kp=1.61

3 沉井结构

本沉井作为承台及墩身施工的围护结构,考虑后续施工方便,沉井内壁距承台外缘线留1.0米工作面,沉井壁厚600mm,顶部高出筑岛顶面300mm,底部比承台底面底1.5m,刃脚踏面宽300mm,斜面高700mm。

沉井结构高度分别10.5m、11.0m、11.5m,本次计算选取其中高度最大的沉井进行计算,其他墩位参考施工。

4 沉井设计及检算过程

根据施工工序,分为6个工况,找出构件在不同工况下的不利结果,检算构件的尺寸是否符合要求,并根据受力情况配置钢筋;

工况1:第一节沉井制作

工况2:第一节沉井下沉完成

工况3:第二节沉井制作

工况4:第二节沉井下沉完成,浇筑封底混凝土

工况5:排水至封底混凝土顶面

工况6:承台及墩身施工完成

4.1 井壁计算

4.1.1 下沉过程井壁计算

下沉过程中井壁最不利工况为下沉到预定标高时,岛顶标高为4.2m,外侧水位为3.6m,内外侧有不利水位差,计算按内外水位差1.0m考虑,如施工时大于该水位差要采取措施提高内侧水位。

4.1.1.1 计算模型与计算简图

计算采用空间结构分析,以中厚板单元shell93模拟井壁,平面与侧面图如下:

4.1.1.2 水土压力计算

基坑外附加设备条形荷载,主要考虑长臂挖掘机,接地比压按40Kpa 考虑,作用深度至基坑底。土压力计算时,对粘性土采用水土合算的原则,但合算时,其侧压力系数不采用主动土压力系数0.406,偏于安全的采用0.8,中砂采用水土分算。公式如下:

粘性土,计算点位于地下水位以上时

*(*01)2*ea k h k k c αγσσ=++-粘性土,计算点位于地下水位以下时

*(*1'*201)2*0.8*10*2ea k h h k k c h αγγσσ=+++- 砂性土,计算点位于地下水位以下时

''1112230123)*(***)1*10*(k k ea k h h h h h αγγγσσ=++++++ 公式中:

ea —土压力强度标准值 k α—主动土压力系数

h1—水上粘土深度

h2—水下粘土深度

h3—水下砂土深度

按上述计算土压力强度标准值见附表1:下沉状态沉井水土压力计算表

4.1.1.3 内力计算结果

附表1数值为在考虑基坑安全系数1.1,荷载分项系数1.25,计算得到设计荷载,按上述荷载与计算模型,计算得到结构内力结果见附表2:下沉状态沉井内力计算成果表。

4.1.2 排水完成井壁计算

工况5为封底混凝土强度达到要求,沉井内部排水完成的状态,外侧水位按高潮水位3.6m考虑。

4.1.2.1 计算模型与计算简图

计算采用空间结构分析,以中厚板单元shell93模拟井壁,link1单元模拟支撑,平面与侧面图如下:

4.1.2.2 水土压力计算

计算方式同4.3.1.2项,

土压力强度标准值与设计值,见附表3:排水状态沉井水土压力计算表

4.1.2.3 内力计算结果

附表3数值为在考虑基坑安全系数1.1,荷载分项系数1.25,计算得到设计荷载,按上述荷载与计算模型,计算得到结构内力结果见附表4:排水状态沉井内力计算成果表。

4.1.3 截面配筋计算

截面为压弯构件,但压应力远小于弯曲应力,而且压力对混凝土构件受拉为有利的,所以按受弯构件检算,并配置钢筋。

考虑施工工况较多,构件受力复杂,计算时按每一段在各工况下的最大弯矩配筋,并采用双筋截面形式。计算结果见附表5:各断面横向配筋计算成果表、附表6:各断面竖向配筋计算成果表

4.1.4 竖向受拉计算

井壁在刃脚完全掏空的情况下,会出现竖向拉力,竖向最大拉力为Pmax=G/4

刃脚部分G1=(0.3+0.6)*1/2*0.7*25*50.6=398.5KN

其余部分G2=(0.6*50.6*10.8)*25=8197.2KN

G=398.5+8197.2=8595.7KN

Pmax=8595.7/4=2149KN

竖向每周长最小布置φ16钢筋250根,抗拉能力为:

F=201.1*250*300=15082KN>2149KN

竖向抗拉满足要求。

4.2 刃脚计算

4.2.1 刃脚向外受弯

以第一节下沉完成,预制第二节时为最不利工况,计算简图如下:

4.2.1.1 土压力和水压力计算 ①土压力

ea1=0.406*(0.6*18+4.9*8)=20.3 KN/m 2 ea2=0.406×(0.6*18+4.2*8)=18.0KN/m 2 ea3=0.406*(0.6*8)=1.95 KN/m 2 ea4=0.406*(0.6*18)=4.38KN/m 2

②水压力

不排水下沉,考虑刃脚向外弯曲的最不利情况为内外无水位差时,水压力为0. Pw1=0KN/m2

Pw2=0KN/m2 ③刃脚部分水土压力合力

作用于井壁外侧的计算土压力与水压力的和不大于静水压力的70%。 刃脚底部:ea1+Pw1=20.3+0=20.3KN/m2<0.7*4.9*10=34.3KN/m 2 刃脚根部:ea2+Pw2=18+0=18KN/m2<0.7*4.2*10=29.4KN/m 2

刃脚部分总的土压力与水压力:P 总=(18+20.3)*0.7/2=13.41KN/m 力臂1212220.32*180.7

ye=

*=*=0.343m 320.3183

a a a a e e hr e e ++++

4.2.1.2 井壁摩阻力

① 外壁总摩阻力 Rf=0.5Ea Rf=f*A

Rf —作用在沉井单位周长井壁上的摩阻力,取上式计算中的小者 Ea —作用在单位井壁周长上总的主动土压力 A —与土相接触的井壁单位周长外壁面积

f —土与井壁单位面积摩阻力,粘土取18Kpa ,中砂与圆砾土取15Kpa 按上公式计算

Ea=(0+4.38)*0.6/2+(1.95+20.3)*4.9/2=55.8KN/m Rf=0.5PE=0.5*55.8=27.9KN/m Rf=f*A=18*5.5*1=99KN/m 取Rf=27.9KN/m

刃脚摩阻力Rr=18*0.7=12.6KN/m 4.2.1.3 刃脚反力计算 ①土的垂直反力Rv=G-Rf-Ff 式中:G —第一节、第二节沉井重量 Ff —浮力

1m 刃脚重量G1=(0.3+0.6)*1/2*0.7*25=10.5KN 1m 第一节除刃脚外沉井部分重量G2=0.6*1*5.8*25=87KN 1m 第二节沉井重量G2=0.6*1*5*25=75KN G=G1+G2+G3=10.5+87+75=172.5KN

Ff=(0.3+0.6)/2*0.7*10+1*0.6*4.9*10=32.6KN Rv=V1+V2=G-Ff-Rf=172.5-27.9-12.6=132KN ②反力Rv 的分力V1、V2、U

V1=Rv*a/(a+b/2)=132*0.3/(0.3+0.3/2)=99KN V2=132-99=33KN

1a b y=

*v1*+Fv2*a+0.21v 23F m F ??=????

力臂:() U=V2*tg (α0-β0)

式中:FH —刃脚斜面部分土的水平反力

α0—刃脚斜面与水平面的夹角 ,为67°

β0—土与刃脚斜面的摩擦角,为28° U=26.7KN

4.2.1.4 刃脚根部内力计算

刃脚水平力由水平框架及刃脚悬臂2种模式分担,其分配系数计算如下:

16.1230.7lx n hr =

== 悬臂作用系数:

4n

=

0.94845

n =+α 框架作用系数

5

0.05245

n =

=+β

计算刃脚根部弯矩时,对刃脚根部截面中点取矩 计算结果如下表所示:

按压弯构件检算:

137.4*100022.1*6*1000000

=0.13pa<1.06Mpa 600*1000600*600*1000M σl=-

137.4*100022.1*6*1000000+=0.597pa<9.2Mpa 600*1000600*600*1000

M σy=

应力满足要求,按前面井壁计算配筋,满足要求。 4.2.2 刃脚向内挠曲的计算

计算刃脚向内弯曲的最不利情况是在沉井已沉到设计标高,刃脚下的土已经挖空,这时刃脚根处水平截面上产生最大的向内弯矩,计算简图如下:

4.2.2.1 土压力和水压力计算

①土压力

考虑基坑外不利荷载情况,基坑边作用挖掘机,接地比压按40Kpa采用σ1k=40KN/m2

ea1=0.361*(0.6*18+8*5.1+10.5*5.44+40)=53.68 KN/m2

ea2=0.361*(0.6*18+8*5.1+10.5*4.74+40)=50.88 KN/m2

ea3=0.361*(0.6*18+8*5.1+40)=33.06 KN/m2

ea4=0.406*(0.6*18+8*5.1+40)=37.19 KN/m2

ea5=0.406*(0.6*8+40)=18.19 KN/m2

ea6=0.406*(0.6*18+40)=20.62 KN/m2

②水压力

不排水下沉,按外侧水位比内侧水位高1m考虑,剩余水压力为:Pw1=10KN/m2

Pw2=10KN/m2

③刃脚部分水土压力合力

刃脚根部:ea1+Pw1=50.88+10=60.88KN/m2

刃脚底部:ea2+Pw2=53.68+10=63.68KN/m2

刃脚部分总的土压力与水压力:P总=(60.88+63.68)*0.7/2=43.6KN/m

4.2.2.2 刃脚根部内力计算

①简图:

框架计算简图如下图。

②荷载:

水平荷载一部分由悬臂作用承担,一部分由框架承担,水平力分配系数为 悬臂分担系数 544+=

n n

α 框架分担系数 5

45

+=n β

16.1230.7

x x l n h === 423

0.9484235

α?=

=?+

5

0.0524235

β=

=?+ 式中:lx —计算α时取最大计算跨径,计算β时取最小计算跨径 hx —刃脚斜面高度

按框架结构承担荷载的5.2%计算,框架承担的水平荷载 q=43.6*0.052=2.26N/mm ③内力:

按上述荷载与简图,计算内力结果如下。

Mmax=0KN.m N=24.15KN

4.2.2.3 截面计算

①按混凝土截面检算

A=(300+600)/2*700=315000mm 2

3

24.15*100.089.2315000

y Mpa Mpa σ==<

混凝土压应力能满足要求! 4.3 刃脚根部以上0.6米井壁检算

本部分为刃脚嵌固部分,需单独计算,计算过程如下: 4.3.1 计算简图

4.3.2 作用在井壁上的外力 ①土压力

考虑坑壁外挖掘机走行、作业,基坑附加荷载按挖掘机接地比压40Kpa 采用。 σ1k=2.5*19.5*1/(1+0.5*2)=24.3KN/m2

ea1=0.361*(0.6*18+5.1*8+10.5*4.14+40)=48.76 KN/m 2 ea2=0.361*(0.6*18+5.1*8+10.5*4.74+40)=51.03 KN/m 2 ②水压力

不排水下沉,按外侧水位比内侧水位高1m 考虑,剩余水压力为:

Pw1=10KN/m2

Pw2=10KN/m2

③刃脚嵌固部分水土压力合力

刃脚嵌固部分根部:ea1+Pw1=48.76+10=58.76KN/m2

刃脚嵌固部分底部:ea2+Pw2=51.03+10=61.03KN/m2

刃脚部分总的土压力与水压力:

P总=(58.76+61.03)*0.6/2=35.9KN/m

④刃脚根部剪力

刃脚根部ea3=0.361*(0.6*18+5.1*8+10.5*4.74+40)=51.03 KN/m2

Ea4=0.361*(0.6*18+5.1*8+10.5*5.44+40)=53.69 KN/m2刃脚根部:ea3+Pw1=51.03+10=61.03KN/m2

刃脚底部:ea4+Pw2=53.69+10=63.69KN/m2

刃脚部分总的土压力与水压力:

P总=(61.03+63.69)*0.7/2=43.65KN/m

⑤水平合力

F=35.9+43.65=79.55KN/m

4.3.3 刃脚根部内力计算

①简图:

框架计算简图如下图。

②荷载:

取以上计算的水平合力 q=79.55N/mm ③内力:

按上述荷载与简图,计算内力结果如下。

N=640.377KN (5)截面计算 ①按混凝土截面检算 A=600*600=360000mm 2

3

640.37*10 1.779.2360000

y Mpa Mpa σ==<

混凝土压应力能满足要求。 4.4 下沉系数计算 4.4.1 第一节下沉系数 ①沉井自重

刃脚部分重量G1-1=(0.3+0.6)/2*0.7*8.05*2*3.142*23=366.6KN 其余部分重量G1-2=0.6*(6.5-0.7)*8.05*2*3.142*23=4048.9KN 总重G1=G1-1+G1-2=366.6+4048.9=4415.5KN ②井壁摩阻力 粘土的摩阻系数f=18kpa

则摩阻力Rf=(5/2+1)*18*8.05*2*3.142=3186.9KN ③浮力

第一节沉井下部6米入水,浮力为

1F *(0.30.6)*0.7*50.60.6*(60.7)*50.6*10

21768.5KN

??=++-????

= ④下沉系数

14415.5

0.89 1.153186.91768.5

G K Rf F =

==<++

下沉系数不能满足要求,在沉井制作时,在沉井外壁竖向设置浆槽,尺寸为50*50mm ,间距为2m 一道,下沉时在浆槽内压住膨润土泥浆,减小侧壁摩阻力。若该措施不能见效,需采用配重的方式下沉。

4.4.2 第二节下沉系数 ①沉井自重

刃脚部分重量G1-1=(0.3+0.6)/2*0.7*50.6*23=366.6KN

第一节其余部分重量G1-2=0.6*(6.5-0.7)*8.05*2*3.142*23=4048.9KN 第二节重量G2-1=0.6*5*8.05*2*3.142*23=3490.5KN 总重G2=G1-1+G1-2+G2-1=366.6+4048.9+3490.5=7906KN ②井壁摩阻力 摩阻系数f=18kpa

则摩阻力Rf=(5/2+3.64)*18*8.05*2*3.142=5590.8KN ③浮力

二节沉井下部8.64米入水,浮力为

1F *(0.30.6)*0.7*50.60.6*(8.640.7)*50.6*10

22570KN

??=++-????

= ④下沉系数

27906

0.97 1.155590.82570

G K Rf F =

==<++

下沉系数不能满足要求,在沉井制作时,在沉井外壁竖向设置浆槽,尺寸为50*50mm ,间距为2m 一道,下沉时在浆槽内压住膨润土泥浆,减小侧壁摩阻力。若该措施不能见效,需采用配重的方式下沉。 4.5 封底混凝土计算 4.5.1 强度计算 ①计算简图

封底混凝土厚度1.5m ,按周边简支圆板计算,采用solid95单元模拟,其平面计算简图如下:

②荷载

围堰内部排开水的体积所形成的浮力全部施加到底板上,外侧水位按3.6m 考虑 q=10*(3.6+6.94)-23*1.5=70.9KN/m 2 ③计算结果

MK=0.1979qr 2=0.1979*70.9*7.75*7.75=842.7KN*m/m

1m 宽封底混凝土的截面特性(考虑上部浮浆,厚度按1m 采用)

211

****1*1*10.167/66

W B H H m m ===

/842.7/0.167K M W σ==

第一主拉应力为1.072Mpa ,选用C25混凝土,其容许拉应力为1.23Mpa ,按第一强度理论,满足承载要求。

4.5.2 抗浮计算 ①浮力

围堰排水至基底后,浮力F=188.7*10.54*10=23089.8KN ②围堰自重

G1=(0.3+0.6)/2*0.7*50.5*25+0.6*10.8*50.5*25=8578.7KN ③封底混凝土自重

G2=(188.7-12.3)*1.5*23=6085.8KN ④封底混凝土与桩之间摩阻力

混凝土与桩间的摩阻系数按40Kpa 采用,封底混凝土有效厚度按1米采用 Fr1=3.142*1.25*1*40*10=1571KN ⑤沉井与周围土的摩阻力

沉井与土的摩阻力按两种方式计算,取两者中的小值,一种采用摩阻系数计算,摩阻系数按15kpa 考虑,计算得到摩阻力;一种是计算出总的土压力,取水土压力的0.5为外壁摩阻力。 算法1:

Fr=11.14*52.5*15=8772.8KN

算法2:

水土压力强度

10.406*18=7.3pa ea K =

20.406*(18*0.68*5.1)0.8*5.1*1040.8ea Kpa =++=

30.361*(18*0.6 5.1*8)10*5.169.63ea Kpa =++=

40.361*(18*0.6 5.1*8 5.4*10.5)

0.8*10*5.110*5.44134.29ea Kpa

=++++=

水土压力

EA1=7.3*0.6/2=2.19KN/m

EA2=5.1*(7.3+40.8)/2=122.655KN/m EA3=5.44*(69.63+134.29)/2=554.66KN/m

摩阻力

Fr2=0.5*52.5*(2.19+122.66+554.66)=17837KN

摩阻力取为Fr2=8772.8KN ⑥抗浮系数

12r1+r28578.76085.815718772.8

f=

1.0823089.8

G G F F K F +++++==

满足抗浮要求。

4.6 第一节预制垫层计算 1、第一节沉井混凝土重量

混凝土重G1=(0.3+0.6)*0.7*50.5/2*25+0.6*5.8*50.5*25=4791.2KN 模板及施工荷载重G2=393KN G=G1+G2 =5184.2KN 2、承载面积

刃脚下铺设50cm 沙砾垫层,垫层扩散角按22.5°考虑,刃脚顶部承担荷载,则承载面积为

0.5* tg (22.5°)=0.2m

A=8.55*8.55*3.142-7.85*7.85*3.142=36.1m2 3、承载力计算

σ=G/A=5184.2/36.1=143.6Kpa

粘土筑岛在碾压后,可以达到以上承载力要求。

上海MOU项目地下连续墙计算书

第一部分概述 (1)本工程基坑面积约为48860m2,周长约为950米,基坑开挖深度详见以下开挖信息表。 表1 各分区开挖信息表 图1 地下连续墙平面布置图 基坑总体方案如下:: “前阶段整体逆作,后阶段塔楼先顺作、纯地下室后逆作”方案 普遍区域采用1200 厚“两墙合一”地下连续墙;塔楼顺作区内部采用1000厚临时隔断地下连续墙,塔楼顺作区域坑内设置五道钢筋混凝土支撑。

本工程根据基坑挖深及周边环境情况,地下连续墙分为A、B、C、D、E、F及G七种槽段型式,不同槽段型式的地下连续墙相关信息如下表所示: 本工程地下室周边地下连续墙在临时施工阶段作为基坑围护结构,在正常使用阶段普遍区域地下连续墙作为永久结构外墙,而且在临时施工阶段和正常使用阶段,墙外水土压力分布、主体结构梁板对地下连续墙的约束条件及二者的持续时间均存在较大差别,致使两个阶段墙体计算边界条件不同,因此需分别对两个阶段下地下连续墙的受力进行计算。下文计算书包括各型“两墙合一”地下连续墙在开挖阶段与永久使用工况下的受力及配筋计算。

第二部分 施工临时工况下地下连续墙计算 一、施工临时工况下地下连续墙计算模式 (1)计算模式 根据上海市标准《基坑工程设计规程》的规定,在施工临时工况下,地下连续墙的计算采用规范推荐的竖向弹性地基梁法(“m ”法)。弹性地基梁法取单位宽度的挡土墙作为竖向放置的弹性地基梁,支撑简化为与截面积、弹性模量、计算长度有关的弹簧单元,如图1为弹性地基梁法典型的计算简图。 图1 竖向弹性地基梁法计算简图 基坑开挖面或地面以下,水平弹簧支座的压缩弹簧刚度H K 可按下式计算: h b k K h H ..= z m k h .= 式中,H K 为土弹簧压缩刚度(kN/m);h k 为地基土水平向基床系数(kN/m 3);m 为基床系数的比例系数;z 为距离开挖面的深度;b 、h 分别为弹簧的水平向和垂直向计算间距(m)。 基坑内支撑的刚度根据支撑体系的布置和支撑构件的材质与轴向刚度等条件有关,按下式计算: B L A E K ....2α= 式中:K ——内支撑的刚度系数(kN/m/m); α——与支撑松弛有关的折减系数,一般取0.5~1.0;混凝土支撑或钢支撑施加预压力 时,取1.0; E ——支撑构件材料的弹性模量(kN/m 2); A ——支撑构件的截面积(m 2); L ——支撑的计算长度(m);

土钉墙支护计算计算(准确)

土钉墙支护计算计算书 本计算书参照《建筑基坑支护技术规程》JGJ120-99 中国建筑工业出版《建筑施工计算手册》江正荣编著中国建筑工业、《实用土木工程手册》第三版文渊编著人民教同、《地基与基础》第三版中国建筑工业、《土力学》等相关文献进行编制。 土钉墙需要计算其土钉的抗拉承载力和土钉墙的整体稳定性。 一、参数信息: 1、基本参数: 侧壁安全级别:二级 基坑开挖深度h(m):7.430; 土钉墙计算宽度b'(m):100; 土体的滑动摩擦系数按照tanφ计算,φ为坡角水平面所在土层的摩擦角; 条分块数:/; 不考虑地下水位影响; 2、荷载参数: 序号类型面荷载q(kPa) 基坑边线距离b0(m) 宽度b1(m) 1 局布20.00 4.86 5 3、地质勘探数据如下:: 序号土名称土厚度坑壁土的重度γ坑壁土的摩擦角φ聚力C 极限摩擦阻力 (m) (kN/m3) (°) (kPa) (kPa)

1 填土 1.30 18.00 18.00 12.00 80.00 2 粘性土 1.30 18.00 20.00 25.00 100.00 3 粉土 3.10 19.00 25.00 18.00 110.00 4 粘性土 1.20 18.00 20.00 25.00 100.00 5 粉砂 4.10 19.00 35.00 18.00 115.00 4、土钉墙布置数据: 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 1 7.43 3.00 100.00 土钉数据: 序号直径(mm) 长度(m) 入射角(度) 竖向间距(m) 水平间距(m) 1 150 6.00 15.00 1.50 1.50 二、土钉(含锚杆)抗拉承载力的计算: 单根土钉受拉承载力计算,根据《建筑基坑支护技术规程》JGJ 120-99, R=1.25γ0T jk 1、其中土钉受拉承载力标准值T jk按以下公式计算: T jk=ζe ajk s xj s zj/cosαj 其中ζ--荷载折减系数 e ajk --土钉的水平荷载 s xj、s zj--土钉之间的水平与垂直距离 αj--土钉与水平面的夹角 ζ按下式计算:

浅谈地下连续墙防水措施

浅谈地下连续墙防水 措施 地下连续墙接头防水措施 现有的地下连续墙结构中, 墙接头处渗漏现象较为普遍, 墙幅接头处理不好会使接头处产生渗漏, 影响结构的正常使用。本文针对这地下连续墙接头的防水措施进行了总结,并结合工程实例对地下连续墙接头防水施工进行了分析。关键词:地下连续墙、接头、防水措施引言:随着我国建筑业的蓬勃发展,地下空间开发的规模和深度逐步扩大,地下连续墙因其地基适用性强,施工影响范围小,墙体刚性大、防渗漏性能好的特点,被广泛应用于地下工程围护结构施工。但

是地下连续墙接头处的防水处理,目前技术还不是很成熟,这对地下工程施工质量产生了很大的影响。正文:地下连续墙是通过专用的挖( 冲)槽设备, 沿着地下建筑物或构筑物的周边, 按预定的位置, 开挖出或冲钻出具有一定宽度与深度的沟槽, 用泥浆护壁, 并在槽内设置具有一定刚度的钢筋笼结构, 然后用导管浇灌水下混凝土, 分段施工, 用特殊方法接头,使之连成地下连续的钢筋混凝土墙体。在地下结构工程中, 防水有着特别重要的意义。在现有的地下连续墙结构中, 墙接头处渗漏现象较为普遍, 有些可能是由于地下连续墙不均匀沉降产生的, 也有些可能是因水平支撑不当使墙的接头处产生过大相对变形造成, 但墙的接头处理方式不当是产生渗漏的一个主要原因。目前,常见地下连续墙防渗漏措施,按照施工工艺主要为高压注浆加固类,包括袖阀管注浆、高压旋喷桩、水平垂直水泥或化学注浆等技术措施。但传统地连墙渗漏水防治技术,措施单一,实施针对性、适用性不强,止水效果并不理想,严重影响地下基坑工程施工安全。一、地下连续墙接头地下连续墙接头是指单元墙段间的接头。地下连续墙的接头可分为刚性接头和柔性接头。地下连续墙承受来自垂直和水平向的自重, 水土压力及地震动荷载, 都要求槽段之间钢筋尽可能贯通,在接头处不使成为刚度和强度薄弱部位。水平贯通钢筋和水平弯曲钢筋直径、根数、搭接长度, 端头钢板的附着连接螺栓的直径根数, 能满

地下连续墙设计计算

6667设计计算 已知条件: (1)土压力系数计算 主动土压力系数: K a1=tan2(45°—φ1/2)=tan2(45°—10°/2)=0.70 a1=0.84 K a2=tan2(45°—φ2/2)=tan2(45°—18°/2)=0.52 a2=0.72 K a3=tan2(45°—φ3/2)=tan2(45°—19.2°/2)=0.64 a3=0.71 K a4=tan2(45°—φ4/2)=tan2(45°—18.9/2)=0.52 a4=0.70 K a5=tan2(45°—φ5/2)=tan2(45°—19.2/2)=0.41 a5=0.72 被动土压力系数: K p1=tan2(45°+φ5/2)=tan2(45°+19.2°/2)=1.98 p1=1.40 (2)水平荷载和水平抗力的计算 水平荷载计算: e a=q0k a1-2C=20×0.59-2×10×0.84=-5kPa e ab上=(q0+h1)K a1-2c1a1=(20+18×2.5)×0.59-2×10×0.84=21.55kPa e ab下=(q0+h1)K a2-2c2a2=(20+18×2.5)×0.36-2×19×0.6=0.6kPa e ac上=(q0+h1+h2)K a2-2c2a2=(20+18×2.5+19.9×1.1)×0.36-2×19× 0.6=8.48kPa e ac下=(q0+h1+h2)K a3-2c3a3=(20+18×2.5+19.9×1.1)×0.64-2×44×0.8=-14.79kPa e ad上=(q0+h1+h2+h3)K a3-2c3a3=(20+18×2.5+19.9×1.1+18.8×1.4)× 0.64-2×44×0.8=2.05kPa e ad下=(q0+h1+h2+h3)K a4-2c4a4=(20+18×2.5+19.9×1.1+18.8×1.4)× 0.34-2×21×0.59=13.71kPa e ae上=(q0+h1+h2+h3+h4)K a4-2c4a4=(20+18×2.5+19.9×1.1+18.8×1.4+19.9×0.5)×0.34-2×21×0.59=17.09kPa e ae下=(q0+h1+h2+h3+h4)K a5-2c5a5=(20+18×2.5+19.9×1.1+18.8×1.4

地下连续墙施工规范

地下连续墙规范 一般规定 第11.1.1条广东地区地下连续墙常用的施工工艺如下:用液压抓斗(或机械抓斗)和冲孔桩机进行联合成槽作业.抓斗抓土。冲孔桩机入岩并修边,形成具有一定长度、宽度、深度的单元槽段,然后在槽段内放入预先制好的钢筋笼,灌注水下混凝土筑成墙段。如此连续施工,使各墙段相互连接形成一道完整的地下墙体,作为挡土防渗的施工支护结构,或(兼)作为承重的永久性地下结构。 第11.1.2条施工前,应具备详细的地质条件资料,其内容包括: 一、土层的分布是否存在孤石、土洞等; 二、地下水的水位(有无承压水)及变化情况,是否具有腐蚀性等; 三、基岩的构造、岩性、风化程度和层厚度,是否存在溶洞、断层破碎带等。 第11.1.3条由于成槽机械和浇筑设备的限制,地下连续墙的最小墙体厚度为600mm。 第一节导墙的施工 第11.2.1条槽段放线后,应沿地下连续墙轴线两侧构筑导墙,以防地表土的坍塌和保证成槽的精度。导墙要具有足够的刚度和承载能力,导墙一般用现浇钢筋混凝土制作。 第11.2.2条导墙的横断面一般可采用┑┏形、┘┗形或】【形等型式,导墙混凝土的厚度一般为200mm,导墙的高度一般取1.5m。导墙顶面略高于施工地面,并应高于地下水位1.5m以上。 第11.2.3条导墙宜建筑在密实的粘性土地基或杂填土地基上。如遇不良地基时,应进行换填粘土夯实处理。 第11.2.4条现浇钢筋混凝土导墙拆模后应立即在两片导墙间按一定间距加设支撑。然后才能回填。导墙背后和导墙内均应用粘性土回填。导墙背后要分层夯实。 第11.2.5条现浇钢筋混凝土导墙养护3d,强度达到设计强度的50%时,方可进行成槽作业。 第11.2.6条导墙的内间距要比地下连续墙设计厚度加宽50mm。 第11.2.7条导墙的施工允许偏差: 一、导墙的轴线允许偏差为±10mm; 二、导墙顶面应平整,要求平整度为30mm; 三、内外导墙净距允许偏差为±10mm。 第11.2.7 导墙一般采用单面配筋,宜采用螺纹筋,间距150mm~250mm。 第三节槽段的开挖 第11.3.1条挖槽机械应根据成槽地点的工程地质和水文地质情况、施工环境、设备能力、地下墙的结构、尺寸及质量要求等条件进行选用。一般常用的机具有挖斗式、冲击式、回转式。 第11.3.2条挖槽前,应预先将地下墙划分为若干个施工槽段。槽段平面形状常有一字形、L形(拐角处)、T形(与柱子相接处)等。有拐角的单元槽段,其拐角应不小于90°。槽段的长短应根据设计要求、土层性质、地下水情况、钢筋笼的轻重大小及设备起吊能力、混凝土供应能力等条件确定,一般为3~6m。 第11.3.3条地下墙槽段间应跳挖,宜相隔1~2段跳段进行。 第11.3.4条同一槽段内槽底开挖的深度宜一致,同幅不同深的槽段,必须先挖较深的槽段,后挖较浅的槽段。 第11.3.5条成槽机抓斗在成槽过程中必须保证垂直均匀地上下,尽量减少对侧壁的扰动。 第11.3.6条如遇坍孔,宜回填黄泥,待其自然沉淀后再进行开挖,同时在钢筋笼的靠基坑面上固定一夹板等措施进行处理。 第11.3.7条槽段终槽深度的控制应符合下列要求: 一、非承重墙的槽段、终槽深度必须保证设计深度; 二、承重墙的槽段终槽深度应根据设计入岩要求,参照地质剖面图上岩层标高,成槽时的钻进速度和鉴别槽底岩屑样品等综合确定。第11.3.8条槽段开挖完毕,应检查槽位、槽深、槽宽及槽壁垂直度,合格后方可进行清槽换浆工作。 第11.3.9条槽段的长度、厚度、倾斜度等应符合下列要求: 一、槽段长度允许偏差±2.0%; 二、槽段厚度允许偏差1.5%、-1.0%; 三、槽段垂直度允许偏差±1/50; 四、墙面上预埋件位置偏差不应大于100mm。

土钉墙支护计算计算书

土钉墙支护计算书计算依据: 1、《建筑基坑支护技术规程》JGJ120-2012 2、《建筑施工计算手册》江正荣编著 3、《实用土木工程手册》第三版杨文渊编著 4、《施工现场设施安全设计计算手册》谢建民编著 5、《地基与基础》第三版 土钉墙需要计算其土钉的抗拉承载力和土钉墙的整体稳定性。 一、参数信息 1、基本参数 放坡参数:

K a1=tan2(45°- φ1/2)= tan2(45-18/2)=0.528; K a2=tan2(45°- φ2/2)= tan2(45-18/2)=0.528; K a3=tan2(45°- φ3/2)= tan2(45-12/2)=0.656; K a4=tan2(45°- φ4/2)= tan2(45-20/2)=0.49; 第1层土:0-1.2m(+0) H1'=[∑γ0h0]/γi=[0]/20=0m P ak1上=γ1H1'K a1-2c1K a10.5=20×0×0.528-2×12×0.5280.5=-17.439kN/m2 P ak1下=γ1(h1+H1')K a1-2c1K a10.5=20×(1.2+0)×0.528-2×12×0.5280.5=-4.767kN/m2 第2层土:1.2-2m(+0) H2'=[∑γ1h1]/γsati=[24]/20=1.2m P ak2上=[γsat2H2'-γw(∑h1-h a)]K a2-2c2K a20.5+γw(∑h1-h a)=[20×1.2-10×(1.2-1.2)]×0.528-2×12×0.52 80.5+10×(1.2-1.2)=-4.767kN/m2 P ak2下

弹性地基梁法(“m”法)公式以及地下连续墙计算书

根据上海市标准《基坑工程设计规程》的规定,在施工临时工况下,地下连续墙的计算采用规范推荐的竖向弹性地基梁法(“m ”法)。弹性地基梁法取单位宽度的挡土墙作为竖向放置的弹性地基梁,支撑简化为与截面积、弹性模量、计算长度有关的弹簧单元,如图1为弹性地基梁法典型的计算简图。 图1 竖向弹性地基梁法计算简图 基坑开挖面或地面以下,水平弹簧支座的压缩弹簧刚度H K 可按下式计算: h b k K h H ..= z m k h .= 式中,H K 为土弹簧压缩刚度(kN/m);h k 为地基土水平向基床系数(kN/m 3);m 为基床系数的比例系数;z 为距离开挖面的深度;b 、h 分别为弹簧的水平向和垂直向计算间距(m)。 基坑内支撑的刚度根据支撑体系的布置和支撑构件的材质与轴向刚度等条件有关,按下式计算: B L A E K ....2α= 式中:K ——内支撑的刚度系数(kN/m/m); α——与支撑松弛有关的折减系数,一般取0.5~1.0;混凝土支撑或钢支撑施加预压力时,取1.0; E ——支撑构件材料的弹性模量(kN/m 2); A ——支撑构件的截面积(m 2); L ——支撑的计算长度(m); S ——支撑的水平间距(m)。 (2)水土压力计算模式 作用在弹性地基梁上的水土压力与土层分布以及地下水位有关系。水土压力计算采用水土分算,利用土体的有效重度和c 、?强度指标计算土压力,然后叠加水压力即得主动侧的水

土压力。土的c 、?值均采用勘察报告提供的固结快剪指标,地下连续墙变形、内力计算和各项稳定验算均采用水土分算原则,计算中地面超载原则上取为20kPa 。基坑周边地下连续墙配筋计算时分项系数取1.25。 ①土压力计算: 墙后主动土压力计算采用朗肯土压力计算理论,主动土压力强度(kPa )计算公式如下: a a i i a K c K h r q p 2)(-+=∑ 其中,i r 为计算点以上各土层的重度,地下水位以上取天然重度,地下水位以下取水下重度; i h 为各土层的厚度; a K 为计算点处的主动土压力系数,)2 45(tan 2φ-= a K ; φ,c 为计算点处土的总应力抗剪强度指标。 按三轴固结不排水试验或直剪固快试验峰值强度指标取用。 ②水压力计算:作用在支护结构上主动土压力侧的水压力在基坑内地下水位以上按静水压力三角形分布计算;在基坑内地下水位以下水压力按矩形分布计算(水压力为常量),并不计算作用于支护结构被动土压力侧的水压力,见下图所示。其中, w h ?为基坑内外水位差,w r 为水的重度,取为10kN/m 3。 图2 静水压力分布模式

土钉墙支护计算计算书

土钉墙支护计算书 本计算书参照《建筑基坑支护技术规程》JGJ120-99中国建筑工业出版社出版 《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》 第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 土钉墙需要计算其土钉的抗拉承载力和土钉墙的整体稳定性。 一、参数信息: 1、基本参数: 侧壁安全级别:二级 基坑开挖深度h(m): 7.700; 土钉墙计算宽度b'(m): 15.00; 土体的滑动摩擦系数按照tan计算,?为坡角水平面所在土层内的内摩擦角;条分块数:10; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m): 15.000; 基坑内侧水位到坑顶的距离(m): 15.000; 2、荷载参数: 序号类型面荷载q(kPa)荷载宽度b0(m)基坑边线距离b1(m) 1 满布 2.00 -- -- 3、地质勘探数据如下::

4、土钉墙布置数据: 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 1 7.70 2.54 12.00 土钉参数: 序号孑L径 (mm) 长度(m) 入射角(度) 竖向间距(m)水平间距(m) 1 120.00 4.00 15.00 1.50 2.00 2 120.00 7.00 15.00 1.50 2.00 3 120.00 5.00 15.00 1.50 2.00 、土钉(含锚杆)抗拉承载力的计算 单根土钉受拉承载力计算,根据《建筑基坑支护技术规程》JGJ 120-99, R=1.25 0T jk 1、其中土钉受拉承载力标准值T jk按以下公式计算: T jk= Z e k S xj S Zj/COS ja 其中 Z --荷载折减系数 ea jk --土钉的水平荷载 S xj、S zj --土钉之间的水平与垂直距离 a --土钉与水平面的夹角 按下式计算: Z =tan[Q(H)/2](1/(tan(( k)/2+-1/tan B )角加° ? /2) 其中/-土钉墙坡面与水平面的夹角。 ?-土的内摩擦角 e ajk按根据土力学按照下式计算:

地下连续墙施工工艺

2 地下连续墙施工工艺 2.1 工艺流程(见图 1) 2.2 导墙施工 2.2.1 导墙的结构形式 导墙可以由以下几种材料做成: (1)木材。厚5cm的木板和10cm×10cm方木,深度1.7~2.0m。 (2)砖。75号砂浆砌100号砖,常与混凝土做成混合结构。 (3)钢筋混凝土和混凝土,深度1.0~1.5m。 (4)钢板。 (5)型钢。 (6)预制钢筋-混凝土结构。 (7)水泥土。

导墙的位置、尺寸准确与否直接决定地下连续墙的平面位置和墙体尺寸能否满足设计要求。导墙间距应为设计墙厚加余量(4~6cm),允许偏差±5mm,轴线偏差±10mm,一般墙面倾斜度应大于1/500。到强的顶部应平整,以便架设钻机机架轨道,并作为钢筋笼、混凝土导管、结构管等得支撑面。导墙后的填土必须分层回填密实,以免被泥浆掏刷后发生孔壁坍塌。常见的导墙结构形式见图2。 2.2.2 导墙施工方法 (1)导墙是保证连续墙精度的首要条件,因此,在施工放线前做好技术交底,严格复合,保证定位放线准确。 (2)导墙施作时放宽40~60mm(沿中轴线向两侧,每边放宽20~30mm),是为了保证抓斗钻头及钢筋网片、锁扣管进出较为顺利。 (3)为保证连续墙既满足设计精度又不侵入车站建筑界限,同时保证内衬墙结构厚度,在放线时将连续墙中轴线向外多放120~130mm(一般连续墙内侧轮廓放宽100mm)。 (4)导墙垂直度控制在±7.5mm内,导墙内墙垂直度控制在±3mm内,导墙顶面平行,全长范围内高差控制在±5mm内,导墙轴向误差控制在±10mm之内。 (5)导墙上口高出地面100mm,以防垃圾和雨水冲入导槽内污染或者稀释泥浆。

土钉墙支护计算计算书

土钉墙支护计算书 永昌县同人商贸影视城工程;属于框架;地上5层;地下1层;建筑高度:32m;标准层层高:4.5m ;总建筑面积:17590平方米;总工期:500天;施工单位:金昌市隆凯建筑安装工程有限公司 本工程由永昌县万安房地产开发有限公司投资建设,华诚博远(北京)建筑规划设计有限公司设计,兰州岩土华夏有限公司勘察,金昌恒业建设工程监理有限公司监理,金昌市隆凯建筑安装工程有限公司组织施工;由李玉龙担任项目经理,张得文担任技术负责人。 本计算书参照《建筑基坑支护技术规程》 JGJ120-2012 中国建筑工业出版社出版《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 土钉墙需要计算其土钉的抗拉承载力和土钉墙的整体稳定性。 一、参数信息: 1、基本参数: 侧壁安全级别:一级 基坑开挖深度h(m):10.000; 土钉墙计算宽度b'(m):30.00; 土体的滑动摩擦系数按照tanφ计算,φ为坡角水平面所在土层内的内摩擦角; 条分块数:20; 不考虑地下水位影响; 2、荷载参数: 序号类型面荷载q(kPa) 基坑边线距离b 0(m) 宽度b 1 (m) 1 满布 15.00 -- --3、地质勘探数据如下::

序号土名称土厚度坑壁土的重度γ 坑壁土的内摩擦角φ 内聚力C 极限摩擦阻力饱和重度 (m) (kN/m3) (°) (kPa) (kPa) (kN/m3) 1 杂填土 1.60 18.00 30.00 15.00 112.00 1.00 2 角砾层 2.6 19.00 30.00 5.50 112.00 1.00 3 粉砂 2.30 19.50 30.50 30.00 112.00 20.00 4 角砾 1.40 21.50 37.50 12.50 112.00 1.00 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 1 9.00 4.00 30.00 土钉数据: 序号孔径(mm) 长度(m) 入射角(度) 竖向间距(m) 水平间距(m) 1 50.00 9.00 15.00 1.40 1.50 2 50.00 9.00 15.00 1.40 1.50 3 50.00 7.00 15.00 1.40 1.50 4 50.00 7.00 15.00 1.40 1.50 5 50.00 7.00 15.00 1.40 1.50 6 50.00 7.00 15.00 1.40 1.50 7 50.00 7.00 15.00 1.40 1.50 二、土钉(含锚杆)抗拉承载力的计算: 单根土钉受拉承载力计算,根据《建筑基坑支护技术规程》JGJ 120-2012, R=1.25γ 0T jk 1、其中土钉受拉承载力标准值T jk 按以下公式计算: T jk =ζe ajk s xj s zj /cosα j 其中ζ--荷载折减系数 e ajk --土钉的水平荷载 s xj 、s zj --土钉之间的水平与垂直距离

2016基坑支护设计计算书模板 (1)

第一章工程概要 1.1 工程概况 工程概况,附上基坑周边环境平面图 1.2场区工程地质条件 附上典型的地质剖面图 1.3 水文地质条件 1.4 主要设计内容 分析评价了场地的岩土工程条件。 根据场地的工程地质条件、水文地质条件,充分考虑到周边地层条件,选择技术上可行,经济上合理,并且具有整体性好、水平位移小,同时便于基坑开挖及后续施工的可靠支护措施,通过分析论证选择合适的基坑支护方案。 对基坑支护结构进行了具体设计计算,其中包括土压力计算、钻孔灌注桩的设计计算及锚杆的设计计算、稳定性验算(根据具体选择的支护方式,按照规范的要求进行设计,计算,和验算)。当不能满足稳定性要求的时候,需要重新设计计算或者做必要的处理,直至达到稳定性的安全要求。 选择经济、实效、合理的基坑降水与止水方案。 基坑支护工程的施工组织设计与工程监测设计。 1.5 设计依据 (1)甲方提供资料,岩土工程勘察报告(列出详细的清单) (2)现行规范、标准、图集等(按照规定的格式列出详细的清单,必须是现行规范)

第二章基坑支护方案设计 2.1 设计原则(摘自规范) 2.1.1 基坑支护结构应采用以分项系数表示的极限状态设计表达式进行设计 2.1.2 基坑支护结构极限状态可分为下列两类: a. 承载能力极限状态:对应于支护结构达到最大承载能力或土体失稳、过大变形导致支护结构或基坑周边环境破坏; b.正常使用极限状态:对应于支护结构的变形已妨碍地下结构施工或影响基坑周边环境的正常使用功能。 2.1.3 基坑支护结构设计应根据表3选用相应的侧壁安全等级及重要性系数。 表2.1 基坑侧壁安全等级及重要性系数 安全等级破坏后果 1.10 一级支护结构破坏,土体失稳或过大变形对基坑周边环境及地 下结构施工影响很严重 1.00 二级支护结构破坏,土体失稳或过大变形对基坑周边环境及地 下结构施工影响一般 0.90 三级支护结构破坏,土体失稳或过大变形对基坑周边环境及地 下结构施工影响不严重 注:有特殊要求的建筑基坑侧壁安全等级可根据具体情况另行决定 2.1.4 支护结构设计应考虑其结构水平变形、地下水的变化对周边环境的水平与竖向变形的影响,对于安全等级为一级和对周边环境变形有限定要求的二级建筑基坑侧壁,应根据周边环境的重要性、对变形的适应能力及土的性质等因素确定支护结构的水平变形限值。 2.1.5 当场地内有地下水时,应根据场地及周边区域的工程地质条件、水文地质条件、周边环境情况和支护结构与基础型式等因素,确定地下水控制方法。当场地周围有地表水汇流、排泻或地下水管渗漏时,应对基坑采取保护措施。 2.1.6 根据承载能力极限状态和正常使用极限状态的设计要求,基坑支护应按下列规定进行计算和验算:

基坑支护结构施工之地下连续墙【最新版】

基坑支护结构施工之地下连续墙 1、地下连续墙成槽施工应符合下列规定: (1)地下连续墙成槽前应设置钢筋混凝土导墙及施工道路。导墙养护期间,重型机械设备不应在导墙附近作业或停留; (2)地下连续墙成槽前应进行槽壁稳定性验算; (3)对位于暗河区、扰动土区、浅部砂性土中的槽段或邻近建筑物保护要求较高时,宜在连续墙施工前对槽壁进行加固; (4)地下连续墙单元槽段成槽施工宜采用跳幅间隔的施工顺序; (5)在保护设施不齐全、监管人不到位的情况下,严禁人员下槽、孔内清理障碍物。 2、地下连续墙成槽泥浆制备应符合下列规定: (1)护壁泥浆使用前应根据材料和地质条件进行试配,并进行室内性能试验,泥浆配合比宜按现场试验确定;

(2)泥浆的供应及处理系统应满足泥浆使用量的要求,槽内泥浆面不应低于导墙面0.3m,同时槽内泥浆面应高于地下水位0.5m以上。 3、槽段接头施工应符合下列规定: (1)成槽结束后应对相邻槽段的混凝土端面进行清刷,刷至底部,清除接头处的泥沙,确保单元槽段接头部位的抗渗性能; (2)槽段接头应满足混凝土浇筑压力对其强度和刚度的要求,安放时,应紧贴槽段垂直缓慢沉放至槽底。遇到阻碍时,槽段接头应在清除障碍后入槽; (3)周边环境保护要求高时,宜在地下连续墙接头处增加防水措施。 4、地下连续墙钢筋笼吊装应符合下列规定: (1)吊装所选用的吊车应满足吊装高度及起重量的要求,主吊和副吊应根据计算确定。钢筋笼吊点布置应根据吊装工艺通过计算确定,并应进行整体起吊安全验算,按计算结果配置吊具、吊点加固钢筋、吊筋等;

(2)吊装前必须对钢筋笼进行全面检查,防止有剩余的钢筋断头、焊接接头等遗留在钢筋笼上; (3)采用双机抬吊作业时,应统一指挥,动作应配合协调,载荷应分配合理; (4)履带吊起重钢筋笼时应先稍离地面试吊,确认钢筋笼已挂牢,钢筋笼刚度、焊接强度等满足要求时,再继续起吊; (5)履带吊机在吊钢筋笼行走时,载荷不得超过允许起重量的70%,钢筋笼离地不得大于500mm,并应栓好拉绳,缓慢行驶。 5、预制墙段的堆放和运输应符合下列规定: (1)预制墙段应达到设计强度100%后方可运输及吊放; (2)堆放场地应平整、坚实、排水通畅。垫块宜放置在吊点处,底层垫块面积应满足墙段自重对地基荷载的有效扩散。预制墙段叠放层数不宜超过3层,上下层垫块应放置在同一直线上; (3)运输叠放层数不宜超过2层。墙段装车后应采用紧绳器与车板固定,钢丝绳与墙段阳角接触处应有护角措施。异形截面墙段运输

地下连续墙设计计算书

目录 一工程概况................................................................................................................................ - 1 - 二工程地质条件........................................................................................................................ - 1 - 三支护方案选型........................................................................................................................ - 1 - 四地下连续墙结构设计............................................................................................................ - 2 - 1 确定荷载,计算土压力:............................................................................................ - 2 - γ,平均粘聚力c,平均内摩檫角?..... - 2 - 1.1计算○1○2○3○4○5○6层土的平均重度 1.2 计算地下连续墙嵌固深度................................................................................... - 2 - 1.3 主动土压力与水土总压力计算........................................................................... - 3 - 2 地下连续墙稳定性验算................................................................................................ - 5 - 2.1 抗隆起稳定性验算............................................................................................... - 5 - 2.2基坑的抗渗流稳定性验算.................................................................................... - 6 - 3 地下连续墙静力计算.................................................................................................... - 7 - 3.1 山肩邦男法........................................................................................................... - 7 - 3.2开挖计算................................................................................................................ - 9 - 4 地下连续墙配筋.......................................................................................................... - 11 - 4.1 配筋计算............................................................................................................. - 11 - 4.2 截面承载力计算................................................................................................ - 12 - 参考文献.................................................................................................................................... - 12 -

基坑支护方案(土钉墙,详细计算)

第一章基坑边坡计算 一、工程概况 (一)土质分布情况 ①1杂填土(Q4ml):由粉质粘土混较多的碎砖、碎石子等建筑垃圾及生活垃圾组成。层厚0.50~4.80米。 ①2素填土(Q4ml):主要由软~可塑状粉质粘土夹少量小碎石子、碎砖组成。层厚0.40~2.90米。 ①3淤泥质填土(Q4ml):。主要为原场地塘沟底部的淤泥,后经翻填。分布无规律,局部分布。层厚0.80~2.30米。 ②1粉质粘土(Q4al):可塑,局部偏软塑,中压缩性,切面稍有光泽,干强度中等,韧性中等,土质不均匀,该层分布不均,局部缺失。层顶标高5.00~13.85米,层厚0.50~8.20米。 ②2粉土夹粉砂(Q4al):中压缩性,干强度及韧性低。夹薄层粉砂,具水平状沉积层理,单层厚1.0~5.0cm,局部富集。该层分布不均匀,局部缺失。层顶标高1.30~ 10.93米,层厚0.80~4.50米。 ②3含淤泥质粉质粘土(Q4al):软~流塑,高压缩性,干强度、韧性中等偏低。局部夹少量薄层状粉土及粉砂,层顶标高1.87~10.03米,层厚1.00~13.50米。 ②4粉质粘土(Q4al):饱和,可塑,局部软塑,中压缩性,层顶标高-8.30~7.27米,层厚1.10~14.60米。 ③1粉质粘土(Q3al):可~硬塑,中压缩性。干强度高,韧性高。含少量铁质浸染斑点及较多的铁锰质结核。该层顶标高-11.83~13.23米,层厚1.40~14.00米。 ③2粉质粘土(Q3al)可塑,局部软塑,中压缩性。该层顶标高-18.83~6.83米,层厚2.20~23.70米。 ④粉质粘土混砂砾石(Q3al):可塑,局部软塑,中偏低压缩性,干强度中等,韧性中等。该层顶标高-26.73~-10.64米,层厚0.50~6.50米。 (二)支护方案的选择 根据本工程现场实际情况,基坑各部位确定采取如下支护措施

地下连续墙“两墙合一”设计问题探讨

龙源期刊网 https://www.360docs.net/doc/d113282644.html, 地下连续墙“两墙合一”设计问题探讨 作者:杨文旻 来源:《中国房地产业·下半月》2016年第06期 【摘要】本文主要探讨地下连续墙“两墙合一”的相关设计问题。包括“两墙合一”的受力特性、节点设计以及防水措施。引入实际工程应用情况,说明其应用的合理性。为地下连续墙“两墙合一”的推广及应用提供参考。 【关键词】地下连续墙;两墙合一;受力特性;节点设计;防水措施 地下连续墙用于基础埋深大、地质条件差、水位高、场地周边建筑较贴等地下工程施工情况,有着明显的优势。目前地下连续墙主要充当施工期间的临时支护,当地下施工完成并回填后就退出舞台,后期建筑结构使用过程中不再考虑地下连续墙的作用,造成一定浪费。地下连续墙兼做主体结构参与正常使用阶段的结构受力,有着重大的意义。实现地下连续墙兼做主体结构,引出了“两墙合一”的概念。“两墙合一”即在地下施工阶段地下连续墙作为围护支挡结构,地下施工完成后,开始充当地下室外墙,通过设置与地下主体结构梁板的有效连接,成为主体结构的一部分,在正常使用阶段参与主体结构受力。随着地下连续墙作为主体结构的应用,实际工程对“两墙合一”的设计、施工以及防水措施等方面[1]提出了严格的要求。本文主要介绍地下连续墙“两墙合一”设计方面的问题。 1、“两墙合一”受力特性 地下连续墙作为主体结构的一部分,其荷载及受力特性随各个阶段而不同。 首先,地下连续墙在施工阶段作为基坑支护结构,其主要作用为临时挡土与止水,此时连续墙主要承受土压力、水压力。连续墙可近似为下端固支,上端铰支的梁,其底部固支部位内力最大。当连续墙埋深较深时,底部内力大,需增加连续墙厚度。此时,可在地下室范围内增加多层水平支撑,减少计算跨度,降低底部内力,达到优化设计的目的。还可以在连续墙外侧增加临时锚杆,用于平衡连续墙内力。然而后者受现场施工环境限制,对于周边建筑物较多或地基土质较差时无法使用。 其次,地下连续墙在主体结构竣工后,其主要功能在于充当地下室外墙,同时作为地下室楼层梁板的边支座,起到一定的竖向构件[2]作用。此时连续墙主要承受土压力、水压力以及 主体结构的竖向、水平荷载产生的内力。连续墙可近似为下端固支,上端铰支,中间多道侧向约束的连续梁。除了承受土压力、水压力及路面荷载外,还承受主体结构传递过来的竖向与水平力。

土钉墙支护计算说明书

土钉墙支护计算书 一、计算依据 1、《建筑基坑支护技术规程》JGJ120-2012 2、《建筑施工计算手册》江正荣编著 3、《实用土木工程手册》第三版杨文渊编著 4、《施工现场设施安全设计计算手册》谢建民编著 二、计算参数

1 2 土钉参数 序号 直径d(mm) 长度 l(m) 入射角α(°) 横向间距Sx(m) 竖向间距Sz(m) 土钉杆体材料 杆体截面积As(mm 2) 抗拉强度标准值 fyk(N/mm 2) 抗拉强度设计值 fy(N/mm 2) 1 2 120 120 6 7 15 15 1 1 1.5 3 钢筋 钢管 314 314 400 400 360 360 三、土钉承载力计算 1、主动土压力计算 剖面图

1)主动土压力系数 Kai=tan2(45°- φi/2) 第1层土: K a1=tan2(45°-18/2)=0.527864 第2层土: K a2=tan2(45°-12/2)=0.65575 第3层土: K a3=tan2(45°-20/2)=0.490291 2)土压力、地下水产生的水平荷载 各层土所受的土压力: (1)地表处: P ak1上=qK a1-2c1K a10.5=10*0.527864-2*12*0.5278640.5=-12.1584kN/m2 (2)第2层土: P ak2上=(q+γ1*h1)K a1-2c1K a10.5=46*0.527864-2*12*0.5278640.5=6.84473kN/m2 P ak2下=(q+γ1*h1)K a2-2c2K a20.5=46*0.65575-2*10*0.655750.5=13.9688kN/m2 (3)第3层土: P ak3=(q+γ1*h1+γ2*h2)K a2-2c2K a20.5=112*0.65575-2*10*0.655750.5=57.2483kN/m2 3)水平荷载 (1)第1层土: E ak1=h1P ak1b a/1=2*-12.1584*1/1=-24.3168kN (2)第2层土: E ak2=h2(P ak2上+P ak2下)b a/2=2*(6.84473+13.9688)*1/2=20.8136kN

地下连续墙计算

五里河站明挖施工方法的确定 明挖法即为采用围护结构做围挡,主体结构为露天作业的一种施工方法。该方法能较好地利用地下空间, 紧凑合理, 管理方便。同时具有施工作业面宽, 方法简单, 施工安全, 技术成熟, 工程进度周期短, 工程质量易于保证及工程造价低等优点。沈阳市地铁二号线五里河站位于南二环路与青年大街交叉南侧, 青年大街东侧的绿地内, 为浑河北岸约200 米远处。地面以上车站周围现状为绿地和商业区待用地。地面以下有通信电缆管线。但埋深较浅, 对车站埋深不起控制作用, 因施工厂地开阔, 可采用明挖法施工方案。 明挖法施工方案工序分为四个步骤进行: 先进行维护结构施工, 内部土方开挖, 工程结构施工, 恢复管线和覆土。从施工步骤的内容上看: 围护结构部分是地铁站实施的第一个步骤, 它在工程建设中起着至关重要的作用, 其方案确定的合理与否将直接影响到明挖法施工的成败, 因此根据不同现场情况和其地质条件来选定与之相适用的围护结构方案, 这样才能确保地铁工程安全, 经济有序的进行。 2 主体围护结构方案的确定 地铁工程中常用的围护结构有: 排桩围护结构, 地下连续墙围护结构和土钉围护结构。当基坑较线5 米以内及侧压力较小时,一般不设置水平支撑构件。当基坑较深时, 在围护结构坑内侧就需要设置多层多道水平支撑构件, 其目的是为了降低围护结构的水平变位。 排桩围护结构是以某种桩型按队列式布置组成的基坑支护结构。排桩围护结构特点是整体性差, 但施工方便, 投资小, 工程造价低。它适用于边坡稳定性好, 变形小及地下水位较低的地质条件。由于其防水防渗性能差,地铁工程采用排桩围护结构时, 一般采用坑外降水的方法来降地下水, 其排水费用较大。 地下连续墙结构: 是用机械施工方法成槽浇灌, 钢筋混凝土形成的地下墙体, 其墙厚应根据基坑深度和侧土 压力的大小来确定, 常用为800 ̄1200mm 厚。其特点是: 整体性好, 刚度大, 对周围建筑结构的安全性影响小, 防水抗渗性能良好。它不仅适用于软弱流动性能较大的土质, 同时还适于多种不同情况的地质条件, 但其造价高, 投资大。由于其结构的防水防渗性能好, 采用此结构做围护结构时, 一般用坑内降水法降地下水, 其降水费用相对低。 土钉墙结构: 是在基坑开挖过程中, 将土钉置入原状土体中, 并在支护面上喷射钢筋混凝土面层, 通过土钉、土体和喷射的混凝土面层的共同作用形成的结构。这种结构适用于浅基坑地下水位以上或经过人工降水后的粘性土、粉土、杂填土及非松散砂土和卵石土等。其结构特点是提高土体的整体稳定性, 边开挖边支护, 不占用独立工期, 施工安全快捷。设备简单, 操作方便, 造价低。 五里河站由于其施工场地开阔, 地下土质以砂层为主, 其土质稳定性好, 变形小, 但此站距离浑河近地下水位高, 如果采用排桩围护结构坑外降水方案降水量过大, 降水费用太高, 且该站地铁的标准段基坑深度为32.45m, 基坑较深。故采用防水性能较好的地下连续墙围护结构较排桩结构而言能更安全合理, 降水方式为坑内降水。由于车站基坑较深, 其坑上围护墙上设置了六道水平支撑杆件, 以防边坡侧壁位移过大, 影响主体结构的正常施工。基坑情况见图一。

相关文档
最新文档