高考数学基础训练8

合集下载

《导数》基础训练题(1)答案

《导数》基础训练题(1)答案

高考数学模拟卷基础题型训练(1)姓名:导数概念公式【笔记】课堂练习1、在曲线2y x =上切线倾斜角为4π的点是( D ) A .(0,0) B .(2,4) C .11(,)416 D .11(,)24【笔记】 2、曲线221y x =+在点(1,3)P -处的切线方程为( A )A .41y x =--B .47y x =--C .41y x =-D .47y x =+【笔记】 3、函数在322y x x =-+在2x =处的切线的斜率为 10【笔记】4、函数1y x x=+的导数是( A ) A .211x -B .11x -C .211x + D .11x+ 【笔记】5、函数cos xy x=的导数是( C ) A .2sin x x - B .sin x - C .2sin cos x x x x +- D . 2cos cos x x xx+- 【笔记】6、函数sin (cos 1)y x x =+的导数是( C )A .cos2cos x x -B .cos2sin x x +C .cos2cos x x +D .2cos cos x x +【笔记】课后作业(1) 姓名:1、32()32f x ax x =++,若'(1)4f -=,则a 的值等于( D )A .319 B .316 C .313 D .3102、函数sin 4y x =在点(,0)M π处的切线方程为( D )A .y x π=-B .0y =C . 4y x π=-D .44y x π=- 3、求下列函数的导数:(1)12y x =; (2)41y x=; (3)y 【答案】(1)11'12x y =, (2)54--=x y ;(3)5253-=x y4、若3'0(),()3f x x f x ==,则0x 的值为_________1±________5、函数sin x y x =的导数为___________2'sin cos xx x x y -=__________ 6、与曲线y =1ex 2相切于P (e ,e)处的切线方程是(其中e 是自然对数的底)高考数学模拟卷基础题型训练(2)姓名:1、已知曲线3:C y x =。

【步步高】2021届高考数学第一轮温习(典型题+详解)立体几何专项基础训练(1)

【步步高】2021届高考数学第一轮温习(典型题+详解)立体几何专项基础训练(1)

中档题目强化练——立体几何A组专项基础训练(时刻:40分钟)一、选择题1.以下关于几何体的三视图的论述中,正确的选项是( )A.球的三视图老是三个全等的圆B.正方体的三视图老是三个全等的正方形C.水平放置的各面均为正三角形的四面体的三视图都是正三角形D.水平放置的圆台的俯视图是一个圆答案A解析画几何体的三视图要考虑视角,但关于球不管选择如何的视角,其三视图老是三个全等的圆.2.设α、β、γ是三个互不重合的平面,m、n是两条不重合的直线,以下命题中正确的选项是( )A.若α⊥β,β⊥γ,那么α⊥γB.若m∥α,n∥β,α⊥β,那么m⊥nC.若α⊥β,m⊥α,那么m∥βD.若α∥β,m⊄β,m∥α,那么m∥β答案D解析关于A,假设α⊥β,β⊥γ,α,γ能够平行,也能够相交,A错;关于B,假设m∥α,n∥β,α⊥β,那么m,n能够平行,能够相交,也能够异面,B错;关于C,假设α⊥β,m⊥α,那么m能够在平面β内,C错;易知D正确.3.设α、β、γ为平面,l、m、n为直线,那么m⊥β的一个充分条件为( )A.α⊥β,α∩β=l,m⊥lB.n⊥α,n⊥β,m⊥αC.α∩γ=m,α⊥γ,β⊥γD.α⊥γ,β⊥γ,m⊥α答案B解析如图①知A错;如图②知C错;如图③在正方体中,双侧面α与β相交于l,都与底面γ垂直,γ内的直线m⊥α,但m与β不垂直,故D错;由n⊥α,n⊥β,得α∥β.又m⊥α,那么m⊥β,故B正确.4.如图,在正四棱柱(底面是正方形的直四棱柱)ABCD -A 1B 1C 1D 1中,E 、F别离是AB 1、BC 1的中点,那么以下结论不成立的是( )A.EF 与BB 1垂直B.EF 与BD 垂直C.EF 与CD 异面D.EF 与A 1C 1异面 答案 D解析 连接B 1C ,AC ,那么B 1C 交BC 1于F ,且F 为B 1C 的中点,又E 为AB 1的中点,因此EF 綊12AC , 而B 1B ⊥平面ABCD ,因此B 1B ⊥AC ,因此B 1B ⊥EF ,A 正确;又AC ⊥BD ,因此EF ⊥BD ,B 正确;显然EF 与CD 异面,C 正确;由EF 綊12AC ,AC ∥A 1C 1, 得EF ∥A 1C 1.故不成立的选项为D.5.假设某几何体的三视图如下图,那么此几何体的体积是( ) A.2 B.32 C.3 D.52 答案 A解析 由三视图知原几何体可明白得为三个部份拼接而成,其中一个棱长为1的正方体,另外两个为正方体的一半.因此易患整体积为2.二、填空题6.三棱锥P -ABC 中,PA ⊥底面ABC ,PA =3,底面ABC 是边长为2的正三角形,那么三棱锥P -ABC 的体积等于________.答案 3解析 ∵PA ⊥底面ABC ,∴PA 为三棱锥P -ABC 的高,且PA =3.∵底面ABC 为正三角形且边长为2,∴底面面积为12×22×sin 60°=3,∴V P -ABC =13×3×3= 3.7.已知四棱锥P —ABCD 的底面ABCD 是矩形,PA ⊥底面ABCD ,点E 、F 别离是棱PC 、PD 的中点,那么 ①棱AB 与PD 所在直线垂直;②平面PBC 与平面ABCD 垂直;③△PCD 的面积大于△PAB 的面积;④直线AE 与直线BF 是异面直线.以上结论正确的选项是________.(写出所有正确结论的编号)答案 ①③解析 由条件可得AB ⊥平面PAD ,∴AB ⊥PD ,故①正确;假设平面PBC ⊥平面ABCD ,由PB ⊥BC ,得PB ⊥平面ABCD ,从而PA ∥PB ,这是不可能的,故②错;S △PCD =12CD ·PD ,S △PAB =12AB ·PA , 由AB =CD ,PD >PA 知③正确;由E 、F 别离是棱PC 、PD 的中点,可得EF ∥CD ,又AB ∥CD ,∴EF ∥AB ,故AE 与BF 共面,④错.8.三棱锥S -ABC 中,∠SBA =∠SCA =90°,△ABC 是斜边AB =a 的等腰直角三角形,那么以下结论中: ①异面直线SB 与AC 所成的角为90°;②直线SB ⊥平面ABC ;③平面SBC ⊥平面SAC ;④点C 到平面SAB 的距离是12a . 其中正确结论的序号是________.答案 ①②③④解析 由题意知AC ⊥平面SBC ,故AC ⊥SB ,SB ⊥平面ABC ,平面SBC ⊥平面SAC ,①②③正确;取AB 的中点E ,连接CE ,(如图)可证得CE ⊥ 平面SAB ,故CE 的长度即为C 到平面SAB 的距离12a ,④正确.三、解答题9.如图,已知在直四棱柱ABCD -A 1B 1C 1D 1中,AD ⊥DC ,AB ∥DC ,DC =DD 1=2AD =2AB=2.(1)求证:DB ⊥平面B 1BCC 1;(2)设E 是DC 上一点,试确信E 的位置,使得D 1E ∥平面A 1BD ,并说明理由.(1)证明 在Rt△ABD 中,AB =AD =1,BD =2,又∵BC =2,CD =2,∴∠DBC =90°,即BD ⊥BC .又BD ⊥BB 1,B 1B ∩BC =B ,∴BD ⊥平面B 1BCC 1.(2)解 DC 的中点即为E 点,连接D 1E ,BE ,∵DE ∥AB ,DE =AB ,∴四边形ABED 是平行四边形.∴AD 綊BE .又AD 綊A 1D 1,∴BE 綊A 1D 1,∴四边形A 1D 1EB 是平行四边形.∴D 1E ∥A 1B .∵D 1E ⊄平面A 1BD ,A 1B ⊂平面A 1BD ,∴D 1E ∥平面A 1BD .10.在正方体ABCD -A ′B ′C ′D ′中,棱AB ,BB ′,B ′C ′,C ′D ′的中点别离是E ,F ,G ,H ,如下图.(1)求证:AD ′∥平面EFG ;(2)求证:A ′C ⊥平面EFG ;(3)判定点A ,D ′,H ,F 是不是共面?并说明理由.(1)证明连接BC′.在正方体ABCD-A′B′C′D′中,AB=C′D′,AB∥C′D′,因此四边形ABC′D′是平行四边形,因此AD′∥BC′.因为F,G别离是BB′,B′C′的中点,因此FG∥BC′,因此FG∥AD′.因为EF,AD′是异面直线,因此AD′⊄平面EFG.因为FG⊂平面EFG,因此AD′∥平面EFG.(2)证明连接B′C.在正方体ABCD-A′B′C′D′中,A′B′⊥平面BCC′B′,BC′⊂平面BCC′B′,因此A′B′⊥BC′.在正方形BCC′B中,B′C⊥BC′,因为A′B′⊂平面A′B′C,B′C⊂平面A′B′C,A′B′∩B′C=B′,因此BC′⊥平面A′B′C.因为A′C⊂平面A′B′C,因此BC′⊥A′C.因为FG∥BC′,因此A′C⊥FG,同理可证A′C⊥EF.因为EF⊂平面EFG,FG⊂平面EFG,EF∩FG=F,因此A′C⊥平面EFG.(3)解点A,D′,H,F不共面.理由如下:假设A,D′,H,F共面,连接C′F,AF,HF.由(1)知,AD′∥BC′,因为BC′⊂平面BCC′B′,AD′⊄平面BCC′B′.因此AD′∥平面BCC′B′.因为C′∈D′H,因此平面AD′HF∩平面BCC′B′=C′F.因为AD′⊂平面AD′HF,因此AD′∥C′F.因此C′F∥BC′,而C′F与BC′相交,矛盾.因此点A,D′,H,F不共面.B 组 专项能力提升(时刻:25分钟)1.已知直线l 1,l 2与平面α,那么以下结论中正确的选项是 ( )A.若l 1⊂α,l 2∩α=A ,那么l 1,l 2为异面直线B.若l 1∥l 2,l 1∥α,那么l 2∥αC.若l 1⊥l 2,l 1⊥α,那么l 2∥αD.若l 1⊥α,l 2⊥α,那么l 1∥l 2答案 D解析 关于选项A ,当A ∈l 1时,结论不成立;关于选项B 、C ,当l 2⊂α时,结论不成立.2.已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题:①α∥β⇒l ⊥m ; ②α⊥β⇒l ∥m ;③l ∥m ⇒α⊥β; ④l ⊥m ⇒α∥β.其中正确的命题有 ( )A.①②B.①③C.②④D.③④答案 B解析 ①中, ⎭⎪⎬⎪⎫α∥βl ⊥α⇒ ⎭⎪⎬⎪⎫l⊥βm ⊂β⇒l ⊥m ,故①正确;②中,l 与m 相交、平行、异面均有可能,故②错;③中, ⎭⎪⎬⎪⎫l ∥m l ⊥α⇒ ⎭⎪⎬⎪⎫m ⊥αm ⊂β⇒α⊥β,故③正确;④中,α与β也有可能相交,故④错误.3.如下图,是一几何体的平面展开图,其中ABCD 为正方形,E 、F 别离为PA 、PD 的中点.在此几何体中,给出下面四个结论:①直线BE 与直线CF 异面;②直线BE 与直线AF 异面;③直线EF ∥平面PBC ;④平面BCE ⊥平面PAD .其中正确的有( ) A.①②B.②③C.①④D.②④ 答案 B解析 关于①,因为E 、F 别离是PA 、PD 的中点,因此EF ∥AD .又因为AD ∥BC ,因此EF ∥BC .因此BE 与CF 共面.故①不正确.关于②,因为BE 是平面APD 的斜线,AF 是平面APD 内与BE 不相交的直线,因此BE 与AF 不共面.故②正确 .关于③,由①,知EF ∥BC ,因此EF ∥平面PBC .故③正确.关于④,条件不足,无法判定两平面垂直.4.有一个内接于球的四棱锥P -ABCD ,假设PA ⊥底面ABCD ,∠BCD =π2,∠ABC ≠π2,BC =3,CD =4,PA =5,那么该球的表面积为________.答案 50π解析 由∠BCD =90°知BD 为底面ABCD 外接圆的直径,那么2r =32+42=5. 又∠DAB =90°⇒PA ⊥AB ,PA ⊥AD ,BA ⊥AD .从而把PA ,AB ,AD 看做长方体的三条棱,设外接球半径为R ,那么(2R )2=52+(2r )2=52+52,∴4R 2=50,∴S 球=4πR 2=50π.5. 如图,直三棱柱ABC -A 1B 1C 1中,AC =BC =1,∠ACB =90°,AA 1=2,D 是A 1B 1中点.(1)求证:C 1D ⊥平面AA 1B 1B ;(2)当点F 在BB 1上什么位置时,会使得AB 1⊥平面C 1DF ?并证明你的结 论.(1)证明 如图,∵ABC -A 1B 1C 1是直三棱柱,∴A 1C 1=B 1C 1=1,且∠A 1C 1B 1=90°.又D 是A 1B 1的中点,∴C 1D ⊥A 1B 1.∵AA 1⊥平面A 1B 1C 1,C 1D ⊂平面A 1B 1C 1,∴AA 1⊥C 1D ,又AA1∩A1B1=A1,∴C1D⊥平面AA1B1B.(2)解作DE⊥AB1交AB1于E,延长DE交BB1于F,连接C1F,则AB1⊥平面C1DF,点F即为所求.∵C1D⊥平面AA1BB,AB1⊂平面AA1B1B,∴C1D⊥AB1.又AB1⊥DF,DF∩C1D=D,∴AB1⊥平面C1DF.。

2020届高考数学基础训练(一)

2020届高考数学基础训练(一)

2020届高考数学基础训练(一)一、选择题(本大题共8小题,共40.0分)1.设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A. 1B.C.D. 22.设集合A={x|x2-4x+3<0},B={x|2x-3>0},则A∩B=()A. B. C. D.3.执行如图程序框图,如果输入的a=4,b=6,那么输出的n=()A.3B. 4C. 5D. 64.将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A. B.C. D.5.已知向量=(1,m),=(3,-2),且(+)⊥,则m=()A. B. C. 6 D. 86.设a∈R,则“a>1”是“a2>1”的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件7.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A. B. C. D.8.已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A. B. C. D.二、填空题(本大题共3小题,共15.0分)9.△ABC的内角A,B,C的对边分别为a,b,c,若cos A=,cos C=,a=1,则b=______.10.在[-1,1]上随机地取一个数k,则事件“直线y=kx与圆(x-5)2+y2=9相交”发生的概率为______.11.设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为______.三、解答题(本大题共4小题,共48.0分)12.在△ABC中,a2+c2=b2+ac.(Ⅰ)求∠B的大小;(Ⅱ)求cos A+cos C的最大值.13.如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.14.20名学生某次数学考试成绩(单位:分)的频率分布直方图如图:(Ⅰ)求频率分布直方图中a的值;(Ⅱ)分别求出成绩落在[50,60)与[60,70)中的学生人数;(Ⅲ)从成绩在[50,70)的学生任选2人,求此2人的成绩都在[60,70)中的概率.15.已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.答案和解析1.【答案】B【解析】【分析】本题主要考查复数模长的计算,根据复数相等求出x,y的值是解决本题的关键.根据复数相等求出x,y的值,结合复数的模长公式进行计算即可.【解答】解:∵(1+i)x=1+yi,∴x+xi=1+yi,即,解得,即|x+yi|=|1+i|=,故选B.2.【答案】D【解析】【分析】解不等式求出集合A,B,结合交集的定义,可得答案.本题考查的知识点是集合的交集及其运算,难度不大,属于基础题.【解答】解:∵集合A={x|x2-4x+3<0}=(1,3),B={x|2x-3>0}=(,+∞),∴A∩B=(,3),故选D.3.【答案】B【解析】解:模拟执行程序,可得a=4,b=6,n=0,s=0执行循环体,a=2,b=4,a=6,s=6,n=1不满足条件s>16,执行循环体,a=-2,b=6,a=4,s=10,n=2 不满足条件s>16,执行循环体,a=2,b=4,a=6,s=16,n=3 不满足条件s>16,执行循环体,a=-2,b=6,a=4,s=20,n=4 满足条件s>16,退出循环,输出n的值为4.故选:B.模拟执行程序,根据赋值语句的功能依次写出每次循环得到的a,b,s,n的值,当s=20时满足条件s>16,退出循环,输出n的值为4.本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的a,b,s的值是解题的关键,属于基础题.4.【答案】D【解析】【分析】本题考查三角函数的图象平移变换,注意相位变换针对自变量x而言,考查运算能力,属于基础题和易错题,求得函数y的最小正周期,即有所对的函数式为y=2sin[2(x-)+],化简整理即可得到所求函数式.【解答】解:函数y=2sin(2x+)的周期为T==π,由题意即为函数y=2sin(2x+)的图象向右平移个单位,可得图象对应的函数为y=2sin[2(x-)+],即有y=2sin(2x-).故选D.5.【答案】D【解析】解:∵向量=(1,m),=(3,-2),∴+=(4,m-2),又∵(+)⊥,∴12-2(m-2)=0,解得:m=8,故选:D.求出向量+的坐标,根据向量垂直的充要条件,构造关于m的方程,解得答案.本题考查的知识点是向量垂直的充要条件,难度不大,属于基础题.6.【答案】A【解析】解:由a2>1得a>1或a<-1,即“a>1”是“a2>1”的充分不必要条件,故选:A.根据不等式的关系,结合充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,利用不等式的关系结合充分条件和必要条件的定义是解决本题的关键,比较基础.7.【答案】A【解析】【分析】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选A.8.【答案】A 【解析】【分析】利用△AF1B的周长为4,求出a=,根据离心率为,可得c=1,求出b,即可得出椭圆的方程.本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.【解答】解:∵△AF1B的周长为4,∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C的方程为+=1.故选A.9.【答案】【解析】解:由cosA=,cosC=,可得sinA===,sinC===,sinB=sin(A+C)=sinAcosC+cosAsinC=×+×=,由正弦定理可得b===.故答案为:.运用同角的平方关系可得sinA,sinC,再由诱导公式和两角和的正弦公式,可得sinB,运用正弦定理可得b=,代入计算即可得到所求值.本题考查正弦定理的运用,同时考查两角和的正弦公式和诱导公式,以及同角的平方关系的运用,考查运算能力,属于中档题.10.【答案】【解析】【分析】利用圆心到直线的距离小于半径可得到直线与圆相交,可求出满足条件的k,最后根据几何概型的概率公式可求出所求.本题主要考查了几何概型的概率,以及直线与圆相交的性质,解题的关键是弄清概率类型,同时考查了计算能力,属于基础题.【解析】解:圆(x-5)2+y2=9的圆心为(5,0),半径为3.圆心到直线y=kx的距离为,要使直线y=kx与圆(x-5)2+y2=9相交,则<3,解得-<k <.∴在区间[-1,1]上随机取一个数k,使直线y=kx与圆(x-5)2+y2=9相交的概率为=.故答案为.11.【答案】64【解析】解:等比数列{a n}满足a1+a3=10,a2+a4=5,可得q(a1+a3)=5,解得q=.a1+q2a1=10,解得a1=8.则a1a2…a n=a1n•q1+2+3+…+(n-1)=8n •==,当n=3或4时,表达式取得最大值:=26=64.故答案为:64.求出数列的等比与首项,化简a1a2…a n,然后求解最值.本题考查数列的性质数列与函数相结合的应用,转化思想的应用,考查计算能力.12.【答案】解:(Ⅰ)∵在△ABC中,a2+c2=b2+ac.∴a2+c2-b2=ac,∴cos B===,∴B=;(Ⅱ)由(I)得:C=-A,∴cos A+cos C=cos A+cos(-A)=cos A-cos A+sin A=cos A+sin A=sin(A+),∵A∈(0,),∴A+∈(,π),故当A+=时,sin(A+)取最大值1,即cos A+cos C的最大值为1.【解析】本题考查的知识点是余弦定理,和差角公式,正弦型函数的图象和性质,难度中档.(Ⅰ)根据已知和余弦定理,可得cosB=,进而得到答案;(Ⅱ)由(I)得:C=-A,结合正弦型函数的图象和性质,可得cosA+cosC的最大值.13.【答案】解:(1)∵D,E分别为AB,BC的中点,∴DE为△ABC的中位线,∴DE∥AC,∵ABC-A1B1C1为棱柱,∴AC∥A1C1,∴DE∥A1C1,∵A1C1⊂平面A1C1F,且DE⊄平面A1C1F,∴DE∥A1C1F;(2)在ABC-A1B1C1的直棱柱中,∴AA1⊥平面A1B1C1,∴AA1⊥A1C1,又∵A1C1⊥A1B1,且AA1∩A1B1=A1,AA1、A1B1⊂平面AA1B1B,∴A1C1⊥平面AA1B1B,∵DE∥A1C1,∴DE⊥平面AA1B1B,又∵A1F⊂平面AA1B1B,∴DE⊥A1F,又∵A1F⊥B1D,DE∩B1D=D,且DE、B1D⊂平面B1DE,∴A1F⊥平面B1DE,又∵A1F⊂平面A1C1F,∴平面B1DE⊥平面A1C1F.【解析】(1)通过证明DE∥AC,进而DE∥A1C1,据此可得直线DE∥平面A1C1F1;(2)通过证明A1F⊥DE结合题目已知条件A1F⊥B1D,进而可得平面B1DE⊥平面A1C1F.本题考查直线与平面平行的证明,以及平面与平面相互垂直的证明,把握常用方法最关键,难度不大.14.【答案】解:(Ⅰ)根据直方图知组距=10,由(2a+3a+6a+7a+2a)×10=1,解得a=0.005;(Ⅱ)成绩落在[50,60)中的学生人数为2×0.005×10×20=2,成绩落在[60,70)中的学生人数为3×0.005×10×20=3;(Ⅲ)记成绩落在[50,60)中的2人为A,B,成绩落在[60,70)中的3人为C,D,E,则成绩在[50,70)的学生任选2人的基本事件有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共10个,其中2人的成绩都在[60,70)中的基本事件有CD,CE,DE共3个,故所求概率为P=.【解析】本题考查频率分布直方图的应用以及古典概型的概率的应用,属于中档题.(Ⅰ)根据频率分布直方图求出a的值;(Ⅱ)由图可知,成绩在[50,60)和[60,70)的频率分别为0.1和0.15,用样本容量20乘以对应的频率,即得对应区间内的人数,从而求出所求;(Ⅲ)分别列出满足[50,70)的基本事件,再找到在[60,70)的事件个数,根据古典概率公式计算即可.15.【答案】解:(1)∵ρ=2cosθ,∴ρ2=2ρcosθ,∴x2+y2=2x,故它的直角坐标方程为(x-1)2+y2=1;(2)直线l:(t为参数),普通方程为,(5,)在直线l上,过点M作圆的切线,切点为T,则|MT|2=(5-1)2+3-1=18,由切割线定理,可得|MT|2=|MA|•|MB|=18.【解析】(1)曲线的极坐标方程即ρ2=2ρcosθ,根据极坐标和直角坐标的互化公式得x2+y2=2x,即得它的直角坐标方程;(2)直线l的方程化为普通方程,利用切割线定理可得结论.本题主要考查把极坐标方程化为直角坐标方程的方法,属于基础题.。

文科高考数学基础训练19,20,21

文科高考数学基础训练19,20,21

文科高考数学基础训练(19)1.将正三棱柱截去三个角(如图1所示A 、B 、C 分别是GHI ∆三边的中点)得到的几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )2. 命题“若函数()log (0,1)a f x x a a =>≠在其定义域内是减函数,则log 20a <”的逆否命题是( )A 、若log 20a≥,则函数()log (0,1)a f x x a a =>≠在其定义域内不是减函数 B 、若log 20a<,则函数()log (0,1)a f x x a a =>≠在其定义域内不是减函数 C 、若log 20a≥,则函数()log (0,1)a f x x a a =>≠在其定义域内是减函数 D 、若log 20a<,则函数()log (0,1)a f x x a a =>≠在其定义域内是减函数 3.设数列{}n a 满足11a =,22a =,121(2)3n n n a a a --=+(3,4,)n = 。

求数列{}n a 的通项公式;文科高考数学基础训练(20)1. 设a R ∈,若函数xy e ax =+,x R ∈,有大于零的极值点,则( ) A 、1a<- B 、1a >- C 、1a e <-D 、1a e>- 2.设,a b R ∈,若||0a b ->,则下列不等式中正确的是( ) A 、0b a-> B 、330a b +< C 、220a b -< D 、0b a +>3. 如图5所示,四棱锥P-ABCD 的底面ABCD 是半径为R 的圆的内接四边形,其中BD是圆的直径,60,45,~ABD BDC ADP BAD ∠=∠=∆∆ 。

(1)求线段PD 的长;(2)若PC,求三棱锥P-ABC 的体积。

文科高考数学基础训练(21)1. 为了调查某厂工人生产某种产品的能力,随机抽查 了20位工人某天生产该产品的数量.产品数量的分组区间为[)45,55,[)[)[)55,65,65,75,75,85,[)85,95由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在[)55,75的人数是2.若变量x ,y 满足240,250,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩则z =3x +2y 的最大值是________。

高中数学竞赛讲义平面向量

高中数学竞赛讲义平面向量

高中数学竞赛讲义(8)平面向量(总10页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--高中数学竞赛讲义(八)──平面向量一、基础知识定义1? 既有大小又有方向的量,称为向量。

画图时用有向线段来表示,线段的长度表示向量的模。

向量的符号用两个大写字母上面加箭头,或一个小写字母上面加箭头表示。

书中用黑体表示向量,如a. |a|表示向量的模,模为零的向量称为零向量,规定零向量的方向是任意的。

零向量和零不同,模为1的向量称为单位向量。

定义2? 方向相同或相反的向量称为平行向量(或共线向量),规定零向量与任意一个非零向量平行和结合律。

定理1? 向量的运算,加法满足平行四边形法规,减法满足三角形法则。

加法和减法都满足交换律和结合律。

定理2? 非零向量a, b共线的充要条件是存在实数0,使得a=f定理3? 平面向量的基本定理,若平面内的向量a, b不共线,则对同一平面内任意向是c,存在唯一一对实数x, y,使得c=xa+yb,其中a, b称为一组基底。

定义3? 向量的坐标,在直角坐标系中,取与x轴,y轴方向相同的两个单位向量i, j作为基底,任取一个向量c,由定理3可知存在唯一一组实数x, y,使得c=xi+yi,则(x, y)叫做c坐标。

定义4? 向量的数量积,若非零向量a, b的夹角为,则a, b的数量积记作a·b=|a|·|b|cos=|a|·|b|cos<a, b>,也称内积,其中|b|cos叫做b 在a上的投影(注:投影可能为负值)。

定理4? 平面向量的坐标运算:若a=(x1, y1), b=(x2, y2),1.a+b=(x1+x2, y1+y2), a-b=(x1-x2, y1-y2),2.λa=(λx1, λy1), a·(b+c)=a·b+a·c,3.a·b=x1x2+y1y2, cos(a, b)=(a, b0),4. a定义5? 若点P是直线P1P2上异于p1,p2的一点,则存在唯一实数λ,使,λ叫P分所成的比,若O为平面内任意一点,则。

2023-2024学年高考数学专项复习——压轴题(附答案)

2023-2024学年高考数学专项复习——压轴题(附答案)

决胜3.已知函数,曲线在处的切线方程为.()2e xf x ax =-()y f x =()()1,1f 1y bx =+(1)求的值:,a b (2)求在上的最值;()f x []0,1(3)证明:当时,.0x >()e 1e ln 0x x x x +--≥4.已知函数,.()()ln 1f x x x a x =-++R a ∈(1)若,求函数的单调区间;1a =()f x (2)若关于的不等式在上恒成立,求的取值范围;x ()2f x a≤[)2,+∞a (3)若实数满足且,证明.b 21a b <-+1b >()212ln f x b <-5.椭圆的离心率是,点是椭圆上一点,过点2222:1(0)x y E a b a b +=>>22()2,1M E 的动直线与椭圆相交于两点.()0,1P l ,A B (1)求椭圆的方程;E (2)求面积的最大值;AOB (3)在平面直角坐标系中,是否存在与点不同的定点,使恒成立?存在,xOy P Q QA PAQB PB=求出点的坐标;若不存在,请说明理由.Q 6.已知函数,.()21ln 2f x a x x⎛⎫=-+ ⎪⎝⎭()()()2R g x f x ax a =-∈(1)当时,0a =(i )求曲线在点处的切线方程;()y f x =()()22f ,(ii )求的单调区间及在区间上的最值;()f x 1,e e ⎡⎤⎢⎥⎣⎦(2)若对,恒成立,求a 的取值范围.()1,x ∀∈+∞()0g x <(1)求抛物线的表达式和的值;,t k (2)如图1,连接AC ,AP ,PC ,若△APC 是以(3)如图2,若点P 在直线BC 上方的抛物线上,过点的最大值.12CQ PQ +(1)【基础训练】请分别直接写出抛物线的焦点坐标和准线l 的方程;22y x =(2)【技能训练】如图2所示,已知抛物线上一点P 到准线l 的距离为6,求点P 的坐218y x =标;(3)【能力提升】如图3所示,已知过抛物线的焦点F 的直线依次交抛物线及准()20y ax a =>线l 于点,若求a 的值;、、A B C 24BC BF AF ==,(4)【拓展升华】古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点C 将一条线段分为两段和,使得其中较长一段是全线段与另一AB AC CB AC AB 段的比例中项,即满足:,后人把这个数称为“黄金分割”,把CB 512AC BC AB AC -==512-点C 称为线段的黄金分割点.如图4所示,抛物线的焦点,准线l 与y 轴AB 214y x=(0,1)F 交于点,E 为线段的黄金分割点,点M 为y 轴左侧的抛物线上一点.当(0,1)H -HF 时,求出的面积值.2MH MF=HME 10.已知双曲线的一条渐近线方程的倾斜角为,焦距为4.2222:1(0,0)x y C a b a b -=>>60︒(1)求双曲线的标准方程;C (2)A 为双曲线的右顶点,为双曲线上异于点A 的两点,且.C ,M N C AM AN ⊥①证明:直线过定点;MN ②若在双曲线的同一支上,求的面积的最小值.,M N AMN(1)试用解析几何的方法证明:(2)如果将圆分别变为椭圆、双曲线或抛物线,你能得到类似的结论吗?13.对于数集(为给定的正整数),其中,如果{}121,,,,n X x x x =-2n ≥120n x x x <<<< 对任意,都存在,使得,则称X 具有性质P .,a b X ∈,c d X ∈0ac bd +=(1)若,且集合具有性质P ,求x 的值;102x <<11,,,12x ⎧⎫-⎨⎬⎩⎭(2)若X 具有性质P ,求证:;且若成立,则;1X ∈1n x >11x =(3)若X 具有性质P ,且,求数列的通项公式.2023n x =12,,,n x x x 14.已知,是的导函数,其中.()2e xf x ax =-()f x '()f x R a ∈(1)讨论函数的单调性;()f x '(2)设,与x 轴负半轴的交点为点P ,在点P()()()2e 11x g x f x x ax =+-+-()y g x =()y g x =处的切线方程为.()y h x =①求证:对于任意的实数x ,都有;()()g x h x ≥②若关于x 的方程有两个实数根,且,证明:()()0g x t t =>12,x x 12x x <.()2112e 11e t x x --≤+-15.在平面直角坐标系中,一动圆经过点且与直线相切,设该动圆圆心xOy 1,02A ⎛⎫ ⎪⎝⎭12x =-的轨迹为曲线K ,P 是曲线K 上一点.(1)求曲线K 的方程;(2)过点A 且斜率为k 的直线l 与曲线K 交于B 、C 两点,若且直线OP 与直线交//l OP 1x =于Q 点.求的值;||||AB ACOP OQ ⋅⋅(3)若点D 、E 在y 轴上,的内切圆的方程为,求面积的最小值.PDE △()2211x y -+=PDE △16.已知椭圆C :,四点中恰有三()222210x y a b a b +=>>()()1234331,1,0,1,1,,1,22P P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭点在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点,若直线与直线的斜率的和为,2P A 2P B 1-证明:l 过定点.18.给定正整数k ,m ,其中,如果有限数列同时满足下列两个条件.则称2m k ≤≤{}n a 为数列.记数列的项数的最小值为.{}n a (,)k m -(,)k m -(,)G k m 条件①:的每一项都属于集合;{}n a {}1,2,,k 条件②:从集合中任取m 个不同的数排成一列,得到的数列都是的子列.{}1,2,,k {}n a 注:从中选取第项、第项、…、第项()形成的新数列{}n a 1i 2i 5i 125i i i <<<…称为的一个子列.325,,,i i i a a a ⋯{}n a (1)分别判断下面两个数列,是否为数列.并说明理由!(33)-,数列;1:1,2,3,1,2,3,1,2,3A 数列.2:1,2,3,2,1,3,1A (2)求的值;(),2G k (3)求证.234(,)2k k G k k +-≥答案:1.(1)极大值为,无极小值2e (2)证明见解析【分析】(1)求导,根据导函数的符号结合极值的定义即可得解;(2)构造函数,利用导数求出函数的最小值,再()21()()()2ln 12F x f x g x x x x x x =+=+->证明即可或者转换不等式为,通过构造函数可得证.()min0F x >()112ln 012x x x +->>【详解】(1)的定义域为,,()f x (0,)+∞()2(1ln )f x x '=-+当时,,当时,,10e x <<()0f x '>1e x >()0f x '<所以函数在上单调递增,在上单调递减,()f x 10,e ⎛⎫ ⎪⎝⎭1,e ⎛⎫+∞ ⎪⎝⎭故在处取得极大值,()f x 1e x =12e e f ⎛⎫= ⎪⎝⎭所以的极大值为,无极小值;()f x 2e (2)设,()21()()()2ln 12F x f x g x x x x x x =+=+->解法一:则,()2ln 1F x x x '=--令,,()()2ln 11h x x x x =-->22()1x h x x x -'=-=当时,,单调递减,当时,,单调递增,12x <<()0h x '<()h x 2x >()0h x '>()h x 又,,,(2)1ln 40h =-<(1)0h =(4)32ln 40h =->所以存在,使得,即.0(2,4)x ∈0()0h x =002ln 10x x --=当时,,即,单调递减,01x x <<()0h x <()0F x '<()F x 当时,,即,单调递增,0x x >()0h x >()0F x '>()F x 所以当时,在处取得极小值,即为最小值,1x >()F x 0x x =故,22000000(11()()12ln )222F x F x x x x x x ≥=+-=-+设,因为,2000122()p x x x =-+0(2,4)x ∈由二次函数的性质得函数在上单调递减,2000122()p x x x =-+(2,4)故,0()(4)0p x p >=所以当时,,即.1x >()0F x >()()0f x g x +>解法二:要证,即证,()0F x >()1()12ln 012p x x x x =+->>因为,所以当时,,单调递减,()124()122x p x x x x -'=-=>()1,4x ∈()0p x '<()p x 当时,,单调递增,()4,x ∞∈+()0p x '>()p x 所以,所以,即.()()4212ln 434ln 20p x p ≥=+-=->()0F x >()()0f x g x +>方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.2.(1)0(2)证明详见解析(3)2a ≤【分析】(1)利用导数求得的最小值.()g x (2)根据(1)的结论得到,利用放缩法以及裂项求和法证得不等式成立.2211ln 1n n ⎛⎫+≤ ⎪⎝⎭(3)由不等式分离参数,利用构造函数法,结合导数求得的取ln (2)10xx x x a x -+--≥a a 值范围.【详解】(1)依题意,,()21ln (,0)2f x x x x t t x =-+∈>R 所以,()()()()ln 1ln 10g x f x x x x x x '==-+=-->,所以在区间上单调递减;()111x g x x x -'=-=()g x ()0,1()()0,g x g x '<在区间上单调递增,()1,+∞()()0,g x g x '>所以当时取得最小值为.1x =()g x ()11ln110g =--=(2)要证明:对任意正整数,都有,(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 即证明,22221111ln 1111ln e234n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 即证明,222111ln 1ln 1ln 1123n ⎛⎫⎛⎫⎛⎫++++++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 由(1)得,即()()()10f xg x g '=≥=ln 10,ln 1x x x x --≥≤-令,所以, *211,2,N x n n n =+≥∈222111ln 111n n n ⎛⎫+≤+-= ⎪⎝⎭所以222222111111ln 1ln 1ln 12323n n ⎛⎫⎛⎫⎛⎫++++++≤+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,()111111111122312231n n n n <+++=-+-++-⨯⨯-- 111n=-<所以对任意正整数,都有.(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (3)若不等式恒成立,此时,ln (2)10xx x x a x -+--≥0x >则恒成立,ln 21x x x x x a x -+-≤令,()ln 21xx x x x h x x -+-=令,()()()e 10,e 10x x u x x x u x '=--≥=-≥所以在区间上单调递增,()u x[)0,∞+所以,当时等号成立,()0e 010,e 10,e 1x x u x x x ≥--=--≥≥+0x =所以,()ln e ln 21ln 1ln 212x x x x x x x x x x h x x x -+-+-+-=≥=当时等号成立,所以.ln 0,1x x x ==2a ≤利用导数求函数的最值的步骤:求导:对函数进行求导,得到它的导函数.导函数()f x ()f x '表示了原函数在不同点处的斜率或变化率.找出导数为零的点:解方程,找到使得导()0f x '=数为零的点,这些点被称为临界点,可能是函数的极值点(包括最大值和最小值),检查每个临界点以及区间的端点,并确认它们是否对应于函数的最值.3.(1),1a =e 2b =-(2);()max e 1f x =-()min 1f x =(3)证明见解析【分析】(1)利用切点和斜率列方程组,由此求得.,a b (2)利用多次求导的方法求得在区间上的单调性,由此求得在上的最值.()f x []0,1()f x []0,1(3)先证明时,,再结合(2)转化为,从0x >()()e 21f x x ≥-+()21e ln e x x x x x+--≥+而证得不等式成立.【详解】(1),()e 2x f x ax'=-∴,解得:,;()()1e 21e 1f a b f a b ⎧=-=⎪⎨=-=+'⎪⎩1a =e 2b =-(2)由(1)得:,()2e xf x x =-,令,则,()e 2x f x x '=-()e 2x h x x=-()e 2x h x '=-是增函数,令解得.()h x ()0h x '=ln 2x =∴,也即在上单调递减,()h x ()f x '()0,ln2()()0,h x h x '<在上单调递增,()ln2,+∞()()0,h x h x '>∴,∴在递增,()()ln 2ln222ln20h f ==->'()f x []0,1∴;;()()max 1e 1f x f ==-()()min 01f x f ==(3)∵,由(2)得过,()01f =()f x ()1,e 1-且在处的切线方程是,()y f x =1x =()e 21y x =-+故可猜测且时,的图象恒在切线的上方,0x >1x ≠()f x ()e 21y x =-+下面证明时,,设,,0x >()()e 21f x x ≥-+()()()e 21g x f x x =---()0x >∴,∴令,()()e 2e 2x g x x =---'()()()e 2e 2x x x g m x '--==-,()e 2x m x '=-由(2)得:在递减,在递增,()g x '()0,ln2()ln2,+∞∵,,,∴,()03e 0g '=->()10g '=0ln21<<()ln20g '<∴存在,使得,()00,1x ∈()0g x '=∴时,,时,,()()00,1,x x ∈⋃+∞()0g x '>()0,l x x ∈()0g x '<故在递增,在递减,在递增.()g x ()00,x ()0,1x ()1,+∞又,∴当且仅当时取“”,()()010g g ==()0g x ≥1x ==()()2e e 210x g x x x =----≥故,,由(2)得:,故,()e e 21x x xx+--≥0x >e 1x x ≥+()ln 1x x ≥+∴,当且仅当时取“=”,∴,1ln x x -≥1x =()e e 21ln 1x x x x x+--≥≥+即,∴,()21ln 1e e x x x x+--≥+()21e ln e x x x x x+--≥+即成立,当且仅当时“=”成立.()1ln 10e e x x x x +---≥1x =求解切线的有关的问题,关键点就是把握住切点和斜率.利用导数研究函数的单调性,如果一次求导无法求得函数的单调性时,可以考虑利用多次求导来进行求解.利用导数证明不等式恒成立,如果无法一步到位的证明,可以先证明一个中间不等式,然后再证得原不等式成立.4.(1)单调增区间为,单调减区间为;()0,1()1,+∞(2)(],2ln 2-∞(3)证明见解析【分析】(1)求导,再根据导函数的符号即可得解;(2)分离参数可得,构造函数,利用导数求出函数的最小ln 1x x a x ≤-ln (),21x xg x x x =≥-()g x 值即可得解;(3)由,得,则,要证21a b <-+21a b -<-2112()(e )e e 1a a b f x f a b ---≤=+<-+,即证,即证,构造函数()212ln f x b<-222e112ln bb b --+<-22212ln 0eb b b +-<,证明即可.()()()12ln e x h x x x x =>-()1h x <-【详解】(1)当时,,1a =()ln 1,0f x x x x x =-++>,由,得,由,得,()ln f x x '=-()0f x '>01x <<()0f x '<1x >故的单调增区间为,单调减区间为;()f x ()0,1()1,+∞(2),()ln 2,1x xf x a a x ≤∴≤- 令,ln (),21x x g x x x =≥-则,21ln ()(1)x xg x x --'=-令,则,()ln 1t x x x =-+11()1xt x x x -'=-=由,得,由,得,()0t x '>01x <<()0t x '<1x >故在递增,在递减,,()t x ()0,1()1,+∞max ()(1)0t x t ==,所以,()0t x ∴≤ln 1≤-x x 在上单调递增,,()0,()g x g x '≥∴[)2,+∞()min ()2g x g ∴=,(2)2ln 2a g ∴≤=的取值范围;a ∴(],2ln 2-∞(3),221,1b a b a <-+∴-<- 又,在上递增,11()(e )e a a f x f a --≤=+1e a y a -=+ R a ∈所以,2112()(e )e e 1a a b f x f a b ---≤=+<-+下面证明:,222e 112ln b b b --+<-即证,22212ln 0ebb b +-<令,则,21x b =>12ln 0e x x x +-<即,(2ln )e 1xx x -⋅<-令,则,()()()12ln e xh x x x x =>-()22ln 1e xh x x x x '⎛⎫=-+-⋅ ⎪⎝⎭令,则,()2()2ln 11x x x x x ϕ=-+->()()2221122()101x x x x x x ϕ---=--=<>∴函数在上单调递减,()x ϕ()1,+∞,()(1)0x ϕϕ∴<=在递减,()()0,h x h x '∴<(1,)+∞,()()1e 1h x h ∴<=-<-所以.()212ln f x b <-方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.5.(1)22142x y +=(2)2(3)存在,.()0,2Q 【分析】(1)由离心率及过点列方程组求解.()2,1M,a b (2)设直线为与椭圆方程联立,将表达为的函数,由基本不l 1y kx =+1212AOB S x x =⋅- k 等式求最大值即可.(3)先讨论直线水平与竖直情况,求出,设点关于轴的对称点,证得()0,2Q B y B '三点共线得到成立.,,Q A B 'QA PAQB PB=【详解】(1)根据题意,得,解得,椭圆C 的方程为.2222222211c a a b c a b ⎧=⎪⎪⎪=+⎨⎪⎪+=⎪⎩222422a b c ⎧=⎪=⎨⎪=⎩22142x y +=(2)依题意,设,直线的斜率显然存在,()()1122,,,A x y B x y l 故设直线为,联立,消去,得,l 1y kx =+221142y kx x y =+⎧⎪⎨+=⎪⎩y ()2212420k x kx ++-=因为直线恒过椭圆内定点,故恒成立,,l ()0,1P 0∆>12122242,1212k x x x x k k +=-=-++故,()2221212221224212111214414222122AOBk S x x x x x x k k k k ⋅+⎛⎫⎛⎫=⋅=⨯-=⨯-⨯= ⎪ ⎪+⎝-+-⎝++⎭⎭- 令,所以,当且仅当,即时取得214,1t k t =+≥22222211AOB t S t t t=×=×£++1t =0k =等号,综上可知:面积的最大值为.AOB 2(3)当平行于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,C D Q 则有,即,所以点在轴上,可设的坐标为;||||1||||QC PC QD PD ==QC QD =Q y Q ()00,y 当垂直于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,M N Q 则有,即,解得或,||||||||QM PM QN PN =00221212y y --=++01y =02y =所以若存在不同于点的定点满足条件,则点的坐标为;P Q Q ()0,2当不平行于轴且不垂直于轴时,设直线方程为,l x x l 1y kx =+由(2)知,12122242,1212k x x x x k k --+==++又因为点关于轴的对称点的坐标为,B y B '()22,x y -又,,11111211QA y kx k k x x x --===-22222211QB y kx k k x x x '--===-+--.方法点睛:直线与椭圆0Ax By C ++=时,取得最大值2222220a A b B C +-=MON S 6.(1)(i );(322ln 220x y +--=(2)11,22⎡⎤-⎢⎥⎣⎦故曲线在点处的切线方程为,()y f x =()()22f ,()()32ln 222y x --+=--即;322ln 220x y +--=(ii ),,()21ln 2f x x x =-+()0,x ∈+∞,()211x f x x x x -'=-+=令,解得,令,解得,()0f x ¢>()0,1x ∈()0f x '<()1,x ∈+∞当时,,1,e e x ⎡⎤∈⎢⎥⎣⎦()()max 112f x f ==-又,,221111ln 1e 2e e 2e f ⎛⎫=-+=-- ⎪⎝⎭()2211e e ln e e 122f =-+=-+其中,()222211111e 1e 1e 20e 2e 222ef f ⎛⎫⎛⎫-=----+=--> ⎪ ⎪⎝⎭⎝⎭故,()()2min 1e e 12f x f ==-+故的单调递增区间为,单调递减区间为;()f x ()0,1()1,+∞在区间上的最大值为,最小值为;()f x 1,e e ⎡⎤⎢⎥⎣⎦12-21e 12-+(2),()21ln 22xg x a x x a ⎭-+⎛=⎪-⎫ ⎝对,恒成立,()1,x ∀∈+∞21ln 202a x x ax ⎛⎫-+-< ⎪⎝⎭变形为对恒成立,ln 122x a xa x<--⎛⎫ ⎪⎝⎭()1,x ∀∈+∞令,则,()(),1,ln x h x x x ∈=+∞()21ln xh x x -'=当时,,单调递增,()1,e x ∈()0h x '>()ln xh x x =当时,,单调递减,()e,+x ∈∞()0h x '<()ln xh x x =其中,,当时,恒成立,()10h =()ln e 1e e e h ==1x >()ln 0x h x x =>故画出的图象如下:()ln x h x x =其中恒过点122y xa a ⎛⎫ ⎪⎝=⎭--(2,1A 又,故在()210111h -'==()ln x h x x =又在上,()2,1A 1y x =-()对于2111644y x x =-+-∴点,即()0,6C -6OC =∵2114,14P m m m ⎛-+- ⎝∴点,3,64N m m ⎛⎫- ⎪⎝⎭∴,22111316624444PN m m m m m⎛⎫=-+---=-+ ⎪⎝⎭∵轴,PN x ⊥∴,//PN OC ∴,PNQ OCB ∠=∠∴,Rt Rt PQN BOC ∴,PN NQ PQ BC OC OB ==∵,8,6,10OB OC BC ===∴,34,55QN PN PQ PN==∵轴,NE y ⊥∴轴,//NE x ∴,CNE CBO ∴,5544CN EN m ==∴,2215111316922444216CQ PQ m m m m ⎛⎫+=-+=--+⎪⎝⎭当时,取得最大值.132m =12CQ PQ+16916关键点点睛:熟练的掌握三角形相似的判断及性质是解决本题的关键.8.(1)详见解析;(2)①具有性质;理由见解析;②P 1346【分析】(1)当时,先求得集合,由题中所给新定义直接判断即可;10n =A (2)当时,先求得集合, 1010n =A ①根据,任取,其中,可得,{}2021|T x x S =-∈02021t x T =-∈0x S ∈0120212020x ≤-≤利用性质的定义加以验证,即可说明集合具有性质;P T P ②设集合有个元素,由(1)可知,任给,,则与中必有个S k x S ∈12020x ≤≤x 2021x -1不超过,从而得到集合与中必有一个集合中至少存在一半元素不超过,然后利1010S T 1010用性质的定义列不等式,由此求得的最大值.P k【详解】(1)当时,,10n ={}1,2,,19,20A = 不具有性质,{}{}|910,11,12,,19,20B x A x =∈>= P 因为对任意不大于的正整数,10m 都可以找到该集合中的两个元素与,使得成立,110b =210b m =+12||b b m -=集合具有性质,{}*|31,N C x A x k k =∈=-∈P 因为可取,对于该集合中任一元素,110m =<,(),都有.112231,31c k c k =-=-*12,N k k ∈121231c c k k -=-≠(2)当时,集合,1010n ={}()*1,2,3,,2019,2020,1010N A m m =≤∈ ①若集合具有性质,那么集合一定具有性质.S P {}2021|T x x S =-∈P 首先因为,任取,其中.{}2021|T x x S =-∈02021t x T =-∈0x S ∈因为,所以.S A ⊆{}01,2,3,,2020x ∈ 从而,即,所以.0120212020x ≤-≤t A ∈T A ⊆由具有性质,可知存在不大于的正整数,S P 1010m 使得对中的任意一对元素,都有.s 12,s s 12s s m -≠对于上述正整数,从集合中任取一对元素,m {}2021|T x x S =-∈112021t x -=,其中,则有.222021t x =-12,x x S ∈1212t t s s m --≠=所以,集合具有性质P ;{}2021|T x x S =-∈②设集合有个元素,由(1)可知,若集合具有性质,S k S P 那么集合一定具有性质.{}2021|T x x S =-∈P 任给,,则与中必有一个不超过.x S ∈12020x ≤≤x 2021x -1010所以集合与中必有一个集合中至少存在一半元素不超过.S T 1010不妨设中有个元素不超过.S 2k t t ⎛⎫≥ ⎪⎝⎭12,,,t b b b 1010由集合具有性质,可知存在正整数.S P 1010m ≤使得对中任意两个元素,都有.S 12,s s 12s s m -≠所以一定有.12,,,t b m b m b m S +++∉ 又,故.100010002000i b m +≤+=121,,,b m b m b m A +++∈ 即集合中至少有个元素不在子集中,A t S 因此,所以,得.20202k k k t +≤+≤20202k k +≤1346k ≤当时,取,{}1,2,,672,673,,1347,,2019,2020S = 673m =则易知对集合中的任意两个元素,都有,即集合具有性质.S 12,y y 12673y y -≠S P 而此时集合S 中有个元素,因此,集合元素个数的最大值为.1346S 1346解新定义题型的步骤:(1)理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论.(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况.(3)类比新定义中的概念、原理、方法,解决题中需要解决的问题.9.(1),10,8⎛⎫ ⎪⎝⎭18y =-(2)或()42,4()42,4-(3)14a =(4)或51-35-【分析】(1)根据焦点和准线方程的定义求解即可;(2)先求出点P 的纵坐标为4,然后代入到抛物线解析式中求解即可;(3)如图所示,过点B 作轴于D ,过点A 作轴于E ,证明,推BD y ⊥AE y ⊥FDB FHC ∽出,则,点B 的纵坐标为,从而求出,证明16FD a =112OD OF DF a =-=112a 36BD a =,即可求出点A 的坐标为,再把点A 的坐标代入抛物线解析式AEF BDF ∽123,24a ⎛⎫ ⎪⎝+⎭-中求解即可;(4)如图,当E 为靠近点F 的黄金分割点的时候,过点M 作于N ,则,MN l ⊥MN MF=先证明是等腰直角三角形,得到,设点M 的坐标为,则MNH △NH MN=21,4m m ⎛⎫⎪⎝⎭过点B 作轴于D ,过点BD y ⊥由题意得点F 的坐标为F ⎛ ⎝1FH =当E 为靠近点F 的黄金分割点的时候,过点∵在中,Rt MNH △sin MHN ∠∴,∴是等腰直角三角形,45MHN ︒=MNH △双曲线方程联立,利用韦达定理及题目条件可得,后由题意可得AM AN ⋅= ()()222131t t m -+=-所过定点坐标;②结合①及图形可得都在左支上,则可得,后由图象可得,M N 213m <,后通过令,结合单调性229113m S m +=-223113m λλ⎛⎫+=≤< ⎪⎝⎭()423313f x x x x ⎛⎫=-≤< ⎪⎝⎭可得答案.【详解】(1)设双曲线的焦距为,C 2c 由题意有解得.2223,24,,ba c c ab ⎧=⎪⎪=⎨⎪=+⎪⎩1,3,2a b c ===故双曲线的标准方程为;C 2213y x -=(2)①证明:设直线的方程为,点的坐标分别为,MN my x t =+,M N ()()1122,,,x y x y 由(1)可知点A 的坐标为,()1,0联立方程消去后整理为,2213y x my x t ⎧-=⎪⎨⎪=+⎩x ()222316330m y mty t --+-=可得,2121222633,3131mt t y y y y m m -+==--,()212122262223131m t tx x m y y t t m m +=+-=-=--,()()()()222222222121212122223363313131m t m t m t x x my t my t m y y mt y y t t m m m -+=--=-++=-+=----由,()()11111,,1,AM x y AN x y =-=-有()()()1212121212111AM AN x x y y x x x x y y ⋅=--+=-+++,()()()()22222222222222222132331313131313131t t t t t t m t t t m m m m m m -----++-=--++===------由,可得,有或,AM AN ⊥0AM AN ⋅=1t =-2t =当时,直线的方程为,过点,不合题意,舍去;1t =-MN 1my x =-()1,0当时,直线的方程为,过点,符合题意,2t =MN 2my x =+()2,0-②由①,设所过定点为121224,31x x x x m +==-若在双曲线的同一支上,可知,M N 有12240,31x x x m +=<-关键点睛:求直线所过定点常采取先猜后证或类似于本题处理方式,设出直线方程,通过题一方面:由以上分析可知,设椭圆方程为一方面:同理设双曲线方程为()22221y m x a b +-=,()2222221b x a k x m a b -+=化简并整理得()(2222222112ba k x a mk x a m ---+一方面:同理设抛物线方程为(22x p y =,()212x p k x n =+化简并整理得,由韦达定理可得12220pk x x pn --=2,2x x pk x x pn +=⋅=-(2)构造,故转化为等价于“对任()()()()()13131931x x xx f x k k g x f x +--==+++()()()123g x g x g x +>意,,恒成立”,换元后得到(),分,和1x 2x 3R x ∈()()11k g x q t t -==+3t ≥1k >1k =三种情况,求出实数k 的取值范围.1k <【详解】(1)由条件①知,当时,有,即在R 上单调递增.12x x <()()12f x f x <()f x 再结合条件②,可知存在唯一的,使得,从而有.0R x ∈()013f x =()093x x f x x --=又上式对成立,所以,R x ∀∈()00093x x f x x --=所以,即.0001393x x x --=0009313x x x ++=设,因为,所以单调递增.()93x x x xϕ=++()9ln 93ln 310x x x ϕ'=++>()x ϕ又,所以.()113ϕ=01x =所以;()931x x f x =++(2)构造函数,()()()()()13131931x x xx f x k k g x f x +--==+++由题意“对任意的,,,1x 2x 3R x ∈均存在以,,为三边长的三角形”()()()11113x f x k f x +-()()()22213x f x k f x +-()()()33313x f x k f x +-等价于“对任意,,恒成立”.()()()123g x g x g x +>1x 2x 3R x ∈又,令,()111313x x k g x -=+++1131231333x x x x t ⋅=++≥+=当且仅当时,即时取等号,91x=0x =则(),()()11k g x q t t -==+3t ≥当时,,因为且,1k >()21,3k g x +⎛⎤∈ ⎥⎝⎦()()122423k g x g x +<+≤()3213k g x +<≤所以,解得,223k +≤4k ≤即;14k <≤当时,,满足条件;1k =()()()1231g x g x g x ===当时,,因为且,1k <()2,13k g x +⎡⎫∈⎪⎢⎣⎭()()122423k g x g x ++<≤()3213k g x +<≤所以,即.2413k +≤112k -≤<综上,实数k 的取值范围是.1,42⎡⎤-⎢⎥⎣⎦复合函数零点个数问题处理思路:①利用换元思想,设出内层函数;②分别作出内层函数与外层函数的图象,分别探讨内外函数的零点个数或范围;③内外层函数相结合确定函数交点个数,即可得到复合函数在不同范围下的零点个数.13.(1)14x =(2)证明过程见解析(3),()112023k n k x --=1k n≤≤【分析】(1)由题意转化为对于,都存在,使得,其中(),m a b =(),n c d =0m n ⋅= ,选取,,通过分析求出;,,,a b c d X ∈()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==- 14x =(2)取,,推理出中有1个为,则另一个为1,即,()()11,,m a b x x == (),n c d =,c d 1-1X ∈再假设,其中,则,推导出矛盾,得到;1k x =1k n <<101n x x <<<11x =(3)由(2)可得,设,,则有,记11x =()11,m s t =()22,n s t =1212s t t s =-,问题转化为X 具有性质P ,当且仅当集合关于原点对称,得到,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B ,共个数,由对称性可知也有个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -()0,B +∞ ()1n -结合三角形数阵得到,得到数列为首项为1的等比123212321n n n n n n x x x x x x x x x x -----===== 12,,,n x x x 数列,设出公比为,结合求出公比,求出通项公式.q 2023n x =【详解】(1)对任意,都存在,使得,,a b X ∈,c d X ∈0ac bd +=即对于,都存在,使得,其中,(),m a b =(),n c d =0m n ⋅= ,,,a b c d X ∈因为集合具有性质P ,11,,,12x ⎧⎫-⎨⎬⎩⎭选取,,()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==-则有,12x d -+=假设,则有,解得,这与矛盾,d x =102x x -+=0x =102x <<假设,则有,解得,这与矛盾,1d =-12x --=12x =-102x <<假设,则有,解得,这与矛盾,1d =12x -+=12x =102x <<假设,则有,解得,满足,12d =14x -+=14x =102x <<故;14x =(2)取,,()()11,,m a b x x == (),n c d =则,()10c d x +=因为,所以,即异号,120n x x x <<<< 0c d +=,c d 显然中有1个为,则另一个为1,即,,c d 1-1X ∈假设,其中,则,1k x =1k n <<101n x x <<<选取,,则有,()()1,,n m a b x x ==(),n s t =10n sx tx +=则异号,从而之中恰有一个为,,s t ,s t 1-若,则,矛盾,1s =-11n x tx t x =>≥若,则,矛盾,1t =-1n n x sx s x =<≤故假设不成立,所以;11x =(3)若X 具有性质P ,且,20231n x =>由(2)可得,11x =设,,则有,()11,m s t =()22,n s t =1212s t t s =-记,则X 具有性质P ,当且仅当集合关于原点对称,,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B 注意到是集合中唯一的负数,1-X 故,共个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -由对称性可知也有个数,()0,B +∞ ()1n -由于,已经有个数,123421n n n n n nn n n n x x x x x x x x x x x x ----<<<<<< ()1n -对于以下三角形数阵:123421n n n n n n n n n n x x x x x xx x x x x x ----<<<<<< 1111123421n n n n n n n n x x x x xx x x x x --------<<<<< ……3321x x x x <21x x 注意到,123211111n n n x x x x x x x x x x -->>>>> 所以有,123212321n n n n n n x x x x x x x x x x -----===== 从而数列为首项为1的等比数列,设公比为,12,,,n x x x q 由于,故,解得,2023n x =112023n nx q x -==()112023n q -=故数列的通项公式为,.12,,,n x x x ()112023k n k x --=1k n ≤≤集合新定义问题,命题新颖,且存在知识点交叉,常常会和函数或数列相结合,很好的考虑了知识迁移,综合运用能力,对于此类问题,一定要解读出题干中的信息,正确理解问题的本质,转化为熟悉的问题来进行解决,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.14.(1)答案见解析(2)①证明见解析;②证明见解析【分析】(1)求出的导数,结合解不等式可得答案;()e 2x f x ax'=-(2)①,利用导数的几何意义求得的表达式,由此构造函数,()y h x =()()()F x g x h x =-利用导数判断其单调性,求其最小值即可证明结论;②设的根为,求得其表达式,()h x t=1x '并利用函数单调性推出,设曲线在点处的切线方程为,设11x x '≤()y g x =()0,0()y t x =的根为,推出,从而,即可证明结论.()t x t=2x '22x x '≥2121x x x x ''-≤-【详解】(1)由题意得,令,则,()e 2x f x ax'=-()e 2x g x ax=-()e 2x g x a'=-当时,,函数在上单调递增;0a ≤()0g x '>()f x 'R 当时,,得,,得,0a >()0g x '>ln 2x a >()0g x '<ln 2x a <所以函数在上单调递减,在上单调递增.()f x '(),ln 2a -∞()ln 2,a +∞(2)①证明:由(1)可知,令,有或,()()()1e 1x g x x =+-()0g x ==1x -0x =故曲线与x 轴负半轴的唯一交点P 为.()y g x =()1,0-曲线在点处的切线方程为,()1,0P -()y h x =则,令,则,()()()11h x g x '=-+()()()F x g x h x =-()()()()11F x g x g x '=--+所以,.()()()()11e 2e x F x g x g x '''=-=+-()10F '-=当时,若,,1x <-(],2x ∈-∞-()0F x '<若,令,则,()2,1x --()1()e 2e x m x x =+-()()e 30xm x x '=+>故在时单调递增,.()F x '()2,1x ∈--()()10F x F ''<-=故,在上单调递减,()0F x '<()F x (),1-∞-当时,由知在时单调递增,1x >-()()e 30x m x x '=+>()F x '()1,x ∈-+∞,在上单调递增,()()10F x F ''>-=()F x ()1,-+∞设曲线在点处的切线方程为()y g x =()0,0令()()()()(1e x T x g x t x x =-=+当时,2x ≤-()()2e x T x x =+-'()()2e xn x x =+-设,∴()()1122,,,B x y C x y 1x 又1211,22AB x AC x =+=+依题意,即,则,0bc <02x >()()220220004482x y c x x b =+---因为,所以,2002y x =0022x b c x -=-所以,()()00000242248122424S b c x x x x x -⋅=-++≥-⋅+=-=-当且仅当,即时上式取等号,00422x x -=-04x =所以面积的最小值为8.PDE △方法点睛:圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.16.(1)2214x y +=(2)证明见解析(3)存在,7,,777⎛⎫⎛⎫-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 【分析】(1)根据椭圆的对称性,得到三点在椭圆C 上.把的坐标代入椭圆234,,P P P 23,P P C ,求出,即可求出椭圆C 的方程;22,a b (2)当斜率不存在时,不满足;当斜率存在时,设,与椭圆方程联立,利():1l y kx t t =+≠用判别式、根与系数的关系,结合已知条件得到,能证明直线l 过定点;21t k =--()2,1-(3)利用点差法求出直线PQ 的斜率,从而可得直线PQ 的方程,与抛物线方程联14PQ k t =立,由,及点G 在椭圆内部,可求得的取值范围,设直线TD 的方程为,0∆>2t 1x my =+与抛物线方程联立,由根与系数的关系及,可求得m 的取值范围,进而可求得直线11DA TB k k =的斜率k 的取值范围.2l【详解】(1)根据椭圆的对称性,两点必在椭圆C 上,34331,,1,22P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭又的横坐标为1,4P ∴椭圆必不过,()11,1P ∴三点在椭圆C 上.()234330,1,1,,1,22P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭把代入椭圆C ,()3231,20,1,P P ⎛⎫- ⎪ ⎪⎝⎭得,解得,222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩2241a b ⎧=⎨=⎩∴椭圆C 的方程为.2214x y +=(2)证明:①当斜率不存在时,设,,:l x m =()(),,,A A A m y B m y -∵直线与直线的斜率的和为,2P A 2P B 1-∴,221121A A P A P B y y k k m m m ----+=+==-解得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设,,,:l y kx t =+1t ≠()()1122,,,A x y B x y 联立,消去y 整理得,22440y kx tx y =+⎧⎨+-=⎩()222148440k x ktx t +++-=则,,122814kt x x k -+=+21224414t x x k -=+则()()()()222112************111111P A P B x y x y x kx t x kx t y y k k x x x x x x -+-+-++---+=+==,()()()()()()12121222222448218114141144411142t k k kx x t tk t k t k k t t x t x x x +-+=--⋅+-⋅-++===--+-+又,∴,此时,1t ≠21t k =--()()222222644144464161664k t k t k t k ∆=-+-=-+=-故存在k ,使得成立,0∆>∴直线l 的方程为,即21y kx k =--()12y k x +=-∴l 过定点.()2,1-(3)∵点P ,Q 在椭圆上,所以,,2214P P x y +=2214Q Q x y +=两式相减可得,()()()()04PQ P Q P Q P Q y xy x x x y y +-++-=又是线段PQ 的中点,()1,G t -∴,2,2P Q P Q x x x x t+=-=∴直线PQ 的斜率,()144P Q P QP Q P QPQ x x k ty y x y y x +==-=--+∴直线PQ 的方程为,与抛物线方程联立消去x 可得,()114y x t t =++()22164410y ty t -++=由题可知,∴,()2161210t ∆=->2112t >又G 在椭圆内部,可知,∴,故,2114t +<234t <213124t <<设,,由图可知,,221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭223434,,,44y y T y D y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭2134,y y y y >>∴,()2121216,441y y t y y t +==+当直线TD 的斜率为0时,此时直线TD 与抛物线只有1个交点,不合要求,舍去,设直线TD 的方程为,与抛物线方程联立,消去x 可得,()10x my m =+≠2440y my --=∴,34344,4y y m y y +==-由,可知,即,11//ATB D 11DA TB k k =3142222234214444y y y y y y y y --=--∴,即,1342y y y y +=+1243y y y y -=-∴,()()221212343444y y y y y y y y +-=+-∵,()()()()()222212124161641161210,128y y y y t t t +-=-+=-∈∴,解得,即,()()223434416160,128y y y y m +-=+∈27m <()7,7m ∈-∴直线TD 即的斜率.2l 771,77,k m ⎛⎫⎛⎫=∈-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 思路点睛:处理定点问题的思路:(1)确定题目中的核心变量(此处设为),k (2)利用条件找到与过定点的曲线的联系,得到有关与的等式,k (),0F x y =k ,x y (3)所谓定点,是指存在一个特殊的点,使得无论的值如何变化,等式恒成立,()00,x y k 此时要将关于与的等式进行变形,直至找到,k ,x y ()00,x y ①若等式的形式为整式,则考虑将含的式子归为一组,变形为“”的形式,让括号中式k ()k ⋅子等于0,求出定点;②若等式的形式是分式,一方面可考虑让分子等于0,一方面考虑分子和分母为倍数关系,可消去变为常数.k 17.(1)1y =-(2)2ln23-+【分析】(1)由题意,将代入函数的解析式中,对函数进行求导,得到1m =()f x ()f x 和,代入切线方程中即可求解;()1f '()1f (2)得到函数的解析式,对进行求导,利用根的判别式以及韦达定理对()g x ()g x 进行化简,利用换元法,令,,可得,12122()()y x x b x x =--+12x t x =01t <<2(1)ln 1t y t t -=-+根据,求出的范围,构造函数,对进行求导,利用导数得到322m ≥t 2(1)()ln 1t h t tt -=-+()h t 的单调性和最值,进而即可求解.()h t 【详解】(1)已知(为常数),函数定义域为,()ln f x x mx =-m (0,)+∞当时,函数,1m =()ln f x x x =-可得,此时,又,11()1x f x x x -'=-=()=01f '()11=f -所以曲线在点处的切线方程为,即.()y f x =()()1,1f (1)0(1)y x --=⨯-1y =-(2)因为,函数定义域为,22()2()2ln 2g x f x x x mx x =+=-+(0,)+∞可得,222(1)()22x mx g x m x x x -+=-+='此时的两根,即为方程的两根,()0g x '=1x 2x 210x mx -+=因为,所以,由韦达定理得,,322m ≥240m ∆=->12x x m +=121=x x 又,所以1212lnx x b x x =-121212121212ln 22()()()()xx y x x b x x x x x x x x =--=--++-,11211211222212()ln 2ln 1x x x x x x x x x x x x --=-=⨯-++令,,所以,12x t x =01t <<2(1)ln 1t y t t -=-+因为,整理得,2212()x x m +=22212122x x x x m ++=因为,则,121=x x 2221212122x x x x m x x ++=等式两边同时除以,得,12x x 212212=x x m x x ++可得,因为,212t m t ++=322m ≥所以,,152t t +≥()()2252=2210t t x x -+--≥解得 或,则,12t ≤2t ≥102t <≤不妨设,函数定义域为,2(1)()ln 1t h t t t -=-+10,2⎛⎤⎥⎝⎦可得,22(1)()0(1)t h t t t -'=-<+所以函数在定义域上单调递减,()h t 此时,min 12()()ln223h t h ==-+故的最小值为.12122()()y x x b x x =--+2ln23-+利用导数求解在曲线上某点处的切线方程,关键点有两点,第一是切线的斜率,第二是切点。

高三数学高考一轮复习系列教案第八章 圆锥曲线 大纲版

第八章圆锥曲线知识结构高考能力要求1.掌握椭圆的定义、标准方程、简单的几何性质、了解椭圆的参数方程.2.掌握双曲线的定义、标准方程、简单的几何性质.3.掌握抛物线的定义、标准方程、简单的几何性质.4.了解圆锥曲线的初步应用.高考热点分析圆锥曲线是高中数学的一个重要内容,它的基本特点是数形兼备,兼容并包,可与代数、三角、几何知识相沟通,历来是高考的重点内容。

纵观近几年高考试题中对圆锥曲线的考查,基本上是两个客观题,一个主观题,分值21分~24分,占15%左右,并且主要体现出以下几个特点:1.圆锥曲线的基本问题,主要考查以下内容:①圆锥曲线的两种定义、标准方程及a、b、c、e、p 五个参数的求解.②圆锥曲线的几何性质的应用.2、求动点轨迹方程或轨迹图形在高考中出现的频率较高,此类问题的解决需掌握四种基本方法:直译法、定义法、相关点法、参数法.3.有关直线与圆锥曲线位置关系问题,是高考的重热点问题,这类问题常涉及圆锥曲线的性质和直线的基本知识以及线段中点、弦长等,分析这类问题时,往往要利用数形结合思想和“设而不求”的方法、对称的方法及韦达定理,多以解答题的形式出现.4.求与圆锥曲线有关的参数或参数范围问题,是高考命题的一大热点,这类问题综合性较大,运算技巧要求较高;尤其是与平面向量、平面几何、函数、不等式的综合,特别近年出现的解析几何与平面向量结合的问题,是常考常新的试题,将是今后高考命题的一个趋势.高考复习建议1.圆锥曲线的定义、标准方程及几何性质是本章的基本内容.复习中对基本概念的理解要深,对公式的掌握要活,充分重视定义在解题中的地位和作用,重视知识间的内在联系.椭圆、双曲线、抛物线它们都可以看成是平面截圆锥所得的截线,其本质是统一的.因此这三种曲线可统一为“一个动点P到定点F和定直线l的距离之比是一个常数e的轨迹”,当0<e<1、e=1、e>1时,分别表示椭圆、抛物线和双曲线.复习中有必要将椭圆、抛物线和双曲线的定义,标准方程及几何性质进行归类、比较,把握它们之间的本质联系,要学会在知识网络交汇处思考问题、解决问题.2.计算能力的考查已引起高考命题者的重视,这一章的复习要注意突破“运算关”,要寻求合理有效的解题途径与方法.3.加强直线与圆锥曲线的位置关系问题的复习,注重数形结合思想和设而不求法与弦长公式及韦达定理的运用.4.重视圆锥曲线与平面向量、函数、方程、不等式、三角、平面几何的联系,重视数学思想方法的训练,达到优化解题思维、简化解题过程的目的.8.1 椭圆知识要点1.椭圆的两种定义(1) 平面内与两定点F1,F2的距离的和等于常数(大于21F F )的点的轨迹叫椭圆,这两个定点叫做椭圆的 , 之间的距离叫做焦距.注:①当2a =|F 1F 2|时,P 点的轨迹是 .②当2a <|F 1F 2|时,P 点的轨迹不存在.(2) 椭圆的第二定义:到 的距离与到 的距离之比是常数e ,且∈e 的点的轨迹叫椭圆.定点F 是椭圆的 ,定直线l 是 ,常数e 是 .2.椭圆的标准方程(1) 焦点在x 轴上,中心在原点的椭圆标准方程是:12222=+b y a x ,其中( > >0,且=2a ) (2) 焦点在y 轴上,中心在原点的椭圆标准方程是12222=+bx ay ,其中a ,b 满足: .3.椭圆的几何性质(对12222=+by a x ,a > b >0进行讨论)(1) 范围: ≤ x ≤ , ≤ y ≤ (2) 对称性:对称轴方程为 ;对称中心为 .(3) 顶点坐标: ,焦点坐标: ,长半轴长: ,短半轴长: ;准线方程: .(4) 离心率:=e ( 与 的比),∈e ,e 越接近1,椭圆越 ;e 越接近0,椭圆越接近于 .(5) 焦半径公式:设21,F F 分别为椭圆的左、右焦点,),(00y x P 是椭圆上一点,则=1PF ,122PF a PF -== .(6) 椭圆的参数方程为 . 4.焦点三角形应注意以下关系: (1) 定义:r 1+r 2=2a(2) 余弦定理:21r +22r -2r 1r 2cos θ=(2c )2(3) 面积:21F PF S ∆=21r 1r 2 sin θ=21·2c | y 0 |(其中P(00,y x )为椭圆上一点,|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ)例题讲练【例1】 中心在原点,一个焦点为F 1(0,52)的椭圆被直线y =3x -2截得的弦的中点的横坐标为21,求此椭圆的方程.【例2】 已知点P(3, 4)是椭圆2222b y a x +=1 (a >b >0) 上的一点,F 1、F 2是它的两焦点,若PF 1⊥PF 2,求:(1) 椭圆的方程; (2) △PF 1F 2的面积.【例3】如图,射线OA 、OB 分别与x 轴、 y 轴所成的角均为︒30;已知线段PQ 的长度为2,并且保持线段的端点),(11y x P 在射线OA 上运动,点),(22y x Q 在射线OB 上运动(1) 试求动点),(21x x M 的轨迹C 的方程(2) 求轨迹C 上的动点N 到直线03=--y x 的距离的最大值和最小值.【例4】 (2005年全国卷I )已知椭圆的中心在原点,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,+与=(3, -1)共线.(1) 求椭圆的离心率;(2) 设M 是椭圆上任意一点,且=μλ+(λ、μ∈R),证明22μλ+为定值.小结归纳 1.在解题中要充分利用椭圆的两种定义,灵活处理焦半径,熟悉和掌握a 、b 、c 、e 关系及几何意义,能够减少运算量,提高解题速度,达到事半功倍之效.2.由给定条件求椭圆方程,常用待定系数法.步骤是:定型——确定曲线形状;定位——确定焦点位置;定量——由条件求a 、b 、c ,当焦点位置不明确时,方程可能有两种形式,要防止遗漏.3.解与椭圆的焦半径、焦点弦有关的问题时,一般要从椭圆的定义入手考虑;椭圆的焦半径的取值范围是],[c a c a +-.4.“设而不求”,“点差法”等方法,是简化解题过程的常用技巧,要认真领会.5.解析几何与代数向量的结合,是近年来高考的热点,在2005年的考题中足以说明了这一点,应引起重视.基础训练题 一、选择题1. 动点M 到定点)0,4(1-F 和)0,4(2F 的距离的和为8,则动点M 的轨迹为 ( ) A .椭圆 B .线段 C .无图形 D .两条射线2. (2005年全国高考试题III) 设椭圆的两个焦点分别为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是 ( )A .22 B .212- C .2-2D .2-13. (2004年高考湖南卷)F 1、F 2是椭圆C :14822=+y x 的焦点,在C 上满足PF 1⊥PF 2的点P 的个数为( ) A .2个 B .4个 C .无数个 D .不确定4. 椭圆171622=+y x 的左、右焦点为F 1、F 2,一直线过F 1交椭圆于A 、B 两点,则△ABF 2的周长为 ( ) A .32 B .16 C .8 D .45. 已知点P 在椭圆(x -2)2+2y 2=1上,则xy的最小值为( )A .36-B .26-C .6-D .66-6. 我们把离心率等于黄金比215-的椭圆称为“优美椭圆”,设)0(12222>>=+b a by a x 是优美椭圆,F 、A 分别是它的左焦点和右顶点,B 是它的短轴的一个端点,则ABF ∠等于 ( ) A .︒60 B .︒75 C .︒90 D .︒120二、填空题 7. 椭圆400162522=+y x 的顶点坐标为 和 ,焦点坐标为 ,焦距为 ,长轴长为 ,短轴长为 ,离心率为 ,准线方程为 .8. 设F 是椭圆16722=+y x 的右焦点,且椭圆上至少有21个不同的点P i (i =1,2, ),使得|FP 1|、|FP 2|、|FP 3|…组成公差为d 的等差数列,则d 的取值范围是 . 9. 设1F ,2F 是椭圆14322=+y x 的两个焦点,P 是椭圆上一点,且121=-PF PF ,则得=∠21PF F . 10.若椭圆2222)1(-+m y m x =1的准线平行于x 轴则m 的取值范围是 .三、解答题11.根据下列条件求椭圆的标准方程(1) 和椭圆1202422=+y x 共准线,且离心率为21.(2) 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为534和532,过P 作长轴的垂线恰好过椭圆的一个焦点.12.椭圆14922=+y x 的焦点为21,F F ,点P 为其上的动点,当∠21PF F 为钝角时,求点P 横坐标的取值范围.13.(2005年高考湖南卷)已知椭圆C :12222=+by a x (a >0,b >0)的左、右焦点分别是F 1、F 2,离心率为e .直线l :y =ex +a 与x 轴,y 轴分别交于点A 、B 、M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设=λ. (Ⅰ)证明:λ=1-e 2;(Ⅱ)若λ=43,△MF 1F 2的周长为6,写出椭圆C 的方程;(Ⅲ)确定λ的值,使得△PF 1F 2是等腰三角形.提高训练题14.(2006年高考湖南卷)已知C 1:13422=+y x ,抛物线C 2:(y -m )2=2px (p >0),且C 1、C 2的公共弦AB 过椭圆C 1的右焦点.(Ⅰ)当AB ⊥x 轴时,求p 、m 的值,并判断抛物线C 2的焦点是否在直线AB 上;(Ⅱ)若p =34,且抛物线C 2的焦点在直线AB 上,求m 的值及直线AB 的方程.15.(成都市2006届毕业班摸底测试)设向量i =(1, 0),j =(0, 1),=(x +m )i +y j ,=(x -m )i +y j ,且||+||=6,0< m < 3,x >0,y ∈R . ( I )求动点P(x ,y )的轨迹方程;( II ) 已知点A(-1, 0),设直线y =31(x -2)与点P 的轨迹交于B 、C 两点,问是否存在实数m ,使得AC AB ⋅=31?若存在,求出m 的值;若不存在,请说明理由.8.2 双 曲 线知识要点 1.双曲线的两种定义(1) 平面内与两定点F 1,F 2的 常数(小于 )的点的轨迹叫做双曲线.注:①当2a =|F 1F 2|时,p 点的轨迹是 .②2a >|F 1F 2|时,p 点轨迹不存在.(2) 平面内动点P 到一个定点F 和一条定直线l (F 不在 上)的距离的比是常数e ,当∈e 时动点P 的轨迹是双曲线.设P 到1F 的对应准线的距离为d ,到2F 对应的准线的距离为2d ,则e d PF d PF ==22112.双曲线的标准方程 (1) 标准方程:12222=-b y a x ,焦点在 轴上;12222=-bx ay ,焦点在 轴上.其中:a 0,b 0,=2a .(2) 双曲线的标准方程的统一形式:)0(122<=+nm ny mx3.双曲线的几何性质(对0,0,122>>=-b a b y a x 进行讨论)(1) 范围:∈x ,∈y .(2) 对称性:对称轴方程为 ;对称中心为 .(3) 顶点坐标为 ,焦点坐标为 ,实轴长为 ,虚轴长为 ,准线方程为 ,渐近线方程为 .(4) 离心率e = ,且∈e ,e 越大,双曲线开口越 ,e 越小,双曲线开口越 ,焦准距P = .(5) 焦半径公式,设F 1,F 2分别是双曲线的左、右焦点,若),(00y x P 是双曲线右支上任意一点,=1PF ,=2PF ,若),(00y x P 是双曲线左支上任意一点,=1PF ,=2PF . (6) 具有相同渐近线x aby ±=的双曲线系方程为 (7) 的双曲线叫等轴双曲线,等轴双曲线的渐近线为 ,离心率为 .(8) 12222=-b y a x 的共轭双曲线方程为 .例题讲练【例1】 根据下列条件,写出双曲线的标准方程 (1) 中心在原点,一个顶点是(0,6),且离心率是1.5.(2) 与双曲线x 2-2y 2=2有公共渐近线,且过点M(2,-2).【例2】 (04年高考湖北卷)直线l :y =kx +1与双曲线C :2x 2-y 2=1的右支交于不同的两点A 、B .(1)求实数k 的取值范围;(2)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由.【例3】 在双曲线1121322-=-y x 的一支上有不同的三点A(x 1,y 1),B(x 2,6),C(x 3,y 3)与焦点F(0,5)的距离成等差数列.(1)求y 1+y 3;(2)求证:线段AC 的垂直平分线经过某一定点,并求出这个定点的坐标.【例4】 (2004年高考全国卷II )设双曲线C :)0(1222>=-a y a x 与直线l :x +y =1相交于两个不同的点.(1) 求双曲线C 的离心率e 的取值范围;(2) 设直线l 与y 的交点为P ,且=125,求a的值.小结归纳1.复习双曲线要与椭圆进行类比,尤其要注意它们之间的区别,如a 、b 、c 、e 的关系.2.双曲线的渐近线的探求是一个热点.①已知双曲线方程求渐近线方程;②求已知渐近线方程的双曲线方程.3.求双曲线的方程,经常要列方程组,因此,方程思想贯穿解析几何的始终,要注意定型(确定曲线形状)、定位(曲线的位置)、定量(曲条件求参数).4.求双曲线的方程的常用方法: (1) 定义法.(2) 待定系数法.涉及到直线与圆锥曲线的交点问题,经常是“设而不求”.5.例2的第(1)问是数材P 132第13题的引申,因此高考第一轮复习要紧扣教材.6.对于直线与双曲线的位置关系,要注意“数形转化”“数形结合”,既可以转化为方程组的解的个数来确定,又可以把直线与双曲线的渐近线进行比较,从“形”的角度来判断.基础训练题 一、选择题1. A 、B 是平面内两定点,动点P 到A 、B 两点的距离的差是常数,则P 的轨迹是 ( ) A .双曲线 B .椭圆 C .双曲线的一支 D .不能确定2. (04年高考湖南卷)如果双曲线1121322=-y x 上一点p 到右焦点的距离等于13,那么点p 到右焦线的距离是 ( )A .513 B .13 C .5D .1353. 已知双曲线的渐近线方程是2xy ±=,焦点在坐标轴上且焦距是10,则此双曲线的方程为 ( )A .152022=-y x B .152022±=-y x C .120522=-y xD .120522±=-y x4. (2005年高考湖南卷)已知双曲线12222=-by a x (a >0,b >0)的右焦点为F ,右焦线与一条渐近线交于点A ,△OAF 的面积为22a ,(0为原点)则两条渐近线的夹角为( ) A .30° B .45° C .60°D .90°5. 已知双曲线14922=-y x ,则过点A(3,1)且与双曲线仅有唯一的公共点的直线有 ( ) A .1条 B .2条 C .3条 D .4条6. (2005年江苏高考最后冲刺题) 设双曲线16x 2-9y 2=144的右焦点为F 2,M 是双曲线上任意一点,点A 的坐标为(9,2),则|MA|+53|MF 2|的最小值为( )A .9B .536C .542D .554二、填空题7. 中心在原点,坐标轴为对称轴,实轴与虚轴长之差为2,离心率为45的双曲线方程为 .8. (2004年高考·吉林、四川)设中心在原点,坐标轴为对称轴的椭圆与双曲线12222=-y x 有公共焦点,且它们的离心率互为倒数,则椭圆方程为 .9. (2006年高考湖南卷)过双曲线M :1222=-b y x 的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于点B 、C ,且|AB|=|BC|,则双曲线M 的离心率是 .10.可以证明函数x bax y +=(b ≠0)的图象是双曲线,试问双曲线C :xx y 33+=的离心率e 等于 .三、解答题11.(1) 已知双曲线的渐近线方程为032=±yx ,且过点(2,-6),求双曲线的方程;(2) 已知双曲线的右准线为x =4,右焦点为F(10,0),离心率为e =2,求双曲线的方程. 12.ABC ∆中,固定底边BC ,让顶点A 移动,已知4=BC ,且A B C sin 21sin sin =-,求顶点A 的轨迹方程.13.双曲线12222=-by a x )0,0(>>b a 的右支上存在与右焦点和左准线等距离的点,求离心率e 的取值范围.提高训练题 14.已知动点p 与双曲线13222=-y x 的两个焦点F 1、F 2的距离之和为定值,且cos ∠F 1PF 2的最小值为-91.(1) 求动点p 的轨迹方程;(2) 若已知点D(0,3),点M 、N 在动点p 的轨迹上且λ=,求实数λ的取值范围.15.(2005年武汉市高三调考)已知等轴双曲线C :)0(222>=-a a y x 上一定点P(00,y x )及曲线C 点上两个动点A 、B ,满足0=⋅PB PA(1) M 、N 分别为PA 、PB 中点,求证:0=⋅ON OM (O 为坐标原点);(2) 求|AB|的最小值及此时A 点坐标.抛 物 线 1.抛物线定义:离 的点的轨迹叫抛物线,焦点, 叫做抛物线的准线2.抛物线的标准方程和焦点坐标及准线方程① px y 22=,焦点为 ,准线为 . ② px y 22-=,焦点为 ,准线为 . ③ py x 22=,焦点为 ,准线为 . ④ py x 22-=,焦点为 ,准线为 . 3.抛物线的几何性质:对)0(22>=p px y 进行讨论. ① 点的范围: 、 . ② 对称性:抛物线关于 轴对称. ③ 离心率=e .④ 焦半径公式:设F 是抛物线的焦点,),(o o y x P 是抛物线上一点,则=PF .⑤ 焦点弦长公式:设AB 是过抛物线焦点的一条弦(焦点弦)i) 若),(11y x A ,),(22y x B ,则AB = ,21y y .ii) 若AB 所在直线的倾斜角为θ()0≠θ则AB = .特别地,当θ2π=时,AB 为抛物线的通径,且AB = .iii) S △AOB = (表示成P 与θ的关系式).iv) ||1||1BF AF +为定值,且等于 . 例题讲练【例1】 已知抛物线顶点在原点,对称轴是x 轴,抛物线上的点),3(n A -到焦点的距离为5,求抛物线的方程和n 的值.【例2】 已知抛物线C :x y 42=的焦点为F ,过点F 的直线l 与C 相交于A 、B .(1) 若316=AB ,求直线l 的方程.(2) 求AB 的最小值.【例3】 若A(3,2),F 为抛物线x y 22=的焦点,P 为抛物线上任意一点,求PA PF +的最小值及取得最小值时的P 的坐标.【例4】 (05全国卷(Ⅲ))设A(x 1,y 1),B(x 2,y 2),两点在抛物线y =2x 2上,l 是AB 的垂直平分线.(1)当且仅当x 1+x 2取何值时,直线l 经过抛物线的焦点F ?证明你的结论?(2)当直线l 的斜率为2时,求在y 轴上的截距的取值范围.小结归纳 1.求抛物线方程要注意顶点位置和开口方向,以便准确设出方程,然后用待定系数法.2.利用好抛物线定义,进行求线段和的最小值问题的转化.3.涉及抛物线的弦的中点和弦长等问题要注意利用韦达定理,能避免求交点坐标的复杂运算.4、解决焦点弦问题时,抛物线的定义有广泛的应用,应注意焦点弦的几何性质.基础训练题 一、选择题1. 过抛物线)0(22>=P px y 的焦点作直线交抛物线于),(11y x A ,),(22y x B 两点,若P x x 321=+,则AB等于( )A .2PB .4PC .6PD .8P2. 已知动点),(y x P 满足22)2()1(5-+-y x =|1243|++y x ,则P 点的轨迹是 ( )A .两条相交直线B .抛物线C .双曲线D .椭圆3. 已知抛物线212:x y C =与抛物线2C 关于直线x y -=对称,则2C 的准线方程是( )A .81-=x B .21=xC .81=x D .21-=x4. (2005年高考上海卷)过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线 ( ) A .有且仅有一条 B .有且仅有两条 C .有无数条 D .不存在5. (2003年新课程卷)抛物线2ax y =的准线方程是2=y ,则a 的值为 ( )A .81B .81-C .8D .8-6. (04年高考湖北卷)与直线2x -y +4=0平行的抛物线y =x 2的切线方程是 ( ) A .2x -y +3=0 B .2x -y -3=0 C .2x -y +1=0 D .2x -y -1=0二、填空题7. 点M 与点F(4,0)的距离比它到连线l :x +5=0的距了小1,则点M 的轨迹方程为 . 8. 某桥的桥洞是抛物线,桥下水面宽16米,当水面上涨2米后达警戒水位,水面宽变为12米,此时桥洞顶部距水面高度为 米(精确到0.1米). 9. 过点(3,3)的直线与抛物线y 2=3x 只有一个公共点,则这样的直线的条数为 .10.一个酒杯的轴截面是抛物线的一部分,它的方程是x 2)200(2≤≤=y y ,在杯内放入一个玻璃球,要使球触及酒杯底部,则玻璃球的半径r 的取值范围是三、解答题11.求顶点在原点,对称轴是x 轴,并且顶点与焦点的距离等于6的抛物线方程.12.正方形ABCD 中,一条边AB 在直线y =x +4上,另外两顶点C 、D 在抛物线y 2=x 上,求正方形的面积.13.设A 和B 为抛物线y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线?提高训练题 14.过抛物线y 2=2px (p >0)的焦点F 作直线交抛物线于A 、B 两点,试问:以AB 为直径的圆与抛物线的准线是相交、相切还是相离?若把抛物线改为椭圆12222=+b y a x 或双曲线12222=-b y a x ,结果又如何呢?15.(2004年高考上海卷)如图,直线x y 21=与抛物线4812-=x y 交于A 、B 两点,线段AB 的垂直平分线与直线5-=y 交于Q 点. (1) 求点Q 的坐标;(2) 当P 为抛物线上位于线段AB(含点A 、B)下方的动点时,求OPQ ∆面积的最大值.8.4 直线与圆锥曲线的位置关系知识要点 1.直线与圆锥曲线的位置关系,常用研究方法是将曲线方程与直线方程联立,由所得方程组的解的个数来决定,一般地,消元后所得一元二次方程的判别式记为△,△>0时,有两个公共点,△=0时,有一个公共点,△<0时,没有公共点.但当直线方程与曲线方程联立的方程组只有一组解(即直线与曲线只有一个交点)时,直线与曲线未必相切,在判定此类情形时,应注意数形结合.(对于双曲线,重点注意与渐近线平行的直线,对于抛物线,重点注意与对称轴平行的直线)2.直线与圆锥曲线的交点间的线段叫做圆锥曲线的弦.设弦AB 端点的坐标为A(x 1,y 1),B(x 2,y 2),直线AB 的斜率为k ,则:|AB |=————————或:—————————.利用这个公式求弦长时,要注意结合韦达定理. 当弦过圆锥曲线的焦点时,可用焦半径进行运算. 3.中点弦问题:设A(x 1,y 1),B(x 2,y 2)是椭圆12222=+b y a x 上不同的两点,且x 1≠x 2,x 1+x 2≠0,M(x 0,y 0)为AB 的中点,则 ⎪⎪⎩⎪⎪⎨⎧=+=+11222222221221b y ax b y a x 两式相减可得2221212121ab x x y y x x y y -=++⋅--即 .对于双曲线、抛物线,可得类似的结论.例题讲练 【例1】 直线y =ax +1与双曲线3x 2-y 2=1相交于A 、B 两点.(1) 当a 为何值时,A 、B 两点在双曲线的同一支上?当a 为何值时,A 、B 两点分别在双曲线的两支上?(2) 当a 为何值时,以AB 为直径的圆过原点?x【例2】 已知双曲线方程2x 2-y 2=2.(1) 求以A(2,1)为中点的双曲线的弦所在直线方程; (2) 过点B(1,1)能否作直线l ,使l 与所给双曲线交于Q 1、Q 2两点,且点B 是弦Q 1Q 2的中点?这样的直线l 如果存在,求出它的方程;如果不存在,说明理由.【例3】 在抛物线y 2=4x 上恒有两点关于直线y =kx +3对称,求k 的取值范围.【例4】 (2006届苏州市高三调研测试)已知椭圆222y ax +=1(a 为常数,且a >1),向量m =(1, t ) (t >0),过点A(-a , 0)且以为方向向量的直线与椭圆交于点B ,直线BO 交椭圆于点C (O 为坐标原点).(1) 求t 表示△ABC 的面积S( t );(2) 若a =2,t ∈[21, 1],求S( t )的最大值.小结归纳1.判断直线与圆锥曲线的位置关系时,注意数形结合;用判别式的方法时,若所得方程二次项的系数有参数,则需考虑二次项系数为零的情况.2.涉及中点弦的问题有两种常用方法:一是“设而不求”的方法,利用端点在曲线上,坐标满足方程,作差构造出中点坐标和斜率的关系,它能简化计算;二是利用韦达定理及中点坐标公式.对于存在性问题,还需用判别式进一步检验.3.对称问题,要注意两点:垂直和中点.基础训练题 一、选择题1. 曲线x 2+4y 2+D x +2E y +F =0与x 轴有两个交点,且这两个交点在原点的两侧的充要条件是 ( ) A .D ≠0,E =0,F >0 B .E =0,F <0 C .D 2-F >0 D .F <0 2. 若椭圆193622=+y x 的弦被点(4,2)平分,则此弦所在直线的斜率为 ( ) A .2 B .-2C .31D .-213. 经过抛物线)0(22>=p px y 的所有焦点弦中,弦长的最小值为 ( ) A .p B .2p C .4p D .不确定4. 过双曲线1222=-y x 的右焦点作直线l ,交双曲线于A 、B 两点,若∣AB ∣=4,则这样的直线l 有( ) A .1条 B .2条 C .3条 D .4条5. (华师大二附中2005年模拟试卷2) 直线l :y =kx +1(k ≠0)椭圆E :1422=+y m x ,若直线l 被椭圆E 所截弦长为d ,则下列直线中被椭圆E 截得的弦长不是d 的是 ( ) A .kx +y +1=0 B .kx -y -1=0 C .kx +y -1=0 D .kx +y =06. 椭圆mx 2+ny 2=1与直线y =1-x 交于M 、N 两点,过两点O 与线段MN 之中点的直线的斜率为22,则xnm的值是 ( )A .22B .332 C .229D .2732二、填空题7. 已知直线x -y =2与抛物线y 2-4x 交于A 、B 两点,那么线段AB 的中点坐标是 .8. 对任意实数k ,直线y =kx +b 与椭圆⎩⎨⎧==θθs i n 4c o s 2y x (0≤θ<2π)恒有公共点,则b 的取值范围是 .9. 已知抛物线y 2=4x 的一条弦AB ,A(x 1,y 1),B(x 2,y 2),AB 所在直线与y 轴交点坐标为(0,2),则2111y y += .10.若直线mx +ny -3=0与圆x 2+y 2=3没有公共点,则m 、n 的关系式为___________;以(m ,n )为点P 的坐标,过点P 的一条直线与椭圆13722=+y x 的公共点有____个.三、解答题 11.已知直线l 交椭圆162022y x +=1于M 、N 两点,B(0,4)是椭圆的一个顶点,若△BMN 的重心恰是椭圆的右焦点,求直线l 的方程.12.已知直线y =(a +1)x -1与曲线y 2=ax 恰有一个公共点,求实数a 的值.13.(05重庆)已知椭圆C 1的方程为1422=+y x ,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (1)求双曲线C 2的方程;(2)若直线l :y =kx +2与椭圆C 1及双曲线C 2恒有两个不同的交点,且l 与C 2的两个交点A 和B 的满足6<⋅(其中O 为原点),求k 的取值范围. 提高训练题14.已知椭圆的一个顶点为A(0,-1),焦点在x 轴上,若右焦点到直线022=+-y x 的距离为3. ⑴ 求椭圆的方程;⑵ 设椭圆与直线y =kx +m (k ≠0)相交于不同的两点M 、N ,当AN AM =时,求m 的取值范围.15.(04湖南)过抛物线x 2=4y 的对称轴上任一点P(0,m )(m >0),作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点. (Ⅰ)设点P 分有向线段所成的比为λ,证明:)(λ-⊥;(Ⅱ)设直线AB 的方程是x -2y +12=0,过A 、B 两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.8.5 轨迹方程知识要点1.直接法求轨迹的一般步骤:建系设标,列式表标,化简作答(除杂).2.求曲线轨迹方程,常用的方法有:直接法、定义法、代入法(相关点法、转移法)、参数法、交轨法等.例题讲练【例1】一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2-6x-91=0内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线.【例2】已知抛物线过点N(1,-1),且准线为l:x =-3,求抛物线顶点M的轨迹.【例3】已知直线l与椭圆12223=+byax(a>b>0)有且仅有一个交点Q,且与x轴、y轴交于R、S,求以线段SR 为对角线的矩形ORPS的顶点P的轨迹方程.【例4】已知点H(0,-3),点P在x轴上,点Q 在y轴正半轴上,点M在直线PQ上,且满足PMHP⋅=0,MQPM23-=.(1) 当点P在x轴上移动时,求动点M的轨迹曲线C 的方程;(2) 过定点A(a,b)的直线与曲线C相交于两点S、R,求证:抛物线S、R两点处的切线的交点B恒在一条直线上.小结归纳1.直接法求轨迹方程关键在于利用已知条件,找出动点满足的等量关系,这个等量关系有的可直接利用已知条件,有的需要转化后才能用.2.回归定义是解决圆锥曲线轨迹问题的有效途径.3.所求动点依赖于已知曲线上的动点的运动而运动,常用代入法求轨迹.4.参数法求轨迹关键在于如何选择好参数,建立起x ,y 的参数方程,以便消参,选择n 个参数,要建立n +1个方程,消参时,要注意等价性.5.求轨迹比求轨迹方程多一个步骤,求轨迹最后须说明轨迹的形状、大小、位置、方向.基础训练题 一、选择题1. 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得| PQ |=| PF 2 |,那么动点Q 的轨迹是 ( ) A .圆 B .椭圆 C .双曲线的一支 D .抛物线2. 动点P 与定点)0,1(,)0,1(B A -的连结的斜率之积为1-,则P 点的轨迹方程是( ) A .x 2+y 2=1 B .x 2+y 2=1)1(±≠x C .x 2+y 2=1)0(≠x D .21x y -=3. 已知动点P(x 、y )满足1022)2()1(-+-y x =|3x +4y+2|,则动点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .无法确定4. 设P 为椭圆12222=+by a x 上一点,过右焦点F 2作∠F 1PF 2的外角平分线的垂线,垂足为Q ,则点Q 的轨迹是( ) A .直线 B .抛物线 C .圆 D .双曲线 5. 设P 为双曲线12222=-b y a x 上一点, 过右焦点F 2作∠F 1PF 2的内角平分线的垂线,垂足为Q ,则点Q 的轨迹是 ( ) A .圆 B .抛物线 C .直线 D .椭圆 6. 已知点P(x ,y )在以原点为圆心,半径为1的圆上运动,则点(x +y ,xy )的轨迹是 ( ) A .半圆 B .抛物线的一部分 C .椭圆 D .双曲线的一支二、填空题7. 长为2a 的线段AB 的两个端点分别在x 轴、y 轴上滑动,则AB 中点的轨迹方程为 .8. 经过定点M(1,2),以y 轴为准线,离心率为21的椭圆左顶点的轨迹方程 . 9. 已知抛物线)(12R m mx x y ∈-+-=,当m 变化时抛物线焦点的轨迹方程为 . 10.(04北京)在正方体ABCD —A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与到直线C 1D 1的距离相等,则动点P 的轨迹是 .三、解答题 11.以动点P 为圆心的圆与圆A :(x +5)2+y 2=49及圆B :(x -5)2+y 2=1都外切,求动点P 的轨迹.12.已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q. (1) 求直线A 1P 与A 2Q 交点M 的轨迹方程; (2) 当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.13.设直线l :y =kx +1与椭圆C :ax 2+y 2=2(a >1)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点).(1)若k =1,且四边形OAPB 为矩形,求a 的值; (2)若a =2,当k 变化时,(k ∈R),求点P 的轨迹方程.提高训练题14.设椭圆方程为1422=+y x ,过点M(0,1)的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足)(21OB OA OP +=,点N 的坐标为)21,21(,当l 绕点M 旋转时,求:(1) 动点P 的轨迹方程; (2) ||NP 的最小值与最大值.A1。

2017届高考数学(文)一轮复习同步基础训练第3章-第7课时《正弦定理和余弦定理》(通用版含解析)

【A 级】 基础训练1.(2013·高考湖南卷)在锐角△ABC 中,角A ,B 所对的边长分别为a ,b.若2asin B =3b ,则角A 等于( )A.π3 B.π4 C.π6D.π12解析:利用正弦定理将边化为角的正弦.在△ABC 中,a =2Rsin A ,b =2Rsin B(R 为△ABC 的外接圆半径). ∵2asin B =3b ,∴2sin Asin B =3sin B. ∴sin A =32. 又△ABC 为锐角三角形,∴A =π3.答案:A2.在△ABC 中,a ,b ,c 分别是A ,B ,C 的对边长,若a 2+b 2-c22ab <0,则△ABC( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .是锐角或钝角三角形解析:由已知及余弦定理得cos C<0,C 是钝角,故选C. 答案:C3.在△ABC 中,a +b +10c =2(sin A +sin B +10sin C),A =60°,则a = ( ) A. 3 B .2 3 C .4D .不确定解析:由已知及正弦定理得asin A=2, a =2sin A =2sin 60°=3,故选A. 答案:A4.(2014·高考广东卷)在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知bcos C+ccos B =2b ,则ab= .解析:思路一:利用余弦定理化角为边,再化简求值.思路二:利用正弦定理化边为角,再化角为边求解.法一:因为bcos C +ccos B =2b , 所以b·a 2+b 2-c 22ab +c·a 2+c 2-b22ac =2b ,化简可得ab=2.法二:因为bcos C +ccos B =2b , 所以sin Bcos C +sin Ccos B =2sin B , 故sin(B +C)=2sin B , 故sin A =2sin B , 则a =2b ,即ab =2.答案:25.(2014·高考江苏卷)若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是 .解析:利用正弦定理将角化为边,再利用余弦定理和均值不等式求cos C 的最小值. 由sin A +2sin B =2sin C ,结合正弦定理得a +2b =2c. 由余弦定理得cos C =a 2+b 2-c22ab =a 2+b 2-+2242ab=34a 2+12b 2-2ab22ab≥2⎝ ⎛⎭⎪⎫34a 2⎝ ⎛⎭⎪⎫12b 2-2ab 22ab=6-24,故6-24≤cos C≤1,故cos C 的最小值为6-24. 答案:6-246.已知△ABC 的内角A 、B 、C 成等差数列,且A 、B 、C 所对的边分别为a 、b 、c ,则下列命题中正确的有 (把所有正确的命题序号都填上.①B =π3;②若a 、b 、c 成等比数列,则△ABC 为等边三角形; ③若a =2c ,则△ABC 为锐角三角形;④若AB →2=AB →·AC →+BA →·BC →+CA →·CB →,则3A =C ; ⑤若tan A +tan C +3>0,则△ABC 为钝角三角形.解析:∵内角A 、B 、C 成等差数列,∴A +C =2B.又A +B +C =π.∴B =π3,故①正确;对于②,由余弦定理得b 2=a 2+c 2-2ac·cos B=a 2+c 2-ac.又b 2=ac ,∴a 2+c 2-ac =ac , 即(a -c)2=0,∴a =c ,又B =π3,∴△ABC 为等边三角形;对于③,∵b 2=a 2+c 2-2accos B =4c 2+c 2-2c 2=3c 2,∴b =3c ,此时满足a 2=b 2+c 2,说明△ABC 是直角三角形;对于④,c 2=bccos A +accos B +abcos C =12ac +b(ccos A +acos C)=12ac +b 2=12ac +a 2+c 2-ac ,化简得c =2a ,又b 2=a 2+c 2-ac =3a 2,∴b =3a ,此时有a 2+b 2=c 2,∴C =π2,B =π3,A =π6,∴3A =C 成立;对于⑤,tan A +tan C =tan(A +C)(1-tan Atan C),∵A +C =2π3,∴tan A +tan C =-3+3tan Atan C ,∵tan A +tan C +3=3tan Atan C >0,又在△ABC 中,A 、C 不能同为钝角,∴A 、C 都是锐角,∴△ABC 为锐角三角形.答案:①②④7.(2015·南通模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos 2C =-14. (1)求sin C 的值;(2)当a =2,2sin A =sin C 时,求b 及c 的长. 解:(1)因为cos 2C =1-2sin 2C =-14,及0<C<π,所以sin C =104. (2)当a =2,2sin A =sin C 时, 由正弦定理a sin A =csin C ,得c =4.由cos 2C =2cos 2C -1=-14,及0<C<π得cos C =±64. 由余弦定理c 2=a 2+b 2-2abcos C ,得b 2±6b -12=0.解得b =6或26,所以⎩⎨⎧b =6,c =4.或⎩⎨⎧b =26,c =4.8.(2015·南昌市高三模拟)设角A ,B ,C 为△ABC 的三个内角,已知cos(B +C)+sin 2A2=54. (1)求角A 的大小;(2)若AB →·AC →=-1,求BC 边上的高AD 长的最大值. 解:(1)由题意知-cos A +1-cos A 2=54, cos A =-12,因为A ∈(0,π),所以A =2π3.(2)设a ,b ,c 分别是角A ,B ,C 的对边,由AB →·AC →=-1知bc =2,所以S △ABC =12bcsin A=32, 而a =b 2+c 2+bc ≥3bc =6, 当且仅当b =c =2时,上式取等号, 所以BC 边上的高AD 的最大值为22. 【B 级】 能力提升1.(2013·高考陕西卷)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若bcos C +ccos B =asin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定解析:利用余弦定理的变形将角的余弦值转化为三角形边之间的关系. ∵bcos C +ccos B =b·b 2+a 2-c 22ab +c·c 2+a 2-b22ac=b 2+a 2-c 2+c 2+a 2-b 22a =2a22a =a =asin A ,∴sin A =1.∵A ∈(0,π),∴A =π2,即△ABC 是直角三角形.答案:B2.(2014·高考江西卷)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c.若c 2=(a -b)2+6,C =π3,则△ABC 的面积是( )A .3 B.932C.332D .3 3解析:利用所给条件以及余弦定理整体求解ab 的值,再利用三角形面积公式求解. ∵c 2=(a -b)2+6,∴c 2=a 2+b 2-2ab +6.① ∵C =π3,∴c 2=a 2+b 2-2abcos π3=a 2+b 2-ab.②由①②得-ab +6=0,即ab =6. ∴S △ABC =12absin C =12×6×32=332.答案:C3.(2015·宜昌模拟)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=3bc ,sin C =23sin B ,则A =( )A .30°B .60°C .120°D .150°解析:由b sin B =csin C及sin C =23sin B ,得c =23b ,∴cos A =b 2+c 2-a 22bc =-3bc +23bc 2bc =32.∵A 为△ABC 的内角,∴A =30°. 答案:A4.(2013·高考福建卷)如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC =223,AB =32,AD =3,则BD 的长为 .解析:先利用诱导公式化简三角函数,再利用余弦定理求解. ∵sin ∠BAC =sin(90°+∠BAD)=cos ∠BAD =223,∴在△ABD 中,有BD 2=AB 2+AD 2-2AB·ADcos∠BAD , ∴BD 2=18+9-2×32×3×223=3∴BD = 3.答案: 35.(2014·高考天津卷)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c.已知b -c =14a,2sin B =3sin C ,则cos A 的值为 . 解析:由正弦定理得到边b ,c 的关系,代入余弦定理的变式求解即可. 由2sin B =3sin C 及正弦定理得2b =3c ,即b =32c.又b -c =14a ,∴12c =14a ,即a =2c.由余弦定理得cos A =b 2+c 2-a 22bc =94c 2+c 2-4c 22×32c 2=-34c 23c2=-14.答案:-146.已知△ABC 中,a =8,b =7,B =60°,则c = ,S △ABC = . 解析:法一:由正弦定理得8sin A =7sin 60°, ∴sin A =87sin 60°=47 3.∴cos A =±1-⎝⎛⎭⎪⎫4372=±17. ∴sin C =sin(A +B)=sin Acos B +cos Asin B =5314或3314.由7sin 60°=csin C,得c 1=5,c 2=3.∴S △ABC =12ac 1sin B =103或S △ABC =12ac 2sin B =6 3.法二:由余弦定理得b 2=c 2+a 2-2cacos B , ∴72=c 2+82-2×8×ccos 60°.整理得:c 2-8c +15=0,解得:c 1=3,c 2=5, ∴S △ABC =12ac 1sin B =63,或S △ABC =12ac 2sin B =10 3.答案:3或5 63或10 37.(2013·高考江苏卷)在△ABC 中,已知AB →·AC →=3BA →·BC →.(1)求证:tan B =3tan A ; (2)若cos C =55,求A 的值. 解:(1)证明:因为AB →·AC →=3BA →·BC →, 所以AB·AC·cos A=3BA·BC·cos B.即AC·cos A=3BC·cos B,由正弦定理知AC sin B =BCsin A .从而sin Bcos A =3sin Acos B ,又因为0<A +B <π,所以cos A >0,cos B >0, 所以tan B =3tan A. (2)因为cos C =55,0<C <π, 所以sin C =1-cos 2C =255,从而tan C =2,于是tan[π-(A +B)]=2, 即tan(A +B)=-2,亦即tan A +tan B 1-tan Atan B =-2,由(1)得4tan A 1-3tan 2A =-2,解得tan A =1或-13,因为cos A >0,故tan A =1,所以A =π4.。

2020年高考数学复习题:圆的方程

圆的方程[基础训练]1.以点(2,-1)为圆心且与直线3x -4y +5=0相切的圆的方程为( )A .(x -2)2+(y +1)2=3B .(x +2)2+(y -1)2=3C .(x -2)2+(y +1)2=9D .(x +2)2+(y -1)2=9答案:C 解析:∵圆心(2,-1)到直线3x -4y +5=0的距离d =|6+4+5|5=3, ∴圆的半径为3,即圆的方程为(x -2)2+(y +1)2=9.2.方程x 2+y 2+4mx -2y +5m =0表示圆的充要条件是( )A.14<m <1B .m <14或m >1C .m <14D .m >1 答案:B 解析:由D 2+E 2-4F =16m 2+4-20m >0,解得m >1或m <14.3.已知圆C :(x -3)2+(y -4)2=1和两点A (-m,0),B (m,0)(m >0),若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为( )A .7B .6C .5D .4答案:B 解析:根据题意,画出示意图,如图所示,则圆心C 的坐标为(3,4),半径r =1,且|AB |=2m ,因为∠APB=90°,连接OP,易知|OP|=12|AB|=m,要求m的最大值,即求圆C上的点P到原点O的最大距离.因为|OC|=32+42=5,所以|OP|max=|OC|+r=6,即m的最大值为6.4.[2019湖南师大附中月考]已知圆x2+(y-1)2=2上任一点P(x,y),其坐标均使得不等式x+y+m≥0恒成立,则实数m的取值范围是()A.[1,+∞) B.(-∞,1]C.[-3,+∞) D.(-∞,-3]答案:A解析:∵x+y+m≥0,即m≥-x-y恒成立,∴只需求出-x-y的最大值即可.∵1=x2+(y-1)22≥⎝⎛⎭⎪⎫x+y-122,∴(x+y-1)2≤4,解得-2≤x+y-1≤2,即-1≤x+y≤3,∴-3≤-x-y≤1,∴-x-y的最大值是1,则m≥1,∴实数m的取值范围是[1,+∞).故选A.5.若圆(x-3)2+(y+5)2=r2上有且只有两个点到直线4x-3y=2的距离等于1,则半径r的取值范围是()A.(4,6) B.[4,6] C.[4,6) D.(4,6]答案:A解析:易求圆心(3,-5)到直线4x-3y=2的距离为5.令r=4,可知圆上只有一点到已知直线的距离为1;令r=6,可知圆上有三点到已知直线的距离为1,所以半径r在(4,6)之间取值符合题意.6.[2019河南豫西五校联考]在平面直角坐标系xOy中,以点(0,1)为圆心且与直线x-by+2b+1=0相切的所有圆中,半径最大的圆的标准方程为()A.x2+(y-1)2=4 B.x2+(y-1)2=2C.x2+(y-1)2=8 D.x2+(y-1)2=16答案:B解析:解法一:由题意,可得圆心(0,1)到直线x-by+2b+1=0的距离d=|1+b|1+b2=(1+b)21+b2=1+2b1+b2≤1+2|b|1+b2≤2,当且仅当b=1时等号成立,所以半径最大的圆的半径r=2,此时圆的标准方程为x2+(y-1)2=2.故选B.解法二:直线x-by+2b+1=0过定点P(-1,2),如图,∴圆与直线x-by+2b+1=0相切于点P时,圆的半径最大,为2,此时圆的标准方程为x2+(y-1)2=2,故选B.7.设P是圆(x-3)2+(y+1)2=4上的动点,Q是直线x=-3上的动点,则|PQ|的最小值为________.答案:4解析:如图所示,圆心M(3,-1)与定直线x=-3的最短距离为|MQ|=3-(-3)=6,又圆的半径为2,故所求最短距离为6-2=4.8.设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN =45°,则x0的取值范围是________.答案:[-1,1]解析:解法一:当x0=0时,M(0,1),由圆的几何性质,得在圆上存在点N(-1,0)或N(1,0),使∠OMN=45°.当x0≠0时,过M作圆的两条切线,切点为A,B,如图1.若在圆上存在N,使得∠OMN=45°,应有∠OMB≥∠OMN=45°,∴∠AMB≥90°,∴-1≤x0<0或0<x0≤1.综上,-1≤x0≤1.解法二:过O作OP⊥MN,P为垂足,如图2,OP =OM ·sin 45°≤1,∴OM ≤1sin 45°,∴OM 2≤2,∴x 20+1≤2,∴x 20≤1,∴-1≤x 0≤1.9.[2019银川模拟]已知P 是直线l :3x -4y +11=0上的动点,P A ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线,C 是圆心,那么四边形P ACB 面积的最小值是________. 答案:3 解析:圆的标准方程为(x -1)2+(y -1)2=1,圆心为C (1,1),半径r =1,根据对称性可知,四边形P ACB 的面积为2S △APC =2×12|P A |r =|P A |=|PC |2-r 2,要使四边形P ACB 的面积最小,则只需|PC |最小,最小为圆心到直线l :3x -4y +11=0的距离d =|3-4+11|32+(-4)2=105=2. 所以四边形P ACB 面积的最小值为|PC |2min -r 2=4-1= 3.10.[2019河南安阳一模]在平面直角坐标系xOy 中,点A (0,-3),若圆C :(x -a )2+(y -a +2)2=1上存在一点M 满足|MA |=2|MO |,则实数a 的取值范围是________.答案:[0,3] 解析:设满足|MA |=2|MO |的点的坐标为M (x ,y ), 由题意得x 2+(y +3)2=2x 2+y 2,整理得x 2+(y -1)2=4,即所有满足题意的点M 组成的轨迹方程是一个圆,原问题转化为圆x 2+(y -1)2=4与圆C :(x -a )2+(y -a +2)2=1有交点,据此可得关于实数a 的不等式组 ⎩⎪⎨⎪⎧a 2+(a -3)2≥1,a 2+(a -3)2≤3, 解得0≤a ≤3,综上可得,实数a 的取值范围是[0,3].11.[2019广东深圳3月联考]如图,直角三角形ABC 的顶点A 的坐标为(-2,0),直角顶点B 的坐标为(0,-22),顶点C 在x 轴上,点P 为线段OA 的中点.(1)求BC 边所在直线方程;(2)若M 为直角三角形ABC 外接圆的圆心,求圆M 的方程;(3)在(2)的条件下,若动圆N 过点P 且与圆M 内切,求动圆N 的圆心的轨迹方程.解:(1)易知k AB =-2,AB ⊥BC ,∴k CB =22,∴BC 边所在直线方程为y =22x -2 2.(2)由(1)及题意得C (4,0),∴M (1,0),又∵AM =3,∴外接圆M 的方程为(x -1)2+y 2=9.(3)∵圆N 过点P (-1,0),∴PN 是动圆的半径,又∵动圆N 与圆M 内切,∴MN =3-PN ,即MN +PN =3,∴点N 的轨迹是以M ,P 为焦点,长轴长为3的椭圆.∵P (-1,0),M (1,0),∴a =32,c =1,b =a 2-c 2=54,∴所求轨迹方程为x 294+y 254=1,即4x 29+4y 25=1.[强化训练]1.[2019广东七校联考]圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,则1a +3b 的最小值是( )A .2 3 B.203 C .4 D.163答案:D 解析:圆x 2+y 2+2x -6y +1=0的标准方程为(x +1)2+(y -3)2=9,∵圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,∴该直线经过圆心(-1,3),即-a -3b +3=0,∴a +3b =3(a >0,b >0).∴1a +3b =13(a +3b )⎝ ⎛⎭⎪⎫1a +3b =13⎝ ⎛⎭⎪⎫1+3a b +3b a +9 ≥13⎝ ⎛⎭⎪⎫10+23a b ·3b a =163, 当且仅当3b a =3a b ,即a =b 时等号成立,故选D.2.[2019江西新余五校3月联考]已知圆O :x 2+y 2=9,过点C (2,1)的直线l 与圆O 交于P ,Q 两点,当△OPQ 的面积最大时,直线l 的方程为( )A .x -y -3=0或7x -y -15=0B .x +y +3=0或7x +y -15=0C .x +y -3=0或7x -y +15=0D .x +y -3=0或7x +y -15=0答案:D 解析:当直线l 的斜率不存在时,l 的方程为x =2,则P ,Q 的坐标为(2,5),(2,-5),所以S △OPQ =12×2×25=2 5.当直线l 的斜率存在时,设l 的方程为y -1=k (x -2)⎝⎛⎭⎪⎫k ≠12, 则圆心到直线PQ 的距离d =|1-2k |1+k 2, 由平面几何知识,得|PQ |=29-d 2,S △OPQ =12·|PQ |·d =12·29-d 2·d=(9-d 2)d 2≤⎝ ⎛⎭⎪⎫9-d 2+d 222=92, 当且仅当9-d 2=d 2,即d 2=92时,S △OPQ 取得最大值92. 因为25<92,所以S △OPQ 的最大值为92,此时4k 2-4k +1k 2+1=92, 解得k =-1或k =-7,此时直线l 的方程为x +y -3=0或7x +y -15=0.故选D.3.已知实数x ,y 满足x 2+y 2=4(y ≥0),则m =3x +y 的取值范围是( )A .(-23,4)B .[-23,4]C .[-4,4]D .[-4,23]答案:B 解析:由于y ≥0,所以x 2+y 2=4(y ≥0)为上半圆,3x +y -m =0是直线(如图),直线的斜率为-3,在y 轴上截距为m ,又当直线过点(-2,0)时,m =-23,设圆心O 到直线3x +y -m =0的距离为d ,所以⎩⎪⎨⎪⎧ m ≥-23,d ≤r ,即⎩⎪⎨⎪⎧ m ≥-23,|-m |2≤2,解得m ∈[-23,4].4.过点A (a ,a )可作圆x 2+y 2-2ax +a 2+2a -3=0的两条切线,则实数a 的取值范围为( )A .(-∞,-3)∪(1,+∞)B.⎝ ⎛⎭⎪⎫-∞,32 C .(-3,1)∪⎝ ⎛⎭⎪⎫32,+∞ D .(-∞,-3)∪⎝ ⎛⎭⎪⎫1,32 答案:D 解析:圆x 2+y 2-2ax +a 2+2a -3=0的圆心为(a,0),且a <32,并且(a ,a )在圆外,即有a 2>3-2a ,解得a <-3或a >1,所以a <-3或1<a <32.5.[2019福建厦门3月联考]若a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,则方程x 2+y 2+ax +2ay +2a 2+a -1=0表示的圆的个数为( )A .0B .1C .2D .3答案:B 解析:方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆的条件为a 2+4a 2-4(2a 2+a -1)>0,即3a 2+4a -4<0,解得-2<a <23. 又a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34, ∴仅当a =0时,方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,故选B.6.[2019重庆九校联盟联考]设m ,θ∈R ,则(22-m -cos θ)2+(22+m -sin θ)2的最小值为( )A .3B .4C .9D .16答案:C 解析:(22-m -cos θ)2+(22+m -sin θ)2的几何意义是单位圆上的点与直线x +y -42=0上的点间的距离的平方,故其最小值为(4-1)2=9.故选C.7.[2019广东广州模拟]已知圆(x +3)2+y 2=64的圆心为M ,设A 为圆上任一点,点N 的坐标为(3,0),线段AN 的垂直平分线交MA 于点P ,则|PM ||PN |的取值范围是( )A.⎣⎢⎡⎦⎥⎤67,8B.⎣⎢⎡⎦⎥⎤25,6 C.⎣⎢⎡⎦⎥⎤17,7 D.⎣⎢⎡⎦⎥⎤14,4 答案:C 解析:圆(x +3)2+y 2=64的圆心为M ,设A 为圆上任一点,点N 的坐标为(3,0),线段AN 的垂直平分线交MA 于点P ,∴P 是AN 的垂直平分线上一点,∴|P A |=|PN |.又∵|AM |=8,∴点P 满足|PM |+|PN |=|AM |=8>6,即点P 满足椭圆的定义,焦点是(3,0),(-3,0),长半轴长a =4,∴点P 的轨迹方程为x 216+y 27=1,|PM |+|PN |=8,|PM ||PN |=8-|PN ||PN |=8|PN |-1.∵1≤|PN |≤7,∴8|PN |∈⎣⎢⎡⎦⎥⎤87,8, ∴|PM ||PN |∈⎣⎢⎡⎦⎥⎤17,7, 故选C.8.圆x 2+y 2-4x +4y +6=0上的动点M 到坐标原点的距离的最大值、最小值分别是________,________.答案:322 解析:因为圆心是A (2,-2),半径是2,又AO =22,所以动点M 到坐标原点的距离的最大值、最小值分别是22+2=32,22-2= 2.9.[2019湖南师大附中模拟改编]已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(3,0),A 为椭圆C 的右顶点,以A 为圆心的圆与直线y =b a x 相交于P ,Q 两点,且AP →·AQ →=0,OP →=3OQ →.则椭圆C 的标准方程和圆A 的方程分别为________,________.答案:x 24+y 2=1 (x -2)2+y 2=85 解析:如图,设T 为线段PQ的中点,连接AT ,则AT ⊥PQ .∵AP →·AQ →=0,即AP ⊥AQ ,∴|AT |=12|PQ |.又OP →=3OQ →,∴|OT |=|PQ |.∴|AT ||OT |=12,即b a =12.由已知c =3,∴a 2=4,b 2=1,故椭圆C 的方程为x 24+y 2=1.又|AT |2+|OT |2=4,∴|AT |2+4|AT |2=4,∴|AT |=255,r =|AP |=2105.∴圆A 的方程为(x -2)2+y 2=85. 10.已知M 为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3).(1)求|MQ |的最大值和最小值;(2)若M 的坐标为(m ,n )(m ≠-2),求n -3m +2的最大值和最小值. 解:(1)由题意知,圆C 的标准方程为(x -2)2+(y -7)2=8,∴圆心C 的坐标为(2,7),半径r =2 2.∵|QC |=[2-(-2)]2+(7-3)2=42>22,∴|MQ |max =42+22=62,|MQ |min =42-22=2 2.(2)易知n -3m +2表示直线MQ 的斜率, 设直线MQ 的方程为y -3=k (x +2)⎝⎛⎭⎪⎫k =n -3m +2, 即直线MQ 的方程为kx -y +2k +3=0.由题意知,当直线MQ 与圆C 相切时取得最值, 则|7-2k -2k -3|1+k2=22, 解得k =2-3或k =2+3,则k =n -3m +2的最大值和最小值分别为2+3,2- 3. 11.[2016江苏卷]如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC =OA ,求直线l 的方程;(3)设点T (t,0)满足:存在圆M 上的两点P 和Q ,使得TA →+TP →=TQ →,求实数t 的取值范围.解:圆M 的标准方程为(x -6)2+(y -7)2=25,所以圆心M (6,7),半径为5.(1)由圆心N 在直线x =6上,可设N (6,y 0).因为圆N 与x 轴相切,与圆M 外切,所以0<y 0<7,于是圆N 的半径为y 0,从而7-y 0=5+y 0,解得y 0=1.因此,圆N 的标准方程为(x -6)2+(y -1)2=1.(2)因为直线l ∥OA ,所以直线l 的斜率为4-02-0=2. 设直线l 的方程为y =2x +m ,即2x -y +m =0,则圆心M 到直线l 的距离d =|2×6-7+m |5=|m +5|5. 因为BC =OA =22+42=25,而MC 2=d 2+⎝ ⎛⎭⎪⎫BC 22, 所以25=(m +5)25+5,解得m =5或m =-15.故直线l 的方程为2x -y +5=0或2x -y -15=0.(3)设P (x 1,y 1),Q (x 2,y 2).因为A (2,4),T (t,0),TA →+TP →=TQ →,所以⎩⎪⎨⎪⎧x 2=x 1+2-t ,y 2=y 1+4.①因为点Q在圆M上,所以(x2-6)2+(y2-7)2=25.②将①代入②,得(x1-t-4)2+(y1-3)2=25.于是点P(x1,y1)既在圆M上,又在圆[x-(t+4)]2+(y-3)2=25上,从而圆(x-6)2+(y-7)2=25与圆[x-(t+4)]2+(y-3)2=25有公共点,所以5-5≤[(t+4)-6]2+(3-7)2≤5+5,解得2-221≤t≤2+221.因此,实数t的取值范围是[2-221,2+221 ].。

苏教版数学高二数学 1.2《回归分析》基础训练(苏教版选修1-2)

1.下列变量之间是线性相关关系的是________. ①人的身高与视力;②角的大小与所对的圆弧长; ③收入水平与纳税水平;④某地人的出生率与树林覆盖率.解析:②为确定性关系,①④不具有线性相关关系. 答案:③2.散点图在回归分析过程中的作用是________. ①查找个体个数;②比较个体数据大小关系; ③探究个体分类;④粗略判断变量是否线性相关.解析:散点图在回归分析中,能粗略判断变量间的相关关系. 答案:④3.已知x ,y 之间的一组数据:x 1.081.121.191.28y2.25 2.37 2.40 2.55 y 与x 之间的线性回归方程y =a +b x 必过定点________.解析:由已知可知线性回归方程一定过定点(x ,y ),因此求出x =1.1675,y =2.3925,故填(1.1675,2.3925).答案:(1.1675,2.3925)4.设有一个回归方程为y ^=2-2.5x ,则变量x 增加一个单位时,y 平均________个单位.解析:线性回归方程y ^=a ^+b ^x 中a ^,b ^的意义是:以a ^为基数,x 每增加1个单位,y 相应地平均增加b ^个单位.答案:减少2.5一、填空题1.下列说法:①回归方程适用于一切样本和总体;②样本取值的范围会影响回归方程的适用范围;③回归方程得到的预报值,是预报变量的精确值.其中正确的是________.解析:回归方程反映的是两个线性相关变量间的相关关系,它能预测变量的值,但不是精确值.答案:②2.关于相关系数r 的临界值r 0.05的说法:①临界值r 0.05是一个定值;②若|r |≤r 0.05,则否定假设H 0,表明有95%的把握认为x ,y 具有较强的线性相关关系;③若|r |>r 0.05,则没有理由拒绝假设H 0,即没有充分的理由认为y 与x 之间有线性相关关系;④临界值r 0.05不是一个定值,它的值可由检验水平0.05及n -2在附表中查到.其中正确的序号为________.解析:②中应改为“|r |>r 0.05”;③中应改为“|r |≤r 0.05”才正确;①、④矛盾,其中④中的表述正确.答案:④3.如图所示,有5组(x ,y )数据,去掉一组数据后,要使剩下的4组数据的相关系数最大,应去掉________点.解析:由散点图可知,D 点偏离最远,所以去掉D 点后,剩下4组数据的相关系数最大.答案:D4.若某地财政收入x 与支出y 满足线性回归方程y =bx +a +e (单位:亿元),其中b =0.8,a =2,|e |≤0.5,如果今年该地区财政收入10亿元,年支出预计不会超过________亿.解析:代入数据得y =10+e ,因为|e |≤0.5,所以|y |≤10.5,故不会超过10.5亿. 答案:10.55.(2011年高考广东卷)为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x (单位:小时)与当天投篮命中率y 之间的关系:时间x 12345命中率0.4 0.5 0.6 0.6 0.4小李这5天的平均投篮命中率为________;用线性回归分析的方法,预测小李每月6号打篮球6小时的投篮命中率为________.解析:小李这5天的平均投篮命中率 y =0.4+0.5+0.6+0.6+0.45=0.5.可求得小李这5天的平均打篮球时间x =3.根据表中数据可求得b ^=0.01,a ^=0.47,故回归直线方程为y ^=0.47+0.01x ,将x =6代入得6号打6小时篮球的命中率约为0.53. 答案:0.5 0.536.已知回归直线的斜率的估计值为 1.23.样本点的中心为(4,5),则回归直线方程是________.解析:由斜率的估计值为 1.23,且回归直线一定经过样本点的中心(4,5),可得y ^-5=1.23(x -4),即y ^=1.23x +0.08.答案:y ^=1.23x +0.087.(2011年高考山东卷改编)某产品的广告费用x 与销售额y 的统计数据如下表广告费用x (万元)4235销售额y (万元) 49 26 39 54 根据上表可得回归方程y =b x +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为________.解析:∵x =4+2+3+44=72,y =49+26+39+544=42,又y ^=b ^x +a ^必过(x ,y ),∴42=72×9.4+a ^,∴a ^=9.1.∴线性回归方程为y ^=9.4x +9.1.∴当x =6时,y ^=9.4×6+9.1=65.5(万元). 答案:65.5万元8.观测两相关变量得如下数据:x-1-2-3-4-553421 y -9 -7 -5 -3 -1 1 5 3 79根据表中数据可得y 与x 之间的线性回归方程是________.(填序号)①y ^=12x -1;②y ^=x ;③y ^=2x +13;④y ^=x +1.解析:由表中数据可求得x =0,y =0,所以填②. 答案:②9.(2011年高考陕西卷改编)设(x 1,y 1),(x 2,y 2),…,(x n ,y n )是变量x 和y 的n 个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是________.①x 和y 的相关系数为直线l 的斜率; ②x 和y 的相关系数在0到1之间;③当n 为偶数时,分布在l 两侧的样本点的个数一定相同;④直线l 过点(x ,y ).解析:因为相关系数是表示两个变量是否具有线性相关关系的一个值,它的绝对值越接近于1,两个变量的线性相关程度越强,所以①②错误.当n 为偶数时,分布在l 两侧的样本点的个数不一定相同,所以③错误.因为回归直线一定过样本点的中心,所以④正确.答案:④ 二、解答题10.某矿山采煤的单位成本y 与采煤量x 有关,其数据如下: 采煤量/千克 289298316322327329 329 331 350 单位成本/元43.5 42.9 42.1 39.6 39.138.5383837(1)作出散点图;(2)求出y 对x 的回归直线方程(结果保留3位小数). 解:(1)作出散点图,如图所示.(2)由图表可得x ≈321.222,y ≈39.856,∑i =19x 2i =931337,∑i =19x i y i =114892.7.所以b ^=∑i =19x i y i -9x y∑i =19x 2i -9(x )2≈-0.123,a ^=y -b ^x ≈79.366.故y 对x 的回归直线方程为y ^=-0.123x +79.366.11.一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器运转速度的变化而变化,下表为抽转速x (转/秒)1614128每小时生产有缺点的零件数y (件)11 9 8 5(1)利用散点图或相关系数r 的大小判断变量y 对x 是否线性相关?为什么? (2)如果y 对x 有线性相关关系,求线性回归方程;(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么机器的运转速度应控制在什么范围内?(最后结果精确到0.001,参考数据:656.25≈25.617,16×11+14×9+12×8+8×5=438,162+142+122+82=660,112+92+82+52=291)解:(1)x =12.5,y =8.25,∑4i =1(x i -x )(y i -y )=25.5, ∑4i =1(x i -x)2∑4i =1(y i -y )2=656.25≈25.617,∴r 0.05≈0.995,由检验水平0.05及n -2=2,在附录1中查得r 0.05=0.950, 因为0.995>0.950,∴y 与x 具有线性相关关系.(2)∑4i =1(x i -x )2=35, ∴b ^≈0.729,a ^=y -b ^x ≈-0.863. ∴线性回归方程为y ^=0.729x -0.863. (3)0.729x -0.863≤10,解得x ≤14.901, 故机器运转速度应在每秒14转之内.12.下表为某百货公司1~6月份销售量与利润之间的数量关系:月份1月2月3月4月5月6月现从具有线性相关关系这六组数据中选取4组数据求线性回归方程,再用剩下的2组数据进行检验.(1)根据2至5月份的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(2)若由线性回归方程得到的估计数据与剩下的检验数据的误差均不超过2万元,则认为得到的线性回归方程是理想的,试问所得线性回归方程是否理想?解:(1)由表中数据求得x =11,y =24,∑5i =2x i y i =11×25+13×29+12×26+8×16=1092,∑5i =2x 2i =112+132+122+82=498,∴b ^=∑5i =2x i y i -4x -y -∑5i =2x 2i -4x 2=1092-4×11×24498-4×112=3614=187, a ^=y -b ^x =24-187×11=-307.所以y 关于x 的线性回归方程为y ^=187x -307.(2)当x =10时,y =187×10-307=1507,此时|1507-22|<2;当x =6时,y =187×6-307=787,此时|787-12|<2.所以所得的线性回归方程是理想的.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

吉林省延边二中2006~2007学年度第一学期
高一年级数学学科基础训练(五)时间:20061014
命题人:张宏江 审核人:高一数学备课组
(命题范围:函数的单调性、反函数)
一、单项选择题
(在每题给出的四个选项中,只有一项是最符合题目要求

的。共8题,40分)
1、下列函数中没有反函数的是 ( )

A xy2 B 2xy C xy D xy2

2、函数)1(11xxy的反函数是 ( )
A)1(222xxxy B)1(222xxxy
C)1(22xxxy D)1(22xxxy
3、如果函数2)1(22xaxy在区间]4,(上是减函数,那么
实数的取值范围是 ( )
A 3a B 3a C 5a D 5a

4、函数)(xf在区间)7,4(上是增函数,则)3(xfy的递增
区间是( )
A (-2,3) B (-1,10) C (-1,7) D (-4,10)

5、已知函数)(xfy有反函数,则方程kxf)(1(k为实常数) ( )
A有且只有一个实根 B至多只有一个实根
C至少有一个实根 D 可能有两个实根

6、设mxy3和9nxy互为反函数,那么nm,的值
分别是 ( )
A -6,3 B 2,1 C 2,3 D 3,3

7、已知函数)(xfy的图象过点(0,1),则)4(xfy的反函数的
图象过点 ( )
A (1,4) B (4,1) C (3,0) D (0,3)
8、函数322xxy的单调递减区间是 ( )
A ]3,( B ]1,( C ]1,3[ D ),1[
答题卡

二.填空题:
本大题共4小题,每小题5分,共20分,把答案填在题中横

线上。

9、已知函数)(xf的反函数是)0(1)(1xxxf,则函数的
定义域是
10、已知14)(2mxxxf在)2,(上递减,在),2[上递增,则

)2(f
11、)(xf定义域为R,它在),0(上是减函数,则)1(2aaf与)43(f
的大小关系是)1(2aaf )43(f
12、若函数)45(541axaxy的图象关于直线xy对称,则a

三.解答题:
本大题共4小题,共40分,解答应写出文字说明,证明过程

或演算步骤。

13、已知函数)1(11)(2xxxf,求)31()31(1ff的值

1 2 3 4 5 6 7 8
14、求函数)1(12xxxy的图象与其反函数的图象的交点坐标。
15、函数22xaxy在)2,(上为单调递增函数,求a的取值范围。
16、函数)0(22)(2abaxaxxf在[2,3]上的最大值为5,最小

值为2,求ba,的值。

相关文档
最新文档