第三章二维随机变量

合集下载

概率论与数理统计第三章笔记

概率论与数理统计第三章笔记

学院 交通 学号1126002026 姓名 吕立正三.多维随机变量及其分布1.二维随机变量1.设随机试验E 的样本空间为:{}()(),S e X e Y e =、 为定义在S 上的随机变量,由它们构成一个随机向量 ()X Y 、,叫二维随机向量或二维随机变量.2.定义:设二维随机变量()X Y 、,对任意实数x y 、,二元函数{}(),F X Y P X xY y =≤≤,,称为()X Y 、的(联合)概率分布函数. 二维随机变量分布函数的性质:(1)(),F x y 是变量x 和y 的不减函数,即对任意固定的y ,当21x x >时()2,F x y ≥()1,F x y ;对于任意固定的x ,当21y y >时()2,F x y ≥()1,F x y .(2)()0,1F x y ≤≤,且对于任意固定的y ,(),0F y -∞=,对于任意固定的x ,(),0F x -∞=,(),0F -∞-∞=,(), 1.F ∞∞=(3) (),F x y =()0,F x y +,(),F x y =(),0F x y +,即(),F xy 关于x 右连续,关于y 也右连续.(4) 对于任意()11,x y ,()22,x y ,21x x >,21y y >,下述不等式成立: ()()()()22211112,,,,0F x y F x y F x y F x y -+-≥.如果二维随机变量(,)X Y 全部可能取到的不相同的值是有限对或可列无限多对,则称(,)X Y 是离散型的随机变量.3. 对于二维随机变量(),X Y 的分布函数(),F x y .如果存在非负的函数(),f x y 使对于任意()X Y 、有()(),,y xF x y f d d μυμυ-∞-∞=⎰⎰,则称(),X Y 是连续型的二维随机变量,函数(),f x y 称为二维随机变量(),X Y 的概率密度,或称为随机变量X 和Y 的联合概率密度. 概率密度(),f x y 具有以下性质: (1)(,)0f x y ≥ (2) (,)(,)1f x y dxdy F ∞∞-∞-∞=∞∞=⎰⎰(3) 设G 是xOy 平面上的区域,点()X Y 、落在G 内的概率为{}(,)(,)GP X Y G f x y dxdy ∈=⎰⎰(4) 若(),f x y 在点()X Y 、连续 则有2(,)(,)F x y f x y x y∂=∂∂ 4. 两个常用的分布(1)均匀分布:定义设D 为闭区域面积为A ,若随机变量()X Y 、 的(联合)密度为: 则称: ()X Y 、服从D 上的均匀分布.(2)二维正态分布:若二维随机变量 ()X Y 、的概率密度为: 则称: ()X Y 、服从参数为μ1、μ2、σ1、σ2、ρ的二维正态分布.其中σ1>0,σ2>0,|ρ|≤1是常数.记为:()X Y 、~N (μ1、μ2、σ12、σ22、ρ) .⎩⎨⎧∈=其它),(/1),(D y x Ay x f 21222112222211221(,)211()()()()exp 22(1);f x y x x y y x y πσσρμμμμρρσσσσ=⋅-⎧⎫⎡⎤-----⎪⎪-+⎨⎬⎢⎥-⎪⎪⎣⎦⎩⎭-∞<<+∞-∞<<+∞2.边缘分布1.二维随机变量(),X Y 作为一个整体,具有分布函数(),F x y ,而X 和Y 都是随机变量,也有也有分布函数,将他们分别记为()X F x ,()Y F y ,依次称为二维随机变量(),X Y 关于X 和Y 的边缘分布函数。

概率论第三章部分习题解答

概率论第三章部分习题解答

ydxdy.
定理1 cov(X ,Y ) E( XY ) E( X )E(Y )
定理2 若X与Y 独立,则:covX ,Y 0. 逆命题不成立。
注 设X与Y是任两个随机变量,
10
D( X Y ) D( X ) D(Y ) 2cov(X ,Y )
2、X与Y 的相关系数
定义 R( X ,Y ) cov( X ,Y )
EX
xf
xdx
1
二、二维随机变量的数学期望
(1)设二维离散随机变量(X,Y)的联合概率函数为p(xi , yj),则
随机变量X及Y 的数学期望分别定义如下:
EX xi p xi , y j , EY y j p xi , y j .
i j
ji
即: EX xi pX xi , EY y j pY y j .
第三章 随机变量的数字特征
(一)基本内容 一、一维随机变量的数学期望
定义1:设X是一离散型随机变量,其分布列为:
X x1 x2 xi
P p( x1 ) p( x2 )p( xi )
则随机变量X 的数学期望为: EX xi pxi
i
定义2:设X是一连续型随机变量,其分布密度为 f x,
则随机变量X的数学期望为
i
j
假定级数是绝对收敛的.
(2)设二维连续随机变量(X,Y)的联合概率密度为f(x, y),则
随机变量X及Y 的数学期望分别定义如下:
EX
xf
x,
ydxdy,
EY
yf x, ydxdy.
即:EX
xf X x dx,
EY
yfY y dy.
2
假定积分是绝对收敛的.

概率统计第三章

概率统计第三章

第三章二维随机变量及其分布练习题 3.1一、判断题1(X,Y)的分布可确定 X 与 Y 的边缘分布。

()、由2、设、是两个随机变量,则是二维随机变量。

3、设二维随机变量 (,)的联合分布函数为 F (x, y) ,则 F ( x, y)P{x,y} 1 P{x,y} 。

() 4、设二维随机变量(,) 的联合分布函数为 F (x, y) 则,P{ x1x2 , y1y2 } F (x2 , y2 ) F ( x1 , y1 )()5、由( X,Y)的两个边缘分布可确定 ( X ,Y )的联合分布()6、若(X,Y)为离散型二维随机变量,则P{ X a,Y b}P{ x a, y b} (其中 a,b 为常数)() 7、设( , )的概率分布为0133 1010131 1010则, U的概率分布为U012343。

( )P1010 10二、填空题1.设二维随机变量 ( , ) 的联合概率分布为01200.10.2010.30.10.120.100.1则 P0 =____。

2.设二维随机变量 ( , ) 的概率密度e y0 x yx, y0其他而的边缘密度为y ,则 2 =________。

3.设二维随机变量 ( , ) 的概率密度为1 0 x 1,0 y1x, y0其他则概率 P0.5,0.6 =________。

4.设二维随机变量 ( , ) 的概率密度为4xy0 x1,0y1x, y0其他则 P 01 , 12 41=___________,P{} =_________,P{} =_________。

5.(X ,Y)是二维连续型随机变量,用(X ,Y)的联合分布函数 F ( x, y)表示下列概率(1)p( a X b, Y c)__________ __________;(2)p( X a, Y b)____________________ ;(3) p(0 Y a ) __________ __________;(4) p( X a, Y b) ____________________ .练习题 3.2一、选择题1、设,为随机变量,则事件1,1的逆事件为 ().A1, 1 ;B1, 1 ;C1, 1 ;D1 1 .2、p ij P{x i ,y j }( i, j1,2,) 是离散型二维随机变量( ,) 的()。

二维随机变量(ξ ,η)

二维随机变量(ξ ,η)
第三章
多维随机变量及其概率分布
§3.1 多维随机变量及其联合概率分布
第三章作业题
P158
1,3,5,7,8 10,12,14,17,18 21,26,27,30 31,34,39,40
有些随机现象用一个随机变量来描述不够, 例如
1、 在打靶时,命中点的位置是由一对r.v(两个坐
标)来确定的.
2、 飞机的重心在空中的位置是由三个r.v (三个 坐标)来确定的等等.
区域A是x=0,y=0和x+y=1三条直线所围成的 三角区域,并且包含在圆域x2+y2≤4之内,面积 =0.5
∴ P{(ξ,η)A}=0.5/4=1/8
2、 二维正态分布
若二维随机变量(ξ,η)具有概率密度
p(x,
y)

1
21 2
1
2
exp{
2(1
1

2
)
[(
x
1 1
3、研究某年龄段儿童的身体发育情况,同时 考虑身高、体重、肺活量、血压等指标
4、研究某日的天气状况,同时考虑最高温度、最 大湿度、最大风力等指标。
一、多维随机变量的概念
设随机试验E的样本空间是Ω.ξ =ξ() 和η=η()都是定义在Ω上的随机变量,由它 们构成的变量(ξ,η),称为二维随机变量.
对任意n个实数x1,x2, xn,n元函数 F (x1,x2, xn, ) P{ X1 x1, X 2 x2,
Xn xn}
§3.4 边际分布与 随机变量的独立性
一、 边际分布
1、随机变量的边际分布函数
二维随机变量(ξ,η)作为一个整体,具有 分布函数F(x,y).
其分量ξ和η也都是随机变量,也有自己 的分布函数,将其分别记为Fξ (x ),Fη(y). 依次称为ξ 和η的 边际分布函数.

概率论与数理统计课件第三章

概率论与数理统计课件第三章

f
(x,
y)
1
21 2
1
2
exp
1
2(1 2 )
(x
1)2
2 1
2
(x
1)( y 1 2
2 )
(y
2)2
2 2
其中1、2、1、 2、都是常数,且1 0, 2 0,1 1.
则称(X,Y)服从参数为1、2、1、的二2、维 正态分布,
记为
(X
,Y)
~
N (1,
2
,
2 1
,
2 2
2F(x, y) f (x, y) xy
(5)若(X,Y)为二维连续型随机向量,联合概率密度为f(x,y),则
F(x,y) P{X x,Y y}
返回
X
18


例5 设二维随机变量(X,Y)的概率密度为
Ae2(x y) , x 0, y 0
f (x, y)
0, 其他
(1)确定常数A;
分别为(X,Y)关于X和Y的边缘分布函数.
返回
X
25


例1 设二维随机向量(X,Y)的联合分布函数为
(1 e2x )(1 e3y ), x 0, y 0,
F(x, y)
0, 其他.
求边缘分布 FX (x), FY ( y)
当x
0时,FX
(x)
lim (1
y
e2 x
)(1
e3 y
)
1
e2 x
返回
X
14

例3 设随机变量Y~N(0,1),令
0, X 1 1,
| Y | 1
0,
|Y
|

概率论与数理统计(理工类,第四版)吴赣昌主编课后习题答案第三章

概率论与数理统计(理工类,第四版)吴赣昌主编课后习题答案第三章

第三章多维随机变量及其分布3.1 二维随机变量及其分布习题1设(X,Y)的分布律为X\Y12311/61/91/1821/3a1/9求a.分析:dsfsd1f6d54654646解答:由分布律性质∑i⋅jPij=1,可知1/6+1/9+1/18+1/3+a+1/9=1,解得a=2/9.习题2(1)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(1)P{a<X≤b,Y≤c};解答:P{a<X≤b,Y≤c}=F(b,c)-F(a,c).习题2(2)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(2)P{0<Y≤b};解答:P{0<Y≤b}=F(+∞,b)-F(+∞,0).习题2(3)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(3)P{X>a,Y≤b}.解答:P{X>a,Y≤b}=F(+∞,b)-F(a,b).习题3(1)3.设二维离散型随机变量的联合分布如下表:试求:(1)P{12<X<32,0<Y<4;解答:P{12<X<23,0<Y<4P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=14+0+0=14.习题3(2)3.设二维离散型随机变量的联合分布如下表:试求:(2)P{1≤X≤2,3≤Y≤4};解答:P{1≤X≤2,3≤Y≤4}=P{X=1,Y=3}+P{X=1,Y=4}+P{X=2,Y=3}+P{X=2,Y=4}=0+116+0+14=516.习题3(3)3.设二维离散型随机变量的联合分布如下表:试求:(3)F(2,3).解答:F(2,3)=P(1,1)+P(1,2)+P(1,3)+P(2,1)+P(2,2)+P(2,3)=14+0+0+116+14+0=916.习题4设X,Y为随机变量,且P{X≥0,Y≥0}=37,P{X≥0}=P{Y≥0}=47,求P{max{X,Y}≥0}.解答:P{max{X,Y}≥0}=P{X,Y至少一个大于等于0}=P{X≥0}+P{Y≥0}-P{X≥0,Y≥0}=47+47-37=57.习题5(X,Y)只取下列数值中的值:(0,0),(-1,1),(-1,13),(2,0)且相应概率依次为16,13,112,512,请列出(X,Y)的概率分布表,并写出关于Y的边缘分布.解答:(1)因为所给的一组概率实数显然均大于零,且有16+13+112+512=1,故所给的一组实数必是某二维随机变量(X,Y)的联合概率分布. 因(X,Y)只取上述四组可能值,故事件:{X=-1,Y=0},{X=0,Y=13,{X=0,Y=1},{X=2,Y=13,{X=2,Y=1}均为不可能事件,其概率必为零. 因而得到下表:Y01/31pk7/121/121/3习题6设随机向量(X,Y)服从二维正态分布N(0,0,102,102,0),其概率密度为f(x,y)=1200πex2+y2200,求P{X≤Y}.解答:由于P{X≤Y}+P{X>Y}=1,且由正态分布图形的对称性,知P{X≤Y}=P{X>Y},故P{X≤Y}=12.习题7设随机变量(X,Y)的概率密度为f(x,y)={k(6-x-y),0<x<2,2<y<40,其它, (1)确定常数k;(2)求P{X<1,Y<3};(3)求P{X<1.5};(4)求P{X+Y≤4}.解答:如图所示(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数k.∫02∫24k(6-x-y)dydx=k∫02(6-2x)dx=8k=1,所以k=18.(2)P{X<1,Y<3}=∫01dx∫2318(6-x-y)dy=38.(3)P{X<1.5}=∫01.5dx∫2418(6-x-y)dy=2732.(4)P{X+Y≤4}=∫02dx∫24-x18(6-x-y)dy=23.习题8已知X和Y的联合密度为f(x,y)={cxy,0≤x≤1,0≤y≤10,其它,试求:(1)常数c;(2)X和Y的联合分布函数F(x,y).解答:(1)由于1=∫-∞+∞∫-∞+∞f(x,y)dxdy=c∫01∫01xydxdy=c4,c=4.(2)当x≤0或y≤0时,显然F(x,y)=0;当x≥1,y≥1时,显然F(x,y)=1;设0≤x≤1,0≤y≤1,有F(x,y)=∫-∞x∫-∞yf(u,v)dudv=4∫0xudu∫0yvdv=x2y2.设0≤x≤1,y>1,有F(x,y)=P{X≤1,Y≤y}=4∫0xudu∫01ydy=x2.最后,设x>1,0≤y≤1,有F(x,y)=P{X≤1,Y≤y}=4∫01xdx∫0yvdv=y2.函数F(x,y)在平面各区域的表达式F(x,y)={0,x≤0或y≤0x2,0≤x≤1,y>1x2y2,0≤x≤1,0≤y≤1.y2,x>习题9设二维随机变量(X,Y)的概率密度为f(x,y)={4.8y(2-x),0≤x≤1,x≤y≤10,其它,求边缘概率密度fY(y).解答:fX(x)=∫-∞+∞f(x,y)dy={∫0x4.8y(2-x)dy,0≤x≤10,其它={2.4x2(2-x),0≤x≤10,其它.fY(y)=∫-∞+∞f(x,y)dx={∫0y4.8y(2-x)dx,0≤y≤10,其它={2.4y(4y-y2),0≤y≤10,其它.习题10设(X,Y)在曲线y=x2,y=x所围成的区域G里服从均匀分布,求联合分布密度和边缘分布密度. 解答:区域G的面积A=∫01(x-x2)dx=16,由题设知(X,Y)的联合分布密度为f(x,y)={6,0≤x≤1,x2≤y≤x0,其它,从而fX(x)=∫-∞+∞f(x,y)dy=6∫x2xdy=6(x-x2),0≤x≤1,即fX(x)={6(x-x2),0≤x≤10,其它,fY(y)=∫-∞+∞f(x,y)dx=6∫yydx=6(y-y),0≤y≤1,即fY(y)={6(y-y),0≤y≤10,其它.3.2 条件分布与随机变量的独立性习题1二维随机变量(X,Y)的分布律为从而(X,Y)的联合概率分布为P{X≤a,∣X∣≤a}=P{X≤a}⋅P{∣X∣≤a},而事件{∣X∣≤a}⊂{X≤a},故由上式有P{∣X∣≤a}==P{X≤a}⋅P{∣X∣≤a},⇒P{∣X∣≤a}(1-P{X≤a})=0⇒P{∣X≤a∣}=0或1=P{X≤a}⋅(∀a>0)但当a>0时,两者均不成立,出现矛盾,故X与∣X∣不独立.习题9设X和Y是两个相互独立的随机变量,X在(0,1)上服从均匀分布,Y的概率密度为fY(y)={12e-y2,y>00,y≤0,(1)求X与Y的联合概率密度;(2)设有a的二次方程a2+2Xa+Y=0,求它有实根的概率.解答:(1)由题设易知fX(x)={1,0<x<10,其它,又X,Y相互独立,故X与Y的联合概率密度为f(x,y)=fX(x)⋅fY(y)={12e-y2,0<x<1,y>00,其它;(2)因{a有实根}={判别式Δ2=4X2-4Y≥0}={X2≥Y},故如图所示得到:P{a有实根}=P{X2≥Y}=∫∫x2>yf(x,y)dxdy=∫01dx∫0x212e-y2dy=-∫01e-x22dx=1-[∫-∞1e-x22dx-∫-∞0e-x22dx]=1-2π[12π∫-∞1e-x22dx-12π∫-∞0e-x22dx]=1-2π[Φ(1)-Φ(0),又Φ(1)=0.8413,Φ(0)=0.5,于是Φ(1)-Φ(0)=0.3413,所以P{a有实根}=1-2π[Φ(1)-Φ(0)]≈1-2.51×0.3413=0.1433.3.3 二维随机变量函数的分布习题1设随机变量X和Y相互独立,且都等可能地取1,2,3为值,求随机变量U=max{X,Y}和V=min{X,Y}的联合分布.解答:由于U≥V,可见P{U=i,V=j}=0(i<j).此外,有P{U=V=i}=P{X=Y=i}=1/9(i=1,2,3),P{U=i,V=j}=P{X=i,Y=j}+P{X=j,Y=i}=2/9(i>j),于是,随机变量U和V的联合概率分布为=∫01dy∫y2y12dx=14,P{U=1,V=1}=1-P{U=0,V=0}-P{U=0,V=1}-P{U=1,V=0}=1/2,即U\V01011/401/41/2习题4设(X,Y)的联合分布密度为f(x,y)=12πe-x2+y22,Z=X2+Y2,求Z的分布密度.解答:FZ(z)=P{Z≤z}=P{X2+Y2≤z}.当z<0时,FZ(z)=P(∅)=0;当z≥0时,FZ(z)=P{X2+Y2≤z2}=∫∫x2+y2≤z2f(x,y)dxdy=12π∫∫x2+y2≤z2e-x2+y22dxdy=12π∫02πdθ∫0ze-ρ22ρdρ=∫0ze-ρ22ρdρ=1-e-z22.故Z的分布函数为FZ(z)={1-e-z22,z≥00,z<0.Z的分布密度为fZ(z)={ze-z22,z>00,z≤0.习题5设随机变量(X,Y)的概率密度为f(x,y)={12(x+y)e-(x+y),x>0,y>00,其它,(1)问X和Y是否相互独立?(2)求Z=X+Y的概率密度.解答:(1)fX(x)=∫-∞+∞f(x,y)dy={∫0+∞12(x+y)e-(x+y)dy,x>00,x≤0\under2line令x+y=t{∫x+∞12te-tdt=12(x+1)e-x,x>00,x≤0,由对称性知fY(y)={12(y+1)e-y,y>00,y≤0,显然f(x,y)≠fX(x)fY(y),x>0,y>0,所以X与Y不独立.(2)用卷积公式求fZ(z)=∫-∞+∞f(x,z-x)dx.当{x>0z-x>0即{x>0x<z时,f(x,z-x)≠0,所以当z≤0时,fZ(z)=0;当z>0时,fZ(z)=∫0z12xe-xdx=12z2e-z.于是,Z=X+Y的概率密度为fZ(z)={12z2e-z,z>00,z≤0.习题6设随机变量X,Y相互独立,若X服从(0,1)上的均匀分布,Y服从参数1的指数分布,求随机变量Z=X+Y的概率密度.解答:据题意,X,Y的概率密度分布为fX(x)={1,0<x<10,其它,fY(y)={e-y,y≥00,y<0,由卷积公式得Z=X+Y的概率密度为fZ(z)=∫-∞+∞fX(x)fY(z-x)dx=∫-∞+∞fX(z-y)fY(y)dy=∫0+∞fX(z-y)e-ydy.由0<z-y<1得z-1<y<z,可见:当z≤0时,有fX(z-y)=0,故fZ(z)=∫0+∞0⋅e-ydy=0;当z>0时,fZ(z)=∫0+∞fX(z-y)e-ydy=∫max(0,z-1)ze-ydy=e-max(0,z-1)-e-z,即fZ(z)={0,z≤01-e-z,0<z≤1e1-z-e-z,z>1.习题7设随机变量(X,Y)的概率密度为f(x,y)={be-(x+y),0<x<1,0<y<+∞,0,其它.(1)试确定常数b;(2)求边缘概率密度fX(x),fY(y);(3)求函数U=max{X,Y}的分布函数.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数b.∫01dx∫0+∞be-xe-ydy=b(1-e-1)=1,所以b=11-e-1,从而f(x,y)={11-e-1e-(x+y),0<x<1,0<y<+∞,0,其它.(2)由边缘概率密度的定义得fX(x)={∫0+∞11-e-1e-(x+y)dy=e-x1-e-x,0<x<1,0,其它,fY(x)={∫0111-e-1e-(x+y)dx=e-y,0<y<+∞,0,其它(3)因为f(x,y)=fX(x)fY(y),所以X与Y独立,故FU(u)=P{max{X,Y}≤u}=P{X≤u,Y≤u}=FX(u)F Y(u),其中FX(x)=∫0xe-t1-e-1dt=1-e-x1-e-1,0<x<1,所以FX(x)={0,x≤0,1-e-x1-e-1,0<x<1,1,x≥1.同理FY(y)={∫0ye-tdt=1-e-y,0<y<+∞,0,y≤0,因此FU(u)={0,u<0,(1-e-u)21-e-1,0≤u<1,1-e-u,u≥1.习题8设系统L是由两个相互独立的子系统L1和L2以串联方式联接而成,L1和L2的寿命分别为X与Y,其概率密度分别为ϕ1(x)={αe-αx,x>00,x≤0,ϕ2(y)={βe-βy,y>00,y≤0,其中α>0,β>0,α≠β,试求系统L的寿命Z的概率密度.解答:设Z=min{X,Y},则F(z)=P{Z≥z}=P{min(X,Y)≤z}=1-P{min(X,Y)>z}=1-P{X≥z,Y≥z}=1-[1P{X<z}][1-P{Y<z}]=1-[1-F1{z}][1-F2{z}]由于F1(z)={∫0zαe-αxdx=1-e-αz,z≥00,z<0,F2(z)={1-e-βz,z≥00,z<0,故F(z)={1-e-(α+β)z,z≥00,z<0,从而ϕ(z)={(α+β)e-(α+β)z,z>00,z≤0.习题9设随机变量X,Y相互独立,且服从同一分布,试证明:P{a<min{X,Y}≤b}=[P{X>a}]2-[P{X>b}]2.解答:设min{X,Y}=Z,则P{a<min{X,Y}≤b}=FZ(b)-FZ(a),FZ(z)=P{min{X,Y}≤z}=1-P{min{X,Y}>z}=1-P{X>z,Y>z}=1-P{X>z}P{Y>z}=1-[P{X>z}]2,代入得P{a<min{X,Y}≤b}=1-[P{X>b}]2-(1-[P{X>a}]2)=[P{X>a}]2-[P{X>b}]2.证毕.复习总结与总习题解答习题1在一箱子中装有12只开关,其中2只是次品,在其中取两次,每次任取一只,考虑两种试验:(1)放回抽样;(2)不放回抽样.我们定义随机变量X,Y如下:X={0,若第一次取出的是正品1,若第一次取出的是次品, Y={0,若第二次取出的是正品1,若第二次取出的是次品,试分别就(1),(2)两种情况,写出X和Y的联合分布律.解答:(1)有放回抽样,(X,Y)分布律如下:P{X=0,Y=0}=10×1012×12=2536; P{X=1,Y=0}=2×1012×12=536,P{X=0,Y=1}=10×212×12=536, P{X=1,Y=1}=2×212×12=136,(2)不放回抽样,(X,Y)的分布律如下:P{X=0,Y=0}=10×912×11=4566, P{X=0,Y=1}=10×212×11=1066,P{X=1,Y=1}=2×112×11=166,习题2假设随机变量Y服从参数为1的指数分布,随机变量Xk={0,若Y≤k1,若Y>k(k=1,2),求(X1,X2)的联合分布率与边缘分布率.解答:因为Y服从参数为1的指数分布,X1={0,若Y≤11,若Y>1, 所以有P{X1=1}=P{Y>1}=∫1+∞e-ydy=e-1,P{X1=0}=1-e-1,同理P{X2=1}=P{Y>2}=∫2+∞e-ydy=e-2,P{X2=0}=1-e-2,因为P{X1=1,X2=1}=P{Y>2}=e-2,P{X1=1,X2=0}=P{X1=1}-P{X1=1,X2=1}=e-1-e-2,P{X1=0,X2=0}=P{Y≤1}=1-e-1,P{X1=0,X2=1}=P{X1=0}-P{X1=0,X2=0}=0,故(X1,X2)联合分布率与边缘分布率如下表所示:习题3在元旦茶话会上,每人发给一袋水果,内装3只橘子,2只苹果,3只香蕉. 今从袋中随机抽出4只,以X记橘子数,Y记苹果数,求(X,Y)的联合分布.解答:X可取值为0,1,2,3,Y可取值0,1,2.P{X=0,Y=0}=P{∅}=0,P{X=0,Y=1}=C30C21C33/C84=2/70,P{X=0,Y=2}=C30C22C32/C84=3/70,P{X=1,Y=0}=C31C20C33/C84=3/70,P{X=1,Y=1}=C31C21C32/C84=18/70,P{X=1,Y=2}=C31C22C31/C84=9/70,P{X=2,Y=0}=C32C20C32/C84=9/70,P{X=2,Y=1}=C32C21C31/C84=18/70,P{X=2,Y=2}=C32C22C30/C84=3/70,P{X=3,Y=0}=C33C20C31/C84=3/70,P{X=3,Y=1}=C33C21C30/C84=2/70,P{X=3,Y=2}=P{∅}=0,所以,(X,Y)的联合分布如下:习题4设随机变量X与Y相互独立,下表列出了二维随机变量(X,Y)的联合分布律及关于X与Y解答:由题设X与Y相互独立,即有pij=pi⋅p⋅j(i=1,2;j=1,2,3), p⋅1-p21=p11=16-18=124,又由独立性,有p11=p1⋅p⋅1=p1⋅16故p1⋅=14.从而p13=14-124-18, 又由p12=p1⋅p⋅2, 即18=14⋅p⋅2.从而p⋅2=12. 类似的有p⋅3=13,p13=14,p2⋅=34.将上述数值填入表中有习题5设随机变量(X,Y)的联合分布如下表:求:(1)a值;(2)(X,Y)的联合分布函数F(x,y);(3)(X,Y)关于X,Y的边缘分布函数FX(x)与FY(y).解答:(1)\because由分布律的性质可知∑i⋅jPij=1, 故14+14+16+a=1,∴a=13.(2)因F(x,y)=P{X≤x,Y≤y}①当x<1或y<-1时,F(x,y)=0;②当1≤x<2,-1≤y<0时,F(x,y)=P{X=1,Y=-1}=1/4;③当x≥2,-1≤y<0时,F(x,y)=P{X=1,Y=-1}+P{X=2,Y=-1}=5/12;④当1≤x<2,y>0时,F(x,y)=P{X=1,Y=-1}+P{X=1,Y=0}=1/2;⑤当x≥2,y≥0时,F(x,y)=P{X=1,Y=-1}+P{X=2,Y=-1}+P{X=1,Y=0}+P{X=2,Y=0}=1;综上所述,得(X,Y)联合分布函数为F(x,y)={0,x<1或y<-11/4,1≤x<2,-1≤y<05/12,x≥2,-1≤y<01/2,1≤x<2,y≥01,x≥2,y≥0.(3)由FX(x)=P{X≤x,Y<+∞}=∑xi<x∑j=1+∞pij, 得(X,Y)关于X的边缘分布函数为:FX(x)={0,x<114+14,1≤x<214+14+16+13,x≥2={0,x<11/2,1≤x<21,x≥2,同理,由FY(y)=P{X<+∞,Y≤y}=∑yi≤y∑i=1+∞Pij, 得(X,Y)关于Y的边缘分布函数为FY(y)={0,y<-12/12,-1≤y<01,y≥0.习题6设随机变量(X,Y)的联合概率密度为f(x,y)={c(R-x2+y2),x2+y2<R0,x2+y2≥R,求:(1)常数c; (2)P{X2+Y2≤r2}(r<R).解答:(1)因为1=∫-∞+∞∫-∞+∞f(x,y)dydx=∫∫x2+y2<Rc(R-x2+y)dxdy=∫02π∫0Rc(R-ρ)ρdρdθ=cπR33,所以有c=3πR3.(2)P{X2+Y2≤r2}=∫∫x2+y2<r23πR3[R-x2+y2]dxdy=∫02π∫0r3πR3(R-ρ)ρdρdθ=3r2R2(1-2r3R).习题7设f(x,y)={1,0≤x≤2,max(0,x-1)≤y≤min(1,x)0,其它,求fX(x)和fY(y).解答:max(0,x-1)={0,x<1x-1,x≥1, min(1,x)={x,x<11,x≥1,所以,f(x,y)有意义的区域(如图)可分为{0≤x≤1,0≤y≤x},{1≤x≤2,1-x≤y≤1},即f(x,y)={1,0≤x≤1,0≤y≤x1,1≤x≤2,x-1≤y≤1,0,其它所以fX(x)={∫0xdy=x,0≤x<1∫x-11dy=2-x,1≤x≤20,其它,fY(y)={∫yy+1dx=1,0≤y≤10,其它.习题8若(X,Y)的分布律为则α,β应满足的条件是¯, 若X与Y独立,则α=¯,β=¯.解答:应填α+β=13;29;19.由分布律的性质可知∑i⋅jpij=1, 故16+19+118+13+α+β=1,即α+β=13.又因X与Y相互独立,故P{X=i,Y=j}=P{X=i}P{Y=j}, 从而α=P{X=2,Y=2}=P{X=i}P{Y=j},=(19+α)(14+α+β)=(19+α)(13+13)=29,β=P{X=3,Y=2}=P{X=3}P{Y=2}=(118+β)(13+α+β)=(118+β)(13+13),∴β=19.习题9设二维随机变量(X,Y)的概率密度函数为f(x,y)={ce-(2x+y),x>0,y>00,其它,(1)确定常数c; (2)求X,Y的边缘概率密度函数;(3)求联合分布函数F(x,y); (4)求P{Y≤X};(5)求条件概率密度函数fX∣Y(x∣y); (6)求P{X<2∣Y<1}.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1求常数c.∫0+∞∫0+∞ce-(2x+y)dxdy=c⋅(-12e-2x)\vline0+∞⋅(-e-y)∣0+∞=c2=1,所以c=2.(2)fX(x)=∫-∞+∞f(x,y)dy={∫0+∞2e-2xe-ydy,x>00,x≤0={2e-2x,x>00,x≤0,fY(y)=∫-∞+∞f(x,y)dx={∫0+∞2e-2xe-ydx,y>00,其它={e-y,y>00,y≤0.(3)F(x,y)=∫-∞x∫-∞yf(u,v)dvdu={∫0x∫0y2e-2ue-vdvdu,x>0,y>00,其它={(1-e-2x)(1-e-y),x>0,y>00,其它.(4)P{Y≤X}=∫0+∞dx∫0x2e-2xe-ydy=∫0+∞2e-2x(1-e-x)dx=13.(5)当y>0时,fX∣Y(x∣y)=f(x,y)fY(y)={2e-2xe-ye-y,x>00,x≤0={2e-2x,x>00,x≤0.(6)P{X<2∣Y<1}=P{X<2,Y<1}P{Y<1}=F(2,1)∫01e-ydy=(1-e-1)(1-e-4)1-e-1=1-e-4.习题10设随机变量X以概率1取值为0, 而Y是任意的随机变量,证明X与Y相互独立.解答:因为X的分布函数为F(x)={0,当x<0时1,当x≥0时, 设Y的分布函数为FY(y),(X,Y)的分布函数为F(x,y),则当x<0时,对任意y, 有F(x,y)=P{X≤x,Y≤y}=P{(X≤x)∩(Y≤y)}=P{∅∩(Y≤y)}=P{∅}=0=FX(x)FY(y);当x≥0时,对任意y, 有F(x,y)=P{X≤x,Y≤y}=P{(X≤x)∩(Y≤y)}=P{S∩(Y≤y)}=P{Y≤y}=Fy(y)=FX(x)FY(y),依定义,由F(x,y)=FX(x)FY(y)知,X与Y独立.习题11设连续型随机变量(X,Y)的两个分量X和Y相互独立,且服从同一分布,试证P{X≤Y}=1/2. 解答:因为X,Y独立,所以f(x,y)=fX(x)fY(y).P{X≤Y}=∫∫x≤yf(x,y)dxdy=∫∫x≤yfX(x)fY(y)dxdy=∫-∞+∞[fY(y)∫-∞yfX(x)dx]dy=∫-∞+∞[fY(y)FY(y)]dy=∫-∞+∞FY(y)dFY(y)=F2(y)2∣-∞+∞=12,也可以利用对称性来证,因为X,Y独立同分布,所以有P{X≤Y}=P{Y≤X},而P{X≤Y}+P{X≥Y}=1, 故P{X≤Y}=1/12.习题12设二维随机变量(X,Y)的联合分布律为若X与Y相互独立,求参数a,b,c的值.解答:关于X的边缘分布为由于X与Y独立,则有p22=p2⋅p⋅2 得b=(b+19)(b+49) ①p12=p1⋅p⋅2 得19=(a+19)(b+49) ②由式①得b=29, 代入式②得a=118. 由分布律的性质,有a+b+c+19+19+13=1,代入a=118,b=29, 得c=16.易验证,所求a,b,c的值,对任意的i和j均满足pij=pi⋅×p⋅j.因此,所求a,b,c的值为a=118,b=29,c=16.习题13已知随机变量X1和X2的概率分布为且P{X1X2=0}=1.(1)求X1和X2的联合分布律;(2)问X1和X2是否独立?解答:(1)本题是已知了X1与X2的边缘分布律,再根据条件P{X1X2=0}=1, 求出联合分布. 列表如下:P{X1=1,X2=1}=0,P{X1=-1,X2=1}=0.再由p⋅1=p-11+p11+p01, 得p01=12, p-10=p-1⋅=p-11=14,p10=p1⋅-p11=14,从而得p00=0.(2)由于p-10=14≠p-1⋅⋅p⋅0=14⋅12=18, 所以知X1与X2不独立.习题14设(X,Y)的联合密度函数为f(x,y)={1πR2,x2+y2≤R20,其它,(1)求X与Y的边缘概率密度;(2)求条件概率密度,并问X与Y是否独立?解答:(1)当x<-R或x>R时,fX(x)=∫-∞+∞f(x,y)dy=∫-∞+∞0dy=0;当-R≤x≤R时,fX(x)=∫-∞+∞f(x,y)dy=1πR2∫-R2-x2R2-x2dy=2πR2R2-x2.于是fX(x)={2R2-x2πR2,-R≤x≤R0,其它.由于X和Y的地位平等,同法可得Y的边缘概率密度是:fY(y)={2R2-y2πR2,-R≤y≤R0,其它.(2)fX∣Y(x∣y)=f(x,y)fY(y)注意在y处x值位于∣x∣≤R2-y2这个范围内,f(x,y)才有非零值,故在此范围内,有fX∣Y(x∣y)=1πR22πR2⋅R2-y2=12R2-y2,即Y=y时X的条件概率密度为fX∣Y(x∣y)={12R2-y2,∣x∣≤R2-y20,其它.同法可得X=x时Y的条件概率密度为fY∣X(y∣x)={12R2-x2,∣y∣≤R2-x20,其它.由于条件概率密度与边缘概率密度不相等,所以X与Y不独立.习题15设(X,Y)的分布律如下表所示X\Y -112-12 1/102/103/102/101/101/10求:(1)Z=X+Y; (2)Z=max{X,Y}的分布律.解答:与一维离散型随机变量函数的分布律的计算类似,本质上是利用事件及其概率的运算法则. 注意,Z的相同值的概率要合并.概率(X,Y)X+YXYX/Ymax{X,Y}1/102/103/102/101/101/10(-1,-1)(-1,1)(-1,2)(2,-1)(2,1)(2,2)-2011341-1-2-2241-1-1/2-221-112222于是(1)习题16设(X,Y)的概率密度为f(x,y)={1,0<x<1,0<y<2(1-x)0,其他,求Z=X+Y的概率密度.解答:先求Z的分布函数Fz(z),再求概率密度fz(z)=dFz(z)dz.如右图所示.当z<0时,Fz(z)=P{X+Y≤z}=0;当0≤z<1时,Fz(z)=P{X+Y≤z}=∫∫x+y≤zf(x,y)dxdy=∫0zdx∫0z-x1dy=∫0z(z-x)dx=z2-12x2∣0z=12z2;当1≤z<2时,Fz(z)=∫02-zdx∫0z-xdy+∫2-z1dx∫02(1-x)dy=z(2-z)-12(2-z)2+(z-1)2;当z≥2时,∫∫Df(x,y)dxdy=∫01dx∫02(1-x)dy=1.综上所述Fz(z)={0,z<012z2,0≤z<1z(2-z)-12(2-z)2+(z-1)2,1≤z<21,z≥2,故fz(z)={z,0≤z<12-z,1≤z<20,其它.习题17设二维随机变量(X,Y)的概率密度为f(x,y)={2e-(x+2y),x>0,y>00,其它,求随机变量Z=X+2Y的分布函数.解答:按定义FZ(Z)=P{x+2y≤z},当z≤0时,FZ(Z)=∫∫x+2y≤zf(x,y)dxdy=∫∫x+2y≤z0dxdy=0.当z>0时,FZ(Z)=∫∫x+2y≤zf(x,y)dxdy=∫0zdx∫0(z-x)/22e-(x+2y)dy=∫0ze-x⋅(1-ex-z)dx=∫0z(e-x-e-z)dx=[-e-x]∣0z-ze-z=1-e-z-ze-z,故分布函数为FZ(Z)={0,z≤01-e-z-ze-z,z>0.习题18设随机变量X与Y相互独立,其概率密度函数分别为fX(x)={1,0≤x≤10,其它, fY(y)={Ae-y,y>00,y≤0,求:(1)常数A; (2)随机变量Z=2X+Y的概率密度函数.解答:(1)1=∫-∞+∞fY(y)dy=∫0+∞A⋅e-ydy=A.(2)因X与Y相互独立,故(X,Y)的联合概率密度为f(x,y)={e-y,0≤x≤1,y>00,其它.于是当z<0时,有F(z)=P{Z≤z}=P{2X+Y≤z}=0;当0≤z≤2时,有F(z)=P{2X+Y≤z}=∫0z/2dx∫0z-2xe-ydy=∫0z/2(1-e2x-z)dx;当z>2时,有F(z)=P{2X+Y≤2}=∫01dx∫0z-2xe-ydy=∫01(1-e2x-z)dx.利用分布函数法求得Z=2X+Y的概率密度函数为fZ(z)={0,z<0(1-e-z)/2,0≤z<2(e2-1)e-z/2,z≥2.习题19设随机变量X,Y相互独立,若X与Y分别服从区间(0,1)与(0,2)上的均匀分布,求U=max{X,Y}与V=min{X,Y}的概率密度.解答:由题设知,X与Y的概率密度分别为fX(x)={1,0<x<10,其它, fY(y)={1/2,0<y<20,其它,于是,①X与Y的分布函数分别为FX(x)={0,x≤0x,0≤x<11,x≥1, FY(y)={0,y<0y/2,0≤y<21,y≥2,从而U=max{X,Y}的分布函数为FU(u)=FX(u)FY(u)={0,u<0u2/2,0≤u<1u/2,1≤u<21,u≥2,故U=max{X,Y}的概率密度为fU(u)={u,0<u<11/2,1≤u<20,其它.②同理,由FV(v)=1-[1-FX(v)][1-FY)]=FX(v)+FY(v)-FX(v)FY(v)=FX(v)+FY(v)-FU(v),得V=min{X,Y}的分布函数为FV(v)={0,v<0v2(3-v),0≤v<11,v≥1,故V=min{X,Y}的概率密度为fV(v)={32-v,0<v<10,其它.注:(1)用卷积公式,主要的困难在于X与Y的概率密度为分段函数,故卷积需要分段计算;(2)先分别求出X,Y的分布函数FX(x)与FY(y), 然后求出FU(u),再求导得fU(u); 同理先求出FV(v), 求导即得fV(v).。

第三章随机向量及其独立性

第三章随机向量及其独立性

yj}
j 1,2,
为 在X xi条 件 下Y的 条 件 分 布 律.
例2: 一射手进行射击,每次射击击中目标的概率均为 p(0<p<1)且假设各次击中目标与否相互独立,射击进行 到击中目标两次为止.设X表示到第一次击中目标时的射 击次数,以Y表示总共进行的射击次数.试求(X,Y)的联合 分布和条件分布.
同理
P{ X = 1}= p1 j =1/4
j1
P{ X = 2}= p2 j =1/4
j 1
P{
X
=
3}=
p3 j
=1/4
j 1
P{
X
=
4}=
p4 j
=1/4
j 1
P{Y=1}=25/48, P{Y=2}=13/48
P{Y=3}=7/48 , P{Y=4}=3/48
可以用表格来说明联合分布律与边缘分布律的关系
表中,每一列的和表示Y的边缘分布,每一行的和表示X的
边缘分布.右下角的1是所有pij的和,也是X,Y各自边缘分
布的和.
例6:设二维随机变量(X,Y)的联合分布为
又P{Y=2}=1/3 求 (1)a,b
(2)求边缘分布律

(1)由
33
pij =1
可知 a+b=1/6
i1 j1
又P{Y=2}=1/6+a+1/12=1/3
例1: 设二维随机变量(X,Y)的分布律如表所示。
问:X与Y相互独立吗? 解: X与Y的边缘分布律分别为
逐一验证可知, pij= pi. ·p.j
(i=1,2,3,j=1,2,3) 从而X与Y相互独立。
2、条件分布
定 义6 设( X ,Y )是 二 维 离 散 型 随 机 变 量, 对 于 固 定 的j,

大学概率论第三章----随机向量

大学概率论第三章----随机向量

大学概率论第三章----随机向量第三章 随机向量第一节 二维随机向量及其分布1、二维随机向量及其分布函数定义1:设E 是一个随机试验,它的样本空间是{}e Ω=.设X(e)与Y(e)是定义在同一样本空间Ω上的两个随机变量,则称(X(e),Y(e))为Ω上的二维随机向量或二维随机变量。

简记为(X,Y).定义2:设(X,Y)是二维随机向量,对于任意实数x,y ,称二元函数 F(x,y)=P{X ≦x ,Y ≦y}为二维随机向量(X,Y)的分布函数或联合分布函数。

(X,Y)的分布函数满足如下基本性质: (1)F(x,y)是变量x,y 的不减函数. (2)0≦F(x,y)≦1,(,)0y F y -∞=对于任意的 ,(,)0x F x -∞=对于任意的(,)0(,)1F F -∞-∞=+∞+∞=,(3)(,), (,)(0,)(,)(,0)F x y x y F x y F x y F x y F x y =+=+关于是右连续的,即, 1122121222211211(4)(,)(,),, (,)(,)(,)(,)0x y x y x x y y F x y F x y F x y F x y <<--+≥对于任意和,有2、二维离散型随机变量定义3:若二维随机向量(X,Y)的所有可能取值是有限对或无限可列多对,则称(X,Y) 为二维离散型随机向量。

设(X,Y)的一切可能值为(,) , ,1,2,i j X Y i j =L ,且(X,Y)取各对可能值的概率为,(,), ,1,2,i j i j P X Y P i j ==L(1) 非负性:,0, ,1,2,i j P i j ≥=L ;,(2)1ij i jp =∑规范性:, (,){,}i i ijx x y yX Y F x y P X x Y Y p ≤≤=≤≤=∑∑离散型随机变量的联合分布函数为定义4:{,}(,1,2,...)(,)ij P X x Y Y p i j X Y X Y ≤≤==称为二维离散型随机变量的概率分布或分布律,或随机变量和的联合分布律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 二维随机变量2007.45. 设二维随机变量(X ,Y则P {X +Y =0}=( ) A.0.2 B.0.3 C.0.5D.0.76. 设二维随机变量(X ,Y )的概率密度为⎩⎨⎧<<-<<-=,,;y ,x ,c )y ,x (f 其他01111则常数c=( )A.41B.21 C.2D.417. 设(,)(0,0;1,1;0)X Y N ,则(X ,Y )关于X 的边缘概率密度()X f x =___________.26.设随机变量X 与Y 相互独立,且X ,Y 的分布律分别为试求:(1)二维随机变量(X ,Y )的分布律;(2)随机变量Z=XY 的分布律.2007.75.设二维随机变量(X ,Y )的分布律为设(,)ij p P X i Y j ===,0,1i j =,则下列各式中错误..的是( ) A .p 00<p 01B .p 10<p 11,C .p 00<p 11D .p 10<p 0117. 设二维随机变量(X ,Y )的概率密度为⎩⎨⎧≤≤≤≤=其他,010,10,),(y x axy y x f ,则常数a =___________.18.设二维随机向量(X ,Y )的联合分布列为则P{X+Y=0}=___________.28.设二维随机向量(X ,Y )的联合分布列为试求:(1)a 的值;(2)(X ,Y )分别关于X 和Y 的边缘分布列; (3)X 与Y 是否独立?为什么? (4)X+Y 的分布列.2007.105则P{X=Y}=( ) A .0.3 B .0.5 C .0.7D .0.820.设二维随机变量(X ,Y )的概率密度为f (x ,y)=1,01, 01;0,,x y ≤≤≤≤⎧⎨⎩其他则P{X ≤21}=____________. 21.设二维随机变量(X ,Y )的概率密度为⎪⎩⎪⎨⎧>>=+-,,0;0,0,),()(其他y x ey x f y x则当y>0时,(X ,Y )关于Y的边缘概率密度()Y f y =____________.26.设二维随机变量(X ,Y )的分布律为试问:X 与Y 是否相互独立?为什么?2008.15. 设随机变量(X ,Y )的联合概率密度为f(x,y)=.;0y ,0x ,0,e Ae y 2x 其它>>⎪⎩⎪⎨⎧--则A=( )A.21B.1C.23D.2 6. 设二维随机变量(X 、Y )的联合分布为( )则P{XY=0}=( )A.41 B.125 C.43D.1 17. 设(X ,Y )的分布律为:则α=_______。

18. 设X~N (-1,4),Y~N (1,9)且X 与Y 相互独立,则X+Y~___________。

19. 设二维随机变量(X ,Y )概率密度为1(), 02, 01(,)30, x y x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩其它;则()X f x =__________________。

2008.420.设随机变量X 和Y 相互独立,它们的分布律分别为,则{}==+1Y X P ____________.29.设二维随机变量(X ,Y )的概率密度为(1)求常数c ;(2)求(X ,Y )分别关于X ,Y 的边缘密度);(),(y f x f Y X (3)判定X 与Y 的独立性,并说明理由; (4)求P {}1,1>>Y X .2008.76.已知X ,Y 的联合概率分布如题6表所示F (x,y )为其联合分布函数,则F (0,31)=( )A .0B .121 C .61 D .41 7.设二维随机变量(X ,Y )的联合概率密度为 ()0,0(,)0x y e x y f x y -+⎧>>=⎨⎩其它则P (X ≥Y )=( )A .41 B .21 ⎩⎨⎧≤≤≤≤=.,0;20,20,),(其他y x cxy y x fC .32 D .43 16.设随机变量(X ,Y )的联合分布如题16表,则α=________________.题16表17.设随机变量(X,Y)的概率密度为01,02(,)0xy x y f x y ≤≤≤≤⎧=⎨⎩其他, 则X 的边缘概率密度()X f x =________.18.设随机变量(X,Y)服从区域D 上的均匀分布,其中区域D 是直线y=x ,x=1和x 轴所围成的三角形区域,则(X,Y)的概率密度(,)f x y =________________.2008.105.设随机变量X 与Y 独立同分布,它们取1-,1两个值的概率分别为41,43,则{}=-=1XY P ( ) A .161 B .163 C .41 D .83 6.设三维随机变量),(Y X 的分布函数为(,)F x y ,则=∞+),(x F ( ) A .0 B .)(x F X C .)(y F YD .17.设随机变量X 和Y 相互独立,且)4,3(~N X ,)9,2(~N Y ,则~3Y X Z -=( ) A .)21,7(N B .)27,7(N C .)45,7(ND .)45,11(N17.已知当10,10<<<<y x 时,二维随机变量),(Y X 的分布函数22),(y x y x F =,记),(Y X 的概率密度为),(y x f ,则=)41,41(f _______.18.设二维随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤=,,0,10,10,1),(其他y x y x f则=⎭⎬⎫⎩⎨⎧>≤21,21Y X P _______.27.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>≤≤=-.,0,0,10,21),(2其他y x e y x f y(1)分别求),(Y X 关于Y X ,的边缘概率密度)(),(y f x f Y X ; (2)问X 与Y 是否相互独立,并说明理由.2009.15. 设二维随机变量(X,Y)的联合分布函数为F(x,y). 其联合概率分布为则F (0,1)=( )A. 0.2B. 0.6C. 0.7D. 0.8 6. 设二维随机变量(,)X Y 的联合概率密度为(),02,01;(,)0,.k x y x y f x y +≤≤≤≤⎧=⎨⎩其它 则k=( )A.41 B.31 C.21 D.3217. 设二维随机变量(X,Y)的分布律为则P{XY=0}=___________。

18. 设(X,Y)的概率密度为f(x,y)=⎩⎨⎧>>--.,0;0y ,0x ,e y x 其它则X 的边缘概率密度为f X (x)= ___________。

19. 设X 与Y 为相互独立的随机变量,其中X 在(0,1)上服从均匀分布,Y 在(0,2)上服从均匀分布,则(X ,Y)的概率密度f(x,y)= ___________。

2009.45.设二维随机变量(X ,Y )的分布律为则P{XY=2}=( )A .51 B .103 C .21 D .53 6.设二维随机变量(X ,Y )的概率密度为 ⎩⎨⎧≤≤≤≤=,,0;10,10,4),(其他y x xy y x f则当0≤y ≤1时,(X ,Y )关于Y 的边缘概率密度为()Y f y = ( ) A .x21B .2xC .y 21D .2y17.设二维随机变量(X ,Y )的概率密度为⎪⎩⎪⎨⎧≤≤-≤≤-=,,0;11,11,41),(其他y x y x f则(01,01)P X Y ≤≤≤≤= ___________. 18则P{Y=2}=___________.26.设二维随机变量(X ,Y )的概率密度为⎪⎩⎪⎨⎧>>=+.,0;0,0,e),()-(其他y x y x f y x(1)分别求(X ,Y )关于X 和Y 的边缘概率密度; (2)问:X 与Y 是否相互独立,为什么?2009.77.设随机变量X ,Y 相互独立,其联合分布为则有( )A .92,91==βαB .91,92==βαC .32,31==βαD .31,32==βα17.设随机变量(X ,Y )的分布函数为F (x ,y )=⎪⎩⎪⎨⎧≥≥----其它00,0),1)(1(5.05.0y x e ey x ,则X 的边缘分布函数()X F x =________.18.设二维随机变量(X ,Y )的联合密度为:()02,01(,)0A x y x y f x y +<<<<⎧=⎨⎩其它,则A=_________.2009.1019.设相互独立的随机变量X ,Y 均服从参数为1的指数分布,则当x >0,y >0时,(X ,Y )的概率密度f (x ,y )=________.20.设二维随机变量(X ,Y )的概率密度1,01,01,(,)0,x y f x y ≤≤≤≤⎧=⎨⎩其他,则P {X +Y ≤1}=________.21.设二维随机变量(X ,Y )的概率密度为,01,01,(,)0,,axy x y f x y ≤≤≤≤⎧=⎨⎩其他则常数a =_______.22. 设二维随机变量(X ,Y )的概率密度221()21(,)e 2πx y f x y -+=,则(X ,Y )关于X 的边缘概率密度()X f x =________.26.设二维随机变量(X ,Y )只能取下列数组中的值:(0,0),(-1,1),(-1,31),(2,0),且取这些值的概率依次为61,31,121,125. (1)写出(X ,Y )的分布律;(2)分别求(X ,Y )关于X ,Y 的边缘分布律.2010.16.设二维随机变量(X ,Y )的分布律为则P{XY=0}=( )A. 121B. 61C. 31D. 327. 设随机变量X ,Y 相互独立,且X~N (2,1),Y~N (1,1),则( )A.P{X-Y ≤1}=21B. P{X-Y ≤0}=21C. P{X+Y ≤1}=21 D. P{X+Y ≤0}=21 16. 设随机变量X ,Y 相互独立,且P{X ≤1}=21,P{Y ≤1}=31,则P{X ≤1,Y ≤1}=___________. 17. 设随机变量X 和Y 的联合密度为22,01,(,)0,,x y ex y f x y --⎧≤≤≤=⎨⎩其他则P{X>1,Y>1}=___________.18. 设二维随机变量(X ,Y )的概率密度为6,0,0,(,)0,,x x y f x y >>⎧=⎨⎩其他则Y 的边缘概率密度为___________.2010.45.设二维随机变量(X ,Y)的分布律为且X 与Y 相互独立,则下列结论正确的是( ) A .a =0.2,b =0.6 B .a =-0.1,b =0.9 C .a =0.4,b =0.4D .a =0.6,b =0.26.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎪⎩⎪⎨⎧<<<<,,0;20,20,41其他y x则P{0<X <1,0<Y <1}=( )A .41 B .21 C .43D .1 17.设二维随机变量(X ,Y )的分布律为则(1,2)P X Y <≤=_________.2010.76.设(X ,Y ) )A .(51,151) B .(151,51) C .(152101,) D .(101152,) 7.设(X ,Y )的联合概率密度为⎩⎨⎧≤≤≤≤+=,,,y ,x ,y x k y ,x f 其他01020)()(则k =( )A .31 B. 21C .1D .317. 设随机变量(,)X Y 的概率分布为则P {X =Y }的概率分布为________.18. 设随机变量(,)X Y 的联合分布函数为F (x ,y )=34(1)(1),0,0,0,,x y e e x y --⎧-->>⎨⎩其他 (,)X Y 关于X 的边缘概率密度()X f x =________.2010.106. 设二维随机变量(,)X Y ~N (μ1,μ2,ρσσ,,2221),则Y ~( ) A. N (211,σμ) B. N (221,σμ) C. N (212,σμ)D. N (222,σμ)19. 设二维随机变量(,)X Y 的概率密度为1,02,01,(,)20, ,x y f x y ⎧<<<<⎪=⎨⎪⎩其他 则P {X +Y ≤1}=_________.29. 设二维随机变量(,)X Y 的分布律为(1)求(,)X Y 分别关于X ,Y 的边缘分布律; (2)试问X 与Y 是否相互独立,为什么?2011.16. 设随机变量(,)X Y 只取如下数组中的值:1(0,0),(1,1),(1,),(2,0)3--,且相应的概率依次为11,,2c c 1,4c54c. 则c 的值为( ) A. 2 B.3 C. 4 D. 5 7. 设(,)X Y 的联合概率密度为(,)f x y ,则{1}P X >=( ) A. 1(,)dx f x y dy +∞-∞-∞⎰⎰B. (,)f x y dx +∞-∞⎰C.1(,)f x y dx -∞⎰D.1(,)dx f x y dy +∞+∞-∞⎰⎰17. 设随机变量X ,Y 相互独立,且1{1}2P X ≤=,1{1}3P Y ≤=,则{1,1}P X Y ≤≤=_________. 18. 设二维随机变量(,)X Y 的概率密度为(34)12, 0,0(,)0, x y e x y f x y -+⎧>>=⎨⎩其它,则(,)X Y 的分布函数(,)F x y =_________.19. 设二维随机变量(X ,Y )的概率密度为1(),02,01,(,)30,x y x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩其他,则(X ,Y )关于X 的边缘概率密度()X f x =__________.2011.46. 设二维随机变量(X,Y)的概率密度为f(x,y)=则常数c=( )A. B. C.2 D.47. 设随机变量X~N(-1,22),Y~N(-2,32),且X 与Y 相互独立,则X-Y~( ) A.N(-3,-5) B.N(-3,13) C.N (1,)D.N(1,13)15. 设二维随机变量(X,Y)的分布律为Y X 0110.1 0.80.1 0 则P{X=0,Y=1}=______.16. 设二维随机变量(X,Y)的概率密度为f(x ,y) =则P{X+Y>1}=______.30. 某种装置中有两个相互独立工作的电子元件,其中一个电子元件的使用寿命X(单位:小时)服从参数的指数分布,另一个电子元件的使用寿命Y(单位:小时)服从参数的指数分布.试求:(1)(X ,Y)的概率密度;(2)E(X),E(Y);(3)两个电子元件的使用寿命均大于1200小时的概率.2011.75. 设二维随机变量(,)X Y 的联合分布律为则{0}P X ==( ) A.14 B. 13 C. 512 D. 7126. 设二维随机变量(,)X Y 的概率密度为,01,01(,)0,x y x y f x y +≤≤≤≤⎧=⎨⎩其他,则{}P X Y <=( )Y X0 1 21 214 112 11214 16112112A.13 B. 23 C. 12 D. 1417. 设二维离散型随机变量(,)X Y 的联合分布律为YX0 1 0 0.1 α 10.30.4则a = 。

相关文档
最新文档