磁场中的带电粒子

合集下载

带电粒子在匀强磁场中的运动 课件

带电粒子在匀强磁场中的运动 课件

二、质谱仪
阅读教材第100页“例题”部分,了解质谱仪的结构和作用。
1.质谱仪的组成
由粒子源容器、加速电场、偏转磁场和底片组成。
2.质谱仪的用途
质谱仪最初是由汤姆生的学生阿斯顿设计的。他用质谱仪发现
了氖20和氖22,证实了同位素的存在。质谱仪是测量带电粒子的
质量和分析同位素的重要工具。
三、回旋加速器


B.两粒子都带负电,质量比 =4


1
C.两粒子都带正电,质量比 =

4

1
D.两粒子都带负电,质量比 =

4
A.两粒子都带正电,质量比
1

解析:由于 qa=qb、Eka=Ekb,动能 Ek=2mv2 和粒子偏转半径 r= ,
2 2 2
可得 m= 2 ,可见 m 与半径
k
r 的二次方成正比,故 ma∶mb=4∶1,
再根据左手定则判知粒子应带负电,故选 B。
答案:B
【例题2】如图所示,一束电荷量为e的电子以垂直于磁场方向
(磁感应强度为B)并垂直于磁场边界的速度v射入宽度为d的磁场中,
穿出磁场时速度方向和原来射入方向的夹角为θ=60°。求电子的
质量和穿越磁场的时间。
解析:过 M、N 作入射方向和出射方向的垂线,
两垂线交于 O 点,O 点即电子在磁场中做匀速圆周运动的圆心,
连结 ON,过 N 作 OM 的垂线,垂足为 P,如图所示。由直角三角形 OPN

2 3
知,电子的轨迹半径 r=sin60° = 3 d
2
由圆周运动知 evB=m
2 3
联立①②解得 m= 3 。
带电粒子在匀强磁场中的运动

高中人教物理选择性必修二第1章第2节 带电粒子在匀强磁场中的运动

高中人教物理选择性必修二第1章第2节 带电粒子在匀强磁场中的运动
分析
依据所给数据分别计算出带电粒子所受的重力和洛伦兹力,就可求出所受重力与洛 伦兹力之比。带电粒子在匀强磁场中受洛伦兹力并做匀速圆周运动,由此可以求出 粒子运动的轨道半径及周期
解: (1)粒子所受的重力 G =mg=1.67×10-27×9.8 N = 1.64×10-26N
所受的洛伦兹力
F= qvB = 1.6×10-19×5×105×0.2N = 1.6×10-14N
的变化。速度增大时,圆周运动的半径增大;反之半径减小。 • 保持出射电子的速度不变,改变磁感应强度,观察电子束径迹
的变化。B增大时,圆周运动的半径减小;反之半径增大。
带电粒子在匀强磁场中做匀速圆周运动时周期有何特征?
根据T 2r 结合r mv
v
qB
可知T 2m
qB
可见同一个粒子在匀强磁场中做匀速圆周运动的周期与速 度无关
A.粒子从a到b,带正电 B.粒子从a到b,带负电 C.粒子从b到a,带正电 D.粒子从b到a,带负电
大小,由公式可求出运动时间。
t
3600
T
( 的单位是:度)
或 t T ( 的单位是 : 弧度)

1. 轨道半径与磁感应强度、运动速度相联系,在磁场中运动的时间与周 期、偏转角相联系。
2. 粒子速度的偏向角 ( φ ) 等于圆心角 ( α ),并等于AB 弦与切线的夹角 ( 弦 切角 θ ) 的 2 倍 ( 如图 ),即
重力与洛伦兹力之比
G F
1.64 1026 1.6 1014
1.03 1012
可见,带电粒子在磁场中运动时,洛伦兹力远大于重力,重力作 用的影响可以忽略。
(2)带电粒子所受的洛伦兹力为
F = qvB 洛伦兹力提供向心力,故 qvB m v2

带电粒子在磁场中运动周期公式

带电粒子在磁场中运动周期公式

带电粒子在磁场中运动周期公式
电粒子在磁场中运动的周期公式也称作电子旋转频率和Larmor频率的
公式。

它可以用来解释电粒子在磁场中的运动。

该公式如下:
ωL = qB/m
其中,ωL表示电子旋转频率,q表示电荷量,B表示磁通强度,m表
示电子质量。

解释:在定义ωL之前,首先要引入一个概念,即电子被磁场作用而
产生的旋转运动的周期。

那么,当一个电子经过磁场作用,它的运行周期
就是ωL,即电子旋转频率。

由此公式可知,电子在磁场中的旋转频率取决于电荷量,磁通强度和
电子质量,即受这三个因素的影响而变化。

由公式可以得到:当磁通强度不变时,不同电子质量的电子旋转频率
上升会加快;磁通强度增大时,电子旋转频率也会升高;磁通强度减小时,电子旋转频率也会下降。

这说明,当外加磁场内电子等电荷量相同时,其
旋转频率与磁通强度的大小成正比,即当磁通强度升高时,电子旋转频率
也会升高;反之,当磁通强度减小时,电子旋转频率也会降低。

另外,该公式还告诉我们,同一电子质量的电子在磁场中旋转频率上升会加快,说明当外加磁场内电子等电荷量相同时,其旋转频率与电子质量的大小也成正比,即当电子质量越大,电子旋转频率则越高。

而当电子质量越小,电子旋转频率则越低。

总而言之,电子在磁场中的旋转频率上升会加快,即它的旋转频率与各自电磁学参量有关,受电荷量,磁通强度和质量的影响而变化。

如果要获得正确的旋转频率,就必须准确地知道这三个参数。

高中物理之带电粒子在磁场中的运动知识点

高中物理之带电粒子在磁场中的运动知识点

高中物理之带电粒子在磁场中的运动知识点带电粒子在磁场中的运动特点带电粒子在磁场中的运动往往比较复杂,我们只考虑其中几种特殊情况:不考虑粒子本身的重力(一般如:电子、质子、粒子、离子等不考虑它们的重力);磁场为匀强磁场。

①初速度v0与磁场平行:此时洛伦兹力F=0,粒子将沿初速度方向做匀速直线运动。

②初速度与磁场垂直:由于洛伦兹力总与粒子运动方向垂直,粒子在洛伦兹力作用下做匀速圆周运动,其向心力由洛伦兹力提供,所以其轨道半径为,运动周期为。

由此可见:荷质比相同的粒子以相同的速度进入同一磁场,其轨道半径相同;带电量相同的粒子以相同的动量进入同一磁场,其轨道半径相同。

它们运动的周期T与粒子的速度大小无关,与粒子的轨道半径R无关,只要是荷质比相同的粒子,进入同一磁场,其周期相同。

规律方法“一点、两画、三定、四写”求解粒子在磁场中的圆周运动问题(1)一点:在特殊位置或要求粒子到达的位置(如初位置、要求经过的某一位置等);(2)两画:画出速度v和洛伦兹力F两个矢量的方向;(3)三定:定圆心、定半径、定圆心角;(4)四写:写出基本方程带电粒子在匀强磁场中的运算1圆心的确定①因为洛伦兹力指向圆心,根据F洛⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场的两点,如下图甲的P、M两点)的F洛的方向,其延长线的交点即为圆心.(也可以说是任意两点的切线方向的垂直线交点)②做粒子入射点速度方向的垂直线,做出入射点、出射点连线的中垂线,两线的交点即是圆心O.2半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角)。

并注意以下两个重要的几何特点:①粒子速度的偏向角(φ)等于回旋角(α),并等于AB弦与切线的夹角(弦切角θ)的2倍,φ=α=2θ=ω。

②相对的弦切角(θ)相等,与相邻的弦切角(θ')互补,即θ+θ'=180°。

3粒子在磁场中运动时间的确定利用圆心角与弦切角的关系,或者是四边形内角和等于360°计算出圆心角ɑ的大小.由公式,可求出运动时间.如果ɑ为弧度制,则在磁场中运动时间的确定.利用圆心角与弦切角的关系,或者是四边形内角和等于360°计算出圆心角ɑ的大小.由公式,可求出运动时间.如果ɑ为弧度制,则注意圆周运动中有关对称规律如从同一边界射入的粒子,从同一边界射出时,速度与边界的夹角相等;在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。

磁场对带电粒子的作用

磁场对带电粒子的作用

磁场对带电粒子的作用磁场是指存在磁力的区域,而磁力是一种物理力量,能够对带电粒子产生影响。

本文将探讨磁场对带电粒子的作用及其相关原理。

一、洛伦兹力磁场对带电粒子的主要作用是产生洛伦兹力。

洛伦兹力是由磁场和粒子运动速度的向量积所引起的,其大小和方向都与带电粒子的电荷、速度以及磁场的强度和方向有关。

当带电粒子以一定速度穿过磁场时,洛伦兹力垂直于速度方向和磁场方向,并遵循右手定则。

若带电粒子的电荷正负性与速度方向一致,则洛伦兹力垂直于速度和磁场方向向内;若电荷正负性与速度方向相反,则洛伦兹力垂直于速度和磁场方向向外。

洛伦兹力的大小与磁场强度成正比,与带电粒子的电荷量和速度的乘积成正比。

这意味着,在相同的磁场中,电荷量越大或速度越快的粒子所受到的洛伦兹力越大。

二、磁场对运动轨迹的影响由于洛伦兹力的存在,磁场可以改变带电粒子的运动轨迹。

当带电粒子运动速度与磁场相垂直时,洛伦兹力的作用会使粒子偏离原来的直线运动轨迹,进而形成一个圆形轨迹。

这种轨迹称为磁场中的回旋轨道。

回旋轨道的半径与粒子的电荷量、速度以及磁场的强度成正比。

当磁场强度增加时,回旋轨道的半径也会增加;当速度增加时,回旋轨道的半径亦会增加。

需要注意的是,磁场只能改变粒子的运动轨迹,而不能改变粒子的速度。

当粒子进入磁场后,其速度大小保持不变,仅改变方向。

三、粒子在磁场中的稳定性带电粒子在磁场中的稳定性主要取决于洛伦兹力和离心力之间的平衡情况。

洛伦兹力试图将粒子推向轨迹的中心,而离心力试图将粒子推离轨迹的中心。

当洛伦兹力和离心力相等时,粒子将保持在磁场中心的回旋轨道上,保持稳定。

若洛伦兹力大于离心力,粒子将向轨迹中心靠拢;若洛伦兹力小于离心力,粒子将离开回旋轨道。

四、应用与实际意义磁场对带电粒子的作用在物理学研究、电子技术和医学等领域具有广泛的应用和实际意义。

在物理学研究领域,磁场的作用有助于科学家们对带电粒子的运动进行研究,揭示微观世界的奥秘。

在电子技术中,磁场可用于电子设备的控制和操纵。

带电粒子在磁场中的偏转

带电粒子在磁场中的偏转

带电粒子在磁场中的偏转
带电粒子在磁场中的偏转是指在外加磁场作用下,带电粒子运动轨迹发生偏移的现象。

它是一种重要的物理现象,也是核物理学、凝聚态物理学、星系结构形成以及太阳物理学等诸多领域中最基本的现象之一。

在现实世界中,带电粒子的运动通常会受到外加磁场的影响,这种由外加磁场引起的偏转现象,即为“带电粒子在磁场中的偏转”。

带电粒子在磁场中的偏转,是带电粒子受到磁场作用时产生的一种物理现象,其原理可以由电磁力学来描述。

当外加磁场与带电粒子的运动方向不平行,带电粒子就会受到一个名为磁力线的力,这个力的大小与带电粒子的速度、外加磁场强度以及粒子与外加磁场方向之间的夹角有关。

这个磁力线的方向,永远是指向能让粒子的运动能量增加的方向,而磁力线的大小,则与粒子的速度成正比。

由于磁力线的作用,带电粒子的运动轨迹会受到偏转,这种偏转的大小与粒子的电荷量、其速度以及外加磁场的强度有关,并且随着粒子的磁场位置变化而变化。

由于外加磁场的方向是不断变化的,因此带电粒子在磁场中的运动轨迹也会发生偏移,从而使得粒子的运动轨迹呈现出一种环形的状态。

综上所述,带电粒子在磁场中的偏转是一种重要的物理现象,其本质是由外加磁场引起的磁力线对带电粒子的运动造成的影响,而这种影响会使得粒子的运动轨迹发生偏移,从而使得粒子的运动轨迹呈现出一种环形的状态。

它是核物理学、凝聚态物理学、星系结构形成以及太阳物理学中最基本的现象之一,对理解物质的性质、结构以及运动机制有着重要意义。

带电粒子在电磁场中的运动

带电粒子在电磁场中的运动

带电粒子在电磁场中的运动在物理学中,电磁场是一种具有电力和磁力效应的力场。

当带电粒子处于电磁场中时,它会受到电磁力的作用而发生运动。

本文将探讨带电粒子在电磁场中的运动规律及其相关特性。

一、洛伦兹力在电磁场中,带电粒子受到的力被称为洛伦兹力。

洛伦兹力由电场力和磁场力两部分组成,可以用如下公式表示:F = q(E + v × B)其中,F表示洛伦兹力,q为带电粒子的电荷量,E为电场强度,v 为带电粒子的速度,B为磁场强度。

根据洛伦兹力的方向,带电粒子会在电磁场中发生不同的运动。

如果电场力和磁场力方向相同或相反,带电粒子会受到一个向加速度的力,其运动轨迹将呈现弯曲的形状;如果电场力和磁场力方向垂直,带电粒子将受到一个向速度方向的力,其运动轨迹将变成圆形。

二、带电粒子在磁场中的运动当带电粒子以一定的速度进入磁场时,它会受到磁场力的作用,引起其运动轨迹的变化。

带电粒子在磁场中的运动可以通过以下几个特性进行描述:1. 弯曲半径带电粒子在磁场中做圆周运动,其弯曲半径由以下公式确定:r = mv / (qB)其中,r表示圆周运动的弯曲半径,m为带电粒子的质量,v为速度,q为电荷量,B为磁感应强度。

2. 周期带电粒子在磁场中做圆周运动的周期为:T = 2πm / (qB)其中,T表示周期,m为质量,q为电荷量,B为磁感应强度。

3. 轨道速度带电粒子在磁场中的轨道速度由以下公式确定:v = (qBr / m)其中,v表示轨道速度,q为电荷量,B为磁感应强度,r为弯曲半径,m为质量。

三、带电粒子在电场和磁场共存时的运动当带电粒子同时处于电场和磁场中时,其运动将会更为复杂。

在稳恒磁场的作用下,带电粒子将绕磁力线做螺旋线运动。

同时,在电场力的作用下,带电粒子的轨迹将受到偏转。

此时,带电粒子的运动方程可以通过以下公式描述:m(dv/dt) = q(E + v × B)其中,m为质量,v为速度,q为电荷量,E为电场强度,B为磁感应强度。

处理带电粒子在磁场中的运动时常要确定轨迹和圆心,请问你几种办法确定圆心

处理带电粒子在磁场中的运动时常要确定轨迹和圆心,请问你几种办法确定圆心

处理带电粒子在磁场中的运动时常要确定轨迹和圆心,请问你几种办法确定圆心
确定带电粒子在磁场中运动的轨迹和圆心的方法取决于问题的具体情况和已知条件。

以下是几种常见的方法:
1. 洛伦兹力定律:利用洛伦兹力定律可以确定带电粒子在磁场中的受力方向和大小。

如果带电粒子的运动是在一个匀强磁场中,则可以根据洛伦兹力的方向和大小来确定粒子的加速度,从而找到粒子的运动轨迹和圆心。

2.运动方程:如果已知带电粒子的初始速度和磁场中的洛伦兹力,可以使用牛顿运动定律和洛伦兹力定律建立运动方程,然后解方程得到带电粒子的轨迹和圆心。

3. 受力分析:通过分析带电粒子在磁场中的受力情况,可以确定粒子的加速度方向和大小。

如果粒子的加速度始终垂直于速度方向,那么粒子的运动轨迹将是一个圆形,圆心就是粒子的加速度方向上的投影。

4. 动量定理:利用动量定理,可以将洛伦兹力的方向和大小与带电粒子的运动轨迹联系起来。

通过分析粒子在磁场中的动量变化,可以确定圆心的位置。

这些方法可以根据具体问题的不同进行选择和应用。

在实际问题中,可能需要结合多种方法来确定带电粒子在磁场中的运动轨迹和圆心。

1/ 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁场中的带电粒子
磁场是我们日常生活中经常接触到的物理现象之一。磁场中的带电
粒子则是指带电粒子在磁场中受到磁力作用的情况。本文将探讨磁场
中带电粒子的运动规律以及相关的应用。

一、磁场的特性
磁场是由磁铁或者电流形成的一种力场。它具有方向和大小两个基
本特性。在磁场中,带电粒子会受到磁力的作用,从而改变其运动状
态。

二、洛伦兹力的作用
在磁场中,带电粒子所受到的力被称为洛伦兹力。洛伦兹力的大小
与带电粒子的电荷、速度以及磁场的强度有关。它的方向与磁场和带
电粒子的速度方向垂直,符合右手定则。

三、带电粒子的轨迹
根据洛伦兹力的作用,带电粒子在磁场中将沿着特定的轨迹运动。
具体来说,如果带电粒子的初始速度与磁场方向平行或反平行,它将
在磁场中做直线运动。如果带电粒子的初始速度与磁场方向垂直,它
将沿着一个圆形轨迹运动。

四、带电粒子的能谱分析
由于洛伦兹力的作用,带电粒子在磁场中的轨迹会受到一定的限制。
利用这种限制,科学家们可以通过观察带电粒子的能谱分析来研究粒
子的性质。例如,在大型强子对撞机(LHC)中,科学家们通过分析
带电粒子在磁场中的运动轨迹来获得它们的动量和电荷信息。

五、磁阻共振成像技术
磁阻共振成像技术(MRI)是一种常用的医学影像技术,它利用磁
场对带电粒子的影响原理来获取人体内部的结构信息。通过在人体上
施加强磁场,带电粒子在磁场中会发生共振现象,从而产生信号被接
收器接收并转化为图像,用于医学诊断。

六、磁控制核聚变
磁控制核聚变是一种将磁场与等离子体相结合来进行控制的核聚变
技术。在聚变反应中,带电粒子的运动受到磁场的限制,科学家们通
过控制磁场的强度和方向来控制带电粒子的运动轨迹,从而实现核聚
变反应的控制。

七、磁悬浮列车技术
磁悬浮列车是一种基于磁场原理的先进交通工具。在磁悬浮列车中,
带电粒子通过与轨道中的电磁铁相互作用产生磁力,实现列车的悬浮
和推动。磁悬浮列车具有高速度、低能耗的特点,被认为是未来城市
交通的发展方向。

总结:
磁场中的带电粒子具有特定的运动规律,其运动轨迹受洛伦兹力的
作用。通过利用磁场对带电粒子的影响,我们可以进行能谱分析、磁
阻共振成像、磁控制核聚变以及磁悬浮列车等一系列应用。磁场中带
电粒子的运动不仅在物理学领域有着重要的意义,也给其他领域的科
学研究和技术应用带来了很多的启发。这些应用的发展将进一步推动
科学和技术的进步。

相关文档
最新文档