带电粒子在磁场中的运动

合集下载

带电粒子在有界磁场磁场中的运动

带电粒子在有界磁场磁场中的运动

d
αR O
过程模型:匀速圆周运动 规律:牛顿第二定律 + 圆周运动公式 条件:要求时间最短
t
s v
速度 v 不变,欲使穿过磁场时间最短,须使 s 有最 小值,则要求弦最短。
题1 一个垂直纸面向里的有界匀强磁场形 状如图所示,磁场宽度为 d。在垂直B的平面
内的A点,有一个电量为 -q、质量为 m、速
y B
如粒子带正电,则: 如粒子带负电,则:
60º v
60º
O 120º
x
A. 2mv qB
B. 2mvcosθ qB
C. 2mv(1-sinθ) qB
2mv(1-cosθ)
D. qB
M
D
C
θ θ θθ
P
N
θθ
练、 一个质量为m电荷量为q的带电粒子(不计重力)
从x轴上的P(a,0)点以速度v,沿与x正方向成60º的
束比荷为q/m=2 ×1011 C/kg的正离子,以不同角度α入射,
其中入射角 α =30º,且不经碰撞而直接从出射孔射出的
离子的速度v大小是 (
C)
αa
A.4×105 m/s B. 2×105 m/s
r
C. 4×106 m/s D. 2×106 m/s O′
O
解: 作入射速度的垂线与ab的垂直平分线交于 r
P
B v0
O
AQ
例、如图,A、B为水平放置的足够长的平行板,板间距离为
d =1.0×10-2m,A板上有一电子源P,Q点在P点正上方B
板上,在纸面内从P点向Q点发射速度在0~3.2×107m/s范
围内的电子。若垂直纸面内加一匀强磁场,磁感应强度
B=9.1×10-3T,已知电子质量 m=9.1×10-31kg ,电子电

《带电粒子在磁场中的运动》 说课稿

《带电粒子在磁场中的运动》 说课稿

《带电粒子在磁场中的运动》说课稿尊敬的各位评委、老师:大家好!今天我说课的题目是“带电粒子在磁场中的运动”。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计以及教学反思这几个方面来展开我的说课。

一、教材分析“带电粒子在磁场中的运动”是高中物理选修 3-1 第三章第六节的内容。

这部分知识是磁场这一章的重点和难点,也是高考的热点之一。

它不仅在电磁学中有着重要的地位,还为后续学习带电粒子在复合场中的运动以及现代科技中的应用奠定了基础。

本节课的主要内容包括:带电粒子在匀强磁场中的运动规律,如匀速圆周运动的半径和周期公式;带电粒子在有界磁场中的运动轨迹分析。

教材在编排上,先通过实验引入,让学生观察带电粒子在磁场中的运动现象,然后从理论上进行分析推导,得出运动规律。

这种从感性认识到理性认识的过程,符合学生的认知规律,有助于学生对知识的理解和掌握。

二、学情分析学生已经学习了电场、磁场的基本概念和性质,掌握了牛顿运动定律、圆周运动的相关知识,具备了一定的分析和解决问题的能力。

但是,对于带电粒子在磁场中的运动这一较为抽象的内容,学生可能会感到理解困难。

在学习过程中,学生可能会遇到以下几个问题:一是对洛伦兹力的方向判断不够熟练;二是难以将牛顿运动定律和圆周运动的知识灵活应用到带电粒子在磁场中的运动分析中;三是对于有界磁场中带电粒子运动轨迹的分析,空间想象力不足。

三、教学目标基于以上对教材和学情的分析,我制定了以下教学目标:1、知识与技能目标(1)理解带电粒子在匀强磁场中做匀速圆周运动的条件和规律。

(2)掌握带电粒子在匀强磁场中做匀速圆周运动的半径和周期公式,并能熟练应用。

(3)学会分析带电粒子在有界磁场中的运动轨迹。

2、过程与方法目标(1)通过实验观察和理论推导,培养学生的观察能力、分析推理能力和逻辑思维能力。

(2)通过对带电粒子在有界磁场中运动轨迹的分析,提高学生的空间想象力和应用数学知识解决物理问题的能力。

带电粒子在磁场中的运动

带电粒子在磁场中的运动

1 2
mv22
1 2
mv12
f nd 0 12 mv12
n
v12 v22 v12
R2 R2 r2
1 1 0.81
5.3
∴ α粒子可穿过板5 次
(4)带电粒子在磁场中的运动周期与速度和 半径的大小都无关。
t= 1.5T1+1.5T2=3T=3×2πm/qB= 6 πm/qB
返回
(2002年全国) 、电视机的显像管中,电子束的偏转 是用磁偏转技术实现的。电子束经过电压为U的加速电 场后,进入一圆形匀强磁场区,如图所示。磁场方向 垂直于圆面。磁场区的中心为O,半径为r。当不加磁 场时,电子束将通过O点而打到屏幕的中心M点。为了 让电子束射到屏幕边缘P,需要加磁场,使电子束偏转 一已知角度θ,此时的磁场的磁感应强度B应为多少?
y
r=mv/qB.
只有沿y 轴方向射出的粒子跟
x 轴的交点离O点最远,
x=2r= 2mv/qB
只有沿 – x 轴方向射出的粒子跟y
O
x
轴的交点离O点最远,
y=2r= 2mv/qB 返回
5. 如图所示,在垂直纸面向里的匀强磁场中,有一 个带电量为q 的正离子自A点垂直射入磁场,沿半径为 R 的圆形轨道运动,运动半周到达B点时,由于吸收
返回
4、(1997年高考) 如图13在x轴的上方(y≥0)存在着
垂直于纸面向外的匀强磁场,磁感强度为B.在原点O有
一个离子源向x轴上方的各个方向发射出质量为m、电量
为q的正离子,速率都为v,对那些在xy平面内运动的离
子,在磁场中可能到达的最大x=
2mv/q,B最大y
= 2mv/qB .
解: 从O点射出的粒子,速度v相同,所以半径相同,均为

带电粒子在磁场中的运动(磁聚焦和磁扩散)

带电粒子在磁场中的运动(磁聚焦和磁扩散)
Q
θR O/
OM
x
图 (b)
(3)带电微粒在y轴右方(X> O)的区域离开磁场并做 匀速直线运动.靠近上端发射出来的带电微粒在穿出 磁场后会射向X轴正方向的无穷远处,靠近下端发射 出来的带电微粒会在靠近原点之处穿出磁场.所以, 这束带电微粒与X轴相交的区域范围是X> 0.
装带 置点
微 粒 发 射
Pv Cr
(2)这束带电微粒都通过坐标原点。 如图(b)所示,从任一点P水平进入磁场的 带电微粒在磁场中做半径为R 的匀速圆周运动,圆 心位于其正下方的Q点,设微粒从M 点离开磁 场.可证明四边形PO’ MQ是菱形,则M 点就是坐 标原点,故这束带电微粒都通过坐标原点0.
y
v AC
R O/
O
x
图 (a)
y
Pv R
y
D
C
v0
O
x
A
B
S=2(πa2/4-a2/2) =(π-2)a2/2
解:(1)设匀强磁场的磁感应强度的大小为B。令圆弧AEC是自C点垂直于 BC入射的电子在磁场中的运行轨道。依题意,圆心在A、C连线的中垂线上, 故B点即为圆心,圆半径为a,按照牛顿定律有 ev0B= mv02/a,得B= mv0/ea。 (2)自BC边上其他点入射的电子运动轨道只能在BAEC区域中。因而,圆弧 AEC是所求的最小磁场区域的一个边界。
(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区
域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感
应强度的大小与方向。
y
(2)请指出这束带电微粒与x轴相 带
交的区域,并说明理由。
点 微

(3)在这束带电磁微粒初速度变为
发 射

1.3带电粒子在匀强磁场中的运动

1.3带电粒子在匀强磁场中的运动
思路导引:
依据所给数据分别计算出带电粒子所受的重力和洛伦兹力,就可求出
所受重力与洛伦兹力之比。带电粒子在匀强磁场中受洛伦兹力并做匀速圆
周运动,由此可以求出粒子运动的轨道半径及周期。
完全解答:
重力与洛伦兹力之比
(1)粒子所受的重力
G= mg = 1.67×10-27kg×9.8 N= 1.64×10-26N
匀强磁场中。求电子做匀速圆周运动的轨道半径和周期。
解:洛伦兹力提供向心力,首先列:
2
v
qvB m
r
2πr
T
v
mv
9.110 31 1.6 10 6
2



.
55

10
m
r
19
4
1.6 10 2 10
qB
2m
T
qB
2 9.110 31
7


5
.
6875






洛伦兹力提供向心力
v2
qvB m
r



圆周运动的半径
mv
r
qB
粒子在匀强磁场中做匀速圆周运动的半径与它的质量、速度成
正比,与电荷量、磁感应强度成反比。
观察带电粒子的运动径迹
洛伦兹力演示仪示意图
洛伦兹力演示仪
励磁线圈
玻璃泡
电子枪
加速极电压
励磁电流
选择档
选择档
电子枪可以发射电子束
玻璃泡内充有稀薄的气体,在电
2 m
T
eB
电子在矩形磁场中沿圆弧从
a点运动到c点的时间

t
T

高中物理确定带电粒子在磁场中运动轨迹的四种方法

高中物理确定带电粒子在磁场中运动轨迹的四种方法

高中物理确定带电粒子在磁场中运动轨迹的四种方法-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN确定带电粒子在磁场中运动轨迹的四种方法带电粒子在匀强磁场中作圆周运动的问题是高考的热点,这些考题不仅涉及到洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,成为考查学生综合分析问题、运用数字知识解决物理问题的难度较大的考题。

但无论这类问题情景多么新颖、设问多么巧妙,其关键一点在于规范、准确地画出带电粒子的运动轨迹。

只要确定了带电粒子的运动轨迹,问题便迎刃而解。

现将确定带电粒子运动轨迹的方法总结如下:一、对称法带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2)。

利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。

例1.如图3所示,直线MN上方有磁感应强度为B的匀强磁场。

正、负电子同时从同一点O以与MN成30°角的同样速度v射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远射出的时间差是多少解析:正、负电子的半径和周期是相同的。

只是偏转方向相反。

先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。

所以两个射出点相距s=2r=,由图还看出经历时间相差,所以解此题的关键是找圆心、找半径和用对称。

例2.如图5所示,在半径为r的圆形区域内,有一个匀强磁场。

一带电粒子以速度v0从M点沿半径方向射入磁场区,并由N点射出,O点为圆心。

当∠MON=120°时,求:带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。

解析:分别过M、N点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如图6所示。

带电粒子在匀强磁场中的运动知识小结

带电粒子在匀强磁场中的运动知识小结

匀速圆周运动:当带电粒子所受的重力与电场力
相等,
相反时,带电粒子在
力的作用下,在垂直于
的平面内做匀速圆
周运动;③ 一般的曲线运动:当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同
一条直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线;④ 分阶段
运动:带电粒子可能依次通过几个情况不同的复合场区域,运动情况随区域发生变化,运动过程由几
带电粒子在匀强磁场中的运动(知识小结)
一.带电粒子在磁场中的运动
(1)带电粒子在磁场中运动时,若速度方向与磁感线平行,则粒子不受磁场力,做匀速直线运动;即

为静止状向与磁感线垂直,带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力起向心力作用。 (3)若速度方向与磁感线成任意角度,则带电粒子在与磁感线平行的方向上做匀速直线运动,在与磁感
线垂直的方向上做匀速圆周运动,它们的合运动是螺线运动。
二、带电粒子在匀强磁场中的圆周运动
1.运动分析:洛伦兹力提供向心力,使带电粒子在匀强磁场中做匀速圆周运动. 2.其特征方程为:F 洛=F 向.
3.三个基本公式: v2
(1)向心力公式:qvB=mR;
mv (2)半径公式:R=qB;
2πm 1 (3)周期和频率公式:T= qB =f ;
(一)边界举例: 1、直线边界(进出磁场有对称性)
规律:如从同一直线边界射入的粒子,再从这一边射出时,速 度与边界的夹角相等。 速度与边界的夹角等于圆弧所对圆心角的一半, 并且如果把两个速度移到共点时,关于直线轴对称。
2、平行边界(往往有临界和极值问题) (在平行有界磁场里运动,轨迹与边界相切时,粒子恰好不射出边界) 3、矩形边界 磁场区域为正方形,从 a 点沿 ab 方向垂直射入匀强磁场:

带电粒子在磁场中的运动

带电粒子在磁场中的运动

带电粒子在磁场中的运动因为洛伦兹力F始终与速度v垂直,即F只改变速度方向而不改变速度的大小,所以运动电荷非平行与磁感线进入匀强磁场且仅受洛伦兹力时,一定做匀速圆周运动,由洛伦磁力提==2/。

带电粒子在磁场中运动问题大致可分两种情况:1. 做供向心力,即F qvB mv R完整的圆周运动(在无界磁场或有界磁场中);2. 做一段圆弧运动(一般在有界磁场中)。

无论何种情况,其关键均在圆心、半径的确定上。

1. 找圆心方法1:若已知粒子轨迹上的两点的速度方向,则可根据洛伦兹力F⊥v,分别确定两点处洛伦兹力F的方向,其交点即为圆心。

方法2:若已知粒子轨迹上的两点和其中一点的速度方向,则可作出此两点的连线(即过这两点的圆弧的弦)的中垂线,再画出已知点v的垂线,中垂线与垂线的交点即为圆心。

2. 求半径圆心确定下来后,半径也随之确定。

一般可运用平面几何知识来求半径的长度。

3. 画轨迹在圆心和半径确定后可根据左手定则和题意画出粒子在磁场中的轨迹图。

4. 应用对称规律带电粒子如果从一直线边界进入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,入射速度方向与出射速度方向与边界的夹角相等,利用这一结论可以轻松画出粒子的轨迹。

临界点是粒子轨迹发生质的变化的转折点,所以只要画出临界点的轨迹就可以使问题得解。

一、由两速度的垂线定圆心例1. 电视机的显像管中,电子(质量为m,带电量为e)束的偏转是用磁偏转技术实现的。

电子束经过电压为U的加速电场后,进入一圆形匀强磁场区,如图1所示,磁场方向垂直于圆面,磁场区的中心为O,半径为r。

当不加磁场时,电子束将通过O点打到屏幕的中心M点。

为了让电子束射到屏幕边缘P,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感强度B应为多少?图1解析:如图2所示,电子在匀强磁场中做圆周运动,圆周上的两点a、b分别为进入和射出的点。

做a、b点速度的垂线,交点O1即为轨迹圆的圆心。

图2设电子进入磁场时的速度为v,对电子在电场中的运动过程有=22/eU mv对电子在磁场中的运动(设轨道半径为R)有=2/evB mv R由图可知,偏转角θ与r、R的关系为θ2=r Rtan(/)/联立以上三式解得θ122=(/)/tan(/)B r mU e二、由两条弦的垂直平分线定圆心例2. 如图3所示,有垂直坐标平面的范围足够大的匀强磁场,磁感应强度为B,方向向里。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2 洛伦兹力 带电粒子在磁场中的运动教学目标:(一)知识与技能 1.掌握洛仑兹力的概念;2.熟练解决带电粒子在匀强磁场中的匀速圆周运动问题(二)过程与方法通过观察,形成洛伦兹力的概念,同时明确洛伦兹力与安培力的关系(微观与宏观),洛伦兹力的方向也可以用左手定则判断。

通过思考与讨论,推导出洛伦兹力的大小公式F=qvBsin θ。

最后了解洛伦兹力的一个应用——电视显像管中的磁偏转。

(三)情感态度与价值观引导学生进一步学会观察、分析、推理,培养学生的科学思维和研究方法。

让学生认真体会科学研究最基本的思维方法:“推理—假设—实验验证”。

教学重点:带电粒子在匀强磁场中的匀速圆周运动 教学难点:带电粒子在匀强磁场中的匀速圆周运动 教学方法:讲练结合,计算机辅助教学 课时安排: 复习课(3课时) 教学过程:一、洛伦兹力 1.洛伦兹力运动电荷在磁场中受到的磁场力叫洛伦兹力,它是安培力的微观表现。

计算公式的推导:如图所示,整个导线受到的磁场力(安培力)为F 安 =BIL ;其中I=nesv ;设导线中共有N 个自由电子N=nsL ;每个电子受的磁场力为F ,则F 安=NF 。

由以上四式可得F=qvB 。

条件是v 与B 垂直。

当v 与B 成θ角时,F=qvB sin θ。

2.洛伦兹力方向的判定在用左手定则时,四指必须指电流方向(不是速度方向),即正电荷定向移动的方向;对负电荷,四指应指负电荷定向移动方向的反方向。

【例1】磁流体发电机原理图如右。

等离子体高速从左向右喷射,两极板间有如图方向的匀强磁场。

该发电机哪个极板为正极?BR+ + + ++- - - - ―IBF 安F两板间最大电压为多少?解:由左手定则,正、负离子受的洛伦兹力分别向上、向下。

所以上极板为正。

正、负极板间会产生电场。

当刚进入的正负离子受的洛伦兹力与电场力等值反向时,达到最大电压:U=Bdv 。

当外电路断开时,这也就是电动势E 。

当外电路接通时,极板上的电荷量减小,板间场强减小,洛伦兹力将大于电场力,进入的正负离子又将发生偏转。

这时电动势仍是E=Bdv ,但路端电压将小于Bdv 。

在定性分析时特别需要注意的是:⑴正负离子速度方向相同时,在同一磁场中受洛伦兹力方向相反。

⑵外电路接通时,电路中有电流,洛伦兹力大于电场力,两板间电压将小于Bdv ,但电动势不变(和所有电源一样,电动势是电源本身的性质。

)⑶注意在带电粒子偏转聚集在极板上以后新产生的电场的分析。

在外电路断开时最终将达到平衡态。

【例2】 半导体靠自由电子(带负电)和空穴(相当于带正电)导电,分为p 型和n 型两种。

p 型中空穴为多数载流子;n 型中自由电子为多数载流子。

用以下实验可以判定一块半导体材料是p 型还是n 型:将材料放在匀强磁场中,通以图示方向的电流I ,用电压表判定上下两个表面的电势高低,若上极板电势高,就是p 型半导体;若下极板电势高,就是n 型半导体。

试分析原因。

解:分别判定空穴和自由电子所受的洛伦兹力的方向,由于四指指电流方向,都向右,所以洛伦兹力方向都向上,它们都将向上偏转。

p 型半导体中空穴多,上极板的电势高;n 型半导体中自由电子多,上极板电势低。

注意:当电流方向相同时,正、负离子在同一个磁场中的所受的洛伦兹力方向相同,所以偏转方向相同。

3.洛伦兹力大小的计算带电粒子在匀强磁场中仅受洛伦兹力而做匀速圆周运动时,洛伦兹力充当向心力,由此可以推导出该圆周运动的半径公式和周期公式: Bqm T Bq mv r π2,==【例3】 如图直线MN 上方有磁感应强度为B 的匀强磁场。

正、负电子同时从同一点O 以与MN 成30°角的同样速度v 射入磁场(电子质量为m ,电荷为e ),它们从磁场中射出时相距多远?射出的时间差是多少?解:由公式知,它们的半径和周期是相同的。

只是偏转方向相反。

先确定圆心,画出半径,由对称性知:射入、射出点和圆心恰好组成正三角形。

所以两IMNBOv个射出点相距2r ,由图还可看出,经历时间相差2T /3。

答案为射出点相距Bemvs 2=,时间差为Bqmt 34π=∆。

关键是找圆心、找半径和用对称。

【例4】 一个质量为m 电荷量为q 的带电粒子从x 轴上的P (a ,0)点以速度v ,沿与x 正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y 轴射出第一象限。

求匀强磁场的磁感应强度B 和射出点的坐标。

解:由射入、射出点的半径可找到圆心O /,并得出半径为aq mv B Bqmv ar 23,32===得;射出点坐标为(0,a 3)。

二、带电粒子在匀强磁场中的运动带电粒子在磁场中的运动是高中物理的一个难点,也是高考的热点。

在历年的高考试题中几乎年年都有这方面的考题。

带电粒子在磁场中的运动问题,综合性较强,解这类问题既要用到物理中的洛仑兹力、圆周运动的知识,又要用到数学中的平面几何中的圆及解析几何知识。

1、带电粒子在半无界磁场中的运动【例5】一个负离子,质量为m ,电量大小为q ,以速率v 垂直于屏S 经过小孔O 射入存在着匀强磁场的真空室中,如图所示。

磁感应强度B 的方向与离子的运动方向垂直,并垂直于图1中纸面向里.(1)求离子进入磁场后到达屏S 上时的位置与O 点的距离. (2)如果离子进入磁场后经过时间t 到达位置P ,证明:直线OP 与离子入射方向之间的夹角θ跟t 的关系是t mqB2=θ。

解析:(1)离子的初速度与匀强磁场的方向垂直,在洛仑兹力作用下,做匀速圆周运动.设圆半径为r ,则据牛顿第二定律可得:r v m Bqv 2= ,解得Bqm v r =如图所示,离了回到屏S 上的位置A 与O 点的距离为:AO =2r 所以BqmvAO 2=y xoBvvaO / OBSv θP(2)当离子到位置P 时,圆心角:t mBq r vt ==α 因为θα2=,所以t mqB2=θ. 2.穿过圆形磁场区。

画好辅助线(半径、速度、轨迹圆的圆心、连心线)。

偏角可由R r=2tanθ求出。

经历时间由Bqm t θ=得出。

注意:由对称性,射出线的反向延长线必过磁场圆的圆心。

【例6】如图所示,一个质量为m 、电量为q 的正离子,从A 点正对着圆心O 以速度v 射入半径为R 的绝缘圆筒中。

圆筒内存在垂直纸面向里的匀强磁场,磁感应强度的大小为B 。

要使带电粒子与圆筒内壁碰撞多次后仍从A 点射出,求正离子在磁场中运动的时间t.设粒子与圆筒内壁碰撞时无能量和电量损失,不计粒子的重力。

解析:由于离子与圆筒内壁碰撞时无能量损失和电量损失,每次碰撞后离子的速度方向都沿半径方向指向圆心,并且离子运动的轨迹是对称的,如图所示。

设粒子与圆筒内壁碰撞n 次(2≥n ),则每相邻两次碰撞点之间圆弧所对的圆心角为2π/(n +1).由几何知识可知,离子运动的半径为1tan+=n R r π离子运动的周期为qBmT π2=,又r v m Bqv 2=,所以离子在磁场中运动的时间为1tan 2+=n v R t ππ. 【例7】圆心为O 、半径为r 的圆形区域中有一个磁感强度为B 、方向为垂直于纸面向里的匀强磁场,与区域边缘的最短距离为L 的O '处有一竖直放置的荧屏MN ,今有一质量为m 的电子以速率v 从左侧沿OO '方向垂直射入磁场,越出磁场后打在荧光屏上之P 点,如图所示,求O 'P 的长度和电子通过磁场所用的时间。

解析 :电子所受重力不计。

它在磁场中做匀速圆周运动,圆心为O ″,半径为R 。

圆弧段轨迹AB 所对的圆心角为θ,电子越出磁场后做速率仍为v 的匀速直线运动, 如图4所示,连结OB ,∵△OAO ″≌△OBO ″,又OA ⊥O ″A ,故OB ⊥O ″B ,由于原有BP ⊥O ″B ,可见O 、B 、Pr v RvO /OO 'MNLAPOAv 0B在同一直线上,且∠O 'OP =∠AO ″B =θ,在直角三角形OO'P 中,O 'P =(L +r )tan θ,而)2(tan 1)2tan(2tan 2θθθ-=,Rr =)2tan(θ,所以求得R 后就可以求出O 'P 了,电子经过磁场的时间可用t =VRV AB θ=来求得。

由Rv m Bev 2=得R=θtan )(.r L OP eB mv += mVeBrR r ==)2tan(θ,2222222)2(tan 1)2tan(2tan rB e v m eBrmv -=-=θθθ 22222,)(2tan )(r B e v m eBrmvr L r L P O -+=+=θ,)2arctan(22222rB e v m eBrmv-=θ )2arctan(22222rB e v m eBrmv eB m vRt -==θ 3.穿过矩形磁场区。

一定要先画好辅助线(半径、速度及延长线)。

偏转角由sin θ=L /R求出。

侧移由R 2=L 2-(R-y )2解出。

经历时间由Bqm t θ=得出。

注意,这里射出速度的反向延长线与初速度延长线的交点不再是宽度线段的中点,这点与带电粒子在匀强电场中的偏转结论不同!【例8】如图所示,一束电子(电量为e )以速度v 垂直射入磁感强度为B ,宽度为d 的匀强磁场中,穿透磁场时速度方向与电子原来入射方向的夹角是30°,则电子的质量是 ,穿透磁场的时间是 。

MNO ,LAOR θ/2 θ θ/2 BPO //解析:电子在磁场中运动,只受洛仑兹力作用,故其轨迹是圆弧的一部分,又因为f⊥v,故圆心在电子穿入和穿出磁场时受到洛仑兹力指向交点上,如图中的O点,由几何知识知,AB间圆心角θ=30°,OB为半径。

∴r=d/sin30°=2d,又由r=mv/Be得m=2dBe/v又∵AB圆心角是30°,∴穿透时间t=T/12,故t=πd/3v。

带电粒子在长足够大的长方形磁场中的运动时要注意临界条件的分析。

如已知带电粒子的质量m和电量e,若要带电粒子能从磁场的右边界射出,粒子的速度v必须满足什么条件?这时必须满足r=mv/Be>d,即v>Bed/m.【例9】长为L的水平极板间,有垂直纸面向内的匀强磁场,如图所示,磁感强度为B,板间距离也为L,板不带电,现有质量为m,电量为q的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v水平射入磁场,欲使粒子不打在极板上,可采用的办法是:A.使粒子的速度v<BqL/4m;B.使粒子的速度v>5BqL/4m;C.使粒子的速度v>BqL/m;D.使粒子速度BqL/4m<v<5BqL/4m。

解析:由左手定则判得粒子在磁场中间向上偏,而作匀速圆周运动,很明显,圆周运动的半径大于某值r1时粒子可以从极板右边穿出,而半径小于某值r2时粒子可从极板的左边穿出,现在问题归结为求粒子能在右边穿出时r的最小值r1以及粒子在左边穿出时r的最大值r2,由几何知识得:粒子擦着板从右边穿出时,圆心在O点,有:r12=L2+(r1-L/2)2得r1=5L/4,又由于r1=mv1/Bq得v1=5BqL/4m,∴v>5BqL/4m时粒子能从右边穿出。

相关文档
最新文档