注塑成型工艺介绍

注塑成型工艺介绍
注塑成型工艺介绍

注射成型又称注射模塑或注塑。如图3-4-8所示,它是将粒状或粉状塑料从注射机的料斗加入料筒中,经加热塑化呈熔融状态后,借助螺杆或柱塞的推力,将其通过料筒端部的喷咀注入温度较低的闭合模具中,经冷却定型后,开模取出制品。

图3-4-8为注塑成型机结构示意图。

图3-4-8 移动螺杆式注塑成型机结构示意图

1.机座;2.电动机及油泵;3.注射油缸;4.齿轮箱;5.齿轮传动电动机;6.料斗;7.螺杆;8.加热器;9.料筒;10.喷嘴;11.定模板;12.模具;13.动模板;14.锁模机构;15.锁模用油缸;16.螺

杆传动齿轮;17.螺杆花键槽;18.油箱

注射成型可制得外形复杂、尺寸准确、美观精制的容器,并能成型带嵌件的容器。但一般均为广口容器如塑料箱、托盘、盒、杯、盘等,容器的壁一般较厚,不易成型薄壁容器。注射成型还大量用于制做容器附件如瓶盖、桶盖、内塞、帽罩等。注射成型对原料的适应性广,几乎所有的热塑性塑料或部分热固性塑料都可采用此法成型。其成型周期短、效率高,且易于实现全自动化生产。但注射成型设备投资大,模具制造成本高,所以一般适于大批量生产,并能保证容器的尺寸精度。

1、基本概念:

注射量、公称注射量是指在对空注射的条件下,注射螺杆或柱塞作一次最大注射行程时,注射装置所能达到的最大注射量

注射压力注射压力是指注射螺杆或柱塞的端部作用在物料单位面积上的压力

塑化能力塑化能力是指单位时间内所能塑化的物料量

锁模力锁模力是指注射机的合模机构对模具所能施加的最大夹紧力

空循环时间空循环时间是在没有塑化、注射保压、冷却、取出制品等动作的情况下,完成

一次动作循环所需要的时间(秒)。

注射时间是指注射螺杆或柱塞往模腔内注射最大容量的物料时所需要的最短时间

最小模具厚度模具最小厚度δmin和模具最大厚度δmax系指动模板闭合后,达到规定锁模力时动模板和定模板间的最小和最大距离

注射成型

2、注射机的结构及各部分的作用

注射装置、合模装置、液压传动系统和电器控制系统

?1)注射装置:(塑化、注射)

?其主要作用是将塑料均匀地塑化,并以足够的压力和速度,将一定量的熔料注射到模具的型腔之中。

?2)合模装置:(合模、开模)

?作用是实现模具的启闭,在注射时保证成型模具可靠地合紧以及脱出制品。

?3)液压系统和电气控制系统:(提供动力、实现控制)

?其作用是保证注射机按工艺过程预定的要求(压力、速度、温度、时间)和动作程序准确有效地工作。

3、注射成型过程

?1、塑化(加料-输送-压缩-排气-熔融-计量-结束)

?2、合模

?3、注射

?4、保压(补缩)

?5、冷却定型

?6、顶出制品

?按照习惯,我们把一个注射成型过程称之为一个工作循环,即:合模、注射、保压、螺杆预塑和制品冷却、开模、顶出制品、合模。

4、开合模的速度

即动模板移动速度

?在每一个成型周期中,模板的运行速度是变化的:即在合模时从快到慢,开模时则由慢到快再慢。

5、注射机的规格表示

?1、注射容积表示法

X(S)Z---200

其中X(S)---橡胶(塑料)Z---注射机

200---理论(标准)注射容积,cm3

?2、合模力表示法

以机器合模力(KN)表示机器规格。已很少采用。

?3、注射容积与合模力共同表示法

X(S)Z---200/1000

式中1000----合模力(KN)

?4、国际规格表示

当量注射容积与合模力或注射功与合模力表示。

6、挤出机螺杆与注射机螺杆在结构上主要由那些不同

?a、与挤出机相同之处

?螺杆由料斗中攫取物料后,在螺杆的旋转下,物料沿着螺杆向前输送,在输送过程中,物料在外热和物料各层之间剪切热的作用下,由固态转变为粘流态。

?b、与挤出机不同之处

?挤出过程是相对稳定的、连续的过程。注射过程是一个非稳定熔融的间歇过程。

?注射机中物料的熔融过程是一个比挤出机更为复杂的过程。

? c.挤出螺杆头多为圆头或锥头,而注射螺杆头多为尖头。

7、注射机传动系统的特点

?a、螺杆的“预塑”是间歇式工作,因此启动频繁并带有负载;

?b、螺杆转动时为塑化供料,与制品的成型无直接联系,塑料的塑化状况可以通过背压等进行调节,因而对螺杆转数调整的要求并不十分严格;

?c、由于传动装置放在注射架上,工作时随着注射架作往复移动,故传动装置要求简单。

8、合模装置的基本要求

?第一、足够的锁模力,使模具在熔料压力(即模腔压力)作用下,不致有开缝现象发生。

?第二、足够的模板面积、模板行程和模板间的开距,以适应不同外形尺寸制品的成型要求。

?第三、模板有合适的运动速度,应是闭模时先快后慢,开模时慢、快、慢,以防止模具的碰撞,实现制品的平稳顶出并提高生产能力。

9、合模装置的分类及各自的主要特点

机械式、液压式和液压--机械组合式三大类

机械式

液压式

?1)优点:

?固定模板和移动模板间的开距大,能够加工制品的高度范围较大。

?移动模板可以在行程范围内任意位置停留,因此,调节模板间的距离十分简便。

?调节油压,就能调节锁模力的大小。

?锁模力的大小可以直接读出,给操作带来方便。

?零件能自润滑,磨损小。

?在液压系统中增设各种调节回路,就能方便地实现注射压力、注射速度、合模速度以及锁模力等的调节,以更好地适应加工工艺的要求。

?2)缺点:

?液压系统管路甚多,保证没有任何渗漏是困难的,所以锁模力的稳定性差,从而影响制品质量。

?管路、阀件等的维修工作量大。

液压--机械组合式

10、注射压力选取应考虑的因素

?a、熔料的流动性。流动性好的物料选用的注射压力低。

?b、塑化方式。柱塞式注射机比螺杆式注射机注射压力高近1.5倍。

?c、喷嘴的孔径和模腔的形状。喷嘴的孔径大,模腔的形状简单,制品壁较厚,胶料流程短,模温较高,则所需的注射压力较低。

11、注射机按塑化方式和注射方式的分类

柱塞式注射机螺杆式注射机螺杆塑化柱塞注射式注射机

12、注射机螺杆头部结构形式及各自的特点

锥形螺杆头:结构简单,能消除滞料分解现象,适于高粘度、热敏性材料如硬聚氯乙烯等的加工

止回螺杆头:对于中等粘度和低粘度的塑料,可以防止注射时熔料沿螺纹槽回流,提高注射效率,

新型注射螺杆:在常规注射螺杆的计量段增设一些混炼剪切元件,可增加混炼、塑化效果

13、模板距离的调节机构主要有哪些?

1、螺纹肘杆调距

2、移动合模油缸位置调距

3、拉杆螺母调距

4、动模板间连接大螺母

调距

14、顶出装置的分类

机械顶出、液压顶出和气动顶出三种

15、液压--曲肘合模装置的特点

?1)增力作用

?2)自锁作用

?3)运动速度

4)模板间距、锁模力和合模速度的调节困难

5)曲肘机构容易磨损,加工精度要求也高

16、液压--曲肘合模装置的运动特性

肘杆机构使模板的移动速度是变化的,合模时由零到最快、后慢,到锁紧时再为零,开模时则相反。

17、注射机的安全保护

挤出机

1、基本概念:

固体流率、速度与垂直于轴线的截面积的乘积

方向角、固体塞运动的绝对速度方向与螺杆轴向垂直面的夹角。

螺纹升角、

几何压缩比、

分流型螺杆:分离型螺杆固液相尽早分离,固体尽快熔融,液相低温挤出,保证质量,提高产量

屏障型螺杆、屏障型螺杆就是在螺杆的某部位设立屏障段,使未熔的固相不能通过,并促使固相熔融的一种螺杆。

螺杆长径比、长度与直径的比值

比功率消耗每挤出一公斤物料或制品所消耗的功率比流率每转的流量表示

2、由固体输送理论,分析提高生产率的途径

增大方向角,当方向角等于90度是,可得到最大的生产率;

增打击筒内壁的摩擦系数同时减小螺杆的表面粗糙度。

3、用熔融理论的物理模型分析熔融过程

将着色物料(或碳黑)和本色物料加入挤出机中,待挤出过程稳定后,快速停车并骤冷料筒(如果可能,也冷却螺杆),抽出螺杆(或将料筒打开),将螺旋状的已冷却的物料(塑料)带从螺杆上剥下,这时可以发现,已熔融的和局部混合的物料呈现流线,而未熔的物料将保持初始的固态。

随着物料向前输送,黑色熔池逐渐加宽,白色固体床相应变窄,直到最后,熔体充满整个螺槽,固体床消失

4、固相分布函数的含义及如何求熔融长度

固相的质量平衡,熔膜的质量平衡,固液相分布截面的热量平衡

Ψ—融化系数, Ψ=ω0H0/G

G —生产能力, ω0—初始融化速率

H —熔槽深度, H0--初始槽深

Z —固相熔融长度(螺槽展开) ? 上式中当X=0(即固相熔融结束)时,即可得到熔融总长度:

5、熔体在螺槽中的运动分析

正流,倒流,环流,逆流(图)

6、求挤出机最高危险压力

7、截流比

a 及挤出机的工作状态

● a=Qp/Qd 称为截流比,它反映了挤出机的实际工作状态。

● 因Q= Qd-Qp ,所以有:

Q/ Qd= (Qd –Qp) )/ Qd =1- Qp/ Qd=1-a ● 当a=1时,

Q=0,Qd=Qp 代表机头完全关闭,完全截流状态。

● 当0

Q=Qd-Qp 代表挤出机正常工作状态。

● 当a=0时,

Q=Qd 代表机头完全打开的状态。

8、螺杆特性线、机头特性线、综合工作点

螺杆特性线---挤出机产量与挤出压力的关系;

口模特性线---机头产量与机头压力的关系;

挤出机的综合工作点---螺杆特性线与口模特性线的交点

两组直线相交的点即为挤出机的综合工作点

9、螺杆材料及热处理

a )45号钢便宜,加工性能好,但耐磨耐腐蚀性能差。

热处理:调质HB220—270,镀硬铬HRC >55

b )40Cr 的性能优于45号钢,但往往要镀上一层铬,以提高其耐腐蚀耐磨损的能力。但对镀铬层要求较高,镀层太薄易于磨损,太厚则易剥落,剥落后反而加速腐蚀,目前已较少应用。

C )氮化钢、38CrMoAl 综合性能比较优异,应用比较广泛。一般氮化层达 0.4—0.6毫米。但这种材料抵抗氯化氢腐蚀的能力低,且价格较高。

热处理:调质HB220—270,渗氮HRC >65

10、螺杆强度校核及危险断面

第三强度理论

其中n=3 w y σσσ=+max 1232cos 6sin P P P Dn L H θπηθ?=-=?[]

z σσ

=≤[]T n σσ=212X Z W H ψ??=- ???2T H Z ψ=

11、挤出机传动系统设计的基本问题及其工作特性

–选择传动特性---使传动系统的工作特性满足挤出机的工作特性–确定功率大小

–确定转速范围

–选择调速机构

–选择减速机构

–布置止推轴承

–考虑传动系统的安全保护

所谓挤出机的工作特性,是指螺杆的转速和驱动功率与扭矩之间的关系

挤出机的工作特性是恒扭矩特性

12、挤出机设计时安全系数的选择

螺杆和机筒的安全系数选的最大,其次的顺序是机筒与减速箱的联结螺栓,机头与机筒的联结螺栓,而安全销或安全键的安全系数则为最小。

13、挤出机的组成及各部分的作用

由主机、辅机、控制系统组成。

1)主机:挤压系统、传动系统、加热冷却系统组成,其功用是将物料熔融到符合工艺要求。

2)辅机:机头:熔融塑料通过它获得一定的几何截面和尺寸。

?定型装置:它的作用是将从机头中挤出的塑料的既定形状稳定下来.并对其进行精整,从而得到更为精确的截面形状、尺寸和光亮的表面。通常采用冷却和加压的方法达到这一目的。

?冷却装置:由定型装置出来的塑料在此得到充分的冷却,获得最终的形状和尺寸。

?牵引装置:其作用为均匀地牵引制品。并对制品的截面尺寸进行控制,使挤出过程稳定地进行。

?切割装置:将连续挤出的制品切成一定的长度或宽度。

?卷取装置:将软制品(薄膜、软管、单丝等)卷绕成卷。

3)控制系统(检测和控制)

14、表示挤出机性能特征的主要参数

单螺杆挤出机的性能特征通常用以下几个主要技术参数表示:

?螺杆直径:指螺杆外径,用D表示,单位毫米。美国max750mm)

?螺杆长径比:用L/D表示。其中L为螺杆有效长度,即螺纹部分的长度(工艺上将L定义为由加料口中心线到螺纹末端的长度),D为螺杆直径,

?螺杆的转数范围:用n/min表示。

?驱动电机功率:用N表示,单位千瓦。德国φ500-3600kw φ600-5000kw

?料筒加热段数:用B表示。

?料筒加热功率:用E表示,单位千瓦。

?挤出机生产率:用Q表示,单位公斤/小时。

?机器的中心高:用H表示,指螺杆中心线到地面的高度。单位毫米。

?机器的外形尺寸: 长、宽、高。单位毫米。

15、简述挤出机的挤出过程

1)加料段---输送并开始压实物料

2)压缩段---压实并熔融物料

3)均化段---均化、挤出

4)机头---成型、定型

喂料---输送---压实---熔融---均化---挤出成型

16、描述挤出过程的主要参变量有哪些?

温度、压力、流率

17、挤出机螺杆头部主要的结构形式

钝的螺杆头、带有较长锥面的螺杆头、斜切截锥体的螺杆头、锥部带螺纹的螺杆头

18、物料自料斗加入到由机头挤出,要通过哪几个职能区?

?固体输送区、熔融区和熔体输送区。

19、评价螺杆的标准主要有哪几方面?

?塑化质量(具有合乎要求的各种性能、具有合乎要求的表观质量、具有合乎要求的螺杆的塑化质量)

?产量

?适应性

?单耗

?制造的难易

20、获得压缩比的方法有哪几种?

?可采用等距变深螺槽、等深不等距螺槽、不等深不等距螺槽、锥形螺杆等方法热喂料螺杆1.3—1.5

冷喂料螺杆1.7—2.1

塑料螺杆一般根据塑料种类不同取2--5

21、新型螺杆的主要形式?

?分离型螺杆

?分流型螺杆

?屏障型螺杆

?组合型螺杆

22、IKV料筒的形式及特点

a、料筒加料段内壁开设纵向沟槽

b、强制冷却加料段料筒缺点:

缺点:强力冷却会造成显著的能量损失;

由于在料筒加料段末处可能产生极高的压力(有的高达80—150MPa),有损坏带有沟槽的薄壁料筒的危险;

?螺杆磨损较大;

?挤出性能对原料的依赖性较大。

?此外,在小型挤出机上采用此结构受到限制。

23、螺纹断面形状及特点

矩形、锯齿形、双楔形

24、由熔体输送理论分析提高挤出机生产能力的途径。

提高转速,增大螺杆直径、减小螺槽的深度、增大均化段的长度,减小机筒与螺纹顶部之间的间隙,取合理的压力差。

25、设计螺杆考虑的因素

1)物料的特性及其加入时的几何形状、尺寸和温度状况

2口模的几何形状和机头阻力特性。

3)料筒的结构形式和加热冷却情况。

4)螺杆转数。

5)挤出机的用途。

26、常规全螺纹三段螺杆存在的问题及目前常用的解决办法

1、熔融效率低、塑化混炼(染色、加填充物)不均匀

2) 固体床变窄,传热面积减少,熔融效率低,挤出量不高

3) 固体床易破碎,固体碎片传热慢,剪切力小,不易熔融

4)部分物料得不到彻底熔融,另一部分物料则过热,导致温度、塑化极不均匀。

27、设计新型螺杆应注意的问题

1、首先必须确切地弄清各种新型螺杆的工作原理,以及其适用的场合。

2、选择理想的混炼元件和剪切元件的位置

3、螺杆熔融能力必须和均化、输送能力相匹配。

28、挤出机的安全保护及安全系数的选择

螺杆和机筒的安全系数选的最大,其次的顺序是机筒与减速箱的联结螺栓,机头与机筒的联结螺栓,而安全销或安全键的安全系数则为最小

注塑成型工艺流程及工艺参数

注塑成型工艺 塑件的注塑成型工艺过程主要包括合模-——填充——保压——冷却——脱模等5个阶段。 工艺流程 这4个阶段直接决定着制品的成型质量,而且这4个阶段是一个完整的连续过程。[1] 1、填充阶段 填充是整个注塑循环过程中的第一步,时间从模具闭合开始注塑算起,到模具型腔填充到大约95%为止。理论上,填充时间越短,成型效率越高,但是实际中,成型时间或者注塑速度要受到很多条件的制约。 高速填充。高速填充时剪切率较高,塑料由于剪切变稀的作用而存在粘度下降的情形,使整体流动阻力降低;局部的粘滞加热影响也会使固化层厚度变薄。因此在流动控制阶段,填充行为往往取决于待填充的体积大小。即在流动控制阶段,由于高速填充,熔体的剪切变稀效果往往很大,而薄壁的冷却作用并不明显,于是速率的效用占了上风。 低速填充。热传导控制低速填充时,剪切率较低,局部粘度较高,流动阻力较大。由于热塑料补充速率较慢,流动较为缓慢,使热传导效应较为明显,热量迅速为冷模壁带走。加上较少量的粘滞加热现象,固化层厚度较厚,又进一步增加壁部较薄处的流动阻力。 由于喷泉流动的原因,在流动波前面的塑料高分子链排向几乎平行流动波前。因此两股塑料熔胶在交汇时,接触面的高分子链互相平行;加上两股熔胶性质各异(在模腔中滞留时间不同,温度、压力也不同),造成熔胶交汇区域在微观上结构强度较差。在光线下将零件摆放适当的角度用肉眼观察,可以发现有明显的接合线产生,这就是熔接痕的形成机理。熔接痕不仅影响塑件外观,同时由于微观结构的松散,易造成应力集中,从而使得该部分的强度降低而发生断裂。 一般而言,在高温区产生熔接的熔接痕强度较佳,因为高温情形下,高分子链活动性较佳,可以互相穿透缠绕,此外高温度区域两股熔体的温度较为接近,熔体的热性质几乎相同,增加了熔接区域的强度; 反之在低温区域,熔接强度较差。 2、保压阶段 保压阶段的作用是持续施加压力,压实熔体,增加塑料密度(增密),以补偿塑料的收缩行为。在保压过程中,由于模腔中已经填满塑料,背压较高。在保压压实过程中,注塑机螺杆仅能慢慢地向前作微小移动,塑料的流动速度也较为缓慢,这时的流动称作保压流动。由于在保压阶段,塑料受模壁冷却固化加快,熔体粘度增加也很快,因此模具型腔内的阻力很大。在保压的后期,材料密度持续增大,塑件也逐渐成型,保压阶段要一直持续到浇口固化封口为止,此时保压阶段的模腔压力达到最高值。

薄壁注塑成型技术的研究进展

薄壁注塑成型技术的研究进展 摘要:由于3C产品向轻、薄、短、小方向发展得越来越快,所以薄壁注塑成型技术也受到人们的高度重视,而薄壁注塑成型数值模拟技术是薄壁注塑成型技术得以应用的重要保证。本文介绍了薄壁注塑成型技术产生的背景和科学意义,综述了薄壁注塑成型中的制品设计、模具设计、注塑机和材料选用以及薄壁注塑成型数值模拟技术的研究与应用概况,探讨了薄壁注塑成型数值模拟技术发展中所面临的一些关键问题,指出了薄壁注塑成型数值模拟技术的研究发展方向。关键词:薄壁注塑成型;模具设计;数值模拟;流长厚度比;冷凝层。近年来,笔记本电脑和移动电话等3C(Computer, Communication and Consumer)产品更新换代的速度非常快,这类产品的设计理念正朝着“轻、薄、短、小”方向发展,同时人们对这些产品的需求也在快速增长,于是在常规注塑成型(Conventional Injection Molding, CIM)技术的基础上,薄壁注塑成型(Thin-Wall Injection Molding , TWIM)技术迅速发展起来。薄壁化因具有减小产品重量及外形尺寸、便于集成设计及装配、缩短生产周期、节约材料和降低成本等优点成为塑料消费行业追求的目标,已成为塑料成型行业中新的研究热点。薄壁注塑成型技术是一种仅有十几年发展历史的新兴技术,其理论体系尚未形成,缺少系统性的研究,而薄壁注塑成型数值模拟研究也只是近几年才提出的,还有许多理论上和实践中的问题尚待解决。薄壁注塑成型技术的概念目前关于薄壁注塑成型还没有统一的定义,Mahishi 和Maloney把其定义为流长厚度比L/T(L:Length,流动长度;T:Thickness,塑件厚度;L/T也简称为流长比)在100或者150以上的注塑为薄壁注塑;而Whetten和Fasset是这样定义薄壁注塑成型的:所成型塑件的厚度小于1mm,同时塑件的投影面积在50cm2以上的注塑成型。由此可见要给出一个统一的定义还是比较困难的;同时随着技术的发展,薄壁注塑成型定义的临界值也将发生变化,它应该是一个相对的概念。常规注塑成型工艺已为人们所熟悉,但薄壁注塑成型则不然,因为随着壁厚的减薄,聚合物熔体在型腔中的冷却速度加剧,在很短的时间内就会固化,这使得成型过程变得复杂,成型难度加大,常规的注塑成型工艺条件已不能满足需要。常规注塑成型的一个不足就是填充过程和冷却过程往往是交织在一起的,但由于常规塑件的尺寸比较大,所以对成型过程影响不大,但在薄壁注塑成型中这个不足就成为致命的问题。所以,不能把常规注塑成型中的理论和操作简单地照搬到薄壁注塑成型中去。薄壁注塑成型中的制品设计、模具设计、注塑机及材料选用薄壁制品的设计思想和方法更为复杂,并进一步受到成型局限及材料选择的影响。薄壁制品要求应该具有高的冲击强度、良好的外观质量和尺寸稳定性,并能承受大的静态载荷,成型材料的流动性要好。设计过程中要重点考虑制品的刚性、抗冲击性和可制造性。成型薄壁制品时一般需要专门设计的薄壁制品专用模具。与常规制品的标准化模具相比,薄壁制品的模具从模具结构、浇注系统、冷却系统、排气系统和脱模系统等都发生了重大变化。主要表现在以下几个方面:(1)模具结构:为承受成型时的高压,薄壁成型模具的刚度要大、强度要高。因此模具的动、定模板及其支承板重量较大,厚度通常比传统模具的模板要厚。支撑柱要多,模具内可能要多设置内锁,以保证精确定位和良好的侧支撑,防止弯曲和偏移。另外,高速射出速度增加了模具的磨损,因此模具要采用较高硬度的工具钢,高磨损、高冲蚀区(如浇口处)硬度应大于HRC55。(2)浇注系统:成型薄壁制品,特别是制品厚度非常小时,要使用大浇口,而且浇口应该大于壁厚。如是直浇口应设置冷料井,以减少浇口应力,协助填充,减少制品去除浇口时的损坏。为保证有足够的压力充填薄的模腔,流道系统中应尽可能减少压力降。为此,流道设计要比传统的大一些,同时要限制熔体的驻留时间,以防止树脂降解劣化。当是一模多腔时,浇注系统的平衡性要求远高于常规模具的要求。值得注意的是薄壁制品模具的浇注系统中还引入了两项先进技术,即热流道技术和顺序阀式浇口(SVG)技术。(3)冷却系统:薄壁制品不像传统壁厚件那样可以承受较大的因传

注塑成型工艺流程图

注塑成型工艺流程图 一、注塑成型的基本原理: 注塑机利用塑胶加热到一定温度后,能熔融成液体的性质,把熔融液体用高压注射到密闭的模腔内,经过冷却定型,开模后顶出得到所需的塑体产品。 二、注塑成型的四大要素: 1.塑胶模具 2.注塑机 3.塑胶原料 4.成型条件 三、塑胶模具 大部份使用二板模、三板模,也有部份带滑块的行位模。 基本结构: 1.公模(下模)公模固定板、公模辅助板、顶针板、公模板。2.母模(上模) 母模板、母模固定板、进胶圈、定位圈。3.衡温系统冷却.稳(衡)定模具温度。 四、注塑机 主要由塑化、注射装置,合模装置和传动机构组成;电气带动电机,电机带动油泵,油泵产生油压,油压带动活塞,活塞带动机械,机械产生动作; 1、依注射方式可分为: 1.卧式注塑机 2.立式注塑机 3.角式注塑机 4.多色注塑机 2、依锁模方式可分为: 1.直压式注塑机 2.曲轴式注塑机 3.直压、曲轴复合式 3、依加料方式可分为:

1.柱塞式注塑机 2.单程螺杆注塑机 3.往复式螺杆注塑机4、注塑机四大系统: 1.射出系统 a.多段化、搅拌性及耐腐蚀性。 b.射速、射出、保压、背压、螺杆转速分段控制。 c.搅拌性、寿命长的螺杆装置。 d.料管互换性,自动清洗。 e.油泵之平衡、稳定性。 2.锁模系统 a.高速度、高钢性。 b.自动调模、换模装置。 c.自动润滑系统。 d.平衡、稳定性。 3.油压系统 a.全电子式回馈控制。 b.动作平顺、高稳定性、封闭性。 c.快速、节能性。 d.液压油冷却,自滤系统。 4.电控系统 a.多段化、具记忆、扩充性之微电脑控制。 b.闭环式电路、回路。 c.SSR(比例、积分、微分)温度控制。

注塑成型新工艺

注塑转移成型 一种被称作注塑转移成型(ITM)的新工艺不仅可以使多腔成型的热塑性塑料小零件获得很好的一致性,还可以得到更好的成型质量。这种借鉴了热固性塑料转移成型工艺的新工艺是将“使用热流道注塑”和“压力成型”进行组合的工艺。 据塑料加工研究院的注塑成型和模具技术部门介绍,在传统的热流道注塑成型中,熔体进入多个腔室的温度和压力是不一样的,这意味着每个腔室具有不同的粘度、不同的填充量和不同的冷却状况,最终将导致零件的尺寸和性能也不相同。此外,传统注塑模具的另一个局限性是,通常对热流道的设计都是针对具体的模具或物料,对于完全不同的模具或物料而言,这个热流道就不一定适用了。 为此,塑料加工研究院研制了一种模具。在模具的固定侧采用了特殊的电加热,在热半模里有一个熔体转移室,用来储存来自螺杆的熔体,并借助于一个活塞/气缸系统把熔体转移到模腔里去;冷半模在移动压板一侧。利用固定在半模里的隔热板来减少冷、热半模之间的热传导。当模具的开模线合拢时,活塞/气缸系统对熔体转移室施压,通过短门,将物料直接推入模腔。在这个系统里,注塑和保压是由静止不动的模具而不是通过螺杆来实现的。在保压阶段之后,转移室开始充填下一个周期的物料。在这个过程中,主开模线(它的开与合都与转移室的动作互不相干)一直保持合拢,直到加工件充分冷却为止。 据说,这种工艺具有许多好处。模具的熔体转移部分与该部分的几何形状无关,因此无需为不同的模具而做相应的改变;由于注塑体积是由腔室的运动距离来决定的,所以可以降低多腔模具的造价,同时不需要再使用昂贵的热流道温度控制器;因为熔体的通道很短,而且熔体是直接从蓄集室的门进入模腔,所以所需要的压力比传统热流道可提供的压力更低,熔体完全能够均匀地充满所有模腔;作用在熔体上的剪切力和应力更小了,有利于长玻纤增强料或者瓷粉掺混料的成型,并使得加工件的收缩率和翘曲变形更小。 目前,塑料加工研究院已经使用了多达12个模腔的模具对长玻纤增强聚丙烯材料进行注塑成型试验,并取得了成功。据说,他们很快就会用超过100个模腔的模具来进一步测试这种工艺。

注塑成型工艺

目录 第一章注塑成型 (1) 1.1 概述 (1) 1.2 注射成型的工艺过程 (1) 第二章注射成型 (3) 2.1加料 (3) 2.2加热塑化 (3) 2.3注射成型 (4) 第三章设备选型 (6) 3.1 设备选型总原则及要求 (6) 3.1.1 设备选型的原则 (6) 3.1.2 设备选型的要求 (6) 3.2 注塑机的选择 (7) 第四章参考文献 (8)

第一章注塑成型 1.1 概述 注塑是一种工业产品生产造型的方法。产品通常使用橡胶注塑和塑料注塑。注塑还可分注塑成型模压法和压铸法。注射成型机(简称注射机或注塑机)是将热塑性塑料或热固性料利用塑料成型模具制成各种形状的塑料制品的主要成型设备,注射成型是通过注塑机和模具来实现的。 塑料注塑是塑料制品的一种方法,将熔融的塑料利用压力注进塑料制品模具中,冷却成型得到想要各种塑料件。有专门用于进行注塑的机械注塑机。目前最常使用的塑料是聚苯乙烯。 1.2 注射成型的工艺过程 完整的注塑成型工艺过程包括成型前的准备,注射成型和成型后的加工处理三个阶段,归纳见图1-1: 塑料性能检测丨丨切除流到货物 预热、干燥丨制品初检→热处理 着色、造粒↓↑丨机械加工 嵌件预热、安放→→注射成型丨热处理 涂脱模剂↑丨修饰 试模丨丨装配 清洗料筒质量检验 成型前准备注射成型成型后的加工处理 图1-1 注塑成型工艺过程 1.2.1 计量加料与预塑化 加料量应等于制品的质量与浇道内料柱质量之和。加料时由料斗口下端的计量装置控制。当注射保压动作完成后,螺杆后退时,粒料均匀的落入机筒内被预塑化。 预塑化是当加入机筒内的粒料在一定温度范围内被转动的螺杆推向机筒前端,在温度作用下再加上螺杆转动中的挤压,剪切和摩擦力等综合条件影响,原料塑化成熔融状

用于封装电子元器件的低压注塑技术

用于封装电子元器件的低压注塑技术 近20年来,聚酰胺热熔胶已经变得越来越重要。汽车制造业将这类产品用于密封电子元器件已经有数年了,我们也已很早就意识到了此类产品在保护汽车电子系统中的精密电子元器件(如:印刷电路板)的重要性。 低压注塑工艺 这种低压注塑工艺与热塑性塑料的注塑成型技术非常相似。颗粒状的热熔胶被加热至熔化,以便在液体状态下进行下一步加工,如图1。与传统的注塑成型技术不同的是,这种单组份热熔胶在特殊设计的模具中只需要2到40巴的低压就可以完成封装电子元器件的工艺。这种低压范围之所以成为可能,是因为这种热熔胶在熔融状态下的粘稠度很低,仅在1000到8000 mPa.s之间。另外,注塑的温度范围在180到240摄氏度之间,通过这种方法,可以温和地将线束、连接器、微动开关、传感器和电路板等精密、敏感的电子元器件封装起来,而不会对其产生伤害。图2为一个已经封装好的部件,被琥珀色或黑色的低压注塑材料所包封。在热熔胶被注入模具之后,随即开始冷却及固化,固化时间因胶量的不同而不同,大约在10到50秒之间。除了保护元器件免受周围环境的影响,该低压注塑材料还可以起到抗冲击,缓冲应力的作用。此外,该材料还可以作为电绝缘材料。首页上的图片显示了一个用琥珀色热熔胶料封装的电子元器件。 低压注塑材料 用于这种技术的化学材料是以二聚脂肪酸为基础的聚酰胺热熔胶。该脂肪酸来自于可再生资源,比如大豆、油菜籽和葵花籽,然后缩聚成二聚物。在缩聚过程中,该二聚脂肪酸与二胺发生反应,释放出水,生成聚酰胺热熔胶。这类产品的显著特点是耐温范围较广,也就是说,产品具有低温柔韧性,与此同时,还具有抗高温蠕变性。 因为比其他热熔材料更加坚固结实,这些产品具有类似于塑料的特性。在注塑过程中,这些

成型工艺流程及条件介绍

成型工艺流程及条件介绍第一節成型工艺 1.成型工艺参数类型 (1). 注塑参数 a.注射量 b.计量行程 c.余料量 d.防诞量 e.螺杆转速 f.塑化量 g.预塑背压 h.注射压力和保压压力 i.注射速度 (2)合模参数 a.合模力 b.合模速度

c.合模行程. d.开模力 e.开模速度 f.开模行程 g.顶出压力 h.顶出速度 i.顶出行程 2.温控参数 a.烘料温度 b.料向与喷嘴温度 c.模具温度 d.油温 3.成型周期 a.循环周期 b.冷却时间 c.注射时间

d.保压时间 e.塑化时间 f.顶出及停留时间 g.低压保护时间 成型工艺参数的设定须根据产品的不同设置. 第二节成型条件设定 按成型步骤:可分为开锁模,加热,射出,顶出四个过程. 开锁模条件: 快速段中速度 低压高压速度 锁模条件设定: 1锁模一般分: 快速→中速→低压→高压 2.快锁模一般按模具情况分,如果是平面二板模具,快速锁模段可用较快速度,甚至于用到特快,当用到一般快速时,速度设到55-75%,完全平面模可设定到

80-90%,如果用到特快就只能设定在45-55%,压力则可设定 于50-75%,位置段视产品的深浅(或长短)不同,一般是开模 宽度的1/3. 3.中速段,在快速段结束后即转换成中速,中速的位置一般 是到模板(包括三板模,二板模)合在一块为止,具体长度应 视模板板间隔,速度一般设置在30%-50%间,压力则是 20%-45%间. 4.低压设定,低速设定一般是在模板接触的一瞬间,具体位 置就设在机台显示屏显示的一瞬间的数字为准,这个数字一般是以这点为标准,,即于此点则起不了高压,高于此点则大,轻易起高压.设定的速度一般是15%-25%,视乎不同机种而定,压力一般设定于1-2%,有些机则可设于5-15%,也是视乎不同机种不同. 5.高压设定,按一般机台而言,高压位置机台在出厂时都已 作了设定,相对来讲,是不可以随便更改的,比如震雄机在 50P.速度相对低压略高,大约在30-35%左右,而压力则视乎 模具而定,可在55-85%中取,比如完全平面之新模,模具排气良好,甚至于设在55%即可,如果是滑块较多,原来生产时毛 边也较多,甚至于可设在90%还略显不足. 加热工艺条件设定

注塑机工艺流程

塑件的注塑成型工艺过程主要包括填充——保压——冷却——脱模等4个阶段,这4个阶段直接决定着制品的成型质量,而且这4个阶段是一个完整的连续过程。(莱普乐注塑机节能改造网提供) 1、填充阶段 填充是整个注塑循环过程中的第一步,时间从模具闭合开始注塑算起,到模具型腔填充到大约95%为止。理论上,填充时间越短,成型效率越高,但是实际中,成型时间或者注塑速度要受到很多条件的制约。 高速填充。高速填充时剪切率较高,塑料由于剪切变稀的作用而存在粘度下降的情形,使整体流动阻力降低;局部的粘滞加热影响也会使固化层厚度变薄。因此在流动控制阶段,填充行为往往取决于待填充的体积大小。即在流动控制阶段,由于高速填充,熔体的剪切变稀效果往往很大,而薄壁的冷却作用并不明显,于是速率的效用占了上风。 低速填充。热传导控制低速填充时,剪切率较低,局部粘度较高,流动阻力较大。由于热塑料补充速率较慢,流动较为缓慢,使热传导效应较为明显,热量迅速为冷模壁带走。加上较少量的粘滞加热现象,固化层厚度较厚,又进一步增加壁部较薄处的流动阻力。 由于喷泉流动的原因,在流动波前面的塑料高分子链排向几乎平行流动波前。因此两股塑料熔胶在交汇时,接触面的高分子链互相平行;加上两股熔胶性质各异(在模腔中滞留时间不同,温度、压力也不同),造成熔胶交汇区域在微观上结构强度较差。在光线下将零件摆放适当的角度用肉眼观察,可以发现有明显的接合线产生,这就是熔接痕的形成机理。熔接痕不仅影响塑件外观,同时由于微观结构的松散,易造成应力集中,从而使得该部分的强度降低而发生断裂。 一般而言,在高温区产生熔接的熔接痕强度较佳,因为高温情形下,高分子链活动性较佳,可以互相穿透缠绕,此外高温度区域两股熔体的温度较为接近,熔体的热性质几乎相同,增加了熔接区域的强度;反之在低温区域,熔接强度较差。 2、保压阶段 保压阶段的作用是持续施加压力,压实熔体,增加塑料密度(增密),以补偿塑料的收缩行为。在保压过程中,由于模腔中已经填满塑料,背压较高。在保压压实过程中,注塑机螺杆仅能慢慢地向前作微小移动,塑料的流动速度也较为缓慢,这时的流动称作保压流动。由于在保压阶段,塑料受模壁冷却固化加快,熔体粘度增加也很快,因此模具型腔内的阻力很大。在保压的后期,材料密度持续增大,塑件也逐渐成型,保压阶段要一直持续到浇口固化封口为止,此时保压阶段的模腔压力达到最高值。 在保压阶段,由于压力相当高,塑料呈现部分可压缩特性。在压力较高区域,塑料较

注塑成型工艺培训资料

注塑成型技术培训资料 一、如何解决注塑产品存在的品质缺陷 1、注塑产品存在的品质缺陷: 塑料制品的成型加工过程中,由于加工设备不一,成型性能各异,原料品种繁多,加之设备的运行状态,模具的型腔结构、物料的流变性筹多种因素错综变化的影响,使得塑料的内在及外观质量经常会出现各种各样的成型缺陷。常见的外观缺陷有:缩水、飞边、黑点、流纹、熔接线、亮纹、缺胶、气泡、料花等。 2、如何解决缩水 ●缩水产生的原因 制件在模具中冷却时,由于制件的胶厚不一致而导致塑胶收缩不均匀而引起的凹痕。解决缩水的原理是:在制件冷却过程中,熔胶不断补充制件收缩引起的空缺。因此在正常情况下要保证熔胶补充的通道不受阻和足够的补充压力。 ●在注塑工艺上的解决办法: (1)注塑条件问题: ①注射量不足; ②提高注射压力; ③增加注射时间; ④增加保压压力或时间; ⑤提高注射速度; ⑥增加注射周期; ⑦操作原因造成的注射周期反常。 (2)温度问题: ①物料太热造成过量收缩; ②物料太冷造成充料压实不足; ③模温太高造成模壁处物料不能很快固化; ④模温太低造成充模不足; ⑤模子有局部过热点; ⑥改变冷却方案。 (3)模具问题: ①增大浇口;

②增大分流道; ③增大主流道; ④增大喷嘴孔; ⑤改进模子排气; ⑥平衡充模速率; ⑦避免充模料流中断; ⑧浇口进料安排在制品厚壁部位; ⑨如果有可能,减少制品壁厚差异; ⑩模子造成的注射周期反常。 (4)设备问题: ①增大注压机的塑化容量; ②使注射周期正常; (5)冷却条件问题: ①部件在模内冷却过长,避免由外往里收缩,缩短模子冷却时间; ②将制件在热水中冷却。 3、如何解决飞边 ●产生飞边的原因: 产品溢边往往由于模子的缺陷造成,其他原因有:注射力大于锁模力、物料温度太高、排气不足、加料过量、模子上沾有异物等。 ●如何判断产生飞边的原因: 在一般情况下,采用短射的办法。即在注塑压力速度较低、不用保压的情况下注塑出制件90%的样板,检查样板是否出现飞边,如果出现,则是模具没有配好或注塑机的锁模压力不足,如果没有出现,则是由于注塑条件变化而引起的飞边,比如:保压太大、注射速度太快等。 ●常见的飞边产生的原因及解决飞边的办法 ⑴模具问题: ①型腔和型芯未闭紧; ②型腔和型芯偏移; ③模板不平行; ④模板变形;

注塑成型工艺流程及工艺参数

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 注塑成型工艺流程及工艺参数 塑件的注塑成型工艺过程主要包括填充——保压——冷却——脱模等4个阶段,这4个阶段直接决定着制品的成型质量,而且这4个阶段是一个完整的连续过程。 1、填充阶段 填充是整个注塑循环过程中的第一步,时间从模具闭合开始注塑算起,到模具型腔填充到大约95%为止。理论上,填充时间越短,成型效率越高,但是实际中,成型时间或者注塑速度要受到很多条件的制约。 高速填充。如图1-2所示,高速填充时剪切率较高,塑料由于剪切变稀的作用而存在粘度下降的情形,使整体流动阻力降低;局部的粘滞加热影响也会使固化层厚度变薄。因此在流动控制阶段,填充行为往往取决于待填充的体积大小。即在流动控制阶段,由于高速填充,熔体的剪切变稀效果往往很大,而薄壁的冷却作用并不明显,于是速率的效用占了上风。λ 低速填充。如图1-3所示,热传导控制低速填充时,剪切率较低,局部粘度较高,流动阻力较大。由于热塑料补充速率较慢,流动较为缓慢,使热传导效应较为明显,热量迅速为冷模壁带走。加上较少量的粘滞加热现象,固化层厚度较厚,又进一步增加壁部较薄处的流动阻力。λ 由于喷泉流动的原因,在流动波前面的塑料高分子链排向几乎平行流动波前。因此两股塑料熔胶在交汇时,接触面的高分子链互相平行;加上两股熔胶性质各异(在模腔中滞留时间不同,温度、压力也不同),造成熔胶交汇区域在微观上结构强度较差。在光线下将零件摆放适当的角度用肉眼观察,可以发现有明显的接合线产生,这就是熔接痕的形成机理。熔接痕不仅影响塑件外观,同时由于微观结构的松散,易造成应力集中,从而使得该部分的强度降低而发生断裂。 一般而言,在高温区产生熔接的熔接痕强度较佳,因为高温情形下,高分子链活动性较佳,可以互相穿透缠绕,此外高温度区域两股熔体的温度较为接近,熔体的热性质几乎相同,增加了熔接区域的强度;反之在低温区域,熔接强度较差。 2、保压阶段 保压阶段的作用是持续施加压力,压实熔体,增加塑料密度(增密),以补偿塑料的收缩行为。在保压过程中,由于模腔中已经填满塑料,背压较高。在保压压实过程中,注塑机螺杆仅能慢慢地向前作微小移动,塑料的流动速度也较为缓慢,这时的流动称作保压流动。由于在保压阶段,塑料受模壁冷却固化加快,熔体粘度增加也很快,因此模具型腔内的阻力很大。在保压的后期,材料密度持续增大,塑件也逐渐成

注塑工艺过程

注塑工艺过程 第八章注塑成型过程 及注塑模具计算机辅助设计中的流变学问题 1.注塑成型过程的流变分析 1.1 注塑成型过程简介 注塑成型,又称注射模塑,是热塑性塑料制品重要的成型方法。可用于生产形状结构复杂,尺寸精确,用途不同的制品,产量约占塑料制品总量的30% 。近年来,热固性塑料,越来越多的橡胶制品,带有金属嵌件的塑料制品也采用注射成型法生产。精密注射成型,气辅注射成型,多台注射机共注射及注射成型过程的全自动控制等为注射成型工艺发展的新领域。 注塑成型的主要设备是柱塞式或螺杆式往复注射机,以及根据制品要求设计的注射模具。塑化好的熔体靠螺杆或柱塞的推力注入闭合的模腔内,经冷却固化定型,开模得到所需的制品(见图8-1)。 图 8-1 典型注射成型设备示意图

注塑过程是循环往复、连续进行的。全部注塑过程由一个主循环和 两个辅助工序组成,见图8-2。 图 8-2 注塑过程循环示意图 与该过程相对应,一个循环中模腔内物料承受的压力随时间或温度的 变化曲线如图8-3 所示。图中各段时间的总和为一个注塑成型周期。 图 8-3 典型注塑周期的程序图 1-柱塞前进时间; 2-合模时间; 3-开模时间; 4-残余压力; a—静置时间;b —充模时间;c—保压时间;d —倒流时间;e—封口时间; f—封口后冷却时间 要得到令人满意的注塑制品,除掌握准确的时间程序外,还要借助于流变学理论,掌握模腔内的物料填充情况,即掌握流道和模腔内的压力变化程序和温度变化程序。 目前已经能够运用流变学和传热学理论,采用计算机辅助设计方法,数值计算模具设计中遇到的一些与流道设计、传热管路设计有关的问题,数字模拟流道和模腔内的物料填充图和压力、温度场分布图,为模具设计提供有价值的资料。 但是由于各种模具内流道形状复杂,模具温度不稳定,物料注射速度高,非牛顿流动性突出,流动过程间歇,所以对这样一个复杂的注射过程要求得其精确解几乎是不可能的。 下面首先运用流变学基本方程,结合若干经验公式,对注模过程中模腔内压力的变化进行分析,说明一些有意义的现象;然后介绍注射模具计算机辅助设计中的流变学方法。 一般螺杆式往复注射机及模具的功能区段可分为三段:塑化段,注射段,充模段。 塑化段同螺杆挤出机,物料在其中熔融、塑化、压缩并向前输送。 注射段由喷嘴、主流道、分流道、浇口组成,物料在其中的流动如同在毛细管流变仪中的流动。 充模段是关键,熔体由浇口进入模腔,发生复杂的三维流动以及不稳定传热、相变、固化等过程,流动情况十分复杂。 为简便起见,选择几何形状最简单的圆盘形模具和管式流道入口进行研究。

MIM金属粉末注塑成型技术介绍

MIM(金属粉末注塑成型)技术介绍 ?????MIM是将现代塑料注射成形技术引入粉末冶金领域而形成的一种全新的金属零部件近净成形加工技术,是近年来粉末冶金学科和工业领域中发展十分迅猛的一项高新技术。MIM的工艺步骤是:首先选取符合MIM要求的金属粉末与有机粘结剂在一定温度条件下采用适当的方法混合成均匀的喂料,然后经制粒后在加热塑化状态下用注射成形机注入模具型腔内获得成形坯,再经过化学或溶剂萃取的方法脱脂处理,最后经烧结致密化得到最终产品。? MIM产品的特点:? ????1、零部件几何形状的自由度高,能像生产塑料制品一样,一次成形生产形状复杂的金属零部件;? ????2、MIM产品密度均匀、光洁度好,表面粗糙度可达到Ra0.80~1.6μm,重量范围在0.1~200g。尺寸精度高(±0.1%~±0.3%),一般无需后续加工;?? ????3、适用材料范围宽,应用领域广,原材料利用率高,生产自动化程度高,工序简单,可实现连续大批量生产;? ????4、产品质量稳定、性能可靠,制品的相对密度可达95%~99%,可进行渗碳、淬火、回火等热处理。产品强度、硬度、延伸率等力学性能高,耐磨性好,耐疲劳,组织均匀;? 国际上普遍认为MIM技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“21世纪最热门的零部件的成形技术”。?

MIM与传统粉末冶金相对比? ?MIM可以制造复杂形状的产品,避免更多的二次机加工。? ?MIM产品密度高、耐蚀性好、强度高、延展性好。? ?MIM可以将2个或更多PM产品组合成一个MIM产品,节省材料和工序。? MIM与机械加工相对比? ??MIM设计可以节省材料、降低重量。 ???MIM可以将注射后的浇口料重复破碎使用,不影响产品性能,材料利用率高。???MIM通过模具一次成形复杂产品,避免多道加工工序。 ???MIM可以制造难以机械加工材料的复杂形状零件。? MIM与精密铸造相对比? ?MIM可以制造薄壁产品,最薄可以做到0.2mm。? ?MIM产品表面粗糙度更好。? ?MIM更适宜制细盲孔和通孔。? ?MIM大大减少了二次机加工的工作量。? ?MIM可以快速的大批量、低成本制造小型零件。? MIM材料范围 常用MIM材料应用领域:?

低压注塑工艺优势

東莞天賽公司低壓注膠解決方案的提供者 ——低壓熱熔注射成型工藝 近年來隨著中國電子行業的快速發展,天賽公司把在德國、美國、日本等發達國家已經運用非常成熟的低壓熱熔膠注射成型工藝及解決方案引入中國市場,致力於推動中國電子行業的發展。 一.什麼是低壓熱熔注射成型工藝? 低壓熱熔注射成型工藝是一種使用很低的注射壓力 (1.5~40bar )將封裝材料注入模具並快速固化成型(5~50 秒)的封裝工藝方法,以達到絕緣、耐溫、抗衝擊、減振、防潮、 防水、防塵、耐化學腐蝕等等功效,天賽公司為此工藝提供了高 性能的低壓注膠機、模具、膠料及工藝參數,此工藝主要應用於 精密、敏感的電子元器件的封裝與保護。其應用領域非常廣泛, 包括:印刷線路板(PCB)、汽車電子產品、汽車線束、連接 器、感測器、微動開關、接插件等。此項工藝起源於歐洲的汽車 工業,到目前為止在歐美、日韓等的汽車工業領域和電子電氣領 域已經成功應用了十幾年,在我國目前正處在快速發展階段。 二.低壓熱熔注射成型工藝的優勢 低壓注射成型技術的優勢表現在: 1.提升終端產品的性能。 2.大幅減少新產品的研製成本,縮短產品開發週期,同時可以大幅度的提升生產效率。 3.總生產成本的節約。諸多優勢主要歸因於天賽高質量的低壓注膠機、模具及熱熔膠材料所具備的特殊物理和化學性能。 三. 與一般注塑機不能做到的, 低壓注膠可行!! 注射壓力極低,無損元器件,次品率極低傳統高壓注塑工藝中,注射壓力大,因此在注塑過程中脆弱的精密元器件易損壞,導致生產過程中的次品率居高不下。 針對傳統高壓注塑工藝的缺陷,天賽公司為客戶選擇了流動性優異的高性能熱熔膠系列產品,這種特殊的膠料在熔化後只需要很小的壓力(詳細資料參見表1)就可以使其流淌到很小的模具空間中,因而不會損壞需要封裝的脆弱元器件,極大程度地降低了廢品率。 在注射溫度方面,低壓成型工藝的注射溫度也低於傳統高壓注塑溫度(詳細數據參見表1),因此降低了由於溫度過高而損壞敏感、精密元器件的機率。以上這些特性都決定了低壓注膠技術可以彌補傳統高壓注塑的不足,成為理想的敏感、精密元器件封裝工藝,並越來越多地應用於精密電子元器件的封裝。

注塑成型工艺流程及工艺参数

注塑成型工艺流程及工艺参数 塑件的注塑成型工艺过程主要包括填充——保压——冷却——脱模等4个阶段,这4个阶段直接决定着制品的成型质量,而且这4个阶段是一个完整的连续过程。 1、填充阶段 填充是整个注塑循环过程中的第一步,时间从模具闭合开始注塑算起,到模具型腔填充到大约95%为止。理论上,填充时间越短,成型效率越高,但是实际中,成型时间或者注塑速度要受到很多条件的制约。 高速填充。如图1-2所示,高速填充时剪切率较高,塑料由于剪切变稀的作用而存在粘度下降的情形,使整体流动阻力降低;局部的粘滞加热影响也会使固化层厚度变薄。因此在流动控制阶段,填充行为往往取决于待填充的体积大小。即在流动控制阶段,由于高速填充,熔体的剪切变稀效果往往很大,而薄壁的冷却作用并不明显,于是速率的效用占了上风。λ 低速填充。如图1-3所示,热传导控制低速填充时,剪切率较低,局部粘度较高,流动阻力较大。由于热塑料补充速率较慢,流动较为缓慢,使热传导效应较为明显,热量迅速为冷模壁带走。加上较少量的粘滞加热现象,固化层厚度较厚,又进一步增加壁部较薄处的流动阻力。λ 由于喷泉流动的原因,在流动波前面的塑料高分子链排向几乎平行流动波前。因此两股塑料熔胶在交汇时,接触面的高分子链互相平行;加上两股熔胶性质各异(在模腔中滞留时间不同,温度、压力也不同),造成熔胶交汇区域在微观上结构强度较差。在光线下将零件摆放适当的角度用肉眼观察,可以发现有明显的接合线产生,这就是熔接痕的形成机理。熔接痕不仅影响塑件外观,同时由于微观结构的松散,易造成应力集中,从而使得该部分的强度降低而发生断裂。 一般而言,在高温区产生熔接的熔接痕强度较佳,因为高温情形下,高分子链活动性较佳,可以互相穿透缠绕,此外高温度区域两股熔体的温度较为接近,熔体的热性质几乎相同,增加了熔接区域的强度;反之在低温区域,熔接强度较差。 2、保压阶段 保压阶段的作用是持续施加压力,压实熔体,增加塑料密度(增密),以补偿塑料的收缩行为。在保压过程中,由于模腔中已经填满塑料,背压较高。在保压压实过程中,注塑机螺杆仅能慢慢地向前作微小移动,塑料的流动速度也较为缓慢,这时的流动称作保压流动。由于在保压阶段,塑料受模壁冷却固化加快,熔体粘度增加也很快,因此模具型腔内的阻力很大。在保压的后期,材料密度持续增大,塑件也逐渐成型,保压阶段要一直持续到浇口固化封口为止,此时保压阶段的模腔压力达到最高值。 在保压阶段,由于压力相当高,塑料呈现部分可压缩特性。在压力较高区域,塑料较为密实,密度较高;在压力较低区域,塑料较为疏松,密度较低,因此造成密度分布随位置及时间发生变化。保压过程中塑料流速极低,流动不再起主导作用;压力为影响保压过程的主要因素。保压过程中塑料已经充满模腔,此时逐渐固化的熔体作为传递压力的介质。模腔中的压力借助塑料传递至模壁表面,有撑开模具的趋势,因此需要适当的锁模力进行锁模。涨模力在正常情形下会微微将模具撑开,对于模具的排气具有帮助作用;但若涨模力过大,易造成成型品毛边、溢料,甚至撑开模具。因此在选择注塑机时,应选择具有足够大锁模力的注塑机,以防止涨模现象并能有效进行保压。 3.冷却阶段 在注塑成型模具中,冷却系统的设计非常重要。这是因为成型塑料制品只有冷却固化到一定刚性,脱模后才能避免塑料制品因受到外力而产生变形。由于冷却时间占整个成型周期约70%~80%,因此设计良好的冷却系统可以大幅缩短成型时间,提高注塑生产率,降低成本。设计不当的冷却系统会使成型时间拉长,增加成本;冷却不均匀更会进一步造成塑料制品的翘曲变形。 根据实验,由熔体进入模具的热量大体分两部分散发,一部分有5%经辐射、对流传递到大气中,其余95%从熔体传导到模具。塑料制品在模具中由于冷却水管的作用,热量由模腔中的塑料通过热传导经模架传至冷却水管,再通过热对流被冷却液带走。少数未被冷却水带走的热量则继续在模具中传导,至接触外

注塑成型技术员个人简历怎么写

注塑成型技术员个人简历怎么写 这一份注塑成型技术员个人简历模板是由简历模板网提供给需要写作与注塑成型技术员等相关职位的个人简历的求职者参考的,希望对你有所帮助。 姓名:李先生性别:男 婚姻状况:已婚民族:汉族 户籍:湖北-荆州年龄: 30 现所在地:广东-东莞身高: 170cm 意向地区:广东、江苏、湖北 意向职位:机械(电)/仪表类-机械设计/制造工程师 模具类-注塑成型工程师 机械(电)/仪表类-设备修理 寻求职位:注塑领班、注塑成型技术员、注塑成型车间现场管理 教育经历 1998-09 ~ 2001-07 石首市南岳高级中学高中高中 **公司 (2010-04 ~至今) 公司性质:外资企业行业类别:计算机硬件 担任职位:注塑成型技术员岗位类别:总工程师/副总工程师 工作描述:负责产品成型工艺的调较及改善产品质量和产量,对光宝科技,台达电子,鸿富锦,致通电脑和朝阳音响厂等公司所生产的产品较为熟悉。在晋原厂工作期间,主要负责苹果产品专用机台,因公司主要生产各种品牌笔记本电

脑的电源适配器及其配件,尤其是苹果的电源适配器,因产品内外全是高光面,色差和尺寸管控方面非常严格,加之塑胶原料价格非常昂贵,对降低产品不良及提高生产效率方面积累了丰富的经验,因其工厂三百六十五天天天都得上班,身体无法抵制这种超长时间上班,故离职另寻发展更为广阔的平台。 **公司 (2008-07 ~ 2009-12) 公司性质:民营企业行业类别:汽车、摩托车及零配件 担任职位:注塑车间领班岗位类别: 工作描述:管理车间20台注塑机的生产及品质的跟踪,对接外贸业务部所提供的订单根据单期进行生产,协调注塑部与各生产车间部门进行沟通,合理安排订单生产与新产品试模试产。 **公司 (2005-06 ~ 2008-07) 公司性质:合资企业行业类别:机械制造、机电设备、重工业 担任职位:注塑成型领班岗位类别: 工作描述:管理24台震雄注塑机,协助PMC排单及根据单期合理安排员工生产。全面管理车间生产之日常事务及品质问题,并对车间展开的5S工作进行全面的跟踪及指导。协同上级对各验证机构来验厂时注塑部常见问题进行排除和更正。 离职原因:公司倒闭 **公司 (2003-03 ~ 2005-06) 公司性质:外资企业行业类别:机械制造、机电设备、重工业 担任职位:成型技术员岗位类别:

注塑成型工艺参数

注塑成型工艺参数 第一节注塑工艺参数 在制品和模具确定之后,注塑工艺参数的选择和调整对制品质量将产生直接影响。注塑工艺具体是指温度、压力、速度、时间等有关参数,实际成型中应综合考虑,在能保证制品质量(如外观、尺寸精度、机械强度等)和成型作业效率(如成型周期)的基础上来决定。尽管不同的注塑机调节方式各有所异,但是对工艺参数的设定和调整项目基本是相同的。注塑工艺参数与注塑机的设计参数是有关联的,但是在这里主要是从注塑工艺角度理解这些参数。 一、注塑参数 1.注射量:注射量是指注塑机螺杆(或柱塞)在注射时,向模具 内所注射的物料熔体量(g )。因此,注射量是由聚合物的物理性能及螺杆中料筒中的推进容积来确定的。 由此可见,选择注射量时,一方面必须充分地满足制品及其浇注系统的总用料量,另一方面必须小于注塑机的理论注射容积。如果选取用注射量过小则会因注射量不足而使制品产生各种缺陷,但过大又造成能源的浪费。 所以注塑料机不可用来加工小于注射量 10% 或超过注射量 70% 的制品,据统计世界上制品生产厂家大约有 1/3 的能源浪费在不合理地机型选择上。 2.计量行程(预塑行程):每次注射程序终止后,螺杆是处在料 筒的最前位置,当预塑程序到达时,螺杆开始旋转,物料被输送到螺杆头部,螺杆在物料的反压力作用下后退,直至碰到限位开关为止。这个过程称计量过程或预塑过程,螺杆后退的距离称计量容积,也正是注射容积,其计量行程也正是注射行程。因此制品所需的注射量是用计量行程工来调整的。 由此可知,注射量的大小与计量行程的精度有关,如果计量行程调节

太小会造成注射量不足,如果计量行程调整太大,使料筒前部每次注射后的余料太多,使熔体温度不均或过热分解,计量行程的重复精度的高低会影响注射量的波动.料温沿计量行程的分布是不均匀的,增加计量行程会加剧料温的不均匀性.螺杆转速、预塑背压和料筒的温度都将对熔体温度和温差有显着地影响. 在注射前处于螺杆头部计量室外中的熔体温度最高,虽然也有温差,但在这时较小,在注射后,螺杆槽中熔体的温度最低,停留一段时间之后熔体温度上升.这种温差可以采用调整螺杆转速轴向背压或使用新型螺杆等办法使其得到改善。 3.余料量:螺杆注射完了之后,并不希望把螺杆头部的熔料全部注射出去,还希望留存一些,形成一个余料量。这样,一方面可防止螺杆头部和喷射接触发生机械破损事故,另一方面,可通过此余料垫来控制注射量的重复精度达到稳定注塑制品质量的目的。如果余料垫过小,达不到缓冲目的,如果过大会使余料累积过多。近代注射塑机是通过螺杆注射终止时的极限位置来控制冲量的:如果位移传感器所检测的实际值超出缓冲垫的设定范围(一般 2-10mm )。 4.防延量:防延量是指螺杆计量(预塑)到位后,又直线地倒退一段距离,使计量室中熔体的比体积增加,内压下降,防止熔体从计量室外向外流出(通过喷嘴或间隙)。这个后退动作称防流延动作,防流延量可视聚合物沾度、相对密度和制品的情况进行设定,过大的防延量会使计量室中的熔料夹杂汽泡,严重影响制品质量。 5.螺杆转速:螺杆转速影响注塑物料在螺杆中输送;影响塑化能力、塑化质量和成型周期等因素的重要参数。随着转速提高塑化能力会增加。提高螺杆转速,流量加大,熔融温度的均匀性却有所改善。熔体温度和螺杆转速之间随着螺杆转速的提高,熔体温度也有所提高。 螺杆转速根据注塑条件用注塑机的额定螺杆转速,以额定量

注塑成型技术员个人简历模板参考

注塑成型技术员个人简历模板参考 以下是关于注塑成型技术员个人简历模板参考,希望内容对您有帮助,感谢您得阅读。 工作描述:管理车间20台注塑机的生产及品质的跟踪,对接外贸业务部所提供的订单根据单期进行生产,协调注塑部与各生产车间部门进行沟通,合理安排订单生产与新产品试模试产。 **公司 (2005-06 ~ 2008-07) 公司性质:合资企业行业类别:机械制造、机电设备、重工业 担任职位:注塑成型领班岗位类别: 工作描述:管理24台震雄注塑机,协助PMC排单及根据单期合理安排员工生产。全面管理车间生产之日常事务及品质问题,并对车间展开的5S工作进行全面的跟踪及指导。协同上级对各验证机构来验厂时注塑部常见问题进行排除和更正注塑成型技术员个人简历模板注塑成型技术员个人简历模板。 离职原因:公司倒闭 **公司 (2003-03 ~ 2005-06) 公司性质:外资企业行业类别:机械制造、机电设备、重工业 ·

担任职位:成型技术员岗位类别: 工作描述:负责调较和维护注塑工艺参数,稳定机台生产效率、质量、产量; 协助领班对作业人员的进行技能培训和安全作业培训; 协助领班对本区域的7S和现场纪律进行管理 离职原因:提升自己,录求更大的发展的空间 **公司 (2002-05 ~ 2002-12) 公司性质:外资企业行业类别:家具、家电、工艺品、玩具 担任职位:上下模岗位类别: 工作描述:从事上下模工作,同时积累成型技术经验。 离职原因:录求发展 技能专长 专业职称: 计算机水平:初级 计算机详细技能: 技能专长:从事塑胶行业7年,对注塑成型加工及现场管理已有多年的工作经验,了解多种注塑机的调较和维修及熟悉常用塑胶原料的特性。本人接触的产品类型主要有玩具类如:遥控仿真汽车、遥控仿真轮船及儿童玩具家居用品、婴儿小推车、画架系列,计算机及其周边零配件,塑胶行李箱和品牌轿 ·

低压注塑热熔胶

中国制造2025——加强Austromelt质量品牌建设 与世界工业强国相比,我国低压注塑行业的发展问题依然突出,由于人们对低压注塑工艺不了解,以及受国内工业经济行情影响,低压注塑行业市场普及率低,覆盖面小。《中国制造2025》为低压注塑热熔胶行业的发展指明了方向。 提升质量控制技术,完善热熔胶生产质量管理机制,夯实热熔胶质量发展基础,优化热熔胶质量发展环境,努力实现热熔胶质量大幅提升。使奥燊热熔胶能完美应用于精密、敏感的电子元器件的封装与保护。应用领域包括:印刷线路板(PCB)、微型马达、汽车电子产品、汽车线束、防水连接器、传感器、微动开关、天线、线圈、电感器等等。奥燊追求卓越品质,作为具有自主知识产权的热熔胶产品Austromelt系列特种热熔胶,奥燊致力于不断提升自身品牌价值和中国制造整体形象。 应用先进质量管理技术和方法。加强重点产品标准符合认定,推动重点产品技术、安全标准全面达到国际先进水平。普及低压注塑、奥燊胶料、精益生产、质量诊断、胶料性能持续改进等先进生产管理模式和方法。提高质量在线监测、在线控制和产品全生命周期质量追溯能力。提升胶料关键工艺过程,控制Austromelt系列热熔胶在耐高低温、防水、阻燃、环保无卤素、良好的应力性等方面保持行业内的高水平。加强质量管理,定期开展质量安全培训活动。 加快提升产品质量,实施低压注塑热熔胶产品质量提升行动计划,针对汽车线束、过滤器、连接器、手机电池等重点行业,做好PA聚酰胺热熔胶料的研发、生产与低压注塑工艺应用的推广。攻克一系列长期困扰低压注塑热熔胶产品提升的关键共性质量技术;加强可靠性设计、试验与验证技术开发应用,推广采用先进成型和加工方法、在线检测装置,使产品的性能稳定性、质量可靠性、环境适应性、使用寿命等指标达到国际同类产品先进水平。 夯实奥燊自身的质量发展基础。制定和实施与国际低压注塑热熔胶先进水平接轨的防水阻燃、耐高低温、欧盟环保无卤标准。完善检验检测技术保障体系,建设高水平的低压注塑胶料质量控制和技术评价实验室、产品质量监督检验中心,完善认证认可,稳步推进自身热熔胶产品国际认证 (UL、 REACH、 ROCH、CE等)。 推进Austromelt低压注塑热熔胶品牌建设。制定Austromelt品牌管理体系,围绕研发创新、高质量的本地化生产制造、质量管理和营销服务全过程,提升内在素质,夯实Austromelt 热熔胶自主品牌发展基础。增强以质量和信誉为核心的品牌意识,加速Austromelt品牌价值国际化进程,充分发挥各类媒体作用,加大品牌宣传推广力度,树立奥燊在国产低压注塑热熔胶、广东低压注塑热熔胶、广州低压注塑热熔胶制造品牌良好形象。 关于本地化生产:不断研发新产品与新技术,把握热熔胶技术发展方向,及时吸收和创新新技术成果,形成了一支规范、专业的服务操作团队,以团结的精神,结合技术和资源的优势,严格的测试、检测,以达到卓越的品质,不断生产符合市场需求的高品质热熔胶,配合海外技术合作方的工作计划,做到低压注塑行业部分胶料的本地化生产。

相关文档
最新文档