高考数学概率与统计专题复习

合集下载

高三数学二轮复习建议——专题二:概率统计 PPT课件 图文

高三数学二轮复习建议——专题二:概率统计 PPT课件 图文
概率与统计
目目 录录
CCOONNTTEENNTTSS
1 历年高考分析 22 重点、热点分析 3 复习目标、方案专题 4 命题预测、优题展示
一 高考试题分析
1.1 2012——2017年高考考查内容分析
2 道 小 题
1 道 大 题
年份 题号
理科 考查 内容
题号
文科 考查 内容
2017 年
2016 年 2015 年 2014 年 2013 年 2012 年
T1 9
相关系数、统计、均值、方差、3 σ原则、概率的意义
T14 二项式定理
2016 年
T4 几何概型
T3 古典概型
从文科高考试题看,解答题一般以工农业生产和生活中的实 频数分布、频率与概率、事件的
频数分布、频率与概率、事件的
T19 独立性、互斥事件、分布列、概 T19 独立性、互斥事件、分布列、概
√√

古典概型
几何概型 率 随机模拟
√√√ √ √
随机变量间的函数关系


二 重点、热点分析
重点、热点、规律方法(一)二项式定理

1.(1)(2017▪全国卷Ⅰ理科▪T6)
(1
1 x2
)(1
x)6
展开式中
x2
的系数为
A.15
B.20
C.30
D.35
(2)(2016▪全国卷Ⅰ理科▪T14) (2x x )5 的展开式中,x3 的系数是
T1 8
分步乘法计数原理、组合
正态分布、对立事件
T3
函数、频率与概率、分布列、期 望、方差、概率的意义
T 18
数字特征及其意义 几何概型
相关系数、统计、均值、方差、3 σ原则、概率的意义

高考数学概率与统计的复习策略

高考数学概率与统计的复习策略

高考数学概率与统计的复习策略高考数学中,概率与统计是重要的组成部分,在实际生活和科学研究中都有着广泛的应用。

对于考生来说,掌握这部分内容不仅有助于提高数学成绩,还能培养逻辑思维和解决实际问题的能力。

以下是一些针对高考数学概率与统计的复习策略,希望能对同学们有所帮助。

一、深入理解基本概念概率与统计涉及到众多的概念,如随机事件、概率、频率、样本空间、抽样方法、统计量等等。

只有对这些概念有清晰、准确的理解,才能在解题时做出正确的判断。

以概率的概念为例,要明确概率是指某个事件在大量重复试验中发生的频率的稳定值。

不能将概率简单地理解为随机事件发生的可能性大小,而要从数学定义的角度去把握。

再比如抽样方法,要清楚简单随机抽样、分层抽样和系统抽样的特点和适用场景,以及它们在保证样本代表性方面的作用。

在复习过程中,可以通过举例、对比等方式加深对概念的理解。

比如,将简单随机抽样和分层抽样的实例进行对比,分析它们在不同情况下的优劣,从而更好地掌握抽样方法的应用。

二、熟练掌握基本公式和定理概率与统计中有许多重要的公式和定理,如古典概型概率公式、互斥事件概率加法公式、独立事件概率乘法公式、二项分布概率公式、正态分布的性质等等。

这些公式和定理是解题的基础,必须熟练掌握。

在记忆公式时,要理解其推导过程和适用条件,不能死记硬背。

比如,对于二项分布概率公式$P(X=k)=C_{n}^kp^k(1-p)^{nk}$,要明白其中的$n$、$k$、$p$分别代表什么,以及在什么情况下可以使用这个公式。

同时,要通过大量的练习来巩固对公式和定理的应用。

在练习中,注意总结解题的思路和方法,提高解题的准确性和速度。

三、注重知识的联系与整合概率与统计不是孤立的知识点,它们与其他数学知识有着密切的联系。

例如,概率的计算可能会涉及到排列组合的知识,统计中的数据分析可能会用到函数的知识。

在复习时,要注重知识的横向和纵向联系,将概率与统计的知识与其他数学知识整合起来,形成一个完整的知识体系。

热点攻关 “概率与统计”大题的常考题型探究(课件)2023年高考数学二轮复习(全国通用)

热点攻关  “概率与统计”大题的常考题型探究(课件)2023年高考数学二轮复习(全国通用)
大题攻略05 有关预测与决策问题
例5 (2022年北京卷)在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到 以上(含 )的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位: ): 甲: , , , , , , , , , . 乙: , , , , , . 丙: , , , . 假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.
(3)已知该地区这种疾病的患病率为 ,该地区的年龄位于区间 的人口占该地区总人口的 .从该地区中任选一人,若此人的年龄位于区间 ,求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到 )
[解析] (1)平均年龄 (岁).(2)设 ,则 .(3)设 ,则由条件概率公式,得 .
(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;
(2)设 是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计 的数学期望 ;
(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)
[解析] (1) 由频率估计概率可得,甲获得优秀奖的概率为0.4.(2)设“甲获得优秀奖”为事件 ,“乙获得优秀奖”为事件 ,“丙获得优秀奖”为事件 ,由题意知 ,又 ,则 , ,
树苗高度(单位: )
树苗售价(单位:元/株)
4
6
8
(1)现从120株树苗中,按售价分层抽样抽取8株,再从中任选3株,求售价之和高于20元的概率;
(2)以样本中树苗高度的频率作为育苗基地中树苗高度的概率.若从该育苗基地银杏树树苗中任选4株,记树苗高度超过 的株数为 ,求随机变量 的分布列和期望.
[解析] (1)由题意得, ,令 ,设 关于 的线性回归方程为 ,则有 ,则 ,所以 ,又 ,所以 关于 的回归方程为 .

广西高考数学人教A版(文科)一轮复习课件:高考大题增分专项六 高考中的概率、统计与统计案例4

广西高考数学人教A版(文科)一轮复习课件:高考大题增分专项六 高考中的概率、统计与统计案例4

, 0.008≈0.09.
-19题型一
题型二
题型三
题型四
题型五
解:(1)由样本数据得(xi,i)(i=1,2,…,16)的相关系数为
16
∑ (x i -x)(-8.5)
r=
=1
16
2
∑ ( -)
i=1
16
∑ (i-8.5)2
= 0.212×
-2.78
16×18.439
≈-0.18.
=1
高考大题增分专项六
高考中的概率、统计与统计案例
核心考点分层突破
从近五年的高考试题来看,在高考的解答题中,对概率、统计与
统计案例的考查主要有三个方面:一是统计与统计案例,以实际生
活中的事例为背景,通过对相关数据的统计分析、抽象概括,作出
估计、判断,其中回归分析、独立性检验、用样本的数据特征估计
总体的数据特征是考查重点,常与抽样方法、茎叶图、频率散布直
题型三
题型四
题型五
(2)当这种酸奶一天的进货量为450瓶时,
9.22)=10.02,
这条生产线当天生产的零件尺寸的均值的估计值为10.02.
16
∑ xi2 =16×0.2122+16×9.972≈1 591.134,
i=1
1
剔除第 13 个数据,剩下数据的样本方差为 (1 591.134-9.22215
15×10.022)≈0.008,这条生产线当天生产的零件尺寸的标准差的估计
果回答下列问题:
①当年宣传费x=49时,年销售量及年利润的预报值是多少?
②当年宣传费x为何值时,年利润的预报值最大?
-14题型一
题型二
题型三
题型四

【高考第一轮复习数学】统计与概率专题

【高考第一轮复习数学】统计与概率专题

专题二:统计与概率1、随即现象的概念:必然现象是在一定的条件下必然发生的某种结果的现象.在试验中必然不发生的现象叫做不可能现象,在相同条件下多次观察同一现象,每次观察到得结果不一定相同,事先很难预料哪一种结果会出现,这种现象就叫做随机现象.2.必然事件、不可能事件、随机事件在一定条件下,必然会发生的事件叫做必然事件.在一定条件下,肯定不会发生的事件叫做不可能事件. 在一定条件下,可能发生也可能不发生的事件叫做随机事件.通常用大写的英文字母A 、B 、C 。

表示随机事件,随机事件可以简称为事件.3.基本事件和基本事件空间在试验中,能够表示其他事件且不能再分的最简单的事件成为基本事件. 所有基本事件构成的集合称为基本事件空间,常用大写的希腊字母Ω表示. 4.频率与概率(1).在n 次重复进行的试验中,事件A 发生的频率nm ,当n 很大时,总是在某个常数附近摆动,随着n 的增加,摆动的幅度越来越小,这时就把这个常数叫做事件A 的概率,记作P(A).0《P(A)《1,这个定义叫做概率的统计定义.当A 是必然事件时,P(A)=1,当A 是不可能事件时,P(A)=0.(2).频率与概率的关系频率不能很准确的反应出事件发生的可能性大小,但从大量的重复试验中发现,随着试验次数的的增多,频率就稳定与某一固定的值.概率是通过频率来测量的,或者说频率是概率的一个近似值. 5.概率的加法公式 (1).互斥事件不能同时发生的两个事件叫做互斥事件.(或称互不容事件)不能同时发生的两个事件A 、B 是指,如果A 发生,则B 不一定发生;如果B 发生,则A 不一定发生.推广:如果A 、B 、C 、D 。

中的任何两个都互斥,就称事件A 、B 、C 、D 。

彼此互斥,从集合角度看,n 个事件彼此互斥是指各个事件所含结果的集合彼此不相交.(2).事件的并一般的,事件A 与B 至少有一个发生(即A 发生,或B 发生,或A 、B 都发生),则由事件A 与B 构成的事件C 叫做A 与B 的并.记作:A ∪B ;类比集合:事件A ∪B 是由事件A 或事件B 所包含的基本事件组成的集合. 事件A 与事件B 的并等于事件B 与事件A 的并,即A ∪B=B ∪A. (3).互斥事件的概率加法公式 如果A 、B 是互斥事件,在n 次试验中,事件A 出现的频数为n 1,事件B 出现的频数为n 2,则事件A ∪B 出现的频数正好是n 1+n 2,所以时间A ∪B 的频数为nnnnnnn2121+=+.而).()(nnnn21nB A B A n B nA nnμμμμ+=⋃)(总有中事件出现的频率,则次试验表示在果用出现的频率,因此,如是事件出现的频率,是事件由概率的统计定义,可知P (A ∪B )=P (A )+P(B). 6.对立事件及概率公式(1).对立事件:不能同时发生且必有一个发生的两个事件叫做互为对立事件。

专题6:概率与统计(理)高三复习经典教案含答案

专题6:概率与统计(理)高三复习经典教案含答案

专题六:概率与统计【一、基础知识归类:】1、概率(范围):0≤P(A) ≤1(必然事件:P(A)=1,不可能事件:P(A)=0)2、互斥事件有一个发生的概率:A 、B 互斥: P(A +B)=P(A)+P(B);A 、B 对立:P(A)+P(B)=13、抽样方法(等概率Nn抽样):(1)简单随机抽样、系统抽样(等距抽样)、分层抽样(等比例抽样). 4、频率分布直方图:组的=f 频率N n (频数和样本容量的比);小长方形面积=组距×组距频率=频率,(面积和为1);频率分布折线图:连接频率分布直方图中小长方形上端中点,就得到频率分布折线图;5、回归直线bx a y+=ˆ,过定点),(y x P . 6、独立性检验(分类变量关系):随机变量2K 越大,说明两个分类变量,关系越强,反之,越弱. 7、排列、组合和二项式定理(1)排列数公式:mn A =n (n -1)(n -2)…(n -m +1)=)!(!m n n -(m ≤n ,m 、n ∈N *), 当m =n 时为全排列:nn A =n (n -1)(n -2)…3.2.1=n !;(2)组合数公式:123)2()1()1()1(!⋅⋅⋅⋅⋅-⋅-⋅--⋅⋅⋅-⋅==m m m m n n n m A C mn m n(m ≤n ),10==n n n C C ; (3)组合数性质:m n m n m n m n n mnC C C C C 11;+--=+=;(4)二项式定理:)()(1110*--∈+++++=+N n b C b a C b a C a C b a nn n k k n k n n n n n n ①通项:);,...,2,1,0(1n r b a C T rr n r n r ==-+②注意二项式系数与系数的区别;(5)二项式系数的性质: ①与首末两端等距离的二项式系数相等; ②若n 为偶数,中间一项(第2n +1项)二项式系数最大;n 为奇数,中间两项(第21+n 和21+n +1项)二项式系数最大;③;2;2131221-=⋅⋅⋅++=⋅⋅⋅++=+⋅⋅⋅+++n n n n n nnn n n n C C C C C C C C(6)求二项展开式各项系数和或奇(偶)数项系数和时,注意运用赋值法. 8、随机变量的分布列:①随机变量分布列的性质:P i ≥0,i=1,2,...; P 1+P 2+ (1)②离散型随机变量:期望:E 1 1 2 2 n n 方差:D X =⋅⋅⋅+-+⋅⋅⋅+-+-n n p EX x p EX x p EX x 2222121)()()( ; 注:DX a b aX D b aEX b aX E 2)(;)(=++=+;③二项分布(独立重复试验):若X ~B (n ,p ),则EX =np , DX =np (1- p );注:k n kk n p p C k X P --==)1()(.9、条件概率:称)()()|(A P AB P A B P =为在事件A 发生的条件下,事件B 发生的概率. 注:①0≤P (B|A )≤1;②P(B ∪C|A)=P(B|A)+P(C|A). 10、独立事件同时发生的概率:P (AB )=P (A )P (B ). 11、正态总体2(,)N μσ的概率密度函数:,,21)(222)(R x ex f x ∈=--σμσπ(1)式中σμ,是参数,分别表示总体的平均数(期望值)与标准差; (2)正态曲线的性质:①曲线位于x 轴上方,与x 轴不相交;②曲线是单峰的,关于直线x =μ 对称; ③曲线在x =μ处达到峰值πσ21;④曲线与x 轴之间的面积为1;⑤当σ一定时,曲线随μ值的变化沿x 轴平移;⑥当μ一定时,曲线形状由σ确定:σ越大,曲线越“矮胖”,表示总体分布越集中;σ越小,曲线越“高瘦”,表示总体分布越分散.注:P )(σμσμ+≤<-x =0.6826;P )22(σμσμ+≤<-x =0.9544; P )33(σμσμ+≤<-x =0.9974.【二、专题练习:】一、选择题(共12小题,每小题5分,总分60分)1.(北京市崇文区2008年高三统一练习)某班学生参加植树节活动,苗圃中有甲、乙、丙3种不同的树苗,从中取出5棵分别种植在排成一排的5个树坑内,同种树苗不能相邻,且第一个树坑和第5个树坑只能种甲种树苗的种法共有( ) A .15种B .12种C .9种D .6种2.(四川省成都市新都一中高2008级12月月考)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有( ) A 、56个B 、57个C 、58个D 、60个3.某班有一个7人小组,现任选其中3人相互调整座位,其余4人座位不变,则不同的调整方案的种数为( ) (A)35(B)70(C)210(D)1054.从6人中选出4人参加数、理、化、英语比赛,每人只能参加其中一项,其中甲、乙两人都不能参加英语比赛,则不同的参赛方案种数共有( )(A)96种 (B)180种 (C)240种 (D)288种5.某服装加工厂某月生产A 、B 、C 三种产品共4000件,为了保证产品质量,进行抽样检验,根据分层抽样的结果,企业统计员制作了如下的统计表格:由于不小心,表格中A 、C 产品的有关数据已被污染看不清楚,统计员记得A 产品的样本容量比C 产品的样本容量多10,根据以上信息,可得C 的产品数量是 ( ) A .80B . 800C .90D .9006.(高州市大井中学2011高三上期末考试)六名学生从左至右站成一排照相留念,其中学生甲和学生乙必须相邻.在此前提下,学生甲站在最左侧且学生丙站在最右侧的概率是( )A .130 B .110C .140D .1207.(2011·汕头期末)下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据:根据上表提供的数据,求出y 关于x 的线性回归方程为0.70.35y x =+,那么表中t 的值为( ) A. 3 B. 3.15 C. 3.5D. 4.58.已知随机变量X 服从正态分布2(,)N μσ,且(22)0.9P X μσμσ-<≤+=, ()0.6826P X μσμσ-<≤+=,若4μ=,1σ=, 则(56)P X <<= ( )A .0.1358B .0.1359C .0.2716D .0.27189.(2009届高考数学二轮冲刺专题测试)若二项式213nx x ⎛⎫- ⎪⎝⎭的展开式中各项系数的和是512,则展开式中的常数项为 ( ) A .3927C - B 3927C C .499C -D .949C10.(2011福州期末)如图所示,正方形的四个顶点分别为(0,0),(1,0),(1,1),(0,1)O A B C ,曲线2y x =经过点B .现将一个质点随机投入正方形中,则质点落在图中阴影区域的概率是 ( )A .12B .14 C .13D .2511.(2010届·安徽省合肥高三四模(理))从足够多的四种颜色的灯 泡中任选六个安置在如右图的6个顶点处,则相邻顶点处灯泡颜色 不同的概率为 ( ) A .64228 B .64240 C .64264 D .6428812.(2011锦州期末)某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未用血清的人一年中的感冒记录作比较,提出假设0H :“这种血清不能起到预防感冒的作用”,利用22⨯列联表计算得2 3.918χ≈,经查对临界值表知2( 3.841)0.05P χ≥≈. 对此,四名同学做出了以下的判断:p :有95%的把握认为“这种血清能起到预防感冒的作用”q :若某人未使用该血清,那么他在一年中有95%的可能性得感冒r :这种血清预防感冒的有效率为95%s :这种血清预防感冒的有效率为5%则下列结论中,正确结论的序号是( ) ①p q ∧⌝;②p q ⌝∧;③()()p q r s ⌝∧⌝∧∨;④()()p r q s ∨⌝∧⌝∨(A )①③ (B )②④ (C )①④ (D )都不对 二、填空题(共4小题,每小题4分,共16分)13.(2009杭州学军中学第七次月考)在边长为2的正三角形ABC 内任取一点P ,则使点P 到三个顶点的距离至少有一个小于1的概率是 .14.(2011巢湖一检)已知随机变量2~(2,)N ξσ,若3(1)4P ξ>-=,则(5)P ξ>= . 15.(2011嘉禾一中)从颜色不同的5 个球中任取4 个放入3 个不同的盒子中,要求每个盒子不空,则不同的方法总数为____________.(用数字作答)16.(2009届福建省福鼎一中高三理科)若2005220050122005 (12)()x a a x a x a x x R -=++++∈,则010********...()()()()a a a a a a a a++++++++=____.(用数字作答)三、解答题(共6个小题,总分74分)17.(2011汕头期末)四个大小相同的小球分别标有数字1、1、2、2,把它们放在一个盒子里,从中任意摸出两个小球,它们所标有的数字分别为x 、y ,记y x +=ξ;24131452[185,190)[180,185)[175,180)[170,175)[165,170)[160,165)频数身高(cm )(Ⅰ)求随机变量ξ的分布列和数学期望;(Ⅱ)设“函数1)(2--=x x x f ξ在区间)3,2(上有且只有一个零点”为事件A ,求事件A 发生的概率.18.(江门2011高三上期末调研测试)甲、乙两同学参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,具体成绩如下茎叶图所示,已知两同学这8次成绩的平均分都是85分. (1)求x ;并由图中数据直观判断,甲、乙两同学中哪一位的成绩比较稳定?(2)若将频率视为概率,对甲同学在今后3次数学竞赛成绩进行预测,记这3次成绩中高于80分的次数为ξ,求ξ的分布列及数学期望ξE .19.(揭阳市2011届高三上学期学业水平考试)为了解高中一年级学生身高情况,某校按10%的比例对全校700名高中一年级学生按性别进行抽样检查,测得身高频数分布表如下表1、表2. 表1:男生身高频数分布表身高(cm )频数[150,155)[165,170)[170,175)[175,180)[155,160)[160,165)1712631男生样本频率分布直方图频率/cm表2:女生身高频数分布表(1)求该校男生的人数并完成下面频率分布直方图;(2)估计该校学生身高(单位:cm )在[165,180)的概率; (3)在男生样本中,从身高(单位:cm )在[180,190)的男生中任选3人,设ξ表示所选3人中身高(单位:cm )在[180,185)的人数,求ξ的分布列和数学期望.20.(2011东莞期末)为了调查老年人的身体状况,某老年活动中心对80位男性老年人和100位女性老年人在一次慢跑后的心率水平作了记录,记录结果如下列两个表格所示, 表1:80位男性老年人的心率水平的频数分布表(单位:次/分钟)表2:100位女性老年人的心率水平的频数分布表(单位:次/分钟)(1)从100位女性老人中任抽取两位作进一步的检查,求抽到的两位老人心率水平都在[100,110)内的概率;(2)根据表2,完成下面的频率分布直方图,并由此估计这100女性老人心率水平的中位数;(3)完成下面2×2列联表,并回答能否在犯错误的概率不超过0.001的前提下认为“这180位老人的心率水平是否低于100与性别有关”. 表3:附:22()()()()()n ad bc K a b c d a c b d -=++++21.全球金融危机,波及中国股市,甲、乙、丙、丁四人打算趁目前股市低迷之际“抄底”,若四人商定在圈定的6只股票中各自随机购买一只(假定购买时每支股票的基本情况完全相同). (1)求甲、乙、丙、丁四人恰好买到同一只股票的概率;(2)求甲、乙、丙、丁四人中至多有两人买到同一只股票的概率;(3)由于中国政府采取了积极的应对措施,股市渐趋“回暖”.若某人今天按上一交易日的收盘价20元/股,女性老年人心率水平频率分布直方图00.010.020.030.040.050.06买入某只股票1000股,且预计今天收盘时,该只股票比上一交易日的收盘价上涨10%(涨停)的概率为0.6持平的概率为0.2,否则将下跌10%(跌停),求此人今天获利的数学期望(不考虑佣金、印花税等交易费用).22.(2011苏北四市二调)甲、乙、丙三名射击运动员射中目标的概率分别为1,,2a a (01)a <<,三人各射击一次,击中目标的次数记为ξ. (1)求ξ的分布列及数学期望;(2)在概率()P i ξ=(i =0,1,2,3)中, 若(1)P ξ=的值最大, 求实数a 的取值范围.参考答案一、选择题 1.答案:D2.解析:万位为3的共计A44=24个均满足;万位为2,千位为3,4,5的除去23145外都满足,共3×A33-1=17个;万位为4,千位为1,2,3的除去43521外都满足,共3×A33-1=17个;以上共计24+17+17=58个,答案:C3.【解析】选B.从7人中选出3人,有种方法,3人相互调整座位,共有2种调整方案,故总的调整方案种数为×2=70(种).4.C5.【解析】选B.因为分层抽样是按比抽取,由B 产品知比为101,再由A 产品的样本容量比C 产品 的样本容量多10,易得C 产品的样本容量为800. 6.C7. 2.54 4.53456110.70.350.70.35 3.53444t ty x t +++++++=+=⨯+⇒=⇒=由得,选A ;8—12:B B C C C 二、填空题13.答案:14.答案:14 15.答案180 16.答案:2003三、解答题17.解:(Ⅰ)由题意可知随机变量ξ的可能取值为2,3,4,从盒子中摸出两个小球的基本事件总数为624=C ,当2=ξ时,摸出小球所标的数字为1,1,61)2(==ξP , 当4=ξ时,摸出小球所标的数字为2,2,61)4(==ξP ,可知,当3=ξ时,3261611)3(=--==ξP ;得ξ的分布列为:12343636E ξ=⨯+⨯+⨯=;(Ⅱ)由“函数1)(2--=x x x f ξ在区间)3,2(上有且只有一个零点”可知0)3()2(<f f ,即0)38)(23(<--ξξ,解得3823<<ξ, 又ξ的可能取值为2,3,4,故2=ξ,∴事件A 发生的概率为61. 18.解:(1)依题意8587978888082819593=++++++++=x x 甲 解得4=x男生样本频率分布直方图频率/cm由图中数据直观判断,甲同学的成绩比较稳定(2)记“甲同学在一次数学竞赛中成绩高于80分”为事件A ,则4386)(==A P ξ的可能取值为0、1、2、3,且)43 , 3(~B ξ,k k kC k P -==33)41()43()(ξ,其中=k 0、1、2、3所以变量ξ的分布列为:49642736427264916410=⨯+⨯+⨯+⨯=ξE (或49433=⨯==np E ξ) 19.解:(1)样本中男生人数为40 ,由分层抽样比例为10%可得全校男生人数为400. 频率分布直方图如右图示:(2)由表1、表2知,样本中身高在[165,180)的学生人数为: 5+14+13+6+3+1=42,样本容量为70 ,所以样本中 学生身高在[165,180)的频率423705==f故由f 估计该校学生身高在[165,180)的概率35=p .(3)依题意知ξ的可能取值为:1,2,3∵14361(1)5C P C ξ===,2142363(2)5C C P C ξ===,34361(3)5C P C ξ=== ∴ξ的分布列为:ξ的数学期望1311232555E ξ=⨯+⨯+⨯=.20.解:(1)从100位女性老人中任抽取两位,共有2100C 个等可能的结果,抽到的两位老人心率都在[100,110) 内的结果有250C个,由古典概型概率公式得所求的概率250210049198C p C ==(2)频率分布直方图,略; 由0.510(0.010.02)0.2-⨯+=可估计,这100女性老人心率水平的中位数约为0.2100101040.0510+⨯=⨯.(3)2×2列联表, 表3:22180(50703030)19.01258010080100K ⨯⨯-⨯=≈⨯⨯⨯. 由于210.828K >,所以有99.9%的把握认为“这180位老人的心率水平是否低于100与性别有关” .21.【解析】(1)四人恰好买到同一只股票的概率1111116.6666216P =⨯⨯⨯⨯= (2)解法一:四人中有两人买到同一只股票的概率22223426462224135.6216C C A C A A P +== 四人中每人买到不同的股票的概承率4634605.621618A P ===所以四人中至多有两人买到同一只股票的概率231356019565.21621621672P P P =+=+== 解法二:四人中有三人恰好买到同一只股票的概率324644205.621654C A P === 所以四人中至多有两人买到同一只股票的概率14195651.21672P P P =--== (3)每股今天获利ξ的分布列为:所以,1000股股票在今日交易中获利的数学期望为()1000100020.600.220.2800E ξ=⨯⨯+⨯+-⨯=⎡⎤⎣⎦21.解:(1)()P ξ是“ξ个人命中,3ξ-个人未命中”的概率.其中ξ的可能取值为0,1,2,3.0022121122(0)C 1C (1)(1)P a a ξ⎛⎫==--=- ⎪⎝⎭, 1020121212111222(1)C C (1)C 1C (1)(1)P a a a a ξ⎛⎫==⋅-+--=- ⎪⎝⎭, 1102221212111222(2)C C (1)C 1C (2)P a a a a a ξ⎛⎫==⋅-+-=- ⎪⎝⎭,21221212(3)C C 2a P a ξ==⋅=. 所以ξ的分布列为ξ的数学期望为 22221112222410(1)1(1)2(2)32a a E a a a a ξ+=⨯-+⨯-+⨯-+⨯=. (2) ()221(1)(0)1(1)(1)2P P a a a a ξξ⎡⎤=-==---=-⎣⎦, 22112(1)(2)(1)(2)22a P P a a a ξξ-⎡⎤=-==---=⎣⎦, 222112(1)(3)(1)22a P P a a ξξ-⎡⎤=-==--=⎣⎦. 由2(1)0,120,21202a a a a ⎧⎪-≥⎪-⎪≥⎨⎪⎪-≥⎪⎩和01a <<,得102a <≤,即a 的取值范围是10,2⎛⎤ ⎥⎝⎦.。

2025年高考数学一轮复习课件第九章概率与统计-9.6事件的相互独立性、条件概率与全概率公式

2025年高考数学一轮复习课件第九章概率与统计-9.6事件的相互独立性、条件概率与全概率公式

=1
返回至目录
1.判断下列命题是否正确,正确的在括号内画“√”,错误的画“×”.
(1)对于任意两个事件,公式 = 都成立.
( ×)
(2) | 表示在事件发生的条件下,事件发生的概率, 表示事件,同
时发生的概率.
( √ )
返回至目录
(3)若事件,相互独立,且 > 0,则 | = .
(乙丙)=
1
36
≠ (乙)(丙),所以乙与丙不独立,C错误.
(丙丁)= 0 ≠ (丙)(丁),所以丙丁不独立,D错误.故选B.
返回至目录
(2)以人工智能、量子信息等颠覆性技术为引领的前沿趋势,将重塑世界工程的发
展模式,对人类生产力的创新提升意义重大.某公司抓住机遇,成立了甲、乙、丙三
个科研小组针对某技术难题同时进行科研攻关,攻克技术难题的小组会受到奖励.已
( √ )
(4)抛掷2枚质地均匀的硬币,设“第1枚正面朝上”为事件,“第2枚正面朝上”为事
件,则,相互独立.
( √ )
(5)若事件1 与2 是对立事件,且 1 > 0, 2 > 0,则对任意的事件 ⊆ Ω ,
都有 = 1 |1 + 2 |2 .
3
= , = ,且,,相互独立.
① 甲、乙、丙三个小组均受到奖励的概率为
1
2
1Байду номын сангаас
2
2
3
1
6
= = × × = .
1
2
1
2
1
3
1
2
1
2
②只有甲小组受到奖励的概率为 = = × × =

专题概率与统计热点问题-2024年高考数学六大题解满分解题技巧秘籍

专题概率与统计热点问题-2024年高考数学六大题解满分解题技巧秘籍

概率与统计是高考数学中的一个重要的知识点,也是考察学生分析问题、统计数据以及进行概率计算的能力。

下面是2024年高考数学中概率与统计方面的热点问题解题指导,希望能对你备考有所帮助。

1.求二项式分布的期望和方差二项式分布可以描述在n次独立重复试验中,出现其中一事件的次数的概率分布。

求二项式分布的期望和方差是常见的题型。

对于n次独立重复试验中,事件A出现的次数X,其期望和方差分别为E(x) = np,Var(x) = np(1-p),其中p为单次试验中事件A发生的概率。

2.求事件的概率求事件的概率是概率与统计中的基本题型。

根据题目给出的条件,利用概率公式进行计算即可。

常见的题型有求交、并、互斥事件的概率,以及条件概率等。

3.求样本的点估计和区间估计在统计学中,样本是用来推断总体特征的重要依据。

对于样本中一些统计量,如平均值、比例等,可以利用它们作为总体特征的点估计。

而对于总体特征的区间估计,可以利用样本统计量的分布特性,计算出一个区间,该区间包含了总体特征的真值。

4.利用正态分布进行计算正态分布是概率与统计中最重要的概率分布之一,也是高考数学中的重点内容。

在许多情况下,可以使用正态分布来近似计算一些事件的概率或样本统计量的分布。

利用标准正态分布的概率表或计算器,可以方便地计算出正态分布的概率或分布的特征。

5.判断两个事件是否独立判断两个事件是否独立,可以利用概率的定义和条件概率的性质进行推导。

如果两个事件相互独立,则它们的联合概率等于事件的概率的乘积。

反之,如果联合概率不等于概率的乘积,则说明两个事件不独立。

6.利用抽样方法进行调查在概率与统计中,抽样是一种重要的数据收集方法。

通过合理地设计抽样方法和调查问卷,可以获得可靠的调查数据。

在解题时,需要注意抽样误差和样本的代表性等问题,以确保所得到的调查结果具有较高的可靠性。

以上是2024年高考数学概率与统计方面的热点问题解题指导。

在备考过程中,要牢固掌握概率与统计的基本概念和常用方法,多做相关的题目,提高解题能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考复习专题之:概率与统计 、概率:随机事件 A 的概率是频率的稳定值,反之,频率是概率的近似值 1.随机事件 A的概率 0 P(A) 1,其中当 P(A) 1时称为必然事件; 当 P(A) 0 时称为不可能事件 注:求随机概率的三种方法:

一)枚举法 例 1 如图 1 所示, 有一电路 AB 是由图示的开关控制, 闭合 a,b, d,e 五个开关中的任意两个开关,使电路形成通路.则使电路形成通 路的概率是 分析:要计算使电路形成通路的概率,列举出闭合五个开关中的任意 两个可能出现的结果总数,从中找出能使电路形成通路的结果数,根据概率的意义计算即可。

解:闭合五个开关中的两个,可能出现的结果数有 10 种,分别是 ab、ac、ad、ae、bc、 bd、

其中能形成通路的有 6 种,所以 p( 通路)= 6 =

3 10

5

评注: 枚举法是求概率的一种重要方法 ,这种方法一般应用于可能出现 的结果比较少的事件的概率计算 二)树形图法 例 2 小刚和小明两位同学玩一种游戏.游戏规则为:两人各执“象、虎、鼠”三张牌,同时各出一张牌定胜负, 其中象胜虎、虎胜鼠、鼠胜象,若两人所出牌相同,则为平局.例如,小刚出象牌,小明出虎牌,则小刚胜;又 如,

两人同时出象牌,则两人平局.如果用 A、B、C分别表示小刚的象、虎、鼠三张牌,用 A1、B1、C1 分别表示小明 的象、虎、鼠三张牌,那么一次出牌小刚胜小明的概率是多少?

三)列表法 例 3 将图中的三张扑克牌背面朝上放在桌面上,从中随机摸出两张,并用这两张扑克牌上的数字组成一个两位

数.请你用画树形(状)图或列表的方法求:( 1)组成的两位数是偶数的概率;( 2)组成的两位数是 6 的倍数 的概率.

分析: 本题可通过列表的方法, 列出所有可能组成的两位数的可能情况, 然后再找出组成的两位数是偶数的可能 情况和组成两位数 是 6 的倍数的可能情况。

分析:为了清楚地看出小亮胜小刚的概率,可用树状图列出所有可能出现的结 果,并从中找出小刚胜小明可能出现的结果

数。 解:画树状图如图树状图。由树状图(树形图)或列表可知,可能出现的

结果 有 9 种,而且每种结果出现的可能性相同,其中小刚胜小明的结果有 3 种.所

1 以 P(一次出牌小刚胜小明) =1

3 点评: 当一事件要涉及两个或更多的因素时,为了不重不漏地列出所有可能的结 果,通过画树形图的方法来计算概

P(A)=0 ; be、 cd、 ce 、de, 解:列的表格如下: 根据表格可得两位数有: 23,24,32,34,42,43.所 21 以( 1)两位数是偶数的概率为

.( 2)两位数是 6 的倍数的概率为 .

33 点评: 当一事件要涉及两个或更多的因

素时, 为了不重不漏地列出所有可 能的结果,通过画树形图的方法来计算概

率 3、互斥事件: (A、B互斥,即事件 A、B 不可能同时发生)。计算公式: P(A+B)=P(A)+P(B) 。 4、对立事件 :( A、B对立,即事件 A、B不可能同时发生,但 A、B中必然有一 个发生)。计算公式是: P(A)+ P(B) =1;P( A)=1-P(A); 5、独立事件: (事件 A、B的发生相互独立, 互不影响) P(A?B)=P(A) ? P(B) 提醒:( 1)如果事件 A、B独立,那么事件 A与B 、 A与 B及事件 A与 B也 都是独立事件;( 2)如果事件 A、 B相互独立,那么事件 A、B至少有一个不发 生的概率是 1-P(A B)= 1-P(A)P(B) ;( 3)如果事件 A、 B相互独立,那么 事件 A、B至少有一个发生的概率是 1-P( A B)=1-P( A)P( B)。 6、独立事件重复试验: 事件 A在n次独立重复试验中恰好.发.生.了.. k次.的概率 Pn(k) Cnk pk(1 p)n k (是二项

展开式 [(1 p) p]n 的第 k+1 项),其中 p 为在一次独立重复试验中事件 A发生的概率。 提醒: ( 1)探求一个事件发生的概率,关键是分清事件的性质。在求解过程中常应用等价转化思想和分解 ( 分类 或分步 )转化思想处理,把所求的事件:转化为等可能事件的概率 ( 常常采用排列组合的知识 ) ;转化为若干个互 斥事件中有一个发生的概率;利用对立事件的概率,转化为相互独立事件同时发生的概率;看作某一事件在 n 次实验中恰有 k 次发生的概率,但要注意公式的使用条件。 ( 2)事件互斥是事件独立的必要非充分条件,反之, 事件对立是事件互斥的充分非必要条件; ( 3) 概率问题的解题规范:①先设事件 A=“⋯”, B= “⋯”;②列 式计算;③作答。 二、随机变量 .

1. 随机试验的结构应该是不确定的 . 试验如果满足下述条件: ① 试验可以在相同的情形下重复进行; ②试验的所有可能结果是明确可知的, 并且不止一个; ③每次试验总是恰 好出现这些结果中的一个, 但在一次试验之前却不能肯定这次试验会出现哪一个结果。 它就被称为一个随机试验 2. 离散型随机变量: 如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随 机变量 .若ξ是一个随机变量, a, b是常数 .则 a b也是一个随机变量 .一般地,若 ξ是随机变量, f (x)是 连续函数或单调函数,则 f ( )也是随机变量 . 也就是说,随机变量的某些函数也是随机变量 . 设离散型随机变量 ξ可能取的值为: x1,x2, ,xi ,

ξ取每一个值 x1(i 1,2, )的概率 P( xi ) p i ,则表称为随机变量 ξ的概率分布,简称 ξ的分布列 .

x1 x2 xi

P p1 p2 p

i

有性质:① p1 0,i 1,2, ; ② p1 p2 pi 1.

注意: 若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量 . 例如: [0,5] 即 可以取 0~

2. 等可能事件的概率(古典概率) P(A)= 5 之间的一切数,包括整数、小数、无理数 . 3. ⑴二项分布 :如果在一次试验中某事件发生的概率是 P,那么在 n 次独立重复试验中这个事件恰好发生 k 次 的概率是: P(ξ k) Cknpkqn k[其中k 0,1, ,n,q 1 p] 于是得到随机变量 ξ的概率分布如下:我们称这样的 随机变量 ξ 服从二项分布,记作 ~ B( n·p),其中 n, p 为参数,并记 Cknpkqn k b(k; n p) .

⑵二项分布的判断与应用 .

① 二项分布 ,实际是对 n 次独立重复试验 . 关键是看某一事件是否是进行 n次独立重复,且每次试验只有两种结 果,如果不满足此两条件,随机变量就不服从二项分布 .

② 当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小, 而每次抽取时又只有两种试验结果, 此时 可以把它看作独立重复试验,利用二项分布求其分布列 .

4. 几何分布 :“ k ”表示在第 k次独立重复试验时, 事件第一次发生, 如果把 k 次试验时事件 A发生记为 Ak, 事 A不发生记为 Ak,P(Ak) q,那么 P(ξ k) P(A1A2 Ak 1A k ) .根据相互独立事件的概率乘法分式: P(ξ k) P(A 1)P(A 2) P(A k 1 )P(A k ) qk 1p (k 1,2,3, ) 于是得到随机变量 ξ的概率分布列 .

1 2 3 k P q qp q2p qk 1 p

我们称 ξ服从几何分布,并记 g(k, p) qk 1p ,其中 q 1 p. k 1,2,3

5. ⑴超几何分布 :一批产品共有 N 件,其中有 M(M件,则其中的次品数 ξ是 一离散型随机变量,分布列为 k n k P(ξ k) CM CnN M (0 k M,0 n k N M). 〔分子是从 M件次品中取 k件,从 CN

N-M件正品中取 n-k 件的取法数,如果规定 m〕 ⑵超几何分布的另一种形式: 一批产品由 a 件次品、 b 件正品组成,今抽取 n 件( 1≤ n≤ a+b),则次品数 ξ的

k n k 分布列为 P(ξ k) C a C n b

C a b

k 0,1, ,n..

⑶超几何分布与二项分布的关系 .

设一批产品由 a 件次品、 b件正品组成,不放回抽取 n件时,其中次品数 ξ服从超几何分布 . 若放回式抽取,则 其中次品数 的分布列可如下求得: 把 a b 个产品编号, 则抽取 n 次共有 (a b) n 个可能结果, 等可能: ( η k) 含

k k n k Ckn akbn k个结果,故 P(η k) Cna bn Ckn( a )k(1 a )nk,k 0,1,2, ,n

,即 ~B(n a ).[ 我们先为 k个次

(a b) a b a b a b

品选定位置,共 C kn种选法;然后每个次品位置有 a种选法,每个正品位置有 b种选法 ] 可以证明:当产品总数 很大而抽取个数不多时, P(ξ k) P(η k) ,因此二项分布可作为超几何分布的近似,无放回抽样可近似看作放 回抽样 .

三、数学期望与方差 .

1. 期望的含义 :一般地,若离散型随机变量 ξ 的概率分布为 x1 x2 xi

P p1

p2 pi

相关文档
最新文档