通信原理课设

通信原理课设
通信原理课设

现代通信系统原理课程设计说明书

题目:模拟调制系统与数字基带传输系统建模与仿真

2015年6月13日

目录

1绪论 (1)

1.1课题研究背景 (1)

1.2 关键技术 (2)

1.2.1调制 (2)

1.2.2解调 (2)

2模拟调制与解调 (2)

2.1 幅度调制与解调原理 (2)

2.1.1 AM调制与解调 (2)

2.1.2 DSB调制与解调 (4)

2.2幅度调制与解调的程序与仿真 (5)

2.2.1 AM调制与解调的程序与仿真 (5)

2.2.2 DSB调制解调分析的MATLAB实现 (11)

3数字基带传输系统模型 (17)

3.1数字基带传输系统模型原理 (17)

3.1.1带限信道的基带系统模型(连续域分析) (17)

3.1.2最佳基带系统 (19)

3.1.3基带传输系统(离散域分析) (20)

3.2源程序及运行结果 (21)

3.2.1余弦滚降系统 (21)

3.2.1 眼图............................................ (22)

4总结 (24)

参考文献资料

1绪论

1.1课题研究背景

在通信技术的发展中,通信系统的仿真是一个技术重点。通常情况下,调制可以分为模拟调制和数字调制。在模拟调制中,调制信号为连续的信号,而在数字调制中调制信号为离散信号。调制对通信系统有着非常重要的作用。经过调制,不仅能够实现频谱的搬移,把调制信号的频谱搬移到其所需要的位置上,从而使调制信号被转换成适合于信道传输或利于信道多路复用的已调制信号,而且它对于系统传输的可靠性和有效性有着非常大的影响和作用。调制方式的选取直接影响了一个通信系统的性能。

在模拟通信系统中最常用最重要的调制方式是用正弦波作为载波的幅度调制和角度调制。通过调制能够将信号转化成适用于无线信道传输的信号,AM、DSB、SSB 是短波通信中的三种主要方式。

包络检波的振幅调制信号的包络直接反映了调制信号的变化规律,而抑制载波的双边带或单边带振幅调制信号的包络不能直接反映调制信号的变化规律,无法用包络检波进行解调。

为了克服上面的不便又研究出了同步检波。但是同步检波需要一个与发射端载频同频同相(或固定相位差)的同步信号。对于普通调幅和双边带调幅,可以从接收已调波中直接提取同步信号,而对于单边带调幅,则必须在发射端另外专门发送一个载频信号供接收方提取。

随着通信系统的规模和复杂度不断增加,传统的设计方法已经不能适应发展传的需要,通信系统的模拟仿真技术越来越受到重视。传统的通信仿真技术主要分为手工分析与电路试验2种,但耗时长方法比较繁杂,而通信系统的计算机模拟仿真技术是介于上述2种方法的一种系统设计方法,它可以让用户在很短的时间内建立整个通信系统模型,并对其进行模拟仿真。

数字信号的传输方式按其在传输中对应的信号的不同可分为数字基带传输系统和数字频带传输系统。不使用调制和解调而直接传输数字基带信号的系统称为数字基带传输系统。虽然在实际使用的数字通信系统中基带传输不如频带传输那样广泛,但是,对于基带传输系统的研究仍然是十分有意义的。1) 在频带传输制式里同样存在基带传输的问题(如码间干扰等),因为信道的含义是相对的,若把调制解调器包括在信道中(如广义信道),则频带传输就变成了基带传输。可以说基带传输是频带传输的基础。2) 随着数字通信技术的发展,基带传输这种方式也有迅速发展的趋势。目前,它不仅用于低速数据传输,而且还用于高速数据传输。3)理论上也可以证明,任何一个采用线性调制的频带传输系统,总是可以由一个等效的基带传输系统所替代。

1.2关键技术

1.2.1调制

调制在通信系统中有着至关重要的作用。所谓的调制,就是把调制信号转换成合适于信道传输的形式的一种过程。广义的调制可以分为基带调制和带通调制,也叫做载波调制。在大多数场合,调制一般指的是载波调制。

载波调制,就是指用调制信号控制载波参数的一个过程,使载波的一个或几个参数按照调制信号的规律而变化。调制信号是指来自信源的消息信号即为基带信号,这些信号可以是模拟信号,也可以是数字信号。未受调制的周期性振荡信号称为载波,它可以是正弦波,也可以是非正弦波。经过载波调制后的信号称为已调信号,它包含了调制信号的所有特征。

1.2.2解调

解调是调制的逆过程,其作用是从接收的已调信号中恢复出原基带信号。解调的方法可分为两类:相干解调和非相干解调。

相干解调也叫同步检波。解调和调制的实质一样,均是频谱搬移。相干解调时,为了可以无失真地恢复出调制信号,接收端必须提供一个本地载波与接收的已调载波严格同步,即同频同相的本地载波,它与接收的已调信号相乘后,经过低通滤波器滤除其高频分量,便可以得到原始的调制信号。相干解调器适用于所有线性调制信号的解调,即对于AM、DSB、SSB都适用,只是AM信号的解调结果中含有直流成分A0,这时在解调后加上一个简单的隔直流电容即可。

包络检波就是直接从已调波的幅度中提取原调制信号,其结构简单,且解调输出是相干解调输出的2倍。DSB和SSB均是抑制载波的已调信号,其包络不直接表示调制信号,因而不能采用简单的包络检波进行解调,但若插入很强的载波,使之成为或近似为AM信号,则可利用包络检波器恢复调制信号,这种方法称为插入载波包络检波法。为了保证检波质量,插入的载波振幅应远大于信号的振幅,同时也要求插入的载波与调制载波同频同相。

2模拟调制与解调

2.1幅度调制与解调原理

2.1.1 AM调制与解调

幅度调制是用调制信号去控制高频载波的幅度,使之随调制信号做线性变化的过程。

标准调幅就是常规双边带调制,简称调幅。将基带信号m(t)与一个直流分量A 0叠加后再与载波cos c t ω相乘,便可产生调幅信号()m S t 。其AM 调制原理图如图2-1所示。

图2-1 AM 调制原理图

其时域表达式为

S AM t = A 0+m t cos ωc t +m t cos ωc (t)(2-1)

若m(t)为确知信号,则幅度调制信号的频域表达式为

S AM t =πA 0[δ ω+ωc +δ ω?ωc +1

2[M ω+ωc +M ω?ωc ](2-2)

式中,A 0为外加的直流分量,m(t)可以是确知信号也可以是随机信号,但通常要求其均值为0,即0)(=t m 。

在AM 信号中,载波分量并不携带信息,信息完全由边带传送。解调是调制的逆过程,其作用是从接收的已调制信号中恢复出原基带信号,解调的方法一般有两种:(1)相干解调;(2)非相干解调,又名包络检波。此处采用相干解调,解调原理图如图2-2所示。

图2-2 相干解调原理图

由AM 信号的频域表达式2-2可知,如果将已调信号的频谱搬回到原点位置,即可得到原始的调制信号频谱,从而恢复出原始信号。解调中的频谱搬移同样可用调制时的相乘运算来实现,将已调信号乘上一个与调制器同频同相的载波cos c t ω,得表达式2-3所示。

S AM t ?cos ωc t =(A 0+m t )(cos ωc t)2(2-3)

由式2-3可知,只要用一个低通滤波器,就可以将第1项与第2项分离,如表达式2-4所示。AM 调制典型波形和频谱如图所示:

A

cos c t

ω

c

图2-3AM 调制典型波形和频谱

S A t =m 0 t =1

2[A 0+m t ](2-4)

由于AM 调制解调后存在直流分量,去除直流分量得

m 0=1

2m(t)(2-5)

相干解调的关键是必须产生一个与调制器同频同相位的载波。如果同频同相位的条件得不到满足,则会破坏原始信号的恢复。 2.1.2 DSB 调制与解调

在幅度调制的一般模型中,若假设滤波器为全通网络()1H ω=,调制信号m(t)中无直流分量,则输出的已调信号就是无载波分量的双边带调制信号,或称抑制载波双边带调制信号,简称双边带信号[11]。与AM 信号相比,因为不存在载波分量,所以它的调制效率是100%。其DSB 调制的原理图如图2-4所示。

图2-4 双边带调制原理图

图2-4中()m t 为基带信号,cos c t ω为载波,()DSB S t 为DSB 已调信号。 其时域表达式为

S DSB t =m(t)cos ωc t (2-6)

其频域表达式为

S DSB (ω)=1

2[M ω+ωc +M ω?ωc ]

(2-7)

c

可见,DSB 信号的包络不再与m(t)成正比,故不能进行包络检波,需采用相干解调。除了不再含有载频分量离散谱外,DSB 信号的频谱与AM 信号的完全相同,仍由上下对称的两个边带组成。故DSB 信号是不带载波的双边带信号,它的带宽与AM 信号相同,也为基带信号带宽的两倍,即

B DSB =B AM =2B M =2f H (2-8)

式2-8中M B 为调制信号带宽,H f 为调制信号的最高频率。

双边带解调需要采用相干解调,其接收端必须提供一个与接收的已调载波同频同相的相干载波,它与已调信号相乘后,经低通滤波器取出低频分量,即可得到原始的基带调制信号。

DSB 信号只能运用相干解调,其模型与AM 信号相干解调时完全相同,此时乘法器输出表达式如2-9所示。其典型波形和频谱如图2-5所示:

图2-5 DSB 调制典型波形和频谱

S DSB t ?cos ωc t =m t cos ωc t ?cos ωc t =1

2

m t +1

2

m(t)cos 2ωc t (2-9)

经低通滤波器滤除高频分量,得

m 0=1

2m(t)(2-10)

相比较AM 调制而言,抑制载波的双边带幅度调制节省了载波发射功率,调制效率高,调制电路简单,仅用一个乘法器就可实现。缺点是占用频带宽度比较宽,为基带信号的2倍。

2.2幅度调制与解调的程序与仿真

2.2.1AM 调制与解调的程序与仿真

(1)仿真基本参数

系统仿真前定义采样间隔ts,载波频率fc,噪声系数sigma,和时间长度t 。具体如下:

cos ω0t

O

m (t )s DSB (t

O

c

c

H

H

c

c

ts=1.e-4;

t=-0.04:ts:0.04 ;

fc=500;

sigma=0.3 ;

(2)生成调制信号

仿真中采用时间长度[-0.02 0.02]高度为1的三角脉冲波形作为调制信号。

% 生成调制信号

m_sig=tripuls(t+0.01,0.02)-tripuls(t-0.01,0.02);%调整信号m_sig由两个三角脉冲波形左右平移后叠加生成。

(3 )AM调制器

在MATLAB中使用如下的语句对发射信号进行调制:

% 调制过程

s_am=(1+m_sig).*cos(2*pi*fc*t)+sigma*randn(size(t));

%AM信号由调制信号m_sig叠加直流分量后乘以载波并混以噪声形成。

cos(2*pi*fc*t);% 载波信号,fc为载波频率。

randn(size(t));%代表服从正态分布的噪声。

(4)相干解调器

相干解调依靠接收端提供跟发送端同频同相的高频载波cos()

c

t

乘以接收信号,

再经低通滤波器提取低频分量来恢复出原调制信号。具体程序实现如下:% 产生本地接收载波

s_carr=cos(2*pi*fc*t);

% 同步解调

s_dem=s_am.*s_carr;

% 定义lfft变量

Lfft=length(t);%取时间区间的长度并赋值给Lfft。

Lfft=2^ceil(log2(Lfft)+1);%将Lfft重新转化成为更大的偶数Lfft。

ceil;%向正无穷大的方向取整

% 绘制解调后信号频谱

S_dem=fftshift(fft(s_dem,Lfft)/(length(t)));

% 生成低通滤波器

h=fir1(60,[B_m*ts]);%设计低通滤波器频域相应,其中滤波器阶数60,截至频率75Hz。

% 低通滤波

s_rec=filter(h,1,s_dem);%理想低通滤波器filter滤除s_dem中的高频分量得恢复信号s_rec。

% 绘制恢复信号频谱

S_rec=fftshift(fft(s_rec,Lfft)/(length(t))); (5) 仿真结果曲线 A 发送信号波形和频谱

图2-6 发送信号时域波形

图2-6显示给出了用于调制的发送信号时域波形。图中横坐标和纵坐标分别对应表示时间和信号幅值。从图中可以明显看出发送信号为三角波信号。

图2-7发送信号的频谱

图2-7显示给出了三角波发送信号对应的频谱。图中横坐标表示频率,纵坐标表示频谱幅值。从图中可以看出信号频谱主要集中在低频段,而且信号带宽较窄,大约在150Hz 。

B 载波信号波形和频谱

t(sec)

m (t

)

f(Hz)

M (f )

图2-8 载波信号时域波形

图2-8显示给出了发送端调制基带信号所使用的载波波形。图中横坐标表示载波持续时间,横坐标表示载波幅度。从图中可知本次调制使用的载波是幅度为1,周期为-32.010s ,频率为500Hz 的余玄波。

图2-9载波信号频谱

图2-9显示给出了系统发射信号所需载波信号频谱。图中横坐标表示频率,纵坐标表示信号频谱幅值。从图中可以明显看出载波频谱的中心频率分别为+500Hz ,-500Hz 。

C AM 信号波形和频谱

x 10

-3

t(sec)

s c a r r ( t )

-600

-400

-200

0200

400

600

f(Hz)

S c a r r ( f )

图2-10 AM 信号波形(SNR=19.72dB)

图2-10显示给出了系统中经过AM 调制后信号的时域波形。图中横坐标和纵坐标分别对应表示时间和信号幅值。从图中可知,已调制信号的外包络仍然保持着跟调制信号相同的包络特性。

图2-11 AM 信号频谱波形(SNR=19.72dB )

图2-11显示给出了经历调制后信号所对应的频谱。频谱图中横坐标表示频率,纵坐标表示频谱幅值。从图中可知:原发射信号经过调制后,频谱明显从原来的低频部分搬移到载波频率对应的高频部分。但由于已调制信号中直流分量的作用,调制后信号频谱的幅值相比原调制信号频谱幅值并没有完全减半。

D 相干解调波形和频谱

t(sec)

s A M ( t

)

-600

-400

-200

0200

400

600

f(Hz)

S A M ( f )

图2-12经过相干解调后的时域信号波形

图2-12显示给出了相干解调中信号乘以跟发送载波同频的本地余玄波后的时域波形。图中横坐标为时间轴,纵坐标表示信号幅值。从上述图中可知:AM 信号完整的输入波形转化为单一极性输出,同时信号的频率增加。

图2-13 相干解调频谱

图2-13显示给出了信号通过相干解调乘以本地载波后对应频谱图。图中横坐标表示频率变化范围,纵坐标表示频谱幅值。由上图对比图9可知,乘以本地载波后的信号频谱将AM 信号频谱又重新的搬移,而在高频段仍然保留频谱分量。

E 恢复信号波形和频谱

-0.025-0.02-0.015-0.01-0.005

00.0050.010.0150.020.025

t(sec)

s r e c t ( t )

-1000

-500

05001000

f(Hz)

S r e c t ( f )

图2-14 经过低通滤波器后恢复信号时域波形(SNR=19.72dB )

图2-14显示给出了经过低通滤波器后恢复出的信号的时域波形。图中横坐标表示信号长度时间坐标轴,纵坐标表示恢复信号的幅值。从图中可看出,恢复的信号波形基本上跟发送端发送信号波形吻合。但由于受到噪声的影响,信号的包络发生了抖动。

图2-15 经历低通滤波器恢复信号频谱图

图2-15显示给出了相干解调信号经过低通滤波器后对应的频谱。上述图像中横坐标代表频率变化,纵坐标表示频谱幅度变化。对比原发射信号频谱可知,此恢复出的信号频谱基本跟发射信号频谱波形吻合并且带宽大约在150Hz ,说明能较好的恢复出原调制信号。

2.2.2 DSB 调制解调分析的MATLAB 实现

信号DSB 调制采用MATLAB 函数modulate 实现,其函数格式为: Y =

MODULATE(X,Fc,Fs,METHOD,OPT) X 为基带调制信号,Fc 为载波频率,Fs 为抽样频率,METHOD 为调制方式选择,DSB 调制时为’am ’,OPT 在DSB 调制时可不选,Fs 需满足Fs> 2*Fc + BW ,BW 为调制信号带宽。

DSB 信号解调采用MATLAB 函数demod 实现,其函数使用格式为: X =

t(sec)

s r e c ( t )

f(Hz)

S r e c ( f )

DEMOD(Y,Fc,Fs,METHOD,OPT) Y为DSB已调信号,Fc为载波频率,Fs为抽样频率,METHOD 为解调方式选择,DSB解调时为’am’,OPT在DSB调制时可不选。观察信号频谱需对信号进行傅里叶变换,采用MATLAB函数fft实现,其函数常使用格式为:Y=FFT(X,N),X为时域函数,N为傅里叶变换点数选择,一般取值2'。频域变换后,对频域函数取模,格式:Y1=ABS(Y),再进行频率转换,转换方法:f=(0:length(Y)-1)’*Fs/length(Y) 分析解调器的抗噪性能时,在输入端加入高斯白噪声,采用MATLAB函数awgn实现,其函数使用格式为:Y =AWGN(X,SNR),加高斯白噪声于X中,SNR为信噪比,单位为dB,其值在假设X的功率为0dBM的情况下确定。

信号的信噪比为信号中有用的信号功率与噪声功率的比值,根据信号功率定义,采用MATLAB函数var实现,其函数常使用格式为:Y =VAR(X),返回向量的方差,则信噪比为:SNR=VAR(X1)/VAR(X2)。绘制曲线采用MATLAB函数plot实现,其函数常使用格式:PLOT(X,Y),X为横轴变量,Y为纵轴变量,坐标范围限定AXIS([x1 x2 y1 y2]),轴线说明XLABEL(‘‘)和YLABEL(‘‘)。

(1)仿真程序

用频率300HZ正弦波调制频率30KHZ的正弦波,采用同步解调,观察调制信号、已调信号、解调信号的波形、频谱以及解调器输入输出信噪比的关系。

编程如下:

Fs=100000; %抽样频率

Fc=30000; %载波频率

N=1000; %FFT长度

n=0:N-1; t=n/Fs; %截止时间和步长

x= sin(2*pi*300*t); %基带调制信号

y=modulate(x,Fc,Fs,'am'); %抑制双边带振幅调制

yn=awgn(y,4); %加入高斯白噪声

yn1=awgn(y,10);

yn2=awgn(y,15);

yn3=awgn(y,20);

yn4=awgn(y,25);

y1=demod(y,Fc,Fs,'am'); %无噪声已调信号解调

yyn=demod(yn,30000,Fs,'am'); %加噪声已调信号解调

yyn1=demod(yn1,30000,Fs,'am');

yyn2=demod(yn2,30000,Fs,'am');

yyn3=demod(yn3,30000,Fs,'am');

yyn4=demod(yn4,30000,Fs,'am');

dy1=yn-y; %高斯白噪声

snr1=var(y)/var(dy1); %输入信噪比

dy2=yyn-y1; %解调后噪声

snr2=var(y1)/var(dy2); %输出信噪比

dy11=yn1-y;

snr11=var(y)/var(dy11);

dy21=yyn1-y1;

snr21=var(y1)/var(dy21);

dy12=yn2-y;

snr12=var(y)/var(dy12);

dy22=yyn2-y1;

snr22=var(y1)/var(dy22);

dy13=yn3-y;

snr13=var(y)/var(dy13);

dy23=yyn3-y1;

snr23=var(y1)/var(dy23);

dy14=yn4-y;

snr14=var(y)/var(dy14);

dy24=yyn4-y1;

snr24=var(y1)/var(dy24);

in=[snr1,snr11,snr12,snr13,snr14]; out=[snr2,snr21,snr22,snr23,snr24];

ff1=fft(x,N); %傅里叶变换

mag1=abs(ff1); %取模

f1=(0:length(ff1)-1)'*Fs/length(ff1); %频率转换

ff2=fft(y,N); mag2=abs(ff2);

f2=(0:length(ff2)-1)'*Fs/length(ff2);

ff3=fft(y1,N); mag3=abs(ff3);

f3=(0:length(ff3)-1)'*Fs/length(ff3);

figure(1);

subplot(221) %绘制曲线

plot(t,x)

xlabel('调制信号波形')

subplot(222)

plot(f1,mag1)

axis([0 1000 0 1000])

xlabel('调制信号频谱')

subplot(223)

plot(t,y)

xlabel('已调信号波形')

subplot(224)

plot(f2,mag2)

axis([0 40000 0 500])

xlabel('已调信号频谱')

figure(2);

subplot(311)

plot(t,yyn)

xlabel('加噪声解调信号波形')

subplot(313)

plot(f3,mag3)

axis([0 1000 0 600])

xlabel('解调信号频谱')

subplot(312)

plot(t,y1)

xlabel('无噪声解调信号波形')

figure(3);

plot(in,out,'*')

hold on

plot(in,out)

xlabel('输入信噪比')

ylabel('输出信噪比')

(2) 仿真结果及分析

调用程序:

调制信号、已调信号的波形、频谱如图2-16所示:

图2-16调制信号、已调信号的波形、频谱

解调信号的波形、频谱如图2-17所示:

图2-17 解调信号的波形、频谱

分析:通过MATLAB对DSB调制和解调系统的模拟仿真,观察各波形和频谱,在波形上,已调信号的幅度随基带信号的规律呈正比地变化;在频谱结构上,它的频谱

ω,调完全是基带信号频谱在频域内的简单搬移,若调制信号频率为ω,载波频率c

ω处。

制后信号频率搬移至ω±c

DSB信号的包络与调制信号的波形的变化规律完全相符。因而不能直接采用包络检波恢复原始信号,只能采用同步解调。

DSB信号的频谱是基带信号的线性搬移,由上下两个边带分量构成,上下两个边带分量包含相同的有用信息且关于载频左右对称,DSB信号的带宽是基带信号最高截止频率的两倍。

输入输出信噪比关系曲线如图2-18所示:

图2-18 输入输出信噪比关系曲线

通过在已调信号中加入高斯白噪声,通过解调器解调,根据对输入输出信噪比关系曲线绘制观察,在理想情况下,输出信噪比为输入信噪比的二倍,即DSB信号的解调器使信噪比改善一倍;这是因为采用相干解调,使输入噪声中的一个正交分量被消除的缘故。因此,不同的调制信号对系统性能有一定的影响。

图2-19 解调信号的波形、频谱

分析:通过MATLAB 对DSB 调制和解调系统的模拟仿真,观察各波形和频谱,在波形上,已调信号的幅度随基带信号的规律呈正比地变化;在频谱结构上,它的频谱完全是基带信号频谱在频域内的简单搬移,若调制信号频率为ω,载波频率c ω,调制后信号频率搬移至ω±c ω处。

DSB 信号的包络与调制信号的波形的变化规律完全相符。因而不能直接采用包络检波恢复原始信号,只能采用同步解调。

DSB 信号的频谱是基带信号的线性搬移,由上下两个边带分量构成,上下两个边带分量包含相同的有用信息且关于载频左右对称,DSB 信号的带宽是基带信号最高截止频率的两倍。

3数字基带传输系统模型 3.1数字基带传输系统模型原理

数字基带信号的常用码型的形状常常画成矩形,而矩形脉冲的频谱在整个频域是无穷延伸的。由于实际信道的频带是有限的而且有噪声,用矩形脉冲作传输码型会使接收到的信号波形发生畸变,所以这一节我们寻找能使差错率最小的传输系统的传输特性。

如图1所示为数字基带信号传输系统模型。

图3-1数字基带信号传输系统模型图

图3-1中,基带码型编码电路的输出是携带着基带传输的典型码型信息的δ脉冲或窄脉冲序列}{n a ,我们仅仅关注取值:0、1或±1;发送滤波器又叫信道信号形成网络,它限制发送信号频带,同时将}{n a 转换为适合信道传输的基带波形;信道可以是电缆等狭义信道也可以是带调制器的广义信道,信道中的窄带高斯噪声会给传输波形造成随机畸变;接收滤波器的作用是滤除混在接收信号中的带外噪声和由信道引入的噪声,对失真波形进行尽可能的补偿(均衡);抽样判决器是一个识别电路,它把接收滤波器输出的信号波形)(t y 放大、限幅、整形后再加以识别,进一步提高信噪比;码型译码将抽样判决器送出的信号还原成原始信码。

3.1.1带限信道的基带系统模型(连续域分析)

输入符号序列―― a l

发送信号――T b ――比特周期,二进制码元周期

发送滤波器――G T (ω)或d t = a l L ?1

l=0δ(t ?lT b )G T (f)或g T t = G T

(f)e j2πft ∞

?∞df 发送滤波器输出――x t =d t ?g T t =d t = a l L ?1l=0δ t ?lT b ?g T t = a l g T t ?lT s L ?1l=0

信道输出信号或接收滤波器输入信号 y(t)=x(t)+n(t)(信道特性为1) 接收滤波器――G R ω 或G R f 或g R t = G R (f)e j2πft ∞

?∞df 接收滤波器的输出信号r(t)=y(t)*g R t

=d(t)*g T t ?g R t +n t ?g R t = a l L ?1

l=0δ t ?lT b +n R t

其中g(t)= G T (f)C(f)G R (f)e j2πft ∞

?∞df (画出眼图) 如果位同步理想,则抽样时刻为l ?T b l=o ~L ?1 抽样点数值为r(l ?T b )l=o ~L ?1(画出星座图) 判决为 a l ′ 升余弦滚降滤波器

H f =

T s , f ≤

(1?a)2T s

T s = 1+cos πT s ( f ? 1?a 2T ) ,(1?a)2T s < f ≤(1+a)

2T s 0, f ≥

(1+a)2T s

式中α称为滚降系数,取值为0<α<1, T s 是常数。α=0时,带宽为T

s 2Hz ;α=1时,带宽为1T s

Hz 。此频率特性在(?12T s

,1

2T s

)内可以叠加成一条直线,故系统无码间干扰传输的最小

符号间隔为T s s ,或无码间干扰传输的最大符号速率为1

T s

Baud 。

相应的时域波形h(t)为

h(t)=

sin πt/T s πt/T s

×cos απt/T

s 1?4αt /T s

移动通信原理课程设计-实验报告-

电子科技大学 通信抗干扰技术国家级重点实验室 实验报告 课程名称移动通信原理 实验内容无线信道特性分析; BPSK/QPSK通信链路搭建与误码性能分析; SIMO系统性能仿真分析 课程教师胡苏 成员姓名成员学号成员分工 独立完成必做题第二题,参与选做题SIMO仿 真中的最大比值合并模型设计 参与选做题SIMO仿真中的 等增益合并模型设计 独立完成必做题第一题 参与选做题SIMO仿真中的 选择合并模型设计

1,必做题目 1.1无线信道特性分析 1.1.1实验目的 1)了解无线信道各种衰落特性; 2)掌握各种描述无线信道特性参数的物理意义; 3)利用MATLAB中的仿真工具模拟无线信道的衰落特性。 1.1.2实验内容 1)基于simulink搭建一个QPSK发送链路,QPSK调制信号经过了瑞利衰 落信道,观察信号经过衰落前后的星座图,观察信道特性。仿真参数:信源比特速率为500kbps,多径相对时延为[0 4e-06 8e-06 1.2e-05]秒,相对平均功率为[0 -3 -6 -9]dB,最大多普勒频移为200Hz。例如信道设置如下图所示:

1.1.3实验仿真 (1)实验框图 (2)图表及说明 图一:Before Rayleigh Fading1 #上图为QPSK相位图,由图可以看出2比特码元有四种。

图二:After Rayleigh Fading #从上图可以看出,信号通过瑞利信道后,满足瑞利分布,相位和幅度发生随机变化,所以图三中的相位不是集中在四点,而是在四个点附近随机分布。 图三:Impulse Response #从冲激响应的图可以看出相位在时间上发生了偏移。

国网笔试知识点详解 通信原理

1.通信系统的基本概念 信息、数据和信号 信息是客户事物的属性和相互联系特性的表现,它反映了客观事物的存在形式或运动状态 数据是信息的载体,是信息的表现形式。 信号是数据在传输过程的具体物理表示形式,具有确定的物理描述。 传输介质是通信中传送信息的载体,又称为信道 模拟通信和数字通信 通信系统主要由5个基本系统元件构成,信源、转换器、信道、反转换器、信宿 源系统将信源发出的信息转换成适合在传输系统中传输的信号形式,通过信道传输到目的系统,目的系统再将信号反变换为具体的信息 通过系统的传输的信号一般有模拟信号和数字信号两种表达方式 模拟信号是一个连续变化的物理量,即在时间特性上幅度(信号强度)的取值是连续的,一般用连续变化的电压表示 数字信号是离散的,即在时间特性上幅度的取值是有限的离散值,一般用脉冲序列来表示 数字信号比模拟信号可靠性高,数字信号比较容易存储、处理和传输 数据通信的技术指标 1、信道带宽:是描述信道传输能力的技术指标,它的大小是由信道的物理特性决定的。 信道能够传送电磁波的有效频率范围就是该信道的带度 2、数据传输速率:称为比特率,是指信道每秒钟所能传输的二进制比特数,记为bps,常见的单位有Kbps、Mpbs、Gbps等,数据传输速率的高低,由每位数据所占的时间决定,一位数据所占用的时间宽度越小,则传输速率越高 3、信道容量: 信道的传输能力是有一定限制的,信道传输数据的速率的上限,称为信道容量,一般表示单位时间内最多可传输的二进制数据的位数 C=Wlog2(1+S/N) C为信道容量;W为信道带宽;N为噪声功率;S为信号功率 S/N为信噪比,用来描述信道的质量,噪声小的系统信噪比高,信噪比S/N通常用10lg(S/N)来表示,其单位为分贝。 无噪声离散信道容量公式为C=2Wlog2L (L为传输二进制信号) 4、波特率: 是传输的信号值每秒钟变化的次数,如果被传输的信号周期为T,则波特率Rb=1/T。Rb 称为波形速率或调制速率。 R=Rblog2V V表示所传输信号所包含的离散电平数 5、信道延迟 信号沿信道传输需要一定的时间,就是信道延迟,信道延迟时间的长短,主要受发送设备和接收设备的响应时间、通信设备的转发和等待时间、计算机的发送和接收处理时间、传输介质的延迟时间等的影响。 信道延迟=计算机的发送和接收处理时间+传输介质的延迟时间+发送设备和接收设备的称

《通信原理》课程综述

《通信原理》课程综述 课程名称 任课教师 班级 姓名 学号 日期

《通信原理》作为通信专业的骨干核心课程,在通信专业的学习中占有极其重要的地位。尽管我们只是电子信息工程专业的,同样需要很好的掌握,因为它对我们之前学习的课程是一门很好的总结性课程。在这门课程中,我们要从模块级、系统级的层次上,深刻理解通信系统的基本理论,熟练掌握对通信系统进行分析和设计的基本方法。着重培养了我们分析问题和解决问题的能力,以及掌握现代通信方面不断涌现的新理论、新技术的能力。 一、《通信原理》课的地位和作用 打一个比方,如果把信息工程的整个知识结构看作一棵大树的话,《通信原理》课就是这棵大树的主干,它在诸如高等数学、工程应用、电路信号、模电数电、电磁场等等土壤、根须这样的基础课之上,撑起了信息工程专业的树冠,而后续的专业课恰恰是这棵树上结出的果实。因此,在系统知识框架中,《通信原理》课起着承上启下、顶天立地的重要作用。也正因为此,我们才要深入并好好学习这门课程,才能在最后进入社会、参加工作时将理论应用于实践中。 二、与《通信原理》相关的前续课程 前面我们已经提到许多通信专业的基础课,其中与《通信原理》课最相关的是《高等数学》、工程数学中的《概率与随机过程》以及《信号与系统》。《高等数学》提供我们理论上分析推导的数学基础;《信号与系统》教会我们对确知信号不仅可以进行时域分析,而且可以变换到频域、复频域上分析的分析方法;《概率与随机过程》指导我们如何弄清随机信号(通信中的信号即为此类信号)的性质、规律,以及对其分析的方法。所有这些对我们学好《通信原理》课有着重要的意义,不论缺少了哪一部分,都会或多或少地影响对通信原理的学习。 三、《通信原理》课的特点及其学习中应注意的问题 《通信原理》课作为敲门砖般的专业基础课,有其自身的一些特点,主要表现在以下的三个方面: 1.强的理论性 《通信原理》课有极强的理论性,表现为有大量、严密的数学推导和公式(这也正是我们要求有好的数学基础的原因),而且分析、推导的方法往往从时域和频域同时展开(《信号与系统》课的功劳),这要求我们从时域和频域的不同侧重点,全面、准确、方便地理解信号,掌握系统处理的特点和结果。这些充分体现

通信原理课程设计报告2

¥ 课程设计报告? < 课程名称通信原理 设计题目 DSB与2ASK调制与解调 专业通信工程 班级 学号 姓名 完成日期 …

课程设计任务书 设计题目:DSB与2ASK调制与解调 设计内容与要求: 设计内容: 1.根据DSB的调制原理设计线路,进行仿真模拟调制DSB的调制和解调过程,并通过仿真软件观察信号以及的调制过程中信号波形和频谱的变化。 2. 根据ASK的调制原理设计线路,进行仿真模拟调制DSB的调制和解调过程,并通过仿真软件观察信号以及的调制过程中信号波形和频谱的变化。 3.在设计过程中分析信号变化的过程和思考仿真过程的设计原理。 ; 设计要求: 1.独立完成DSB与ASK的调制与解调; 2.运用仿真软件设计出DSB与ASK的调制线路 3.分析信号波形和频谱 指导教师:范文 2012年12月16日 课程设计评语 ( 成绩: 指导教师:_______________

年月日

一.调制原理: 调制: 将各种数字基带信号转换成适于信道传输的数字调制信号(已调信号或频带信号); 时域定义:调制就是用基带信号去控制载波信号的某个或几个参量的变化,将信息荷载在其上形成已调信号传输,而解调是调制的反过程,通过具体的方法从已调信号的参量变化中将恢复原始的基带信号。 频域定义:调制就是将基带信号的频谱搬移到信道通带中或者其中的某个频段上的过程,而解调是将信道中来的频带信号恢复为基带信号的反过程. 根据所控制的信号参量的不同,调制可分为: 调幅,使载波的幅度随着调制信号的大小变化而变化的调制方式。 调频,使载波的瞬时频率随着调制信号的大小而变,而幅度保持不变的调制方式。 调相,利用原始信号控制载波信号的相位。 调制的目的是把要传输的模拟信号或数字信号变换成适合信道传输的信号,这就意味着把基带信号(信源)转变为一个相对基带频率而言频率非常高的代通信号。该信号称为已调信号,而基带信号称为调制信号。调制可以通过使高频载波随信号幅度的变化而改变载波的幅度、相位或者频率来实现。调制过程用于通信系统的发端。在接收端需将已调信号还原成要传输的原始信号,也就是将基带信号从载波中提取出来以便预定的接受者(信宿)处理和理解的过程。该过程称为解调。

通信原理课程设计报告书

通信原理课程设计 题目:脉冲编码调制(PCM)系统设计与仿真 院(系):电气与信息工程学院 班级:电信04-6班 姓名:朱明录 学号: 0402020608 指导教师:赵金宪 教师职称:教授

摘要 : SystemView 仿真软件可以实现多层次的通信系统仿真。脉冲编码调制(PCM )是现 代语音通信中数字化的重要编码方式。利用SystemView 实现脉冲编码调制(PCM)仿真,可以为硬件电路实现提供理论依据。通过仿真展示了PCM 编码实现的设计思路及具体过程,并加以进行分析。 关键词: PCM 编译码 1、引言 随着电子技术和计算机技术的发展,仿真技术得到了广泛的应用。基于信号的用于通信系统的动态仿真软件SystemView 具有强大的功能,可以满足从底层到高层不同层次的设计、分析使用,并且提供了嵌入式的模块分析方法,形成多层系统,使系统设计更加简洁明了,便于完成复杂系统的设计。 SystemView 具有良好的交互界面,通过分析窗口和示波器模拟等方法,提供了一个可视的仿真过程,不仅在工程上得到应用,在教学领域也得到认可,尤其在信号分析、通信系统等领域。其可以实现复杂的模拟、数字及数模混合电路及各种速率系统,并提供了内容丰富的基本库和专业库。 本文主要阐述了如何利用SystemView 实现脉冲编码调制(PCM )。系统的实现通过模块分层实现,模块主要由PCM 编码模块、PCM 译码模块、及逻辑时钟控制信号构成。通过仿真设计电路,分析电路仿真结果,为最终硬件实现提供理论依据。 2、系统介绍 PCM 即脉冲编码调制,在通信系统中完成将语音信号数字化功能。PCM 的实现主要包括三个步骤完成:抽样、量化、编码。分别完成时间上离散、幅度上离散、及量化信号的二进制表示。根据CCITT 的建议,为改善小信号量化性能,采用压扩非均匀量化,有两种建议方式,分别为A 律和μ律方式,我国采用了A 律方式,由于A 律压缩实现复杂,常使用 13 折线法编码,采用非均匀量化PCM 编码示意图见图1。 图1 PCM 原理框图 下面将介绍PCM 编码中抽样、量化及编码的原理: (a) 抽样 所谓抽样,就是对模拟信号进行周期性扫描,把时间上连续的信号变成时间上离散的信号。该模拟信号经过抽样后还应当包含原信号中所有信息,也就是说能无失真的恢复原模拟信号。它的抽样速率的下限是由抽样定理确定的。 (b) 量化 从数学上来看,量化就是把一个连续幅度值的无限数集合映射成一个离散幅度值的有限数集合。如图2所示,量化器Q 输出L 个量化值k y ,k=1,2,3,…,L 。k y 常称为重建电

通信原理课设-基于Systemview的通信系统的仿真

目录 第1章绪论 (1) 第2章 SystemView的基本介绍 (2) 第3章二进制振幅键控 2ASK (4) 3.1 2ASK调制系统 (4) 3.2 2ASK调制解调系统 (6) 3.3 2ASK系统仿真结果分析 (9) 第四章二进制频移键控 2FSK (10) 4.1 2FSK调制系统 (10) 4.2 2FSK调制解调系统 (12) 4.3 2FSK仿真结果分析 (17) 第5章二进制移相键控 2PSK (18) 5.1 2PSK调制系统 (18) 5.2 2PSK调制解调系统 (19) 5.3 2PSK仿真结果分析 (23) 第6章二进制差分移相键控 2DPSK (24) 6.1 2DPSK实验原理 (24) 6.2 2DPSK仿真结果分析 (29) 第7章实验总结 (30) 第8章参考文献 (30) 第9章谢辞 (32)

第1章绪论 通信按照传统的理解就是信息的传输,信息的传输离不开它的传输工具,通信系统应运而生,我们此次课题的目的就是要对调制解调的通信系统进行仿真研究。 数字信号的传输方式可以分为基带传输和带通传输。为了使信号在带通信道中传输,必须用数字基带信号对载波进行调制,以使信号与信道特性相匹配。在这个过程中就要用到数字调制。 在通信系统中,利用数字信号的离散取值特点通过开关键控载波,来实现数字调制,这种方法通常称为键控法,主要对载波的振幅,频率,和相位进行键控。键控主要分为:振幅键控,频移键控,相移键控三种基本的数字调制方式。 本次课程设计的目的是在学习以上三种调制的基础上,通过Systemview仿真软件,实现对2ASK,2FSK,2PSK,2DPSK等数字调制系统的仿真,同时对以上系统有深入的了解。 Systemview是美国ELANIX公司于1995年开始推出的软件工具,它为用户提供了一个完整的动态系统设计、仿真与分析的可视化软件环境,能进行模拟、数字、数模混合系统、线性和非线性系统的分析设计,可对线性系统进行拉氏变换和Z变换分析。 SystemView基本属于一个系统级工具平台,可进行包括数字信号处理(DSP)系统、模拟与数字通信系统、信号处理系统和控制系统的仿真分析,并配置了大量图符块(Token)库,用户很容易构造出所需要的仿真系统,只要调出有关图符块并设置好参数,完成图符块间的连线后运行仿真操作,最终以时域波形、眼图、功率谱、星座图和各类曲线形式给出系统的仿真分析结果。 在此次课程设计之前,先学会熟练掌握Systemview的用法,在该软件的配合下完成各个系统的结构图,还有调试结果图。 Systemview对系统的分析主要分为两大块,调制系统的分析和解调系统的分析。由于调制是解调的基础,没有调制就不可能有解调,为了表现解调系统往往需要很高的采样频率来减少滤波带来的解调失真,所以调制的已调信号通过波形模块观察起来不是很清楚,为了更好的弄清楚调制是怎么样的一个过程,在这里,我们把调制单独列出来,用较低的频率实现它,就能从单个周期上观察调制系统的运作模式,更深刻地表现调制系统的调制过程。

通信原理考研知识点

By 夜阑寄语(yljy52725) 1绪论:1、了解通信的基本概念;2、了解通信中相关的消息、信息、信号之间的关系;3、正确区分数字信号和模拟信号;4、掌握各类通信系统(通信基本模型、模拟通信系统模型、数字通信系统模型);5、掌握数字通信的特点以及通信的方式(单工、双工、半双工);6、了解各类通信系统分类;7、信息的度量(信息量、熵);8、通信系统的性能指标(有效性、可靠性)。 2确知信号:1、了解确知信号概念以及信号类型;2、了解功率信号的频谱以及能量信号的频谱密度。 3随机过程:1、掌握随机过程的概念;2、了解各态历经的概念;3、掌握平稳随机过程的自相关函数的性质以及对应的功率谱密度;4、了解高斯随机过程的概念以及掌握其性质;5、平稳随机过程通过线性系统相关参数的变化; 6、掌握窄带随机过程的概念以及窄带随机过程对应的各类分量的统计特性; 7、掌握高斯白噪声(明确白噪声的概念)。 4信道:1、了解有线信道和无线信道的概念并且常见的该信道类型;2、掌握信道的数学模型(调制信道、编码信道);3、了解信道特性对信号传输特性的影响;4、了解信道中噪声的类型以及该噪声对信号传输所造成的影响; 5、掌握信道容量的概念以及计算式(Shannon公式)。 5模拟调制系统:1、掌握幅度调制(线性调制-AM、DSB、SSB、VSB)系统的概念及一般传输模型和解调模型(包络检波-非相干解调、相干解调);2、掌握各类线性调制系统(AM、DSB、SSB、VSB)的输出波形以及各类解调方式的抗噪声性能(信噪比增益);3、掌握判断各类线性调制系统性能的优劣;4、了解角度调制(非线性调制)的概念及对应的(FM、PM)传输模型; 5、掌握两类非线性调制之间的相互转换关系(PM->FM); 6、了解非线性调 制系统的解调模型及其抗噪性能(信噪比增益);7、掌握门限效应的概念以及产生的原因;8、了解信号的加重技术;9、掌握各类模拟调制系统的比较以及各自适用的实际情况。 6数字基带传输系统:1、了解基带信号的概念及其谱特性;2、掌握数字基带传输的几种常见码型(AMI、HDB3、Manchester、双相码、CMI)的编码规则以及各自的适用场合;3、掌握数字基带传输系统的传输模型以及理解码间串扰的概念;4、掌握数字基带传输系统的无码间串扰的时频条件;5、掌握数字基带传输系统的无码间串扰特性的设计;6、了解基带传输系统(二进制单极性/双极性)的抗噪声性能(判决门限);7、掌握眼图的产生以及由其可以确定的参数类型;8、理解部分响应系统和时域均衡的实际意义。7数字带通传输系统:1、掌握产生各类二进制数字调制(ASK、FSK、PSK、DPSK)的系统模型以及各自的解调模型;2、掌握DPSK系统的产生原因;3、掌握各类二进制数字调制的输出波形;4、掌握各类二进制数字调制系统的抗噪声性能及其相应比较。 8新型调制系统:1、了解QAM系统; 2、掌握MSK系统的特点;3、掌握OFDM 系统的特性及其传输特点。 9数字信号的最佳接收:1、掌握数字信号的最佳接收概念;2、掌握最佳接收机的模型(确知信号、随相信号、/起伏信号);3、掌握匹配滤波器的结构;3、了解最佳基带系统。 10信源编码:1、了解模拟信号数字化步骤(抽样、量化、编码);2、掌握各类抽样方式(理想抽样、自然抽样、平顶抽样—特点);3掌握各类量化(均匀量化、非均匀量化)方式;4、掌握PCM编码机及其编码方式;5、了解

通信原理课程项目报告 匹配滤波器

上海大学2012~2013学年春季学期本科生 课程项目报告 课程名称:《通信原理B(2)》课程编号: 07275129 题目: 匹配滤波器分析 学生姓名: 王子驰(组长)学号: 10124021 学生姓名: 蒋子昂学号: 10124022 学生姓名: 徐璐学号: 10124040 学生姓名: 陈张婳学号: 10123773 学生姓名: 张晨学号: 10123743 评语: 成绩: 任课教师: 评阅日期:

匹配滤波器分析 日期(2013年5月1日) 摘要:在最佳线性滤波器的设计中有一种是使滤波器输出信噪比在某一特定时刻达到最大,由此而导 出的最佳线性滤波器称为匹配滤波器。匹配滤波器对信号做的两种处理:1、去掉信号相频函数中的任 何非线性部分;2、按照信号的幅频特性对输入波形进行加权,即当信号与噪声同时进入滤波器时,它 使信号成分在某一瞬间出现尖峰值,而噪声成分受到抑制。本文介绍了匹配滤波器的原理,利用MATLAB 软件,设计了一种匹配滤波器,并对其在二进制确知信号最佳接收中的应用进行了分析。 1.引言 在数字通信系统中,信道的传输特性和传输过程中噪声的存在是影响通信性能的两个主要因素。人们总是希望在一定的传输条件下,达到最好的传输性能,最佳接收就是在噪声干扰中如何有效地检测出信号。所谓最佳是在某种标准下系统性能达到最佳,最佳接收是个相对的概念,在某种准则下的最佳系统,在另外一种准则下就不一定是最佳的。在某些特定条件下,几种最佳准则也可能是等价的。在数字通信中,最常采用的是输出信噪比最大准则和差错概率最小准则。 在数字信号接收中,滤波器的作用有两个方面,第一是使滤波器输出有用信号成分尽可能强; 第二是抑制信号带外噪声,使滤波器输出噪声成分尽可能小,减小噪声对信号判决的影响。 通常对最佳线性滤波器的设计有两种准则:一种是使滤波器输出的信号波形与发送信号波形之 间的均方误差最小,由此而导出的最佳线性滤波器称为维纳滤波器;另一种是使滤波器输出信噪比 在某一特定时刻达到最大,由此而导出的最佳线性滤波器称为匹配滤波器。在数字通信中,匹配滤 波器具有更广泛的应用。 2.课程项目的目的 (1)掌握匹配滤波器的基本概念、基本原理和基本设计方法; (2)具备对简单通信系统进行建立模型、定性分析、定量计算的能力; (3)对实验过程中存在的问题能够进行分析和排除; (4)对规定任务有一定的创新能力。 3.基本原理介绍 由数字信号的判决原理我们知道,抽样判决器输出数据正确与否,与滤波器输出信号波形和发 送信号波形之间的相似程度无关,也即与滤波器输出信号波形的失真程度无关,而只取决于抽样时 刻信号的瞬时功率与噪声平均功率之比,即信噪比。信噪比越大,错误判决的概率就越小;反之,Array 信噪比越小,错误判决概率就越大。

《通信原理课程设计》

信息工程学院 2014 / 2015学年第一学期 课程设计报告 课程名称:通信原理课程设计 专业班级:统本电信1201 学生学号:12610304152213 12520527151362 学生姓名:陈钰康 夏涛 指导教师:田亚楠

摘要 8PSK(8 Phase Shift Keying,8移相键控)是八进制相移键控,它是一种相位调制算法。相位调制(调相)是频率调制(调频)的一种演变,载波的相位被调整用于把数字信息的比特编码到每一词相位改变(相移)。 8PSK中的“PSK”表示使用移相键控方式,移相键控是调相的一种形式,用于表达一系列离散的状态,8PSK对应8种状态的PSK。如果是其一半的状态,即4种,则为QPSK,如果是其2倍的状态,则为16PSK。因为8PSK拥有8种状态,所以8PSK每个符号(symbol)可以编码3个比特(bits)。8PSK抗链路恶化的能力(抗噪能力)不如QPSK,但提供了更高的数据吞吐容量。本次课程设计过程中,利用了MATLAB7.1仿真实现了8PSK信号的调制与解调,并仿真8PSK载波调制信号在高斯白噪声信道下的误码率及误比特率性能,并用MATLAB仿真出了调制信号、载波信号及已调信号的波形图和频谱图。并在高斯白噪声下,讨论了8PSK 误码率及误比特率性能。 关键字:8PSK;载波的调制;解调;

目录 一.设计内容及要求(PSK信号的仿真) (1) 二.相关理论知识的论述分析 (1) 2. 1.1、8PSK的概念 (1) 2. 1.2、8PSK的特点 (1) 2.2.1、 PSK的调制 (2) 2.2.2、调制的概念 (2) 2.2.3、调制的种类 (2) 2.2.4、调制的作用 (3) 2.2.5、调制方式 (3) 三.系统原理框图及分析(8PSK的原理) (3) 四.完整的设计仿真过程 (4) 五.仿真结果输出及结论 (6) 六.仿真调试中出现的错误、原因及排除方法 (7) 七.总结本次设计,指出设计的核心及应用价值,提出改进意见和展望 (7) 八.收获、体会 (7) 九.参考文献 (8)

通信原理知识点

第一章 1.通信的目的是传输消息中所包含的息。消息是信息的物理表现形式,信息是消息的有效内容。.信号是消息的传输载体。 2.根据携载消息的信号参量是连续取值还是离散取值,信号分为模拟信号和数字信号., 3.通信系统有不同的分类方法。按照信道中所传输的是模拟信号还是数字信号(信号特征分类),相应地把通信系统分成模拟通信系统和数字通信系统。按调制方式分类:基带传输系统和带通(调制)传输系统。 4.数字通信已成为当前通信技术的主流。 5.与模拟通信相比,数字通信系统具有抗干扰能力强,可消除噪声积累;差错可控;数字处理灵活,可以将来自不同信源的信号综合刭一起传输;易集成,成本低;保密性好等优点。缺点是占用带宽大,同步要求高。 6.按消息传递的方向与时间关系,通信方式可分为单工、半双工及全双工通信。 7.按数据码先排列的顾序可分为并行传输和串行传输。 8.信息量是对消息发生的概率(不确定性)的度量。 9.一个二进制码元含1b的信息量;一个M进制码元含有log2M比特的信息量。等概率发送时,信源的熵有最大值。 10.有效性和可靠性是通信系统的两个主要指标。两者相互矛盾而又相对统一,且可互换。在模拟通信系统中,有效性可用带宽衡量,可靠性可用输出信噪比衡量。 11.在数字通信系统中,有效性用频带利用率表示,可靠性用误码率、误信率表示。 12.信息速率是每秒发送的比特数;码元速率是每秒发送的码元个数。 13.码元速率在数值上小于等于信息速率。码元速率决定了发送信号所需的传输带宽。 第二章 14.确知信号按照其强度可以分为能量信号和功率信号。功率信号按照其有无周期性划分,又可以分为周期性信号和非周期性信号。 15.能量信号的振幅和持续时间都是有限的,其能量有限,(在无限长的时间上)平均功率为零。功率信号的持续时间无限,故其能量为无穷大。 16.确知信号的性质可以从频域和时域两方面研究。 17.确知信号在频域中的性质有4种,即频谱、频谱密度、能量谱密度和功率谱密度。 18.周期性功率信号的波形可以用傅里叶级数表示,级数的各项构成信号的离散频谱,其单位是V。 19.能量信号的波形可以用傅里叶变换表示,波形变换得出的函数是信号的频谱密度,其单位是V/Hz 。 20.只要引入冲激函数,我们同样可以对于一个功率信号求出其频谱密度。 21.能量谱密度是能量信号的能量在频域中的分布,其单位是J/Hz。功率谱密度则是功率信号的功率在频域中的分布,其单位是W/Hz。 22.周期性信号的功率谱密度是由离散谱线组成的,这些谱线就是信号在各次谐波上的功率分量|Cn|2,称为功率谱,其单位为w。但若用δ函数表示此谱线。则它可以写成功率谱密度|C(f)|2δ(f-nf0)的形式。 23.确知信号在时域中的特性主要有自相关函数和互相天函数。 24.自相关函数反映一个信号在不同时间上取值的关联程度。 25.能量信号的自相关函数R(O)等于信号的能量;而功率信号的自相关函数R(O)等于信

通信原理课程设计报告(基于Matlab)

2DPSK调制与解调系统的仿真 设计原理 (1) 2DPSK信号原理 1.1 2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。定义为本码元初相与前一码元初相之差,假设: →数字信息“0”; →数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1 DPSK信号相位:0

或 : 1.2 2DPSK 信号的调制原理 一般来说,2DPSK 信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK 信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0” 时接相位0,当输入数字信息为“1”时接pi 。 图1.2.2 键控法调制原理图 1.3 2DPSK 信号的解调原理 2DPSK 信号最常用的解调方法有两种,一种是极性比较和码变换法,另一种是差分相干解调法。 码变换 相乘 载波 s(t) e o (t)

通信原理知识点归纳

1.2.1 通信系统的一般模型 1.2.3 数字通信的特点 (1) 抗干扰能力强,且噪声不积累 (2) 传输差错可控 (3) 便于处理、变换、存储,将来自不同信源的信号综合到一起传输 (4) 易于集成,使通信设备微型化,重量轻 (5) 易于加密处理,且保密性好 1.3.1 通信系统的分类 按调制方式分类:基带传输系统和带通(调制)传输系统 。调制传输系统又分为多种 调制,详见书中表1-1。 按信号特征分类:模拟通信系统和数字通信系统 按传输媒介分类:有线通信系统和无线通信系统 3.1.2 随机过程的数字特征 均值(数学期望): 方差: 相关函数 3.2.1 平稳随机过程的定义 (1)其均值与t 无关,为常数a ; (2)自相关函数只与时间间隔τ 有关。 把同时满足(1)和(2)的过程定义为广义平稳随机过程。 3.2.2 各态历经性 如果平稳过程使下式成立 则称该平稳过程具有各态历经性。 3.2.4 平稳过程的功率谱密度 非周期的功率型确知信号的自相关函数与其功率谱密度是一对傅里叶变换。这种关系对平稳随机过程同样成立,即有 []∫∞∞?=dx t x xf t E ),()(1ξ} {2)]()([)]([t a t E t D ?=ξξ2121212212121),;,()] ()([),(dx dx t t x x f x x t t E t t R ∫∫ ∞∞?∞∞?==ξξ???==)()(τR R a a ∫∫ ∞ ∞?∞∞??==ω ωπτττωωτξωτξd e P R d e R P j j )(21)()()(

3.3.2 重要性质 广义平稳的高斯过程也是严平稳的。 高斯过程经过线性变换后生成的过程仍是高斯过程。 3.3.3 高斯随机变量 (1)f (x )对称于直线 x = a ,即 (2) 3.4 平稳随机过程通过线性系统 输出过程ξo (t )的均值: 输出过程ξo (t )的自相关函数: 输出过程ξo (t )的功率谱密度: 若线性系统的输入是平稳的,则输出也是平稳的。 如果线性系统的输入过程是高斯型的,则系统的输出过程也是高斯型的。 3.5 窄带随机过程 若随机过程ξ(t )的谱密度集中在中心频率f c 附近相对窄的频带范围Δf 内,即满足Δf << f c 的条件,且 f c 远离零频率,则称该ξ(t )为窄带随机过程。 3.7 高斯白噪声和带限白噪声 白噪声n (t ) 定义:功率谱密度在所有频率上均为常数的噪声 - 双边功率谱密度 - 单边功率谱密度 4.1 无线信道 电磁波的分类: 地波:频率 < 2 MHz ;距离:数百或数千千米 天波:频率:2 ~ 30 MHz ;一次反射距离:< 4000 km 视线传播:频率 > 30 MHz ;距离: 4.3.2 编码信道模型 P(0 / 0)和P(1 / 1) - 正确转移概率,P(1/ 0)和P(0 / 1) - 错误转移概率 P (0 / 0) = 1 – P (1 / 0) P (1 / 1) = 1 – P (0 / 1) 2)(0 n f P n =)(+∞<

通信原理课程总结

通信原理课程总结 1、建立数学模型的学习方法。将通信系统模块化,我们并不需要了解各个部分具体的电路连接和实现,我们将其用一个模型来代替,研究这个模型的性能。例如在调制解调时,我们注重的是调制的几种分类,他们分别在带宽,抗噪声性能,实现难易程度上的特点。根据不同的条件需要来采用不同的调制。 2、总结分类对比的学习方法。学习过程中,我们不能死记硬背的记模块的性能,相互对比有助于更好理解。模拟调幅波学习时,我们可以将AM,DSB,SSB几种性能做一个简单的总结,将他们优缺点相互对比,既简单又明了还记忆印象深刻。 3、简单逻辑推理的方法。在通信系统中,每种技术的使用都是有原因的。通过简单的推理可以将各种措施方法将相互联系,将各部分之间联系起来,更好的从整体上把握。在数字基带通信中,很容易产生码间串扰,为了消除这种现象,我们采取理想低通和余弦滚降特性的设计。根据他们各自优缺点,我们又引进部分响应这一改进技术。这样我们很容易将这几个知识点联系起来并更好地理解。 4、数学工具的应用。本课程数学推导多且繁琐,但是我们要记得,数学推导过程是我们借助的工具,并不是我们的重点。很多时候我们只要掌握了推导方法即可,千万不要陷入数学计算的漩涡中。很幸运李世银教授带领我们学习这门课程。老师讲课很

有经验,非常有特点。他系统概念很强,善于总结。每堂课前总会带领我们回顾上节课讲过的重点内容,将每章节之间都联系在一起。老师注重启发式教育,每次讲解新的概念时,他不会直接给出而是通过前序章节的学习带我们分析现有系统的状态存在的问题,以此来引入新的概念。通信原理理论性强又比较抽象,李老师经常会举日常生活中例子让我们更好地理解知识点。他人和蔼可亲,上课与大家互动特别多,带动上课的积极性,避免一味讲课灌输式学习。课堂上我们的思想是活跃开放的,不断思考老师提出的问题并和老师互动交流,提高了学习的热情和积极性。《通信原理》有极强的理论性,有大量、严密的数学推导和公式,而且分析推导的方法往往从时域和频域同时展开,要求我们从时域和频域的不同侧面全面、准确、方便地理解信号,掌握系统处理的特点和结果。这些充分体现了它作为专业核心课程的特点。虽然课程学习已经结束,但是在学习本课程中学到的学习方法将会使我们受益匪浅。

电子科大移动通信原理课程设计报告

移动通信原理课程设计报告 一、题目描述 仿真一:M=1,选定BPSK调制,AWGN和瑞利信道下的误符号率性能曲线(横坐标为符号信噪比Es/N0),并与相应的理论曲线比较。 仿真二:对2发1收的STBC-MIMO系统(Alamouti空时码),分析2发射天线分别受到独立瑞利信道下的误码率性能曲线,并与相同条件下单天线曲线进行对比分析。 二、系统设置 三、仿真代码 3.1算法说明 1、信号产生:利用Matlab中的随机整数随机数产生函数randi. 2、调制方法的实现:不同的调制方式对应唯一的一个星座图;通过输入序列找出星座图上的对应位置,即可输出调制结果。 3、信道模拟实现方法:AWGN信道用MATLAB自带函数randn实现,对应平均噪声功率为零;瑞利信道用randn+j*randn,对应平均噪声功率为零。 4、误码率性能曲线:发射信号序列长度设定130比特,仿真4000次,使信噪比在[0,30]每隔2取值,求平均误比特率。 5、收发系统的实现方法:对于单发单收的模型,只需将发送信号加噪声信号即为接收信号;对于二发一收的模型,因为发射天线是相互独立的,所以每根发射天线的接收信号与单发单收模型的接收信号计算方法相同,最后采用最大比合并得到接收信号。 6、调制方式:BPSK 7、编码和译码方法:二发一收空时编码,最大似然译码。 8、误码率的计算:错误比特数/传输的总比特数。 3.2仿真代码 代码一:调制函数 function[mod_symbols,sym_table,M]=modulator(bitseq,b) N_bits=length(bitseq); if b==1 %BPSK调制 sym_table=exp(1i*[0,-pi]); sym_table=sym_table([1 0]+1); inp=bitseq; mod_symbols=sym_table(inp+1); M=2; elseif b==2 %QPSK调制 sym_table=exp(1i*pi/4*[-3 3 1 -1]);

通信原理课程设计

通信原理课程设计 院(系):通信工程系 班级:通信10-1班 姓名: 学号: 1 课程设计要求

产生两路模拟语音信号,经过pcm编码、时分复用、DPSK调制经过同一个信道单向传输到对应的接收端。常用的三个模块;simulink、通信模块、信号处理模块。 2 数字通信系统的组成原理说明 通常,按照信道中传输的是模拟信号还是数字信号,相应的把通信系统分为模拟通信系统和数字通信系统。又因数字通信系统拥有如下特点:⑴抗干扰能力强,无噪声积累。⑵保密性能好。⑶便于组成现代化数字通信网,便于实现多媒体通信。得到了广泛的应用。 实现数字通信,首先必须使发送端发出的模拟信号变为数字信号,这个过程称为“模数转换”。模拟信号数字化最基本的方法有三个过程,第一步是“抽样”,就是对连续的模拟信号进行离散化处理,可以以相等的时间间隔来抽取模拟信号的样值,也可以不等间隔抽取。第二步是“量化”,将模拟信号样值变换到最接近的数字值。因抽样后的样值在时间上虽是离散的,但在幅度上仍是连续的,量化过程就是把幅度上连续的抽样也变为离散的。第三步是“编码”,就是把量化后的样值信号用一组二进制数字代码来表示,最终完成模拟信号的数字化。数字信号送入数字网进行传输。在传输数字信号时候,为了提高传输质量,提高传输的可靠性,通常要进行调制,调制的方式有多种,例如二进制相移键控2PSK,二进制频移键控2FSK,二进制振幅键控2ASK,差分二进制相移键控2DPSK 等等。为了提高传输是新到的利用率,在调制之前,可将多路信号进行复用,包括频分复用,时分复用等等,通常数字通信系统中常用的的是时分复用。在接收端则是一个还原过程,把接收到得信号进行解调制,解复用申城多路数字信号。再把每一路数字信号解码变为模拟信号,即“数模转换”,从而再现原始信号。数字通信系统模型如图所示。 3 PCM基本原理

“通信原理”课程教学大纲

通信原理”课程教学大纲 Communication Principles” 课程编号: 适用专业:通信工程,电子信息工程,电子信息科学与技术和相关专业 学时数:84 学分数: 4.5 执笔者:刘维周编写日期:2009 年9 月30 日 一、课程的性质和目的 通信原理(Communication Principles )是通信、电子信息类专业的专业基础必修课,适合在三年级下学期时开设。本课程的任务旨在使学生掌握现代通信原理及各种通信系统分析、设计的基本方法。通过理论学习与实验环节掌握好本课程内容是学好后续各门专业课的前题。 二、课程教学内容 第1 章绪论 信息及其度量。通信方式,通信系统的组成、分类及其主要性能指标。 第2 章随机信号分析 随机过程的一般表述。平稳随机过程的定义、相关函数及功率谱密度。高斯过程。窄带过程。正弦波加窄带高斯过程。随机过程通过线性系统。 第3 章信道与噪声 信道定义及其数学模型。恒参、随参信道特性及其对信号传输的影响。分集接收。信道的加性噪声。信道容量的概念。 第4 章模拟调制系统 幅度(AM、DSC、SSB、VSB )、角度(FM、PM)调制的原理及其抗噪声性能。频分复用、复合调制、多级调制的基本概念。 第5 章数字基带传输系统 数字基带传输系统的基本结构。数字基带信号的常用波形、码型及其频谱特性。基带脉冲传输与码间干扰。无码间干扰的基带传输特性。部分响应系统。无码间干扰基带系统的抗噪声性能。眼图及时域均衡的基本概念。 第6 章数字调制系统

二进制数字调制系统原理及其系统的抗噪声性能。二进制数调系统的性能比较。多进制数字调制系统。改进的数字调制方式(MSK )。 第7 章模拟信号的数字传输 抽样定理。脉冲振幅调制(PAM )。模拟信号的量化。脉冲编码调制(PCM)。增量调制(厶M )。PCM系统和△ M系统的性能比较。时分复用和多路数字电话系统。 第8 章?????????? 数字信号的最佳接收* 数字信号接收的统计表述及最佳接收准则。确知信号的最佳接收。随机信号的最佳接收,起伏信号的最佳接收的基本概念。匹配滤波器。基带系统的最佳化。 第9 章差错控制编码 纠错编码的基本原理。常用的简单编码。线性分组码。循环码。卷积码。 第10 章正交编码与伪随机序列* 正交编码与码分复用。伪随机序列。伪随机序列的主要应用。 第11 章同步原理 载波同步的方法。载波同步系统的性能及误差分析。位同步的方法。位同步系统的性能及误差分析。群同步的方法。网同步的基本概念。 三、实验教学内容 1.HDB 3 编译码实验 2.移频键控(FSK)实验 3.移相键控(PSK)实验 4.抽样定理与脉冲调幅实验 5.? PCM 编译码实验 6. △ M 编译码实验 7.循环码(15,6)纠错编码实验 四、课程教学和实验教学内容的学时分配

通信原理知识点归纳

第一章 1.通信—按照传统的理解就就是信息的传输。 2.通信的目的:传递消息中所包含的信息。 3.信息:就是消息中包含的有效内容。 4.通信系统模型: 5、通信系统分为:模拟通信系统模型与数字通信系统模型。 6、数字通信的特点: (1)优点: 抗干扰能力强,且噪声不积累 传输差错可控 便于处理、变换、存储 便于将来自不同信源的信号综合到一起传输 易于集成,使通信设备微型化,重量轻 易于加密处理,且保密性好 便于将来自不同信源的信号综合到一起传输 (2)缺点: 需要较大的传输带宽 对同步要求高 7、通信方式(信号的传输方式) (1)单工、半双工与全双工通信 (A)单工通信:消息只能单方向传输的工作方式 (B)半双工通信:通信双方都能收发消息,但不能同时收发的工作方式 (C)全双工通信:通信双方可同时进行收发消息的工作方式 (2)并行传输与串行传输 (A)并行传输:将代表信息的数字信号码元序列以成组的方式在两条或两条以上的并行信道上同时传输 优点:节省传输时间,速度快:不需要字符同步措施 缺点:需要n 条通信线路,成本高 (B)串行传输:将数字信号码元序列以串行方式一个码元接一个码元地在一条信道上传输 优点:只需一条通信信道,节省线路铺设费用 缺点:速度慢,需要外加码组或字符同步措施 8、则P(x) 与I 之间应该有如下关系: I 就是P(x) 的函数: I =I [P(x)] P(x) ↑,I ↓ ; P(x) ↓ ,I ↑; P(x) = 1时,I=0; P(x) = 0时,I=∞; 9、通信系统的主要性能指标:有效性与可靠性 码元传输速率R B:定义为单位时间(每秒)传送码元的数目,单位为波特(Baud),简记为B。

2FSK调制解调通信原理课程设计

` 课程设计报告 课程名称:通信系统课程设计 设计名称:2FSK调制解调仿真实现 姓名: 学号: 班级: 指导教师: 起止日期:

课程设计任务书 学生班级:学生姓名:学号: 设计名称:2FSK调制解调仿真实现 起止日期:指导教师: 课程设计学生日志

课程设计考勤表 课程设计评语表

2FSK 的调制解调仿真实现 一、 设计目的和意义 1、 熟练地掌握matlab 在数字通信工程方面的应用。 2、 了解信号处理系统的设计方法和步骤。 3、 理解2FSK 调制解调的具体实现方法,加深对理论的理解,并实现2FSK 的调制解调,画出各个阶段的波形。 4、 学习信号调制与解调的相关知识。 5、 通过编程、调试掌握matlab 软件的一些应用,掌握2FSK 调制解调的方法,激发学习和研究的兴趣; 二、 设计原理 1.2FSK 介绍: 数字频率调制又称频移键控(FSK ),二进制频移键控记作2FSK 。数字频移键控是用载波的频率来传送数字消息,即用所传送的数字消息控制载波的频率。2FSK 信号便是符号“1”对应于载频f1,而符号“0”对应于载频f2(与f1不同的另一载频)的已调波形,而且f1与f2之间的改变是瞬间完成的。 其表达式为: { )cos() cos(212)(n n t A t A FSK t e ?ωθω++= 典型波形如下图所示。由图可见,2FSK 信号可以看作两个不同载频的ASK 信号的叠加。因此2FSK 信号的时域表达式又可以写成: ) cos()]([)cos(])([)(2_ 12n s n n n n s n FSK t nT t g a t nT t g a t s ?ωθω+-++-=∑∑ z

相关文档
最新文档