光电二极管的特性研究

光电二极管的特性研究
光电二极管的特性研究

APD光电二极管特性测试实验

APD光电二极管特性测试实验 一、实验目的 1、学习掌握APD光电二极管的工作原理 2、学习掌握APD光电二极管的基本特性 3、掌握APD光电二极管特性测试方法 4、了解APD光电二极管的基本应用 二、实验内容 1、APD光电二极管暗电流测试实验 2、APD光电二极管光电流测试实验 3、APD光电二极管伏安特性测试实验 4、APD光电二极管雪崩电压测试实验 5、APD光电二极管光电特性测试实验 6、APD光电二极管时间响应特性测试实验 7、APD光电二极管光谱特性测试实验 三、实验仪器 1、光电探测综合实验仪 1个 2、光通路组件 1套 3、光照度计 1台 4、光敏电阻及封装组件 1套 5、2#迭插头对(红色,50cm) 10根 6、2#迭插头对(黑色,50cm) 10根 7、三相电源线 1根 8、实验指导书 1本 9、示波器 1台 四、实验原理 雪崩光电二极管APD—Avalanche Photodiode是具有内部增益的光检测器,它可以用来检测微弱光信号并获得较大的输出光电流。 雪崩光电二极管能够获得内部增益是基于碰撞电离效应。当PN结上加高的反偏压时,耗尽层的电场很强,光生载流子经过时就会被电场加速,当电场强度足够高(约3x105V/cm)时,光生载流子获得很大的动能,它们在高速运动中与半导体晶格碰撞,使晶体中的原子电离,从而激发出新的电子一空穴对,这种现象称为碰撞电离。碰撞电离产生的电子一空穴对在强电场作用下同样又被加速,重复前一过程,这样多次碰撞电离的结果使载流子迅速增加,电流也迅速增大,这个物理过程称为雪崩倍增效应。 图6-1为APD的一种结构。外侧与电极接触的P区和N区都进行了重掺杂,分别以P+和N+表示;在I区和N+区中间是宽度较窄的另一层P区。APD工作在大的反偏压下,当反偏压加大到某一值后,耗尽层从N+-P结区一直扩展(或称拉通)到P+区,包括了中间的P层区和I区。图4的结构为拉通型APD的结构。从图中可以看到,电场在I区分布较弱,而在N+-P区分布较强,碰撞电离区即雪崩区就在N+-P区。尽管I区的电场比N+-P区低得多,但也足够高(可达2x104V/cm),可以保证载流子达到饱和漂移速度。当入射光照射时,由于雪

二极管特性

二极管伏安特性曲线的研究 一、实验目的 通过对二极管伏安特性的测试,掌握锗二极管和硅二极管的非线性特点,从而为以后正确设计使用这些器件打下技术基础。 二、伏安特性描述 对二极管施加正向偏置电压时,则二极管中就有正向电流通过(多数载流子导电),随着正向偏置电压的增加,开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近二极管导通电压时(锗管为0.2V左右,硅管为0.7V左右),电流急剧增加,二极管导通后,电压的少许变化,电流的变化都很大。 对上述二种器件施加反向偏置电压时,二极管处于截止状态,其反向电压增加至该二极管的击穿电压时,电流猛增,二极管被击穿,在二极管使用中应竭力避免出现击穿观察,这很容易造成二极管的永久性损坏。所以在做二极管反向特性时,应串入限流电阻,以防因反向电流过大而损坏二极管。 二极管伏安特性示意图1-1,1-2 图1-1锗二极管伏安特性图1-2硅二极管伏安特性 三、实验设计 图1-3 二极管反向特性测试电路 1、反向特性测试电路 二极管的反向电阻值很大,采用电流表内接测试电路可以减少测量误差。测试电路如图1-3,电阻选择510Ω

2、正向特性测试电路 二极管在正向导道时,呈现的电阻值较小,拟采用电流表外接测试电路。电源电压在0~10V内调节,变阻器开始设置470Ω,调节电源电压,以得到所需电流值。 图1-4 二极管正向特性测试电路 四、数据记录 见表1-1、1-2 表1-1 反向伏安曲线测试数据表 表1-2 正向伏安曲线测试数据表 注意:实验时二极管正向电流不得超过20mA。 五、实验讨论 1、二极管反向电阻和正向电阻差异如此大,其物理原理是什么? 2、在制定表1-2时,考虑到二极管正向特性严重非线性,电阻值变化范围很大,在表1-2中加一项“电阻修正值”栏,与电阻直算值比较,讨论其误差产生过程。

测试LED光电特性的内容及方法介绍

LED灯具检测方法关键缺陷及改善策略 传统的 led 及其模块光、色、电参数检测方法有电脉冲驱动,CCD 快速光谱测量法,也有在一定的条件下,热平衡后的测量法,但这些方法的测量条件和结果与LED 进入照明器具内的实际工作情况都相差甚远。文章介绍了通过Vf—TJ 曲线的标出并控制LED 在控定的结温下测量其光、色、电参数不仅对采用LED的照明器具的如何保证LED 工作结温提供了目标限位,同时也使LED 及其模块的光、色、电参数的测量参数更接近于实际的应用条件。文章还介绍了采用LED的照明器具如测量LED 的结温并确定LED 参考点的限值温度与结温的函数关系。这对快速评估采用LED 的照明器具的工作状态和使用寿命提供了一个有效的途径。 一、序言 对于一个新兴的产品,其产品自身的发展总是先于产品标准和检测方法。虽然产品的标准和检测方法不可能先于产品的研发,但是,产品的标准和检测方法应尽可能地紧跟产品设计开发的进度,因为产品的标准和检测方法的制定过程本身就是对产品研发过程的回顾研讨和小结,只要条件基本成熟,产品标准和检测方法的制订越及时,就越能减少产品研发过程的盲目性。LED 照明产业发展到现在,我们对LED 照明产品标准和检测方法的回顾、小结的时候已经基本到来。 二、 LED 模块的光电参数和检测方法的现状和改进方法 1、传统的LED 模块的检测方法 目前传统的 LED 模块的检测方法主要有两种,第一种是采用脉冲测量的方法,它是把照明LED 模块固定在测量装置上(例如积分球的测量位置等),采用脉冲恒流电源与瞬时测量光谱仪的同步联动,即对LED 发出数十毫秒~数佰毫秒恒流的脉冲电流的同时,同步打开瞬时测量光谱仪器的快门,对LED 发出的光参数(光通量、光色参数等)进行快速检测,同时,也同步采集LED 的正向压降和功率等参数。由于这种方式在检测过程中,LED 的结温几乎等同于室温,所以,测量结果的光效高,光色和电参数与实际使用情况有明显差异,这一般都是LED 芯片(器件)生产商采用的快速检测方法,而与LED 实际应用在最终照明器具中的状态不具有可参比性。 第二种检测方法是把LED模块安装在检测装置上后,可能带上一固定的散热器(也可能具有基座控温功能),给LED施加其声称的工作电流,受传统的照明光源检测方法的影响,也是等到LED达到热平衡后再开始测量它的光电参数。这种方法看似比较严密,但实际上,它的热平衡条件和工作条件与此类LED装入最终的照明器具中的状态仍没有好的关联性,因此所测的光电参数与今后实际的应用状态的参数仍不具有可参比性。已经颁布的GB/T24824—2009/CIE 127-2007NEQ《普通照明用LED模块的基本性能的测量方法》标准中,在这方面是这样规定的:“试验或测量时LED模块应工作在热平衡状态下,在监视环境温度的同时,最好能监视LED模块自身的工作温度,以保证试验的可复现性。如可能监测LED模块结电压,则应首选监测结电压。否则,应监测LED模块指定温度测量点的温度”。可见在监测结电压的条件下来测量LED 模块的光电参数是保证检测重现性的首选方案,但是,标准中没有指明在模拟实际使用结温条件下检测LED 模块的光、色、电参数。 2、LED 模块测量方法的改进

2 光电二级管特性

课程设计任务书 课程设计任务书

目录: 实验目的 (1) 实验内容 (1) 实验仪器 (1) 实验原理 (1) 注意事项 (4) 实验步骤 (5) 实验结果 (12) 实验总结 (15) 参考文献 (15)

光电二极管特性测试实验 一、实验目的 1、学习光电二极管的基本工作原理; 2、掌握光电二极管的基本特性参数及其测量方法,并完成对其光照灵敏度、伏安特性、时间响应特性和光谱响应特性的测量; 3、通过学习,能够对其他光伏器件有所了解。 二、实验内容 1、光电二极管暗电流测试实验 2、光电二极管伏安特性测试实验 3、光电二极管光照特性测试实验 4、光电二极管时间特性测试实验 5、光电二极管光谱特性测试实验 三、实验仪器 1、光电二极管综合实验仪 1个 2、光通路组件 1套 3、光照度计 1个 4、电源线 1根 5、2#迭插头对(红色,50cm) 10根 6、2#迭插头对(黑色,50cm) 10根 7、三相电源线 1根 8、实验指导书 1本 四、实验原理 1、概述 随着光电子技术的发发展,光电检测在灵敏度、光谱响应范围及频率我等技术方面要求越来越高,为此,近年来出现了许多性能优良的光伏检测器,如硅锗光电二极管、PIN光电二极管和雪崩光电二极管(APD)等。光敏晶体管通常指光电二极管和光电三极管,通常又称光敏二极管和三敏三极管。 光敏二极管的种类很多,就材料来分,有锗、硅制作的光敏二极管,也有III-V族化合物及其他化合物制作的二极管。从结构我来分,有PN结、PIN结、异质结、肖特基势垒及点接触型等。从对光的响应来分,有用于紫外光、红外光等种类。不同种类的光敏二极管,具胡不同的光电特性和检测性能。例如,锗光敏二极管与硅光敏二极管相比,它在红外光区域有很大的灵敏度,如图所示。这是由于锗材料的禁带宽度较硅小,它的本征吸收限处于红外区域,因此在近红外光区域应用;再一方面,锗光敏二极管有较大的电流输出,但它比硅光敏二极管有较大的反向暗电流,因此,它的噪声较大。又如,PIN型或雪崩型光敏二极管与扩散型PN结光敏二极管相比具有很短的时间响应。因此,在使用光敏二极管进要了解其类型及性能是非常重要的。 光敏二极管和光电池一样,其基本结构也是一个PN结。与光电池相比,它的突出特点是结面积小,因此它的频率特性非常好。光生电动势与光电池相同,

光电二三极管特性测试实验报告分解

光敏二极管特性测试实验 一、实验目的 1.学习光电器件的光电特性、伏安特性的测试方法; 2.掌握光电器件的工作原理、适用范围和应用基础。 二、实验内容 1、光电二极管暗电流测试实验 2、光电二极管光电流测试实验 3、光电二极管伏安特性测试实验 4、光电二极管光电特性测试实验 5、光电二极管时间特性测试实验 6、光电二极管光谱特性测试实验 7、光电三极管光电流测试实验 8、光电三极管伏安特性测试实验 9、光电三极管光电特性测试实验 10、光电三极管时间特性测试实验 11、光电三极管光谱特性测试实验 三、实验仪器 1、光电二三极管综合实验仪 1个 2、光通路组件 1套 3、光照度计 1个 4、电源线 1根 5、2#迭插头对(红色,50cm) 10根 6、2#迭插头对(黑色,50cm) 10根 7、三相电源线 1根 8、实验指导书 1本 四、实验原理 1、概述

随着光电子技术的发发展,光电检测在灵敏度、光谱响应范围及频率我等技术方面要求越来越高,为此,近年来出现了许多性能优良的光伏检测器,如硅锗光电二极管、PIN光电二极管和雪崩光电二极管(APD)等。光敏晶体管通常指光电二极管和光电三极管,通常又称光敏二极管和三敏三极管。 光敏二极管的种类很多,就材料来分,有锗、硅制作的光敏二极管,也有III-V族化合物及其他化合物制作的二极管。从结构我来分,有PN结、PIN结、异质结、肖特基势垒及点接触型等。从对光的响应来分,有用于紫外光、红外光等种类。不同种类的光敏二极管,具胡不同的光电特性和检测性能。例如,锗光敏二极管与硅光敏二极管相比,它在红外光区域有很大的灵敏度,如图所示。这是由于锗材料的禁带宽度较硅小,它的本征吸收限处于红外区域,因此在近红外光区域应用;再一方面,锗光敏二极管有较大的电流输出,但它比硅光敏二极管有较大的反向暗电流,因此,它的噪声较大。又如,PIN型或雪崩型光敏二极管与扩散型PN结光敏二极管相比具有很短的时间响应。因此,在使用光敏二极管进要了解其类型及性能是非常重要的。 光敏二极管和光电池一样,其基本结构也是一个PN结。与光电池相比,它的突出特点是结面积小,因此它的频率特性非常好。光生电动势与光电池相同,但输出电流普遍比光电池小,一般为数微安到数十微安。按材料分,光敏二极管有硅、砷化铅光敏二极管等许多种,由于硅材料的暗电流温度系数较小,工艺较成熟,因此在实验际中使用最为广泛。 光敏三极管与光敏二极管的工作原理基本相同,工作原理都是基于内光电效应,和光敏电阻的差别仅在于光线照射在半导体PN结上,PN结参与了光电转换过程。 2、光电二三极管的工作原理 光生伏特效应:光生伏特效应是一种内光电效应。光生伏特效应是光照使不均匀半导体或均匀半导体中光生电子和空穴在空间分开而产生电位差的现象。对于不均匀半导体,由于同质的半导体不同的掺杂形成的PN结、不同质的半导体组成的异质结或金属与半导体接触形成的肖特基势垒都存在内建电场,当光照射这种半导体时,由于半导体对光的吸收而产生了光生电子和空穴,它们在内建电场的作用下就会向相反的方向移动和聚集而产生电位差。这种现象是最重要的一类光生伏特效应。均匀半导体体内没有内建电场,当光照射时,因眼光生载流子浓度梯度不同而引起载流子的扩散运动,且电子和空穴的迁移率不相等,使两种载流

LED工作特性

什么是二极管 二极管是半导体设备中的一种最常见的器件,大多数半导体最是由搀杂半导体材料制成(原子和其它物质)发光二极管导体材料通常都是铝砷化稼,在纯铝砷化稼中,所有的原子都完美的与它们的邻居结合,没有留下自由电子连接电流。在搀杂物质中,额外的原子改变电平衡,不是增加自由电子就是创造电子可以通过的空穴。这两样额外的条件都使得材料更具传导性。带额外电子的半导体叫做N型半导体,由于它带有额外负电粒子,所以在N型半导体材料中,自由电子是从负电区域向正电区域流动。带额外“电子空穴”的半导体叫做P型半导体,由于带有正电粒子。电子可以从一个电子空穴跳向另一个电子空穴,从负电区域向正电区域流动。 因此,电子空穴本身就显示出是从正电区域流向负电区域。二极管是由N型半导体物质与P 型半导体物质结合,每端都带电子。这样排列使电流只能从一个方向流动。当没有电压通过二极管时,电子就沿着过渡层之间的汇合处从N型半导体流向P型半导体,从而形成一个损耗区。在损耗区中,半导体物质会回复到它原来的绝缘状态--所有的这些“电子空穴”都会被填满,所有就没有自由电子或电子真空区和电流不能流动。 为了除掉损耗区就必须使N型向P型移动和空穴应反向移动。为了达到目的,连接二极管N 型一方到电流的负极和P型连接到电流的正极。这时在N型物质的自由电子会被负极电子排斥和吸引到正极电子。在P型物质中的电子空穴就移向另一方向。当电压在电子之间足够高的时候,在损耗区的电子将会在它的电子空穴中和再次开始自由移动。损耗区消失,电流流通过二极管。

如果尝试使电流向其它方向流动,P型端就边接到电流负极和N型连接到正极,这时电流将不会流动。N型物质的负极电子被吸引到正极电子。P型物质的正极电子空穴被吸引到负极电子。因为电子空穴和电子都向错误的方向移动所以就没有电流流通过汇合处,损耗区增加。 为什么二极管会发光 当电子经过该晶片时,带负电的电子移动到带正电的空穴区域并与之复合,电子和空穴消失的同时产生光子。电子和空穴之间的能量(带隙)越大,产生的光子的能量就越高。光子的能量反过来与光的颜色对应,可见光的频谱范围内,蓝色光、紫色光携带的能量最多,桔色光、红色光携带的能量最少。由于不同的材料具有不同的带隙,从而能够发出不同颜色的光。 发光二极管的伏安特性 正向电压(VF)&.正向电流(IF); 反向电压(VR)&反向电流(IR); LED是电流驱动元件,非电压驱

半导体二极管伏安特性的研究(可编辑修改word版)

半导体二极管伏安特性的研究 P101 【实验原理】 1.电学元件的伏安特性 在某一电学元件两端加上直流电压,在元件内就会有电流通过,通过元件的电流与其两端电压之间的关系称为电学元件的伏安特性。一般以电压为横坐标,电流为纵坐标作出元件的电压-电流关系曲线,称为该元件的伏安特性曲线。 对于碳膜电阻、金属膜电阻、线绕电阻等电学元件,在通常情况下,通过元件的电流与加在元件两端的电压成正比,即其伏安特性曲线为一通过原点的直线,这类元件称为线性元件,如图3-1 的直线a。至于半导体二极管、稳压管、三极管、光敏电阻、热敏电阻等元件,通过元件的电流与加在元件两端的电压不成线性关系变化,其伏安特性为一曲线,这类元件称为非线性元件,如图3-1 的曲线b、c。伏安法的主要用途是测量研究非线性元件的特性。一些传感器的伏安特性随着某一物理量的变化呈现规律性变化,如温敏二极管、磁敏二极管等。因此分析了解传感器特性时,常需要测量其伏安特性。 图 3–1 电学元件的伏安特性 在设计测量电学元件伏安特性的线路时,必须了解待测元件的规格,使加在它上面的电 压和通过的电流均不超过元件允许的额定值。此外,还必须了解测量时所需其他仪器的规格(如电源、电压表、电流表、滑线变阻器、电位器等的规格),也不得超过仪器的量程或使用范围。同时还要考虑,根据这些条件所设计的线路,应尽可能将测量误差减到最小。 测量伏安特性时,电表连接方法有两种:电流表外接和电流表内接,如图3-2 所示。 (a)电流表内接;(b)电流表外接 图 3–2 电流表的接法 电压表和电流表都有一定的内阻(分别设为R v和R A)。简化处理时可直接用电压表读

发光二极管主要参数与特性

发光二极管主要参数与特性 https://www.360docs.net/doc/d211751697.html,发布日期:2007-2-5 17:12:17 信息来源:LED 发光二极管主要参数与特性 LED是利用化合物材料制成pn结的光电器件。它具备pn结结型器件的电学特性:I-V特性、C -V特性和光学特性:光谱响应特性、发光光强指向特性、时间特性以及热学特性。 1、LED电学特性 1.1 I-V特性表征LED芯片pn结制备性能主要参数。LED的I-V特性具有非线性、整流性质:单向导电性,即外加正偏压表现低接触电阻,反之为高接触电阻。 如左图: (1) 正向死区:(图oa或oa′段)a点对于V0 为开启电压,当V<Va,外加电场尚克服不少因载流子扩散而形成势垒电场,此时R很大;开启电压对于不同LED其值不同,GaAs为1V,红色GaAsP为1.2V,GaP为1.8V,GaN为2.5V。 (2)正向工作区:电流I F与外加电压呈指数关系 I F = I S (e qVF/KT –1) -------------------------I S 为反向饱和电流。 V>0时,V>V F的正向工作区I F 随V F指数上升 I F = I S e qVF/KT (3)反向死区:V<0时pn结加反偏压 V= - V R 时,反向漏电流I R(V= -5V)时,GaP为0V,GaN为10uA。 (4)反向击穿区 V<- V R ,V R 称为反向击穿电压;V R 电压对应I R为反向漏电流。当反向偏压一直增加使V<- V R时,则出现I R突然增加而出现击穿现象。由于所用化合物材料种类不同,各种LED的反向击穿电压V R也不同。 1.2 C-V特性 鉴于LED的芯片有9×9mil (250×250um),10×10mil,11×11mil (280×280um),12×12mi l (300×300um),故pn结面积大小不一,使其结电容(零偏压)C≈n+pf左右。 C-V特性呈二次函数关系(如图2)。由1MH Z交流信号用C-V特性测试仪测得。 1.3 最大允许功耗PF m 当流过LED的电流为I F、管压降为U F则功率消耗为P=U F×I F LED工作时,外加偏压、偏流一定促使载流子复合发出光,还有一部分变为热,使结温升高。若结温为Tj、外部环境温度为Ta,则当Tj>Ta时,内部热量借助管座向外传热,散逸热量(功率),可表示为P = K T(Tj – Ta)。 1.4 响应时间 响应时间表征某一显示器跟踪外部信息变化的快慢。现有几种显示LCD(液晶显示)约10-3~1 0-5S,CRT、PDP、LED都达到10-6~10-7S(us级)。 ① 响应时间从使用角度来看,就是LED点亮与熄灭所延迟的时间,即图中t r 、t f 。图中t0值很小,可忽略。 ② 响应时间主要取决于载流子寿命、器件的结电容及电路阻抗。 LED的点亮时间——上升时间t r是指接通电源使发光亮度达到正常的10%开始,一直到发光亮度达到正常值的90%所经历的时间。

二极管的特性及万用表的测试法(精)

二极管的特性及万用表的测试法 1、二极管的特性 二极管的英文是diode。二极管的正.负二个端子,(如图1)正端A称为阳极,负端B称为阴极。电流只能从阳极向阴极方向移动。 A https://www.360docs.net/doc/d211751697.html,/Article/uploadimages/110-y-3.gif" width=65>B 图1 2、如何用万用表测量二极管的正负极 对半导体二极管政府极进行简易测试时,要选用万用表的欧姆档。测量方法如(图2、图3)所示。和万用表+输入相连的红表笔与表内电源的负极相通;而与万用表-输入端相连的黑表笔却与表内电源的正极相通。 https://www.360docs.net/doc/d211751697.html,/Article/uploadimages/11 0-y-1.gif" width=180> https://www.360docs.net/doc/d211751697.html,/Article/uploadimages/11 0-y-2.gif" width=180> 图2 图3 测量的方法是先把万用表拨到“欧姆”档(通常用R×100或R×1K),然后用万用表分别接到二极管的两个极上去。当表内的电源使二极管处于正向接法时,二极管导通,阻值较小(几十欧到几千欧的范围),这就告诉我们黑表笔接触的时二极管的正极;红表笔接触的时二极管的负极(见图3);当表内的电源使二极管处在反向接法时,二极管截止,阻值很大(一般为几百千欧),这就告诉我们黑表笔接触的是二极管的负极,红表笔接触的是二极管的正极。 3、用万用表R×100档和R×1K档测量同一个二极管的正向电阻,为什么阻值不同 在用万用表欧姆挡的R×100档位和R×1K档位测量同一只二极管的正向电阻时,测得的阻值是不同的。这是由于R×100和R×1K两种量程所对应的等效内阻r不同,在电源电压E不变时,流过表头的电流也不同的缘故。

光电二极管特性测试及其变换电路

光电二极管特性测试及其变换电路 1实验目的 (1)学习掌握光电二极管的工作原理 (2)学习掌握光电二极管的基本特性 (3)掌握光电二极管特性测试的方法 (4)了解光电二极管的基本应用 2实验内容 (1)光电二极管暗电流测试实验 (2)光电二极管光电流测试实验 (3)光电二极管伏安特性测试实验 (4)光电二极管光电特性测试实验 (5)光电二极管时间特性测试实验 (6)光电二极管光谱特性测试实验 3实验仪器 (1)光电器件实验仪1台 (2)示波器1台 (3)万用表1个 (4)计算机1套 4实验原理 光电二极管又称光敏二极管。制造一般光电二极管的材料几乎全部选用硅或锗的单晶材料。由于硅器件较锗器件暗电流、温度系数都小得多,加之制作硅器件采用的平面工艺使其管芯结构很容易精确控制,因此,硅光电二极管得到了广泛应用。 光电二极管的结构和普通二极管相似,只是它的PN结装在管壳顶部,光线通过透镜制成的窗口,可以集中照射在PN结上,图1(a)是其结构示意图。光敏二极管在电路中通常处于反向偏置状态,如图1(b)所示。

(a)结构示意图(b)基本电路 图1 光电二极管结构图 PN结加反向电压时,反向电流的大小取决于P区和N区中少数载流子的浓度,无光照时P区中少数载流子(电子)和N区中的少数载流子(空穴)都很少,因此反向电流很小。但是当光照射PN结时,只要光子能量hv大于材料的禁带宽度,就会在PN结及其附近产生光生电子—空穴对,从而使P区和N区少数载流子浓度大大增加。这些载流子的数目,对于多数载流子影响不大,但对P区和N 区的少数载流子来说,则会使少数载流子的浓度大大提高,在反向电压(P区接负,N区接正)作用下,反向饱和漏电流大大增加,形成光电流,该光电流随入射光照度的变化而相应变化。光电流通过负载R L时,在电阻两端将得到随人射光变化的电压信号如果入射光的照度改变,光生电子—空穴对的浓度将相应变动,通过外电路的光电流强度也会随之变动,光敏二极管就把光信号转换成了电信号。 5注意事项 1、实验之前,请仔细阅读光电探测综合实验仪说明,弄清实验箱各部分的功能及拨位开关的意义; 2、当电压表和电流表显示为“1_”是说明超过量程,应更换为合适量程; 3、连线之前保证电源关闭。 4、实验过程中,请勿同时拨开两种或两种以上的光源开关,这样会造成实验所测试的数据不准确。 6实验步骤 6.1光电二极管暗电流测试 实验装置原理框图如图2所示,但是在实际操作过程中,光电二极管和光电三极管的暗电流非常小,只有nA数量级。这样,实验操作过程中,对电流表的要求较高,本实验中,采用电路中串联大电阻的方法,将图2中的RL改为20M,

光电二极管检测电路的组成及工作原理

光电二极管及其相关的前置放大器是基本物理量和电子量之间的桥梁。许多精密应用领域需要检测光亮度并将之转换为有用的数字信号。光检测电路可用于CT扫描仪、血液分析仪、烟雾检测器、位置传感器、红外高温计和色谱分析仪等系统中。在这些电路中,光电二极管产生一个与照明度成比例的微弱电流。而前置放大器将光电二极管传感器的电流输出信号转换为一个可用的电压信号。看起来好象用一个光电二极管、一个放大器和一个电阻便能轻易地实现简单的电流至电压的转换,但这种应用电路却提出了一个问题的多个侧面。为了进一步扩展应用前景,单电源电路还在电路的运行、稳定性及噪声处理方面显示出新的限制。 本文将分析并通过模拟验证这种典型应用电路的稳定性及噪声性能。首先探讨电路工作原理,然后如果读者有机会的话,可以运行一个SPICE模拟程序,它会很形象地说明电路原理。以上两步是完成设计过程的开始。第三步也是最重要的一步(本文未作讨论)是制作实验模拟板。 1 光检测电路的基本组成和工作原理 设计一个精密的光检测电路最常用的方法 是将一个光电二极管跨接在一个CMOS输入 放大器的输入端和反馈环路的电阻之间。这种 方式的单电源电路示于图1中。 在该电路中,光电二极管工作于光致电压 (零偏置)方式。光电二极管上的入射光使之 产生的电流I SC从负极流至正极,如图中所示。由于CMOS放大器反相输入端的输入阻抗非常高,二极管产生的电流将流过反馈电阻R F。输出电压会随着电阻R F两端的压降而变化。 图中的放大系统将电流转换为电压,即 V OUT = I SC×R F(1) 图1 单电源光电二极管检测电路 式(1)中,V OUT是运算放大器输出端的电压,单位为V;I SC是光电二极管产生的电流,单位为A;R F是放大器电路中的反馈电阻,单位为W 。图1中的C RF是电阻R F的寄生电容和电路板的分布电容,且具有一个单极点为1/(2p R F C RF)。 用SPICE可在一定频率范围内模拟从光到电压的转换关系。模拟中可选的变量是放大器的反馈元件R F。用这个模拟程序,激励信号源为I SC,输出端电压为V OUT。 此例中,R F的缺省值为1MW ,C RF为0.5pF。理想的光电二极管模型包括一个二极管和理想的电流源。给出这些值后,传输函数中的极点等于1/(2p R F C RF),即318.3kHz。改变R F 可在信号频响范围内改变极点。

发光二极管主要参数与特性(精)

发光二极管主要参数与特性 LED 是利用化合物材料制成 pn 结的光电器件。它具备pn 结结型器 件的电学特性:I-V 特性、C-V 特性和光学特性:光谱响应特性、发光光强指向特性、时间特性以及热学特性。 1、LED 电学特性 1.1 I-V 特性 表征LED 芯片pn 结制备性能主要参数。LED 的I-V 特性具有非线性、整流性质:单向导电性,即外加正偏压表现低接触电阻,反之为高接触电阻。 如左图: (1) 正向死区:(图oa 或oa ′段)a 点对于V 0 为开启电压,当V <Va ,外加电 场尚克服 不少因载 流子扩散 而形成势垒电场,此时R 很大;开启电压对于不同LED 其值不同,GaAs 为1V ,红色GaAsP 为1.2V ,GaP 为1.8V ,GaN 为2.5V 。 (2)正向工作区:电流I F 与外加电压呈指数关系 I F = I S (e qV F /KT –1) -------------------------I S 为反向饱和电流 。 V >0时,V >V F 的正向工作区I F 随V F 指数上升 I F = I S e qV F /KT (3)反向死区 :V <0时pn 结加反偏压 V= - V R 时,反向漏电流I R (V= -5V )时,GaP 为0V ,GaN 为10uA 。 (4)反向击穿区 V <- V R ,V R 称为反向击穿电压;V R 电压对应I R 为反向漏电流。当反向偏压一直增加使V <- V R 时,则出现I R 突然增加而出现击穿现象。由于所用化合物材料种类不同,各种LED 的反向击穿电压V R 也不同。 1.2 C-V 特性 鉴于LED 的芯片有9×9mil (250×250um),10×10mil ,11×11mil (280×280um),12×12mil (300×300um),故pn 结面积大小不一,使其结电容(零偏压) C ≈n+pf 左右。 C-V 特性呈二次函数关系(如图2)。由1MH Z 交流信号用C-V 特性测试仪测得。 1.3 最大允许功耗PF m 当流过LED 的电流为I F 、

二极管特性的研究——桥式整流电路的设计

二极管特性的研究——桥式整流电路的设计 实验目的 1. 运用伏安法测绘二极管的特性曲线。 2. 借助示波器观察绘制桥式整流电路的特性曲线。 实验原理 晶体二极管是由两种具有不同导电性能的n 型半导体和p 型半导体结合形成的pn 结 构成的,如图一(a )所示,pn 结具有单向导电的特性,常用符号表示如图一(b )。 图 一 二极管pn 结构 图 二 二极管特性曲线 当pn 结加上正向电压(p 区接正、n 区接负)时,外电场使pn 结的阻挡层变薄,形 成比较大的电流,二极管的正向电阻很小;当pn 结加上反向电压时,外电场使pn 结的阻 挡层变厚,形成极小的反向电流,表现为反向电阻非常大。晶体二极管的正反向特性曲线 如图二所示,即二极管具有单向导电性。 利用二极管的单向导电性,可将交流电变成脉冲直流电,其过程称为整流。如图三是 桥式整流滤波电路,其整流过程如下:当交流电为正半周时,M 点电压高于N 点电压, D 2、D 4截止,而D 1、D 3导通,电流将从交流电源依次通过D 1、R 、D 3回到电源;当交流电为 负半周时,N 点电压高于M 点电压,D 1、D 3截止,而D 2、D 4导通,电流将从交流电源依 图 三 桥式整流、滤波电路 图 四 交流、整流及滤波波形 次通过D 2、R 、D 4回到电源。这样通过R 的电流方向是固定的,U A 始终大于U B ,且U AB 随交流电的起伏而波动。如果将R 两端接入示波器会观察到如图四的整流波形②。 如在负载R 两端并接上电容值较大的电解电容,见图三的虚线部分,可将脉冲直流电 过滤成较平稳的直流电,称为滤波。波形②将会变得较为平滑或成一条直线③。(滤波的 基本原理:电容C 两端的初始电压为0。接入交流电源U 后,当U 为正半周时,D 1、D 3 导通,U 通过D 1、D 3对电容充电;当U 为负半周时,D 2、D 4导通,U 通过D 2、D 4对电 容充电。由于充电回路等效电阻很小,所以充电很快,电容C 迅速被充到交流电压的最大 t A C V (a) (b)

光电二极管检测电路的工作原理及设计方案

?光电二极管及其相关的前置放大器是基本物理量和电子量之间的桥梁。许多精密应用领域需要检测光亮度并将之转换为有用的数字信号。光检测电路可用于CT扫描仪、血液分析仪、烟雾检测器、位置传感器、红外高温计和色谱分析仪等系统中。在这些电路中,光电二极管产生一个与照明度成比例的微弱电流。而前置放大器将光电二极管传感器的电流输出信号转换为一个可用的电压信号。看起来好象用一个光电二极管、一个放大器和一个电阻便能轻易地实现简单的电流至电压的转换,但这种应用电路却提出了一个问题的多个侧面。为了进一步扩展应用前景,单电源电路还在电路的运行、稳定性及噪声处理方面显示出新的限制。 本文将分析并通过模拟验证这种典型应用电路的稳定性及噪声性能。首先探讨电路工作原理,然后如果读者有机会的话,可以运行一个SP IC E模拟程序,它会很形象地说明电路原理。以上两步是完成设计过程的开始。第三步也是最重要的一步(本文未作讨论)是制作实验模拟板。 1 光检测电路的基本组成和工作原理 设计一个精密的光检测电路最常用的方法是将一个光电二极管跨接在一个CMOS 输入放大器的输入端和反馈环路的电阻之间。这种方式的单电源电路示于图1中。 在该电路中,光电二极管工作于光致电压(零偏置)方式。光电二极管上的入射光使之产生的电流ISC从负极流至正极,如图中所示。由于CMOS放大器反相输入端的输入阻抗非常高,二极管产生的电流将流过反馈电阻RF。输出电压会随着电阻RF两端的压降而变化。 图中的放大系统将电流转换为电压,即 VOUT = ISC ×RF (1)

图1 单电源光电二极管检测电路 式(1)中,VOUT是运算放大器输出端的电压,单位为V;ISC是光电二极管产生的电流,单位为A;RF是放大器电路中的反馈电阻,单位为W 。图1中的CRF是电阻RF的寄生电容和电路板的分布电容,且具有一个单极点为1/(2p RF CRF)。 用SPICE可在一定频率范围内模拟从光到电压的转换关系。模拟中可选的变量是放大器的反馈元件RF。用这个模拟程序,激励信号源为ISC,输出端电压为VOUT。 此例中,RF的缺省值为1MW ,CRF为0.5pF。理想的光电二极管模型包括一个二极管和理想的电流源。给出这些值后,传输函数中的极点等于1/(2p RFCRF),即318.3kHz。改变RF可在信号频响范围内改变极点。 遗憾的是,如果不考虑稳定性和噪声等问题,这种简单的方案通常是注定要失败的。例如,系统的阶跃响应会产生一个其数量难以接受的振铃输出,更坏的情况是电路可能会产生振荡。如果解决了系统不稳定的问题,输出响应可能仍然会有足够大的“噪声”而得不到可靠的结果。 实现一个稳定的光检测电路从理解电路的变量、分析整个传输函数和设计一个可靠的电路方案开始。设计时首先考虑的是为光电二极管响应选择合适的电阻。第二是分析稳定性。然后应评估系统的稳定性并分析输出噪声,根据每种应用的要求将之调节到适当的水平。 这种电路中有三个设计变量需要考虑分析,它们是:光电二极管、放大器和R//C反馈网络。首先选择光电二极管,虽然它具有良好的光响应特性,但二极管的寄生电容将对电路的噪声增益和稳定性有极大的影响。另外,光电二极管的并联寄生电阻在很宽的温度范围内变化,会在温度极限时导致不稳定和噪声问题。为了保持良好的线性性能及较低的失调误差,运放应该具有一个较小的输入偏置电流(例如CMOS工艺)。此外,输入噪声电压、输入共模电容和差分电容也对系统的稳定性和整体精度产生不利的影响。最后,R//C反馈网络用于建立电路的增益。该网络也会对电路的稳定性和噪声性能产生影响。 2 光检测电路的SPICE模型

二极管特性及应用实验

姓名班级________学号____ 实验日期__节次教师签字成绩 二极管的特性研究及其应用一.实验目的 1.通过二极管的伏安特性的绘制,加强对二极管单向导通特性的理解; 2.了解二极管在电路中的一些应用; 3,学习自主设计并分析实验 二.实验内容: 1.二极管伏安特性曲线绘制; 2.交流条件下二极管电压波形仿真; 3.二极管应用电路 三.实验仪器 稳压电源RIGOL DS5102CA FLUKE190型测试仪;1N4001二极管若干; 函数信号发生器 TFG2020G ;电阻若干; 四.实验步骤 1.二极管伏安特性曲线绘制; 二极管测试电路

(1)创建电路二极管测试电路; (2)调整V1电源的电压值,记录二极管的电流与电压并填入表1; (3)调整V2电源的电压值,记录二极管的电流与电压并填入表2; (4)根据实验结果,绘制二极管的伏安特性。 表一 V1 200mv 300mv 400mv 500mv 600mv 700mv 800mv 1v 2v 3v ID VD 表二 V1 I D V D 绘制U—I图: 2.交流条件下二极管电压波形仿真;

D1 1N4001GP R1 100Ω V16 Vpk 100 Hz 0° XSC1 A B C D G T 2 1 仿真电路图 仿真结果

3.二极管应用电路 (1)桥式整流电路 D1 1N4001 D2 1N4001 D3 1N4001 D4 1N4001 V115 Vpk 60 Hz 0° R1100Ω 1 3 45 用示波器测量R1两端波形,并记录

桥式整流电路仿真 D1 1N4001 D21N4001 D3 1N4001 D41N4001 V115 Vpk 60 Hz 0° R12kΩ 4 XSC1 A B Ext Trig + + _ _ + _ 3 2 仿真结果

LED的光学特性

LED作为一个光源,LED电源工厂的光学参数包括光和辐射在空间分布的能量参数、光和辐射能量的光谱分布参数及它们在人眼中所引起的心理响应。LED的光学特征参数包括:光通量、发光强度、相对光谱功率分布特性、峰值波长和峰值波长半宽度等,这些都是衡量LED作为一个光源的发光特性的主要参数. 2.3.1相对光谱功率分布 LED的相对光谱功率分布是在其光辐射波长范围内(u],各个波长的辐射功率分布情况.常采用光谱辐射计进行测量.在实际场合中通常用相对光谱功率分布来表示。光谱密度与波长之间的函数关系称为光谱分布.以光谱密度的相对值与波长之间的函数关系来描述光谱分布.称为相对光谱能量(功率)分布PM.光谱波长丸为横坐标,相对光谱能量分布PM为纵坐标,就可以绘制出光源相对光谱能量分布曲线.知道了光源的相对光谱能量分布,就知道了光源的颜色特性.反过来说,光源的颜色特性,取决于在发出的光线中,不同波长上的相对能量比例,而与光谱密度的绝对值无关。绝对值的大小只反映光的强弱,不会引起光源颜色的变化. 人眼对色彩的感知是一种错综复杂的过程,为了将色彩的描述加以量化,国际照明协会(CIE)根据标准观侧者的视觉实验,将人眼对不同波长的辐射能所引起的视觉感加以记录在RGB系统的墓础上采用设想的三原色X. Y, Z(分别代表红色,绿色和蓝色),建立了CIE-1931色度图,同时将匹配等能光谱各种颜色的三原色数据标准化,确定了“CIE1931-XYZ标准色度学系统”.计算出三原色的配色函数,经过数学转换后即得所谓的CIE1931标准色度观察者光谱三刺激值曲线,如图(12]2一所示,将人眼对可见光的刺激值以XYZ表示.根据此配色函数,后续发展出数种色彩度量定义.使人们得以对色彩加以描述运用. LED的光谱功率分布的测试需要通过分光进行,将各色光从混合的光中区分出来进行测定,采用棱镜和光栅实现分光·对于实现了空间分离分布的各个波长的光,一般用单色仪各个波长逐个采集或线阵CCD全波段一次采集的方法得到整个光谱功率分布曲线.

光电二极管02

贵州民族学院 《光电探测与信号处理》 课程论文 《光电二极管》 学院计算机与信息工程学院 专业光信息科学与技术 班级09 光信 姓名张家文 学号 2 0 0 9 0 7 0 4 0 0 5 4 指导教师李林福

光电二极管 张家文 摘要:通过实验测量的方法分析光电二极管的伏安特性、暗电流、光电流及光照特性、光谱特性参数,用测试参数进行数据处理和分析。 关键词:光电二极管伏安特性光电流光谱特性 一、光电二极管的工作原理: 光电二极管是将光信号变成电信号的半导体器件。它的核心部分也是一个PN结,和普通二极管相比,在结构上不同的是,为了便于接受入射光照,PN结面积尽量做的大一些,电极面积尽量小些,而且PN结的结深很浅,一般小于1微米。光电二极管是在反向电压作用之下工作的。没有光照时,反向电流很小(一般小于0.1微安),称为暗电流。当有光照时,携带能量的光子进入PN结后,把能量传给共价键上的束缚电子,使部分电子挣脱共价键,从而产生电子---空穴对,称为光生载流子。它们在反向电压作用下参加漂移运动,使反向电流明显变大,光的强度越大,反向电流也越大。这种特性称为“光电导”。光电二极管在一般照度的光线照射下,所产生的电流叫光电流。如果在外电路上接上负载,负载上就获得了电信号,而且这个电信号随着光的变化而相应变化。光电二极管、光电三极管是电子电路中广泛采用的光敏器件。光电二极管和普通二极管一样具有一个PN结,不同之处是在光电二极管的外壳上有一个透明的窗口以接收光线照射,实现光电转换。 二、光电二极管的种类、特性与用途: 1.PN型: 特性:优点是暗电流小,一般情况下,响应速度较低。 用途:照度计、彩色传感器、光电三极管、线性图像传感器、分光光度计、照相机曝光计。 2.PIN型: 特性:缺点是暗电流大,因结容量低,故可获得快速响应。 用途:高速光的检测、光通信、光纤、遥控、光电三极管、写字笔、传真。 3.发射键型: 特性:使用Au薄膜与N型半导体结代替P型半导体。 用途:主要用于紫外线等短波光的检测。 4.雪崩型: 特性:相应速度非常快,因具有倍速做用,故可检测微弱光。 用途:高速光通信、高速光检测。 三、光电二极管的特性测试: 1、光电二极管伏安特性测试: 光电二极管的基本特性:光电二极管的输出光电流与偏压的关系称为伏安特性。 图1为光电二极管正偏和反偏的工作状态:

光电二极管三极管的性能及运用

光电二极管及光电三极管的工作原理及用途 可得工贸的光电二极管和光电三极管具有低功耗、响应速度快、抗干扰性能强等特点,可得公司是一家专业从事研发, 生产,销售LED和红外光电器件的高新技术企业:其中光敏二极管、850nm/940nm红外发射管,LED数码管,数码模块,以及发光二极管等产品以良好的品质受到市场的认可。 在红外遥制系统中,光电二极管(也称光敏二极管)及光电三极管(也称光敏三极管)均为红外线接收管,它把接收到的红外线变成电信号,经过放大及信号处理后用于各种控制。除广泛用于红外线遥控外,还可用于光纤通信、光纤传感器、工业测量、自动控制、火灾报警器、防盗报警器、光电读出装置(纸带读出器、条形码读出器等)及光电耦合器等方面。 不同用途的光电二极管有不同的外形及封装,但用于红外遥控的光电二极管一般都是树脂封装的。为减少可见光的干扰常采用黑色树脂,可以滤掉700nm波长以下的光线。常见的几种光电二极管外形。对方形或长方形的管子,往往做出标记角,指示受光面的方向。一般如引脚长短不一样,长者为正极。 光电三极管可以等效为一个光电二极管与一只晶体三极管的组合,所以它具有电流放大作用。其等效电路、外形及电路符号,光电三极管一般仅引出集电极及发射极两个引脚,外形与一般发光二极管一样,常用透明树脂封装。光电二极管及光电三极管的管芯主要用硅材料制作。 光电二极管的两种工作状态 当光电二极管加上反压时,管子的反向电流将随光照强度的变化而变化如同一个光敏电阻,光照强度越大电阻越小,反向电流越大。大多数情况都工作于这种状态。光电二极管上不加电压,利用P?N结受光照射时产生正向电压的原理,可看作微型光电池。这种工作状态一般用作光电检测器。光电二极管的工作电压VR ,允许的最高反向电压一般不超过10V,最高的可达50V。 暗电流ID及光电流IL ,无光照时,加一定反压时的反向漏电流称为暗电流ID,一般ID小于100nA ???。加一定反压并受到光照时流过管子的电流称为光电流 IL,一般光电流IL为几十微安 ???,并且与照度成线性关系。 光谱特性。硅光电二极管的光谱范围为400~1100nm,其峰值波长为880~900nm,如图7所示。这与GaAs红外发光二极管的波长相匹配,可获得较高的传输效率。但它除能接收红外光以外,对可见光也敏感,所以要加滤光措施或防止阳光或灯光的干扰。 光电三极管的特性与一般晶体管相同,差别仅在于参变量不同:三极管的参变量是基极电流,而光电三极管的参变量是入射光强。光电三极管的主要参数有:反向击穿电压VR(最小的为5V,最大的可达75V以上);暗电流ID小于0?3μA (300nA);光电流IL在0?4~2.5mA之间,最大功耗Pm为50~100mW。 PH302及PT331C的主要特性。

相关文档
最新文档