初中数学竞赛专题选讲配方法含答案.doc

初中数学竞赛专题选讲配方法含答案.doc
初中数学竞赛专题选讲配方法含答案.doc

初中数学竞赛专题[ 配方法 ]

一、内容提要

1. 配方:这里指的是在代数式恒等变形中,把二次三项式a2

±2ab+b2写成完全平方式

(a± b)2. 有时需要在代数式中添项、折项、分组才能

写成完全平方式 .

常用的有以下三种:

①由a2+b2配上2ab ,②由 2 ab配上a2+b2,

③由 a2± 2ab 配上 b2.

2.运用配方法解题,初中阶段主要有:

①用完全平方式来因式分解

例如:把x4+4 因式分解 .

原式= x4+4+ 4x2- 4x2=(x 2+2) 2- 4x2=??

这是由 a2+b2配上 2ab.

② 二次根式化简常用公式: a 2 a ,这就需要把被开方数

写成完全平方式 .

例如:化简 5 2 6 .

我们把 5-2 6 写成 2 -2 2 3 +3

= ( 2 )2-2 2 3 + ( 3) 2

=( 2 - 3 )2.

这是由 2 ab 配上 a2+b2.

③ 求代数式的最大或最小值, 方法之一是运用实数的平方

是非负数,零就是最小值 . 即∵ a 2≥ 0, ∴当 a=0 时, a 2 的值为 0 是最小值 .

例如:求代数式 a 2+2a -2 的最值 .

∵ a 2+2a - 2= a 2+2a+1- 3=(a+1) 2- 3

当 a=- 1 时 , a 2

+2a - 2 有最小值- 3.

这是由 a 2± 2ab 配上 b 2

④ 有一类方程的解是运用几个非负数的和等于零,

则每一

个非负数都是零,有时就需要配方

.

例如 : :求方程 x 2+y 2+2x-4y+5=0 的解 x, y.

解:方程 x 2+y 2+2x-4y+1 + 4= 0.

配方的可化为

( x+1)2+(y - 2) 2=0.

x 1 0 要使等式成立,必须且只需

2

. y 0 解得

x 1 y

2

此外在解二次方程中应用根的判别式,或在证明等式、

不等式时,也常要有配方的知识和技巧

.

二、例题

例1. 因式分解: a2b2-a2+4ab- b2+1.

解: a2b2- a2+4ab - b2+1 = a2b2+2ab+1+( - a2+2ab - b2) (折项,分组)

=(ab+1)2-(a-b) 2

(配方)

=(ab+1+a-b)(ab+1-a+b) (用平方差公式分解)

本题的关鍵是用折项,分组,树立配方的思想.

例 2. 化简下列二次根式:

① 7 4 3 ;② 2 3 ;③ 10 4 3 2 2 .

解:化简的关键是把被开方数配方

① 7 4 3 = 4 2 2 3 3 = (2 3) 2

= 2 3 =2+ 3 .

② 2 3 = 2 2 3 = 4 2 3 = ( 3 1) 2

2 2 2

= 2 ( 3 1) =. 62

2 2

③ 10 4 3 2 2 = 10 4 ( 2 1) 2

= 10 4( 2+1)

= 6 4 2 = 4 2 2 2 2 =

( 2

2) 2 =2- 2 .

=

例 3. 求下列代数式的最大或最小值:

① x 2+5x+1; ② - 2x 2- 6x+1 .

解:① x 2+5x+1=x 2+2× 5 x+ 5

2 - 25 +1

`2 2

4

=( x+ 5

)2

- 21

.

2

4

∵( x+ 5

) 2≥ 0,其中 0

是最小值 .

2

即当 x= 5 时, x 2

+5x+1 有最小值- 21 .

2

4

②- 2x 2- 6x+1 =- 2( x 2+3x-

1 )

2

=-2(x 2

+2× 3

x+

9

9

- 1 )

2 4

4

2

=- 2( x+ 3 ) 2+11

2

2

∵- 2( x+ 3

)2≤ 0,其中 0 是最大值,

2

∴当 x=- 3 时,- 2x 2

-6x+1 有最大值 11.

2

2

例 4. 解下列方程:

① x 4- x 2+2xy+y 2+1=0 ;

② x 2+2xy+6x+2y 2+4y+10=0.

解:①( x 4-2x 2+1)+( x 2+2xy+y 2) =0 .

(折项,分组)

(x 2- 1) 2+(x+y) 2=0.

(配方)

根据“几个非负数的和等于零,则每一个非负数都应等

于零” .

x 2

1

x

y

x

1, 或

x 1

y 1

y 1

② x 2+2xy+y 2+6x+6y+9+y 2-2y+1=0 . ( 折项,分组 )

(x+y) 2+6( x+y ) +9+y 2

- 2y+1=0.

(x+y+3) 2+(y -1) 2=0.

(配方)

∴ x y 3 0 ∴

x 4

y 1 0

y

1

例 5. 已知: a, b,

2

2

2

2

c, d 都是整数且 m=a+b , n=c +d ,

则 mn 也可以表示为两个整数的平方和, 试写出其形式 .

解: mn=( a 2+b 2)( c

2

+d 2)= a 2c 2+ +a 2d 2 +b 2 c 2+ b 2 d 2

= a

2c 2

+ b 2 d 2+2abcd+ a 2d 2 +b 2 c 2

-2abcd (

组,添项 )

=(ac+bd) 2+(ad-bc) 2

例 6. 求方程 x 2+y 2-4x+10y+16=0 的整数解

解: x 2-4x+16+y 2+10y+25=25 ( 添项 )

( x - 4) 2+(y+5) 2= 25

(配方)

∵ 25 折成两个整数的平方和,只能是 0 和 25; 9 和 16.

( x 4) 2 0

( x 4) 2 25 ( x 4) 2 9

(x 4)2

16 ( y 5) 2

( y 5) 2

( y 5) 2

25 0

16

( y 5) 2

9

x 4 0

得 x 4

y

5 5

y

同理,共有 12 个解

x

4 x 9 x 1 ??

y 10 y -5 y

5

三、练习

1. 因式分解:

① x 4+x 2y 2+y 4 ;

② x 2-2xy+y 2-6x+6y+9 ; ③

x 4+x 2-2ax-a 2+1. 2. 化简下列二次根式:

① 4 x

2

12x

9

4 x 2 20x

25

(- 3 < x< 5

);

2

2

② x 2

4 x

x 3 3x 2 (1

4

x 2

③ 17

12 2 ;

④ 3 5 ; ⑤ 11 4 4 2 3 ;

⑥ 3 5

3 5 ;

⑦( 14+6

5 )÷( 3+ 5 ); ⑧(

2

2

3 x )+ x 8x 16 .

3 求下列代数式的最大或最小值:

① 2x 2

+10x+1 ; ②- 1 x 2+x-1.

2

22

- 4a - 2b+5 . 求:

a

b

4. 已知: a +b 3 2 2

的值 .

5.

已知: a 2+b 2+c 2=111, ab+bc+ca=29 .

求: a+b+c 的值 .

6. 已知:实数 a, b, c

满足等式 a+b+c=0, abc=8 . 试判断代数式 1 1 1

值的正负 .

a b c

7. 已知: x= 19 8

3 , 求:

x 4

6x 3 2x 2 16x 23 .

x 2 8x 15

参考答案

1. ②( x - y - 3) 2

2. ① 8,

②0.5x , ③ 3-2

2 ,

④ 10

2

2

2+

3 , ⑥

10

⑦ 3+ 5 ,

⑧ 7- 2x ( x ≤ 3)

3.

①当 x=- 5

时,有最小值-

23 ②x=1 时,有最

大值-

1

2

2

2

4.

a=2, b=1 代数式值是 3+2 2

5.

± 13

2

得出 ab+ac+bc<0

6. 负数。由( a+b+c )=0

4. 值为 5。 先化简已知为 4- 3 ,代入分母值为

2, 可

知 x 2- 8x+13=0

分子可化为( x 2+2x+1)(x 2- 8x+13)+10 = 10

5. 配方( a - b ) 2+(b - c) 2=0

6. ①

x 6 ②

x

1, 1

x

2

y

3

y 1,1

y 1

7.

x 1 x 1 x

1 x 1 ② ( x-3 )

y

1 y

2 y

3 y

2

2

+(y+5) 2=9 ??

初中数学竞赛常用解题方法(代数)

初中数学竞赛常用解题方法(代数) 一、 配方法 例1练习:若2 ()4()()0x z x y y z ----=,试求x+z 与y 的关系。 二、 非负数法 例21 ()2 x y z =++. 三、 构造法 (1)构造多项式 例3、三个整数a 、b 、c 的和是6 的倍数.,那么它们的立方和被6除,得到的余数是( ) (A) 0 (B) 2 (C) 3 (D) 不确定的 (2)构造有理化因式 例4、 已知(2002x y =. 则2 2 346658x xy y x y ----+=___ ___。 (3)构造对偶式 例5、 已知αβ、是方程2 10x x --= 的两根,则4 3αβ+的值是___ ___。 (4)构造递推式 例6、 实数a 、b 、x 、y 满足3ax by +=,2 2 7ax by +=,3 3 16ax by +=,4 4 42ax by +=.求5 5 ax by +的值___ ___。 (5)构造几何图形 例7、(构造对称图形)已知a 、b 是正数,且a + b = 2. 求u =___ ___。 练习:(构造矩形)若a ,b 形的三条边的长,那么这个三角形的面积等于___________。 四、 合成法 例8、若12345,,,x x x x x 和满足方程组

123451234512345123451234520212 224248296 x x x x x x x x x x x x x x x x x x x x x x x x x ++++=++++=++++=++++=++++= 确定4532x x +的值。 五、 比较法(差值比较法、比值比较法、恒等比较法) 例9、71427和19的积被7除,余数是几? 练习:设0a b c >>>,求证:222a b c b c c a a b a b c a b c +++>. 六、 因式分解法(提取公因式法、公式法、十字相乘法) 1221()(...)n n n n n n a b a b a a b ab b -----=-++++ 1221()(...)n n n n n n a b a b a a b ab b ----+=+-+-+ 例10、设n 是整数,证明数3 231 22 M n n n =++为整数,且它是3的倍数。 练习:证明993 991993 991+能被1984整除。 七、 换元法(用新的变量代换原来的变量) 例11、解方程2 9(87)(43)(1)2 x x x +++= 练习:解方程 11 (1) 11 (1x) x =. 八、 过度参数法(常用于列方程解应用题) 例12、一商人进货价便宜8%,售价保持不变,那么他的利润(按进货价而定)可由目前的 %x 增加到(10)%x +,x 等于多少? 九、 判别式法(24b ac ?=-判定一元二次方程20ax bx c ++=的根的性质) 例13、求使2224 33 x x A x x -+=-+为整数的一切实数x. 练习:已知,,x y z 是实数,且 2 2 2 212 x y z a x y z a ++=++=

高中数学竞赛中数论问题的常用方法

高中数学竞赛中数论问题的常用方法 数论是研究数的性质的一门科学,它与中学数学教育有密切的联系.数论问题解法灵活,题型丰富,它是中学数学竞赛试题的源泉之一.下面介绍数论试题的常用方法. 1.基本原理 为了使用方便,我们将数论中的一些概念和结论摘录如下: 我们用),...,,(21n a a a 表示整数1a ,2a ,…,n a 的最大公约数.用[1a ,2a ,…,n a ]表示1a ,2a ,…,n a 的 最小公倍数.对于实数x ,用[x ]表示不超过x 的最大整数,用{x }=x -[x ]表示x 的小数部分.对于整数 b a ,,若)(|b a m -,,1≥m 则称b a ,关于模m 同余,记为)(mod m b a ≡.对于正整数m ,用)(m ?表示 {1,2,…,m }中与m 互质的整数的个数,并称)(m ?为欧拉函数.对于正整数m ,若整数m r r r ,...,,21中任何两个数对模m 均不同余,则称{m r r r ,...,,21}为模m 的一个完全剩余系;若整数)(21,...,,m r r r ?中每一个数都与m 互质,且其中任何两个数关于模m 不同余,则称{)(21,...,,m r r r ?}为模m 的简化剩余系. 定理1 设b a ,的最大公约数为d ,则存在整数y x ,,使得yb xa d +=. 定理2(1)若)(mod m b a i i ≡,1=i ,2,…,n ,)(m od 21m x x =,则 1 1n i i i a x =∑≡2 1 n i i i b x =∑; (2)若)(mod m b a ≡,),(b a d =,m d |,则 )(mod d m d b d a ≡; (3)若b a ≡,),(b a d =,且1),(=m d ,则)(mod m d b d a ≡; (4)若b a ≡(i m mod ),n i ,...,2,1=,M=[n m m m ,...,,21],则b a ≡(M mod ). 定理3(1)1][][1+<≤<-x x x x ; (2)][][][y x y x +≥+; (3)设p 为素数,则在!n 质因数分解中,p 的指数为 ∑≥1 k k p n . 定理4 (1)若{m r r r ,...,,21}是模m 的完全剩余系,1),(=m a ,则{b ar b ar b ar m +++,...,,21}也是模 m 的完全剩余系; (2)若{)(21,...,,m r r r ?}是模m 的简化剩余系,1),(=m a ,则{)(21...,,m ar ar ar ?}是模m 的简化剩余系. 定理5(1)若1),(=n m ,则)()()(n m mn ???=. (2)若n 的标准分解式为k k p p p n ααα (2) 121=,其中k ααα,...,21为正整数,k p p p ,...,21为互不相

高中数学竞赛解题方法篇(不等式)

高中数学竞赛中不等式的解法 摘要:本文给出了竞赛数学中常用的排序不等式,平均值不等式,柯西不等式和切比雪夫不等式的证明过程,并挑选了一些与这几类不等式相关的一些竞赛题进行了分析和讲解。 希望对广大喜爱竞赛数学的师生有所帮助。 不等式在数学中占有重要的地位,由于其证明的困难性和方法的多样性,而成为竞赛数学中的热门题型.在解决竞赛数学中的不等式问题的过程中,常常要用到几个著名的代数不等式:排序不等式、平均值不等式、柯西不等式、切比雪夫不等式.本文就将探讨这几个不等式的证明和它们的一些应用. 1.排序不等式 定理1 设1212...,...n n a a a b b b ≤≤≤≤≤≤,则有 1211...n n n a b a b a b -+++ (倒序积和) 1212...n r r n r a b a b a b ≤+++(乱序积和) 1122 ...n n a b a b a b ≤+++(顺序积和) 其中1,2,...,n r r r 是实数组1,2,...,n b b b 一个排列,等式当且仅当12...n a a a ===或 12...n b b b ===时成立.

(说明: 本不等式称排序不等式,俗称倒序积和乱序积和顺序积和.) 证明:考察右边不等式,并记1 2 12...n r r n r S a b a b a b =+++。 不等式 1 2 12...n r r n r S a b a b a b ≤+++的意义:当121,2,...,n r r r n ===时,S 达到 最大值1122 ...n n a b a b a b +++.因此,首先证明n a 必须和n b 搭配,才能使S 达到最大值.也即,设n r n <且n b 和某个()k a k n <搭配时有 .n n k n n r k r n n a b a b a b a b +≤+ (1-1) 事实上, ()()()0n n n n n k r k n n r n r n k a b a b a b a b b b a a +-+=--≥ 不等式(1-1)告诉我们当n r n <时,调换n b 和n r b 的位置(其余n-2项不 变),会使和S 增加.同理,调整好n a 和n b 后,再调整1n a -和1n b -会使和增加.经过n 次调整后,和S 达到最大值1122 ...n n a b a b a b +++,这就证明了 1212...n r r n r a b a b a b +++1122 ...n n a b a b a b ≤+++. 再证不等式左端, 由1211...,...n n n a a a b b b -≤≤≤-≤-≤≤-及已证明的不等式右端, 得 1211(...)n n n a b a b a b --+++1212(...)n r r n r a b a b a b ≥-+++

初中数学竞赛专题选讲-配方法(含答案)

初中数学竞赛专题[配方法] 一、内容提要 1. 配方:这里指的是在代数式恒等变形中,把二次三项式a 2 ±2ab+b 2 写成完全平方式 (a ±b )2. 有时需要在代数式中添项、折项、分组才能写成完全平方式. 常用的有以下三种: ①由a 2 +b 2 配上2ab , ②由 2 ab 配上a 2 +b 2 , ③由a 2 ±2ab 配上b 2 . 2. 运用配方法解题,初中阶段主要有: ① 用完全平方式来因式分解 例如:把x 4 +4 因式分解. 原式=x 4 +4+4x 2 -4x 2 =(x 2 +2)2 -4x 2 =…… 这是由a 2 +b 2配上2ab. ② 二次根式化简常用公式:a a =2,这就需要把被开方数 写成完全平方式. 例如:化简6 25-. 我们把5-2 6写成 2-232+3 =2)2(-232+2)3( =( 2-3) 2 . 这是由2 ab 配上a 2 +b 2 .

③ 求代数式的最大或最小值,方法之一是运用实数的平方是非负数,零就是最小值.即∵a 2 ≥0, ∴当a=0时, a 2 的值为0是最小值. 例如:求代数式a 2 +2a -2 的最值. ∵a 2 +2a -2= a 2 +2a+1-3=(a+1)2 -3 当a=-1时, a 2 +2a -2有最小值-3. 这是由a 2 ±2ab 配上b 2 ④ 有一类方程的解是运用几个非负数的和等于零,则每一个非负数都是零,有时就需要配方. 例如::求方程x 2 +y 2 +2x-4y+5=0 的解x, y. 解:方程x 2 +y 2 +2x-4y+1+4=0. 配方的可化为 (x+1)2 +(y -2)2 =0. 要使等式成立,必须且只需? ??=-=+0201y x . 解得 ???=-=2 1 y x 此外在解二次方程中应用根的判别式,或在证明等式、不等式时,也常要有配方的知识和技巧.

初中数学竞赛专题辅导--函数图像

初中数学竞赛专题选讲 函数的图象 一、内容提要 1. 函数的图象定义:在直角坐标系中,以自变量x 为横坐标和以它的函数y 的对应值为纵 坐标的点的集合,叫做函数y=f(x)的图象. 例如 一次函数y=kx+b (k,b 是常数,k ≠0)的图象是一条直线 ① l 上的任一点p 0(x 0,y 0) 的坐标,适合等式y=kx+b, 即y 0=kx ② 若y 1=kx 1+b ,则点p 1(x 1,y 1) 在直线l 上. 2. 方程的图象:我们把y=kx+b 看作是关于x, y 的 二元 一次方程kx -y+b=0, 那么直线l 就是以这个方程的解为坐标 的点的集合,我们把这条直线叫做二元一次方程的图象. 二元一次方程ax+by+c=0 (a,b,c 是常数,a ≠0,b ≠0) 叫做 直线方程. 一般地,在直角坐标系中,如果某曲线是以某二元方程的解为坐标的 点的集合,那么这曲线就叫做这个方程的图象. 例如: 二元二次方程y=ax 2+bx+c(a ≠0) (即二次函数)的图象是抛物线; 二元分式方程y= x k (k ≠0) (即反比例函数)的图象是双曲线. 3. 函数的图象能直观地反映自变量x 与函数y 的对应规律. 例如: ① 由图象的最高,最低点可看函数的最大,最小值; ② 由图象的上升,下降反映函数 y 是随x 的增大而增大(或减小); ③ 函数y=f(x)的图象在横轴的上方,下方或轴上,分别表示y>0,y<0,y=0. 图象所对应 的横坐标就是不等式f(x)>0,f(x)<0 的解集和方程f(x)=0的解. ④ 两个函数图象的交点坐标,就是这两个图象所表示的两个方程(即函数解析式)的公 共解.等等 4. 画函数图象一般是: ①应先确定自变量的取值范围. 要使代数式有意义,并使代数式所表示的实际问题有意义,还要注意是否连续,是否有界. ②一般用描点法,但对一次函数(二元一次方程)的图象,因它是直线(包括射线、线段),所以可采用两点法.线段一定要画出端点(包括临界点). ③对含有绝对值符号(或其他特殊符号)的解析式 ,应按定义对自变量分区讨论,写成几个解析式. 二、例题 例1. 右图是二次函数y=ax 2+bx+c (a ≠0), 试决定a, b, c 及b 2-4ac 的符号. 解:∵抛物线开口向下, ∴a<0. ∵对称轴在原点右边,∴x=- a b 2>0且a<0, ∴b>0. ∵抛物线与纵轴的交点在正半轴上, ∴截距c>0. ∵抛物线与横轴有两个交点, ∴b 2-4ac>0. 例2. 已知:抛物线f :y=-(x -2)2+5. 试写出把f 向左平行移动2个单位后,所得的曲线f 1的方程;以及f 关于x 轴对称的曲线f 2 的方程. 画出f 1和f 2的略图,并求:

初中数学竞赛题中方程解的讨论问题解题策略(一)

- 1 - 初中数学竞赛题中方程解的讨论问题解题策略(一) 安徽省巢湖市教学研究室 张永超 (本讲适合初中) 方程是一种重要的数学模型,也是重要的数学思想之一。有关方程的解的讨论问题一直是初中数学竞赛试题的热点与难点。解决有关方程的解的讨论问题往往涉及到分类讨论、数形结合等数学思想。 一、知识要点 1.形如 方程的解的讨论: ⑴若=0,①当=0时,方程有无数个解; ②当≠0时,方程无解; ⑵若≠0,方程的解为=。 2.关于一元二次方程(≠0)根的讨论,一般需应用到根的判别式、根与系数的关系等相关 知识。 ⑴若 ,则它有一个实数根=1;若 ,则它有一个实数根=-1。 ⑵运用数形结合思想将方程(≠0)根的讨论与二次函数 (≠0)的图象结合 起来考虑是常用方法。 3.涉及分式方程根的讨论,一般考虑使公分母为零的整式方程的根(即原分式方程的增根)。 4.关于含绝对值的方程解的讨论,一般使用分类讨论的方法去掉绝对值符号,有时也应用到数形结合思想与绝对值的几何意义。 5.解决有关方程整数根的问题时,一般要应用到整数的知识,要理解整除、质数等相关概念。 二、例题选讲 1.方程整数根的讨论 例1.已知 ,且方程 的两个实数根都是整数,则其最大的根是 。 解:设方程的两个实数根 为 、 , 则 ,所 以 。因为 、都是整数,且97是质数,若设 < ,则 , ,或 , ,因此最大的根是98。 评注:此题解答应用了一元二次方程根与系数的关系,分解质因数的知识等方法与技能。这种方法在有关一元二次方程整数根的讨论问题中经常用到,如:

- 2 - 类题.(2004年四川)已知,为整数,关于的方程有两个相同的实数 根,则-等于( ) A.1; B.2; C.±1; D.±2. 分析:依题意得⊿=,所以 ,由,为整 数得 ,或 ,或 ,或 , 所以-=± 1。 例2.(2000年全国竞赛)已知关于的方程的根都是整数,那么符合条件的整数 有______个。 解:上述方程没有说明是一次方程还是二次方程,因此需要分类讨论。 ①当时, ,符合题意; ②当 时,原方程是一元二次方程,易知 是方程的一个整数根。设是方程的另一个整数根, 由一元二次方程根与系数的关系得。因为 是整数,所以 ±1,或±2,∴ =-1,0,2, 3。 结合①、②得,本题符合条件的整数有5个。 评注:本例首先对项的系数是否为零进行了分类讨论。对于 时方程解的讨论方法具有一般性, 即由 是整数判断得 ±1,或±2。 延伸拓展:例2关于一元二次方程整数解的讨论方法应用到整除知识与分解变形技巧,是初中数学竞赛常考的内容,如: (2004年信利杯)已知、是实数,关于、的方程组有整数解(,),求、满 足的关系式。 解:原方程组可化 为 ,所 以 ,显然方程中≠-1,因 此 。因为、是整数,所以 ,即=0,或-2。 当=0时,=0,此时、满足的关系式是=0(为任意实数); 当=-2时,=8,此时、满足的关系式。 例3.(2004年全国联赛)已知方程 的根都是整数,求整数的值。

小学数学竞赛一几种解题方法

一几种解题方法 1.28分。提示:按从多到少顺序枚举。如果小军是两个1角硬币,那么小红的三枚硬币不可能是18分;当小军是一个1角一个5分时,小红是一个1角,一个2分,一个1分。 2.5种。 3.495。解:因为93>700,所以只有下面三种可能: 13+33+53=153 13+33+73=371, 33+53+73=495,其中只有495是11的倍数。 4.286。解:此数是13的偶数倍,必能被26整除。由260依次往小试验,260-26=234,234-26=208,都不符合题意。再由260往大试验,260+26=286符合题意。 5.15。解:1与不小于4的任何自然数都不满足题意,所以四个数中没有1。取2,3,4,a,前三个数满足条件,a=5不满足条件,a=6满足条件。所求数为2+3+4+6=15。 6.8种。解:将四个瓶子依次记为A,B,C,D,将四张标签依次记为a,b,c,d。假设A贴对了,其余的都贴错了,有两种情况: ①Aa,Bc,Cd,Db;②Aa,Bd,Cb,Dc。 同理B,C,D贴对了,其余的都贴错了,也各有两种情况。共8种。 7.10种。提示:有0,0,3;0,1,2;0,2,1;0,3,0;1,0,2;1,1,1;1,2,0;2,0,1;2,1,0;3,0,0十种方法。 8.7。解:不拆盒可买的节数有3,5,8,9,10,…因为超过10的数都可以由8,9,10中的某个数加3的倍数形成,而8,9,10都可以不拆盒,所以买7节以上(不含7)都不必拆盒。 9.11。提示:与第8题类似。 10.18支、10支、6支、4支。提示:因为总的铅笔数不多,故可依次假设丁有2支、3支、4支……铅笔。 11.21个。 提示:乙的红球、白球都是偶数。因为甲的红球数是乙的白球数的2倍,并且不超过10,所以乙的白球数只能是2或4。

初中数学竞赛专题选讲《完全平方数和完全平方式》

初中数学竞赛专题选讲 完全平方数和完全平方式 一、内容提要 一定义 1. 如果一个数恰好是某个有理数的平方,那么这个数叫做完全平方数. 例如0,1,0.36,25 4,121都是完全平方数. 在整数集合里,完全平方数,都是整数的平方. 2. 如果一个整式是另一个整式的平方,那么这个整式叫做完全平方式. 如果没有特别说明,完全平方式是在实数范围内研究的. 例如: 在有理数范围 m 2, (a+b -2)2, 4x 2-12x+9, 144都是完全平方式. 在实数范围 (a+3)2, x 2+22x+2, 3也都是完全平方式. 二. 整数集合里,完全平方数的性质和判定 1. 整数的平方的末位数字只能是0,1,4,5,6,9.所以凡是末位数字为2,3,7,8的整数必不是平方数. 2. 若n 是完全平方数,且能被质数p 整除, 则它也能被p 2整除.. 若整数m 能被q 整除,但不能被q 2整除, 则m 不是完全平方数. 例如:3402能被2整除,但不能被4整除,所以3402不是完全平方数. 又如:444能被3整除,但不能被9整除,所以444不是完全平方数. 三. 完全平方式的性质和判定 在实数范围内 如果 ax 2+bx+c (a ≠0)是完全平方式,则b 2-4ac=0且a>0; 如果 b 2-4ac=0且a>0;则ax 2+bx+c (a ≠0)是完全平方式. 在有理数范围内 当b 2-4ac=0且a 是有理数的平方时,ax 2+bx+c 是完全平方式. 四. 完全平方式和完全平方数的关系 1. 完全平方式(ax+b )2 中 当a, b 都是有理数时, x 取任何有理数,其值都是完全平方数; 当a, b 中有一个无理数时,则x 只有一些特殊值能使其值为完全平方数. 2. 某些代数式虽不是完全平方式,但当字母取特殊值时,其值可能是完全平方数. 例如: n 2+9, 当n=4时,其值是完全平方数. 所以,完全平方式和完全平方数,既有联系又有区别. 五. 完全平方数与一元二次方程的有理数根的关系 1. 在整系数方程ax 2+bx+c=0(a ≠0)中 ① 若b 2-4ac 是完全平方数,则方程有有理数根; ② 若方程有有理数根,则b 2-4ac 是完全平方数. 2. 在整系数方程x 2+px+q=0中 ① 若p 2-4q 是整数的平方,则方程有两个整数根; ② 若方程有两个整数根,则p 2-4q 是整数的平方.

高中数学竞赛解题方法篇不等式

高中数学竞赛解题方法篇 不等式 The pony was revised in January 2021

高中数学竞赛中不等式的解法 摘要:本文给出了竞赛数学中常用的排序不等式,平均值不等式,柯西不等式和切比雪夫不等式的证明过程,并挑选了一些与这几类不等式相关的一些竞赛题进行了分析和讲解。希望对广大喜爱竞赛数学的师生有所帮助。 不等式在数学中占有重要的地位,由于其证明的困难性和方法的多样性,而成为竞赛数学中的热门题型.在解决竞赛数学中的不等式问题的过程中,常常要用到几个着名的代数不等式:排序不等式、平均值不等式、柯西不等式、切比雪夫不等式.本文就将探讨这几个不等式的证明和它们的一些应用. 1.排序不等式 定理1 设1212...,...n n a a a b b b ≤≤≤≤≤≤,则有 1211...n n n a b a b a b -+++(倒序积和) 1212...n r r n r a b a b a b ≤+++(乱序积和) 1122 ...n n a b a b a b ≤+++(顺序积和) 其中1,2,...,n r r r 是实数组1,2,...,n b b b 一个排列,等式当且仅当12...n a a a ===或 12...n b b b ===时成立. (说明:本不等式称排序不等式,俗称倒序积和乱序积和顺序积和.) 证明:考察右边不等式,并记1212...n r r n r S a b a b a b =+++。

不等式1212...n r r n r S a b a b a b ≤+++的意义:当121,2,...,n r r r n ===时,S 达到最大值 1122 ...n n a b a b a b +++.因此,首先证明n a 必须和n b 搭配,才能使S 达到最大值.也即,设n r n <且n b 和某个()k a k n <搭配时有 .n n k n n r k r n n a b a b a b a b +≤+(1-1) 事实上, 不等式(1-1)告诉我们当n r n <时,调换n b 和n r b 的位置(其余n-2项不变),会使和S 增加.同理,调整好n a 和n b 后,再调整1n a -和1n b -会使和增加.经过n 次调整后,和S 达到最大值1122 ...n n a b a b a b +++,这就证明了1212...n r r n r a b a b a b +++1122 ...n n a b a b a b ≤+++. 再证不等式左端, 由1211...,...n n n a a a b b b -≤≤≤-≤-≤≤-及已证明的不等式右端, 得 即1211...n n n a b a b a b -+++1212...n r r n r a b a b a b ≤+++. 例1(美国第3届中学生数学竞赛题)设a,b,c 是正数,求证:3 ()a b c a b c a b c abc ++≥. 思路分析:考虑两边取常用对数,再利用排序不等式证明. 证明:不妨设a b c ≥≥,则有lg lg lg a b c ≥≥ 根据排序不等式有: 以上两式相加,两边再分别加上lg lg lg a a b b c c ++

初中数学竞赛专题选讲 一元二次方程的根(含答案)

初中数学竞赛专题选讲(初三.1) 一元二次方程的根 一 、内容提要 1.一元二次方程 ax 2 +bx+c=0(a ≠0)的实数根,是由它的系数a, b, c 的值确定的. 根公式是:x=a ac b b 242-±-. (b 2-4a c ≥0) 2.根的判别式 ①实系数方程 ax 2+bx+c=0(a ≠0)有实数根的充分必要条件是: b 2-4a c ≥0. ②有理系数方程 ax 2+bx+c=0(a ≠0)有有理数根的判定是: b 2-4a c 是完全平方式?方程有有理数根. ③整系数方程x 2+px+q=0有两个整数根?p 2-4q 是整数的平方数. 3.设 x 1, x 2 是ax 2+bx+c=0的两个实数根,那么 ①ax 12 +bx 1+c=0 (a ≠0,b 2-4ac ≥0), ax 22+bx 2+c=0 (a ≠0, b 2-4ac ≥0); ②x 1=a ac b b 242-+-, x 2=a ac b b 242--- (a ≠0, b 2-4ac ≥0); ③ 韦达定理:x 1+x 2= a b - , x 1x 2= a c (a ≠0, b 2-4ac ≥0). 4.方程整数根的其他条件 整系数方程ax 2+bx+c=0 (a ≠0)有一个整数根x 1的必要条件是:x 1是c 的因数. 特殊的例子有: C=0?x 1=0 , a+b+c=0?x 1=1 , a -b+c=0?x 1=-1. 二、例题 例1.已知:a, b, c 是实数,且a=b+c+1.

求证:两个方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等 的实数根. 证明 (用反证法) 设 两个方程都没有两个不相等的实数根, 那么△1≤0和△2≤0. 即?? ? ??++=≤-≤ ③ ② ①-1040412c b a c a b 由①得b ≥41,b+1 ≥45代入③,得 a -c=b+1≥4 5 , 4c ≤4a -5 ④ ②+④:a 2-4a+5≤0, 即(a -2)2+1≤0,这是不能成立的. 既然△1≤0和△2≤0不能成立的,那么必有一个是大于0. ∴方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根. 本题也可用直接证法:当△1+△2>0时,则△1和△2中至少有一个是正数. 例2.已知首项系数不相等的两个方程: (a -1)x 2-(a 2+2)x+(a 2+2a)=0和 (b -1)x 2-(b 2+2)x+(b 2+2b)=0 (其中a,b 为正整数) 有一个公共根. 求a, b 的值. 解:用因式分解法求得: 方程①的两个根是 a 和 12-+a a ; 方程②两根是b 和1 2 -+b b . 由已知a>1, b>1且a ≠b. ∴公共根是a= 12-+b b 或b=1 2-+a a .

高中数学竞赛基础知识讲解

高中数学竞赛基本知识集锦 广州市育才中学数学科 邓军民 整理 一、三角函数 常用公式 由于是讲竞赛,这里就不再重复过于基础的东西,例如六种三角函数之间的转换,两角和与差的三角函数,二倍角公式等等。但是由于现在的教材中常用公式删得太多,有些还是不能不写。先从最基础的开始(这些必须熟练掌握): 半角公式 2cos 12 sin α α -± = 2 cos 12 cos α α +± = α α ααααα cos 1sin sin cos 1cos 1cos 12 tan +=-=+-± = 积化和差 ()()[]βαβαβα-++= sin sin 21 cos sin ()()[]βαβαβα--+=sin sin 21 sin cos ()()[]βαβαβα-++=cos cos 21 cos cos ()()[]βαβαβα--+-=cos cos 2 1 sin sin 和差化积 2cos 2sin 2sin sin β αβ αβα-+=+ 2sin 2cos 2sin sin β αβαβα-+=- 2cos 2cos 2cos cos β αβαβα-+=+ 2 sin 2sin 2cos cos β αβαβα-+-=- 万能公式 α αα2 tan 1tan 22sin += α α α2 2tan 1tan 12cos +-= α α α2 tan 1tan 22tan -=

三倍角公式 ()() αααααα+-=-=οο60sin sin 60sin 4sin 4sin 33sin 3 ()() αααααα+-=-=οο60cos cos 60cos 4cos 3cos 43cos 3 二、某些特殊角的三角函数值 三、三角函数求值 给出一个复杂的式子,要求化简。这样的题目经常考,而且一般化出来都是一个具体值。要熟练应用上面的常用式子,个人认为和差化积、积化和差是竞赛中最常用的,如果看到一些不常用的角,应当考虑用和差化积、积化和差,一般情况下直接使用不了的时候,可以考虑先乘一个三角函数,然后利用积化和差化简,最后再把这个三角函数除下去 举个例子 求值:7 6cos 74cos 72cos π ππ++ 提示:乘以7 2sin 2π ,化简后再除下去。 求值:??-?+?80sin 40sin 50cos 10cos 2 2 来个复杂的 设n 为正整数,求证 n n n i n i 21 212sin 1 += +∏=π 另外这个题目也可以用复数的知识来解决,在复数的那一章节里再讲 四、三角不等式证明 最常用的公式一般就是:x 为锐角,则x x x tan sin <<;还有就是正余弦的有界性。 例 求证:x 为锐角,sinx+tanx<2x

初中数学竞赛辅导讲义及习题解答大全 (含竞赛答题技巧)

(共30套)初中数学竞赛辅导讲义及习题解答大全适合中学教师作为辅导教材使用

第一讲 走进追问求根公式 形如02=++c bx ax (0≠a )的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法. 而公式法是解一元二次方程的最普遍、最具有一般性的方法. 求根公式a ac b b x 2422 ,1-±-= 内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美. 降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决. 解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法. 【例题求解】 【例1】满足1)1(22=--+n n n 的整数n 有 个. 思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程. 【例2】设1x 、2x 是二次方程032=-+x x 的两个根,那么1942231+-x x 的值等于( ) A 、一4 B 、8 C 、6 D 、0 思路点拨:求出1x 、2x 的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如1213x x -=,2223x x -=. 【例3】 解关于x 的方程02)1(2=+--a ax x a . 思路点拨:因不知晓原方程的类型,故需分01=-a 及01≠-a 两种情况讨论. 【例4】 设方程04122=---x x ,求满足该方程的所有根之和. 思路点拨:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解. 【例5】 已知实数a 、b 、c 、d 互不相等,且x a d d c c b b a =+=+=+=+ 1 111, 试求x 的值. 思路点拨:运用连等式,通过迭代把b 、c 、d 用a 的代数式表示,由解方程求得x 的值. 注:一元二次方程常见的变形形式有: (1)把方程02=++c bx ax (0≠a )直接作零值多项式代换; (2)把方程02=++c bx ax (0≠a )变形为c bx ax --=2,代换后降次; (3)把方程02=++c bx ax (0≠a )变形为c bx ax -=+2或bx c ax -=+2,代换后使之转化关系或整体地消去x . 解合字母系数方程02=++c bx ax 时,在未指明方程类型时,应分0=a 及0≠a 两种情况讨论;解绝对值方程需脱去绝对值符号,并用到绝对值一些性质,如222 x x x ==.

初中数学竞赛专题选讲-三点共线

初中数学竞赛专题选讲 三点共线 一、内容提要 1. 要证明A ,B ,C 三点在同一直线上, A 。 B 。 C 。 常用方法有:①连结AB ,BC 证明∠ABC 是平角 ②连结AB ,AC 证明AB ,AC 重合 ③连结AB ,BC ,AC 证明 AB +BC =AC ④连结并延长AB 证明延长线经过点C 2. 证明三点共线常用的定理有: ① 过直线外一点有且只有一条直线和已知直线平行 ② 经过一点有且只有一条直线和已知直线垂直 ③ 三角形中位线平行于第三边并且等于第三边的一半 ④ 梯形中位线平行于两底并且等于两底和的一半 ⑤ 两圆相切,切点在连心线上 ⑥ 轴对称图形中,若对应线段(或延长线)相交,则交点在对称轴上 二、例题 例1.已知:梯形ABCD 中,AB ∥CD ,点P 是形内的任一点,PM ⊥AB , PN ⊥CD 求证:M ,N ,P 三点在同一直线上 证明:过点P 作EF ∥AB , ∵AB ∥CD ,∴EF ∥CD ∠1+∠2=180 ,∠3+∠4=180 ∵PM ⊥AB ,PN ⊥CD ∴∠1=90 ,∠3=90 ∴∠1+∠3=180 ∴ M ,N ,P 三点在同一直线上 例2.求证:平行四边形一组对边的中点和两条对角线的交点,三点在同一直 线上 已知:平行四边形ABCD 中,M ,N 分别是AD 和BC 的中点,O 是AC 和 BD 的交点 求证:M ,O ,N 三点在同一直线上 证明一:连结MO ,NO ∵MO ,NO 分别是△DAB 和△CAB 的中位线 ∴MO ∥AB ,NO ∥AB 根据过直线外一点有且只有一条直线和已知直线平行

∴ M ,O ,N 三点在同一直线上 证明二:连结MO 并延长交BC 于N , ∵MO 是△DAB 的中位线 ∴MO ∥AB 在△CAB 中 ∵AO =OC ,ON ,∥AB ∴BN ,=N ,C ,即N ,是BC 的中点 ∵N 也是BC 的中点, ∴点N ,和点N 重合 ∴ M ,O ,N 三点在同一直线上 例3.已知:梯形ABCD 中,AB ∥CD ,∠A +∠B =90 ,M ,N 分别是AB 和CD 的中点,BC ,AD 的延长线相交于P 求证:M ,N ,P 三点在同一直线上 证明:∵∠A +∠B =90 , ∠APB =Rt ∠ 连结PM ,PN 根据直角三角形斜边中线性质 PM =MA =MB ,PN =DN =DC ∴∠MPB =∠B ,∠NPC =∠B ∴PM 和PN 重合 ∴M ,N ,P 三点在同一直线上 例4.在平面直角坐标系中,点A 关于横轴的对称点为B ,关于纵轴的对称 点是C ,求证B 和C 是关于原点O 解:连结OA ,OB ,OC ∵A ,B 关于X 轴对称, ∴OA =OB ,∠AOX =∠BOX 同理OC =OA ,∠AOY =∠COY ∴∠COY +∠BOX =90 X ∴B ,O ,C 三点在同一直线上 ∵OB =OC ∴ B 和C 是关于原点O 的对称点 例5.已知:⊙O 1和⊙O 2相交于A ,B O 1 和⊙O 2于E ,F 。 求证:AE ,AF 和⊙O 1和⊙O 2的直径成比例 ,

【数学竞赛各阶段书籍推荐】

金牌学生推荐(可参照选择) 一、第零阶段:知识拓展 《数学选修4-1:几何证明选讲》 《数学选修4-5:不等式选讲》 《数学选修4-6:初等数论初步》 二、全国高中数学联赛各省赛区预赛(即省选初赛) 1、《五年高考三年模拟》B版或《3年高考2年模拟》第二轮复习专用 2、《高中数学联赛备考手册》华东师范大学出版社(推荐指数五颗星) 3、《奥赛经典:超级训练系列》高中数学沈文选主编湖南师范大学出版社(推荐指数五颗星) 4、单樽《解题研究》(推荐指数五颗星) 5、单樽《平面几何中的小花》(个别地区竞赛会考到平几) 6、《平面几何》浙江大学出版社 7、奥林匹克小丛书第二版《不等式的解题方法与技巧》苏勇熊斌著 三、第二阶段:全国高中数学联赛 一试 0、《奥林匹克数学中的真题分析》沈文选湖南师范大学出版社(推荐指数五颗星) 1、《高中数学联赛考前辅导》熊斌冯志刚华东师范大学出版社 2、《数学竞赛培优教程(一试)》浙江大学出版社 3、命题人讲座《数列与数学归纳法》单樽 4、《数列与数学归纳法》(小丛书第二版,冯志刚) 5、《数列与归纳法》浙江大学出版社韦吉珠 6、《解析几何的技巧》单樽(建议买华东师大出版的版本) 7、《概率与期望》单樽 8、《同中学生谈排列组合》苏淳 9、《函数与函数方程》奥林匹克小丛书第二版 10、《三角函数》奥林匹克小丛书第二版 11、《奥林匹克数学中的几何问题》沈文选(推荐指数五颗星) 12、《圆锥曲线的几何性质》 13、《解析几何》浙江大学出版社 二试 平几 1、高中数学竞赛解题策略(几何分册)沈文选(推荐指数五颗星)

2、《奥林匹克数学中的几何问题》沈文选(推荐指数五颗星) 3、奥林匹克小丛书第二版《平面几何》 4、浙大小红皮《平面几何》 5、沈文选《三角形的五心》 6、田廷彦《三角与几何》 7、田廷彦《面积与面积方法》 不等式 8、《初等不等式的证明方法》韩神 9、命题人讲座《代数不等式》计神 10、《重要不等式》中科大出版社 11、奥林匹克小丛书《柯西不等式与平均值不等式》 数论 (9,10,11选一本即可,某位大神说二试改为四道题以来没出过难题) 12、奥林匹克小丛书初中版《整除,同余与不定方程》 13、奥林匹克小丛书《数论》 14、命题人讲座《初等数论》冯志刚 组合 15、奥林匹克小丛书第二版《组合数学》 16、奥林匹克小丛书第二版《组合几何》 17、命题人讲座刘培杰《组合问题》 18、《构造法解题》余红兵 19、《从特殊性看问题》中科大出版社 20、《抽屉原则》常庚哲 四、中国数学奥林匹克(Chinese Mathematical Olympiad)及以上 命题人讲座《圆》田廷彦 《近代欧式几何学》 《近代的三角形的几何学》 《不等式的秘密》范建熊、隋振林 《奥赛经典:奥林匹克数学中的数论问题》沈文选 《奥赛经典:数学奥林匹克高级教程》叶军 《初等数论难题集》 命题人讲座《图论》 奥林匹克小丛书第二版《图论》 《走向IMO》

初中数学竞赛专题选讲对称式(含答案)

初中数学竞赛专题选讲(初三.5) 对称式 一、内容提要 一.定义 1. 在含有多个变量的代数式f (x,y,z)中,如果变量x, y, z 任意交换两个后,代数式的值不变,则称这个代数式为绝对对称式,简称对称式. 例如: 代数式x+y , xy , x 3+y 3+z 3-3xyz, x 5+y 5+xy, y x 11+, xyz x z xyz z y xyz y x +++++. 都是对称式. 其中x+y 和xy 叫做含两个变量的基本对称式. 2. 在含有多个变量的代数式f (x,y,z)中,如果变量x, y, z 循环变换后代数式的值不变,则称这个代数式为轮换对称式,简称轮换式. 例如:代数式 a 2(b -c)+b 2(c -a)+c 2(a -b), 2x 2y+2y 2z+2z 2x, abc c b a 1111-++, (xy+yz+zx )( )111z y x ++, 2 22222222111b a c a c b c b a -++-++-+. 都是轮换式. 显然,对称式一定是轮换式,而轮换式不一定是对称式. 二.性质 1. 含两个变量x 和y 的对称式,一定可用相同变量的基本对称式来表示.这将在下一讲介绍. 2. 对称式中,如果含有某种形式的一式,则必含有,该式由两个变量交换后的一切同型式,且系数相等. 例如:在含x, y, z 的齐二次对称多项式中, 如果含有x 2项,则必同时有y 2, z 2两项;如含有xy 项,则必同时有yz, zx 两项,且它们的系数,都分别相等. 故可以表示为: m(x 2+y 2+z 2)+n(xy+yz+zx) 其中m, n 是常数. 3. 轮换式中,如果含有某种形式的一式,则一定含有,该式由变量字母循环变换后所得的一切同型式,且系数相等.

初中数学奥林匹克竞赛解题方法大全(配PDF版)-第06章-几何基础知识

第六章几何基础知识 第一节线段与角的推理计算 【知识点拨】 掌握七条等量公理: 1、同时等于第三个量的两个量相等。 2、等量加等量,和相等。 3、等量减等量,差相等。 4、等量乘等量,积相等。 5、等量除以等量(0除外),商相等。 6、全量等于它的各部分量的和。 7、在等式中,一个量可以用它的等量来代替(等量代换)。 【赛题精选】 例1、如图,∠AOB=∠COD,求证:∠AOC=∠BOD。 例2、C、D为线段AB上的两点,AD=CB,求证:AC=DB。 例3、AOB是一条直线,∠AOC=600,OD、OE分别是∠ AOC和∠BOC的平分线。问图中互为补角关系的角共有多少对? 例4、已知B、C是线段AD上的任意两点,M是AB的中 点,N是CD的中点,若MN=a,BC=b,求CD的长。

例5、已知OM是∠AOB的平分线,射线OC在∠BOM内部,ON是∠BOC的平分线,且∠AOC=800。求∠MON的度数。 例6、已知A、O、B是一条直线上的三个点,∠BOC比∠AOC 大240,求∠BOC、∠AOC的度数。 例7、如图,AE=8.9CM,BD=3CM。求以A、B、C、D、 E这5个点为端点的所有线段长度的和是多少? 例8、线段AB上的P、Q两点,已知AB=26CM,AP=14CM, PQ=11CM。求线段BQ的长。 例9、已知∠AOC=∠BOD=1500,∠AOD=3∠BOC。

求∠BOC的度数。 例10、已知C是AB上的一点,D是CB的中点。若图中线段的长度之和为23CM,线段AC的长度与线段CB 的长度都是正整数。求线段AC的长度是多少厘米?

【针对训练】

山西太原市高中数学竞赛解题策略-几何分册第1章直角三角形

第一编 点击基本图形 第1章 直角三角形 直角三角形是含有内角为90?的特殊三角形,它是一类基本图形. 直角三角形的有趣性质在处理平面几何问题中常发挥重要作用. 性质1 一个三角形为直角三角形的充要条件是两条边长的平方和等于第三条边长的平方(勾股定理及其逆定理). 性质2 一个三角形为直角三角形的充要条件是一边上的中线长等于该边长的一半. 推论1 直角三角形的外心为斜边的中点. 性质3 ABC △为直角三角形,且C 为直角顶点的充要条件是当C 在边AB 上的射影为D 时,下列五个等式之一成立. (1)2AC AD AB =?. (2)2BC BD AB =?. (3)2CD AD DB =?. (4)22 BC AB CD AD =. (5)22AC AB CD DB = . 事实上,由2AC AD AB =?,有 AB AC AC AD = .注意到A ∠公用,知ACB △∽ADC △.而90ADC ∠=?,故90ACB ∠=?.即可得(1)的充分性. 我们又由 22222BC AB BC CD AB AD CD AD CD AD --=?= 22 DB DB CD AD ?=,即2CD AD DB =?. 即可证得(4)的充分性. 其余的证明略. 推论2 非等腰ABC △为直角三角形,且C 为直角顶点的充要条件是当C 在边AB 上的射 影为D 时,22AC AD BC DB = . 事实上,由性质3中的(1)、(2)相除或(4)、(5)相除即证.下面,另证充分性.由 222 222 AD AC AD CD DB BC CD DB +== +, 有 2()()0CD AD DB AD DB -?-=. 而AD DB ≠,即有2CD AD DB =?.由此即可证. 性质4 ABC △为直角三角形,且C 为直角顶点的充要条件是当C 在边AB 上的射影为点D ,过CD 中点P 的直线AP (或BP )交BC (或AC )于E ,E 在AB 上的射影为F 时,2EF CE EB =?(或2EF = CE EA ?) . 证明 必要性.如图11-,过D 作DG AE ∥交BC 于G ,则

相关文档
最新文档