双速电机电路原理图

合集下载

双速电机接线图及控制原理分析【范本模板】

双速电机接线图及控制原理分析【范本模板】

双速电机接线图及控制原理分析一、双速电机控制原理调速原理根据三相异步电动机的转速公式:n1=60f/p三相异步电动机要实现调速有多种方法,如采用变频调速(YVP变频调速电机配合变频器使用),改变励磁电流调速(使用YCT电磁调速电机配合控制器使用,可实现无极调速),也可通过改变电动机变极调速,即是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。

根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的(这也是常见的2极电机同步转速为3000rpm,4极电机同步转速1500rpm,6极电机同步转速1000rpm等).这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机,这就是双速电机的调速原理.下图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法,磁极对数从p=2变为p=1。

∴转速比=2/1=2二、控制电路分析(双速电机接线图如下图)1、合上空气开关QF引入三相电源2、按下起动按钮SB2,交流接触器KM1线圈回路通电并自锁,KM1主触头闭合,为电动机引进三相电源,L1接U1、L2接V1、L3接W1;U2、V2、W2悬空.电动机在△接法下运行,此时电动机p=2、n1=1500转/分.3、FR1、FR2分别为电动机△运行和YY运行的过载保护元件。

4、若想转为高速运转,则按SB3按钮,SB3的常闭触点断开使接触器KM1线圈断电,KM1主触头断开使U1、V1、W1与三相电源L1、L2、L3脱离。

其辅助常闭触头恢复为闭合,为KM2线圈回路通电准备。

同时接触器KM2线圈回路通电并自锁,其常开触点闭合,将定子绕组三个首端U1、V1、W1连在一起,并把三相电源L1、L2、L3引入接U2、V2、W2,此时电动机在YY接法下运行,这时电动机p=1,n1=3000转/分。

双速电机的启-停-运行-变速及其应用

双速电机的启-停-运行-变速及其应用

双速电机的启--停--运行--变速及其应用一、前言各个行业都会用到双速电机,如高层建筑的地下车库(低速用于排除汽车尾气,高速用于火灾的排烟)、某些炉窑的鼓风机(加温、恒温需要不同的送风量)和机械行业的机床主轴变速等。

重新绘制的主电路如图1所示;控制电路如图2所示。

图 2图 1控制电路构成要点:1. SB11、SB12—低速启/停按钮,实现星-角启动。

2. SB21、SB22—高速启/停按钮,实现星-角-双星启动。

3. KM1、KM32接通是Y起动;4. KM1、KM31接通是△(低速)运行;5. KM2、KM31、KM32接通是双Y(高速)运行。

6. 整定KT2延时断开的时间,要比KM1的延时闭合来得长些。

二、控制电路的工作情况一、双速电机的低速启动过程:为了便于叙述,将主电路和控制原理简化成如图3的形式,这是常用的星-角启动电路。

1. 按SB1,KM32的线圈将通过KM31(3-4)和KT1(4-5)的常闭触点得电,其主触点闭合,实现主电路的封星。

2. KM32(3-11)接通,KM1得电,其主电路接通,电机实现星启动;KM1(2-11)接通自锁,虽松开SB1按钮,KM32的线圈仍能通过KM1(2-11)和KM32(3-11)两触点保持在得电状态。

3. KM32得电的同时,KT1也得电,星启动开始计时,其整定时间(约10s)到,KT1(4-5) 常闭触点断开,KM32线圈失电。

4. KT1(12-13) 常开触延时闭合,当KM32(11-12) 常闭触点恢复闭合时KM31线圈得电而动作,其主触点接通主电路,电机在角接条件下继续启动至稳定速度。

5. KM32(3-11)断开,使KT1断电而退出工作。

6. KM31(12-13)接通自锁;KM31(3-4) 断开KM32的线回路,避免误按下SB1使KM32的线圈得电,接通主电路,造成短路事故。

7. 双速电机低速的星-角启动至此结束。

二、双速电机的高速启动过程:启动过程分两种情况,主电路如图 3图1、控制原理如图2所示。

时间继电器控制双速电动机自动加速控制电路图解

时间继电器控制双速电动机自动加速控制电路图解

时间继电器控制双速电动机自动加速控制
电路图解
图是时间继电器控制的双速电动机自动加速控制电路图。

双速电动机在机床,诸如车床、铣床等中都有较多应用。

双速电动机是由改变定子绕组的磁极对数来改变其转速的。

如图主电路所示,若将出线端1、2、3接电源,4、5、6悬空。

每相绕组中两线圈串联,有四个极对数,低速运行;如将出线端1、2、3短接,4、5、6接电源,每相绕组中两线圈并联,极对数减半,有两个极对数,高速运行。

起动时,按起动按纽SB2,KT2立即得电、KM1、KA1得电自保,电动机低速起动;KA1得电后,KT2失电并开始计时;当延时时间到,KM1失电,KM2得电,电动机高速运行;自动完成加速控制双速电动机的加速控制。

图时间继电器控制双速电动机自动加速控制电路。

双速电机接线原理图

双速电机接线原理图

双速机电接线原理图之勘阻及广创作接触器控制的双速电念头电气原理图一、双速电念头简介双速电念头属于异步电念头变极调速, 是通过改变定子绕组的连接方法到达改变定子旋转磁场磁极对数, 从而改变电念头的转速.根据公式;n1=60f/p可知异步电念头的同步转速与磁极对数成反比, 磁极对数增加一倍, 同步转速n1下降至原转速的一半, 电念头额定转速n也将下降近似一半, 所以改变磁极对数可以到达改变电念头转速的目的.这种调速方法是有级的, 不能平滑调速, 而且只适用于鼠笼式电念头.此图介绍的是最罕见的单绕组双速电念头, 转速比即是磁极倍数比, 如2极/4极、4级/8极, 从定子绕组△接法酿成YY 接法, 磁极对数从p=2酿成p=1.∴转速比=2/1=2二、控制电路分析1、合上空气开关QF引入三相电源2、按下起动按钮SB2, 交流接触器KM1线圈回路通电并自锁, KM1主触头闭合, 为电念头引进三相电源, L1接U1、L2接V1、L3接W1;U2、V2、W2悬空.电念头在△接法下运行, 此时电念头p=2、n1=1500转/分.3、若想转为高速运转, 则按SB3按钮, SB3的常闭触点断开使接触器KM1线圈断电, KM1主触头断开使U1、V1、W1与三相电源L1、L2、L3脱离.其辅助常闭触头恢复为闭合, 为KM2线圈回路通电准备.同时接触器KM2线圈回路通电并自锁, 其常开触点闭合, 将定子绕组三个首端U1、V1、W1连在一起, 并把三相电源L1、L2、L3引入接U2、V2、W2, 此时电念头在YY接法下运行, 这时电念头p=1, n1=3000转/分.KM2的辅助常开触点断开, 防KM1误动.4、FR1、FR2分别为电念头△运行和YY运行的过载呵护元件.5、此控制回路中SB2的常开触点与KM1线圈串连, SB2的常闭触点与KM2线圈串连, 同样SB3按钮的常闭触点与KM1线圈串连, SB3的常开于KM2线圈串连, 这种控制就是按钮的互锁控制, 保证△与YY两种接法不成能同时呈现, 同时KM2辅助常闭触点接入KM1线圈回路, KM1辅助常闭触点接入KM2线圈回路,也形成互锁控制.三、定子接线图如下低速时绕组的接法高速时绕组的接法。

双速马达接线图

双速马达接线图

双速电机接线图一、双速电动机简介双速电动机属于异步电动机变极调速,是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。

根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n 1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的。

这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机。

此图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法,磁极对数从p=2变为p=1。

∴转速比=2/1=2二、控制电路分析1、合上空气开关QF引入三相电源2、按下起动按钮SB2,交流接触器KM1线圈回路通电并自锁,KM1主触头闭合,为电动机引进三相电源,L1接U1、L2接V1、L3接W1;U2、V2、W2悬空。

电动机在△接法下运行,此时电动机p=2、n1=1500转/分。

3、若想转为高速运转,则按SB3按钮,SB3的常闭触点断开使接触器KM1线圈断电,KM1主触头断开使U1、V1、W1与三相电源L1、L2、L3脱离。

其辅助常闭触头恢复为闭合,为KM2线圈回路通电准备。

同时接触器KM2线圈回路通电并自锁,其常开触点闭合,将定子绕组三个首端U1、V1、W1连在一起,并把三相电源L1、L2、L3引入接U2、V2、W2,此时电动机在YY接法下运行,这时电动机p= 1,n1=3000转/分。

KM2的辅助常开触点断开,防KM1误动。

4、FR1、FR2分别为电动机△运行和YY运行的过载保护元件。

5、此控制回路中SB2的常开触点与KM1线圈串联,SB2的常闭触点与KM2线圈串联,同样SB3按钮的常闭触点与KM1线圈串联,SB3的常开于KM2线圈串联,这种控制就是按钮的互锁控制,保证△与YY两种接法不可能同时出现,同时KM2辅助常闭触点接入KM1线圈回路,KM1辅助常闭触点接入KM2线圈回路,也形成互锁控制。

双速电机原理图与接线图

双速电机原理图与接线图

双速电机原理图与接线图双速电机原理图双速电机接线图扩展阅读:双速电机接线图及双速控制原理分析双速电机接线图及控制原理分析一、双速电机控制原理调速原理根据三相异步电动机的近似值转速公式:n1=60f/p三相三相实现调速有多种方法,如采用变频调速(YVP变频调速电机配合电源使用),改变励磁电流调速(使用YCT电磁调速谐波电机配合控制器使用,可实现无极调速),也可通过改变电动机变极再生制动调速,达至即是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变逆变器的转速。

根据公式;n1=60f/p可知异步电动机的同步转速同步进行与磁极对数成反比,磁极对数增加一倍,同步转速n1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变径向对数可以达到改变电动机转速转矩的目的(这也是常见的2极度电机同步转速为3000rpm,4极度电机同步转速1500rpm,6极度电机同步转速1000rpm 等)。

这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机,这就是双速电机的调速原理。

下图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法,磁极对数从p=2变为p=1。

∴转速比=2/1=2二、控制电路建模(双速电机接线图如下图)1、合上空气开关QF引入三相插座2、按下起动按钮SB2,交流接触器KM1线圈回路通电并自锁,KM1主触头闭合,为电动机引进三相电源,L1接U1、L2接V1、L3接W1;U2、V2、W2悬空。

电动机在△接法下运行,此时电动机p=2、n1=1500转/分。

3、FR1、FR2分别为电动机△运行和YY试运行的过载保护元件。

4、若想转为高速运转,则按SB3按钮,SB3的故而常闭触点断开而使接触器KM1线圈断电,KM1主触头断开使U1、V1、W1与三相电源L1、L2、L3脱离。

其辅助常闭触头恢复为闭合,为KM2电阻回路通电准备。

双速电机接线原理图之欧阳歌谷创编

双速电机接线原理图欧阳歌谷(2021.02.01)接触器控制的双速电动机电气原理图一、双速电动机简介双速电动机属于异步电动机变极调速,是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。

根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的。

这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机。

此图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法,磁极对数从p=2变为p=1。

∴转速比=2/1=2二、控制电路分析1、合上空气开关QF引入三相电源2、按下起动按钮SB2,交流接触器KM1线圈回路通电并自锁,KM1主触头闭合,为电动机引进三相电源,L1接U1、L2接V1、L3接W1;U2、V2、W2悬空。

电动机在△接法下运行,此时电动机p=2、n1=1500转/分。

3、若想转为高速运转,则按SB3按钮,SB3的常闭触点断开使接触器KM1线圈断电,KM1主触头断开使U1、V1、W1与三相电源L1、L2、L3脱离。

其辅助常闭触头恢复为闭合,为KM2线圈回路通电准备。

同时接触器KM2线圈回路通电并自锁,其常开触点闭合,将定子绕组三个首端U1、V1、W1连在一起,并把三相电源L1、L2、L3引入接U2、V2、W2,此时电动机在YY接法下运行,这时电动机p=1,n1=3000转/分。

KM2的辅助常开触点断开,防KM1误动。

4、FR1、FR2分别为电动机△运行和YY运行的过载保护元件。

5、此控制回路中SB2的常开触点与KM1线圈串联,SB2的常闭触点与KM2线圈串联,同样SB3按钮的常闭触点与KM1线圈串联,SB3的常开于KM2线圈串联,这种控制就是按钮的互锁控制,保证△与YY两种接法不可能同时出现,同时KM2辅助常闭触点接入KM1线圈回路,KM1辅助常闭触点接入KM2线圈回路,也形成互锁控制。

双速交流异步电动机自动变速控制电路的工作原理

SB1为停止按钮,SB2为三角形接线低速运行按钮,SB3为低速向高速双星形自动切换按钮,KM1为三角形接线低速运行接触器,KM2、KM3为双星形接线高速运行接触器,当按下SB2启动按钮后KM1吸合进行低速运行,同时通过起辅助常开触点进行自锁,常闭触点限制KM3的吸合实现互锁,
当按下SB3后,KA 中继和KT同时动作,KA中间继电器辅助点实现自锁,KT瞬时常开接点闭合实现KM1得电,开始低速运行,当KT时间到达后,KT的延时常闭节点断开KM1线圈,KM1接触器辅助触点复位,同时通过KT延时闭合辅助触点实现KM3的得电吸合,KM3常开触点一方面实现自保持,另一方面接通后启动KM2接触器得电实现高速运行,在高速运行后将KA中继和KT时间继电器断开实现下一
次的启动做准备。

双速电机变速原理及接线图教学文案

双速电机变速原理及接线图双速电机原理和接线图一、双速电动机简介双速电动机属于异步电动机变极调速,是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。

双速电机(风机),平时转速低,有时风机就高速转,主要是通过以下外部控制线路的切换来改变电机线圈的绕组连接方式来实现。

1、在定子槽内嵌有两个不同极对数的共有绕组,通过外部控制线路的切换来改变电机定子绕组的接法来实现变更磁极对数;2、在定子槽内嵌有两个不同极对数的独立绕组;3、在定子槽内嵌有两个不同极对数的独立绕组,而且每个绕组又可以有不同的联接。

根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的。

这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机。

此图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为Y Y接法,磁极对数从p=2变为p=1。

∴转速比=2/1=2二、控制电路分析1、合上空气开关QF引入三相电源2、按下起动按钮SB2,交流接触器KM1线圈回路通电并自锁,KM1主触头闭合,为电动机引进三相电源,L1接U1、L2接V1、L3接W1;U2、V2、W2悬空。

电动机在△接法下运行,此时电动机p=2、n1=1500转/分。

3、若想转为高速运转,则按SB3按钮,SB3的常闭触点断开使接触器KM1线圈断电,KM1主触头断开使U1、V1、W1与三相电源L1、L2、L3脱离。

其辅助常闭触头恢复为闭合,为KM2线圈回路通电准备。

同时接触器KM2线圈回路通电并自锁,其常开触点闭合,将定子绕组三个首端U1、V1、W1连在一起,并把三相电源L1、L2、L3引入接U2、V2、W2,此时电动机在YY接法下运行,这时电动机p=1,n1=3 000转/分。

双速电动机控制主电路的比较


继 电器 误动 作 。
2)热继 电器整 定 电流按 双速 电动机 高速 额 定 电流 来 设定 。此 时热继 电器 整定 电流为8.6A,双 速 电动 机低 速运 行 出现 过载 电流 为8.9A,约 为整
定 电流 的1.0倍 。 由表 1可 知此 时 热继 电器 长 期不 动作 , 意味着 双 速 电动机
为 双 速 电动 机 控 制 主 电路 则热 继 电器FR不 能 可 靠进 行 过 载 保 护 。乍 看 起 来 , 由于热 继 电器FR的发热 元件 是 串接 在低 速 和 高速 公共 的主 电路 中 ,该 热 继 电器似 乎对 双速 电动机 低速 和 高速 时 的过 载现 象均 有 保护 作用 ,其 实 不 然 。 下 面 以YD112M一 4/2的 双 速 电 动 机 为 例 加 以分 析 ,其 规 格 为 : 3.3/4kW ,7.4/8.6A ,A/YY,380V。热继 电器选 用JRIO系 列 ,其保 护特性 如 表 1所 示 。
电流 超过 整 定 电流 的 1.2倍 即8.9A时热 继 电器 动作 , 动作 时 间小于 20min:
而 当双速 电动机 高速 运 行时 热继 电器 的动作 电流 8.9A接近 高速 时的额 定 电 流 8.6A,意味 着双 速 电动 机 高速 状态 下 正常运 行 或轻 微 过载 时容 易 引起热
3结 论 综 上 所 述 ,双 速 电 动机 根 据 运 行情 况 的不 同可 选 用 不 同 的控 制主 电 路 , 当双速 电动 机低速 起 动高速 运行 时可 选用 图 l中 的 (a)图或 (b)图作 为控 制主 电路 ,而 当 双速 电动 机 高低 速运 行 时则 选用 图 1中的 (c) 图作为 控 制主 电路 。
FR2分 别作 为低速和 高速 时 的过载保 护 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档