第十一章 组合变形时的强度计算
工程力学第十一章 组合变形

土建工程中的混凝土或砖、石偏心受压柱,往往不 允许横截面上出现拉应力。这就是要求偏心压力只能作 用在横截面形心附近的截面核心内。
要使偏心压力作用下杆件横截面上不出现拉应力, 那么中性轴就不能与横截面相交,一般情况下充其量只能 与横截面的周边相切,而在截面的凹入部分则是与周边外 接。截面核心的边界正是利用中性轴与周边相切和外接时 偏心压力作用点的位置来确定的。
解:拉扭组合:
7kNm T
50kN FN
安全
例11-8 直径为d的实心圆轴,
·B
P 若m=Pd,指出危险点的位置, 并写出相当应力 。
x
m
解:偏拉与扭转组合
z
C P P 例11-9 图示折角CAB,ABC段直径
d=60mm,L=90mm,P=6kN,[σ]=
BA
60MPa,试用第三强度理论校核轴 x AB的强度。
例11-6 图示圆轴.已知,F=8kN,Me=3kNm,[σ]=100MPa, 试用第三强度理论求轴的最小直径.
解:(1) 内力分析
4kNm M
3kNm T
(2)应力分析
例11-7 直径为d=0.1m的圆杆受力如图,T=7kNm,P=50kN, []=100MPa,试按第三强度理论校核此杆的强度。
至于发生弯曲与压缩组合变形的杆件,轴向压力 引起的附加弯矩与横向力产生的弯矩为同向,故只有 杆的弯曲刚度相当大(大刚度杆)且在线弹性范围内 工作时才可应用叠加原理。
A M
F FN
+ ql2/8
+
B
+
=
C 10kN
A 1.6m
1.6m
10kN
1.2m
例11-3 两根无缝钢管焊接 而成的折杆。钢管外径 D=140mm,壁厚t=10mm。求 危险截面上的最大拉应力和 B 最大压应力。
组合变形时的强度计算

§84弯曲与扭转组合变形
一、单向弯曲与扭转组合变形
1.引例:以钢制摇臂轴为例。
①外力向形心简化(建立计算模型):
②作弯矩、扭矩图(找危险截面):
由弯矩图知:A截面|M|→max;全梁Mn处处相同,
∴A截面为危险截面:
|TMn AP|aPL
③危险截面的危险点:A截面K1、K2点,t、s数值均为最大,
⑤用强度准则进行强度计算
§8-2 两相互垂直平面内的弯曲
平面弯曲:对于横截面具有对称轴的梁,当横向外力或
外力偶作用在梁的纵向对称面内时,梁发生对称弯曲。这时, 梁变形后的轴线是一条位于外力所在平面内的平面曲线。
斜弯曲:双对称截面梁在水平和垂直两纵向对称平面内
同时承受横向外力作用的情况,这时梁分别在水平纵对称面
∴K1、K2点均为危险点:
K1点:
sstmax|M W A z|
tMn W n
K2点:sscmax|M W A z|
tMn W n
y
A d
z
L
Tn
_
PL
M
_
P C
B a x
P Pa
K1
st Pa
K1 A
t s
s K2 t
K2
ss t
s
Байду номын сангаас
④对危险点进行应力分析:(从K1、K2点取单元体,因它们的 s、t数值分别相同,危险程度也相同,不妨取K1点研究):
一、单向弯曲与扭转组合变形
④对危险点进行应力分析(s1≥s2≥s3)
在梁的任意横截面m—m上,由P1和P2引起的弯矩值依次为:
在梁的任意横截面m—m上,由P 和P 引起的弯矩值依次为: 试校核此夹具竖杆的强度。
第十一章动荷载优秀课件

Q Fd
st d
Fd
Q
st
d
得Q(hd)12Q stdd
Q
h Fd
d
Q st
Q(hd)12Fdd
Q Fd
st d
Fd
Q
st
d
得Q(hd)12Q stdd
整理 d 2 得 2std : 2 hst0 d可解
dst s2t2hst (实际 d st, “”不取
一、冲击问题的假定
1.不计冲击物的变形(刚体); 2.冲击物与构件(被冲击物)接触后无回弹,
二者合为一个运动系统; 3.被冲击物的质量(惯性)与冲击物相比很小,
可略去不计,冲击应力瞬时传遍整个被冲击物; 4.整个冲击过程中,构件在线弹性范围内; 5.冲击过程中,声、热等能量损耗很小,可略去
不计。(能量守恒)
q d (5)求动应力
d
FNd 2A
A
FNd
d
R2 2
g
qd
2R
qd
A
qd
A R2
g
FNdqd2R2AgR22
FNd (5)求动应力
d
R2 2
g
vR圆环轴线上的点的 度线速
d
v2 g
说明:圆环内的动应力只与γ和v有关,而与横截面面积无关, 要保证旋转圆环的强度,只能限制圆环的转速,增加面积是不起 作用的。
二、自由落体冲击
Q
h
Fd
d
Q
冲击物Q由高h的地方自由落下 h 被冲击物在线弹性范围
d
Fd 冲 击 荷 载
d 动变形
冲击前
重物Q 被冲击杆
动能
工程力学组合受力与变形时的强度计算

FN A
M W
3103
d 2
8 103
d 3
81.1
MPa
81.9
4
32
位置?
例题:图示钢板受集中力P=128KN作用,当板在
一侧切去深4cm的缺口时,求缺口截面的最大正应 力?若在板两侧各切去深4cm的缺口时,缺口截面 的最大正应力为多少?(不考虑应力集中) 10
P
360
求: 1.链环直段部分横截面上 的最大拉应力和最大压应力; 2. 中性轴与截面形心之间 的距离。
解:根据平衡,截面上将
作用有内力分量FNx 和Mz
Fx 0 M C 0
得到 FNx=800 N
Mz= 12 N·m
x FNx
FNx A
4FNx πd 2
π
4 800 122 106
简支梁在中点受力的情
形下,最大弯矩
Mmax=FPl / 4。得到两个 平面弯曲情形下的最大
d
弯矩:
c
M max
FPz
FPx l FPsin l
4
4
M max
(FPy )
FPy l 4
FP
cos l 4
在Mmax(FPy)作用的截面上,截面上边缘的角点 a、b 承受最大压应力;下边缘的角点c、d 承受最 大拉应力。
Pz P cos
以y为中性轴弯曲 M y Pz (l x)
P cos(l x) M cos
M z Py (l x)
P sin(l x) M sin
M z y M y sin M y z M z cos
梁的组合变形

第十一章 组合变形11.1 组合变形的概念11.1.1 组合变形图11-1在以前各章节中分别讨论了杆件拉伸〔压缩〕、剪切、扭转和弯曲等根本变形。
但工程实际中构造的某些构件往往同时承受几种根本变形。
例如,图11-1)(a 表示小型压力机的框架。
为分析框架立柱的变形,将外力向立柱的轴线简化,如图11-1)(b ,可见立柱承受了由F 引起的拉伸和由Fa M e 引起的弯曲。
这类由两种或两种以上根本变形组合的情况,称为组合变形。
11.1.2 叠加原理在组合变形中的应用图11-2在材料服从虎克定律且变形很小的前提下,杆件上虽然同时存在着几种根本变形,但每一种根本变形都是各自独立、互不影响的。
即任一根本变形都不会改变另一种变形所引起的应力和变形。
于是,分别计算每一种根本变形各自引起的应力和变形,然后求出这些应力和变形的总和,便是杆件在原载荷作用下的应力和变形,这就是叠加原理在组合变形中的应用。
上述叠加原理的成立,除材料必须服从虎克定律外,小变形的限制也是必要的。
现以压缩与弯曲的组合变形来说明这一问题。
当弯曲变形很小,可以忽略不计时,图(a,弯矩可以按杆件变形前的位置来计算。
这时轴向力P和横向载荷q的影响11-2)是各自独立的,叠加原理可以使用。
反之,假设杆件的抗弯刚度较小,弯矩应按杆件(b,那么轴向压力P除引起轴力外,还将产生弯矩Pv,变形后的位置计算,图11-2)而挠度v又受P及q的共同影响。
显然,压力P及横向载荷q的作用并不是各自独立的。
在这种情况下,尽管杆件仍然是线弹性的,但叠加原理也不能成立。
11.1.3 组合变形的几种常见方式1.斜弯曲2.拉伸或压缩与弯曲的组合3.扭转和弯曲的组合11.2 斜弯曲11.2.1 斜弯曲的概念由第7章知,仅当作用于构件上的横向力的作用线通过弯曲中心,且垂直于截面的一根形心主惯性轴时,构件才发生平面弯曲。
在工程实际中,作用在杆件上的横向力虽然通过弯曲中心,但有时并不垂直于截面的形心主轴。
组合变形

第10章组合变形§10-1 组合变形的概念1.组合变形的概念组合变形:构件往往会发生两种或两种以上的基本变形的这类变形。
在前面各章分别讨论了杆件在拉(压)、剪切、扭转和弯曲基本变形时的应力和强度计算。
工程实际中,杆件在荷载作用下所发生的变形,经常是两种或两种以上基本变形的组合,这种变形称为组合变形。
例如图10.1(a)所示屋架檩条的变形,是由y/z两个方向的平面弯曲变形组成的斜弯曲;如图10.1(b)所示厂房柱,在偏心力F作用下,会发生压缩和弯曲的组合变形;如图10.1(c)所示的卷扬机轴在力F作用下,则发生弯曲和扭转的组合变行。
2.组合变形的分析方法及计算原理处理组合变形问题的方法:1.将构件的组合变形分解为基本变形;2.计算构件在每一种基本变形情况下的应力;3.将同一点的应力叠加起来,便可得到构件在组合变形情况下的应力。
叠加原理是解决组合变形计算的基本原理叠加原理应用条件:即在材料服从胡克定律,构件产生小变形,所求力学量定荷载的一次函数的情况下,计算组合变形时可以将几种变形分别单独计算,然后再叠加,即得组合变形杆件的内力、应力和变形。
计算原理:(1)圣维南原理以静力等效力系代替构件原有的荷载,为此,要求构件为细长杆,且所求应力的截面远离外力作用点;(2)叠加原理 按各基本变形计算后进行叠加,为此,要求构件处于线弹性范围内,且变形很小,可按构件的原始形状的尺寸进行计算。
在小变形和线弹性条件下,杆件上各种力的作用彼此独立,互不影响,即杆上同时有几种力作用时,一种力对杆的作用效果(变形或应力),不影响另一种力对杆的作用效果(或影响很小可以忽略)。
因此组合变形下杆件内的应力,可视为几种基本变形下杆件内应力的叠加。
本章中组合变形下杆件的应力计算,将以各基本变形的应力及叠加法为基础。
叠加法的主要步骤:a 、将组合变形按照各基本变形的条件,分解为几种基本变形,简称分解。
b 、利用基本变形的应力计算公式,分别计算各点处的正应力和切应力。
12-1 工程力学-组合变形的强度计算
§12–2
弯曲与扭转组合变形 P
a L
P
(1)外力分析
a L Mo=Pa P’=P
(2)内力分析
Mmax=PL MT=Pa 危险截面?
Mo=Pa
P’=P
(3)应力分析
P
危险点?
a L
M max 正应力: Wz
MT 切应力: WP
危险点应力状态?
பைடு நூலகம்
(4)强度条件
二向应力状态:需用强度 理论求出相当应力,建立 强度条件
2 1 2 2 2 3
2 3 2
强度条件:
r4
M 2 0.75M T2 Wz
r4
32P l 2 0.75a 2 3 d
例1 卷扬机L=800mm,R=180mm
AB轴直径d=30mm,转速 n=150r/min,电动机功率 P=2.5kW, 90MPa 试按第三和第四强度理论 分别校核AB轴的强度 解: (1)外力分析
pl 20 0.2 M 1KN m 4 4
T m 1KN m 危险截面C 3)强度计算
r
4
1 W
M 2 0.75T 2 [ ]
即
取d 44mm
32 1 0.75 106 d 3 43.8mm 160
x ,
1
2
y 0, x
2 2
2
将上式代入主应力公式,得主应力:
2 0 3
2 2 2
2
第三强度理论的强度条件
r 3 1 3 4
组合变形强度计算
Fa / 2 1 2a a2
2F a2
6
开槽后的最大压应力 开槽前的最大压应力
2F F/
/ a2 4a 2
8
23
例8-4、如图所示桥式起重机。 为保证立柱m-m截面只承受压力,试确定行走大梁支承点的位置。
F1
F2
F2
mm
m
m
mz F1
F2
ze
m
m
b
y
h
24
解:(1) 外力分析:将力 F2 向截面形心 简化后,梁上的外力有
形的组合。 3、叠加原理
构件在小变形和服从胡克定理的条件下,力的独立性原理成立。
即所有载荷共同作用下的内力、应力、应变等于各个载荷单独
作用下相应值的叠加。
F
F
mC F
P
mC
F
+P
拉
弯
mC +
mC 扭
6
二、组合变形强度计算的一般分析方法
外力分析
外力(分解,向轴线平移) 内力分析
分组
分别进行内力分析 应力分析
40
例8-8、图 示一钢制实心圆轴,轴上的齿轮 C 上作用有铅垂切向 力 5 kN,径向力 1.82 kN;齿轮 D上作用有水平切向力10 kN,径 向力 3.64 kN 。齿轮 C 的节圆直径 d1 = 400 mm ,齿轮 D 的节圆直
径 d2 =200 mm。设许用应力 =100 MPa ,试按第四强度理论求
Iz=26.1106mm4, [ +]=20MPa , [ -]=80MPa 。
Py
P 试校核其正应力强度?
15º
Mz Px
P
A
1.2m
11-1 斜弯曲
Wy
z M max FPy
FP cos l 30 4Wz
Wz
解:3. 计算两个平面弯曲情形下的最大正应力
FPsin l FPcos l max b , c 4Wy 4Wz
其中l=4 m,FP=80 kN, =5。另外从型钢表中可查到 32a 热轧普通工字钢的 Wz=70.758cm3 , Wy=692.2cm3 。将 这些数据代入上式得到.
对称轴 z x
梁的轴线 挠曲线 y
9
1.平面弯曲的两种情况
挠曲线
水平纵向对称面 z x
对称轴 y 梁的轴线 (2)梁在水平纵向对称面 xz 平面内曲, y 轴为中性轴。
10
2.平面弯曲的两大特征:
1)弯曲后的轴线在载荷作用面内; 2)中性轴与载荷的作用面垂直。 要求:载荷作用在主形心惯性平面内
c
Pl cos Pl sin A Wz Wy A B
My
z
My B 中性轴
x Mz
18
y A Mz
My
z
cos sin B y0 z0 0 Iy 中性轴(零应力线) I z
My
x Mz
斜弯曲梁横截面中性轴上 各点的坐标为y0、z0 ,应 力=0,所以 cos sin pl ( y0 z0 ) 0 Iz Iy 故中性轴方程为:
y0 Iz tg tg z0 Iy
上式表明:①当力F通过第一、二象限时,中性 轴通过第三、四象限;②中性轴与力的作用线 并不垂直,这正是斜弯曲的特点,除非Iz=Iy, 即截面的两个形心主轴的惯性矩相等,例如截 面为正多边形的情形,此时中性轴才与力的作 用线垂直,而此时不论φ角是多少,梁总发生 平面弯曲,对于圆形、正方形、正三角形或正 多边形等的截面,无论力作用在哪个纵向平面 内,梁只发生平面弯曲。