九年级数学辅导练习(九)

合集下载

人教版九年级中考数学 考点复习 全等三角形 专题练习

人教版九年级中考数学   考点复习   全等三角形   专题练习

人教版九年级中考数学考点复习全等三角形专题练习一.选择题(本大题共10道小题)1. 已知图中的两个三角形全等,则∠1等于( )A.47°B.57°C.60°D.73°2. 如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC和△DCB全等的是( )A.∠ABC=∠DCBB.AB=DCC.AC=DBD.∠A=∠D3. 如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是( )A.AB=DEB.∠A=∠DC.AC=DFD.AC∥FD4. 如图,等腰△ABC中,点D,E分别在腰AB,AC上,添加下列条件,不能判定△ABE≌△ACD的是( )A.AD=AEB.BE=CDC.∠ADC=∠AEBD.∠DCB=∠EBC5. 如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F.若∠BCE=65°,则∠CAF的度数为( )A.30°B.25°C.35°D.65°6. 在正方形网格中,∠AOB的位置如图所示,则下列各点中到∠AOB两边距离相等的点是( )A.点QB.点NC.点RD.点M7. 工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA,OB上分别取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C,D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.这里构造全等三角形的依据是( )A.SASB.ASAC.AASD.SSS8. 如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36o.连接AC、BD交于点M,连接OM.下列结论:①∠AMB=36o;②AC=BD;③OM平分∠AOD;④MO平分∠AMD其中正确的结论个数有( )个.A.4B.3C.2D.19. 下面是黑板上出示的尺规作图题需要回答横线上符号代表的内容.如图,已知∠AOB,求作:∠DEF,使∠DEF=∠AOB.作法:(1)以△为圆心,任意长为半径画弧,分别交OA,OB于点P,Q;(2)作射线EG,并以点E为圆心,○长为半径画弧交EG于点D;(3)以点D为圆心,* 长为半径画弧交前弧于点F;(4)作⊕,则∠DEF即为所求作的角.A.△表示点EB.○表示PQC.*表示EDD.⊕表示射线EF10. 如图,在△ABC和△ADE中,∠CAB=∠DAE=36°,AB=AC,AD=AE.连结CD,连结BE并延长交AC,AD于点F,G.若BE恰好平分∠ABC,则下列结论错误的是( )A.∠ADC=∠AEBB.CD∥ABC.DE=GED.BF2=CF·AC二.填空题(本大题共6道小题)11. 如图,点B 、F 、C 、E 在一条直线上,已知FB=CE,AC ∥DF,请你添加一个适当的条件 使得△ABC ≌△DEF.12. 如图,四边形ABCD 中,∠BAC =∠DAC,请补充一个条件 ,使得△ABC ≌△ADC.13. 如图,AC =AD,∠1=∠2,要使△ABC ≌△AED,应添加的条件是 .(只需写出一个条件即可)14. 如图,AC=AD,∠1=∠2,要使ABC AED ≌△△,应添加的条件是______(只需写出一个条件即可)15. 如图,点P 为定角∠AOB 的平分线上的一个定点,点M,N 分别在射线OA,OB 上(都不与点O 重合),且∠MPN 与∠AOB 互补.若∠MPN 绕着点P 转动,那么以下四个结论:①P M =PN 恒成立;②MN 的长不变;③OM+ON 的值不变;④四边形PMON 的面积不变.其中正确的为_____.(填番号)16. 如图,在△ABC 中,AB =AC,点D 在BC 上(不与点B,C 重合).只需添加一个条件即可证明△ABD ≌△ACD,这个条件可以是 (写出一个即可).三.解答题(本大题共6道小题)17. 如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.18. 如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.19. 如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=63°,求∠A的大小.(2)若AD=11cm,BC=5cm,求AB的长.20. 如图,点E在AB上,AC与DE相交于点F,△ABC≌△DEC,∠B=65°.(1)求∠DCA的度数;(2)若∠A=20°,求∠DFA的度数.21. 在Rt△ABC中,∠ACB=90°,CB=CA=22,点D是射线AB上一点,连接CD,在CD右侧作∠DCE =90°,且CE=CD,连接AE,已知AE=1.(1)如图,当点D在线段AB上时,①求∠CAE的度数;②求CD的长;(2)当点D在线段AB的延长线上时,请直接写出∠CAE的度数和CD的长.22. 如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.。

人教版九年级数学上册课后练习:因式分解法(包含答案)

人教版九年级数学上册课后练习:因式分解法(包含答案)

因式分解法一、填空题1.方程x (x ﹣2)=0的解为______.2.若分式22244x x x x ---+的值为0,则x 的值等于__________. 3.用因式分解法解方程x 2﹣kx ﹣16=0时,得到的两根均整数,则k 的值可以是______ (只写出一个即可)4.若x 2﹣mx ﹣15=(x+3)(x+n ),则n m 的值为______.5.若方程x 2﹣x =0的两根为x 1,x 2(x 1<x 2),则x 2﹣x 1=______.6.对于实数a ,b ,定义新运算“*”:2*a b a ab =-.如24*24428=-⨯=.若*56x =,则实数x 的值是______.7.已知a ,3是直角三角形的两条直角边,第三边的长满足方程x 2﹣9x +20=0,则a 的值为_____. 8.(2019·山东中考模拟)已知一元二次方程x 2﹣8x+15=0的两个解恰好分别是等腰△ABC 的底边长和腰长,则△ABC 的周长为_____.二、单选题9.方程22x x =的解是( )A .0x =B .2x =C .10x =,22x =D .10x =,22x =-10.方程ax (x-b )+(b-x )=0的根是( ).A .x 1=b ,x 2=aB .x 1=b ,x 2=1a C .x 1=a ,x 2=1a D .x 1=a 2,x 2=b 211.若实数x ,y 满足(x 2+y 2+2)(x 2+y 2﹣2)=0.则x 2+y 2的值为( )A .1B .2C .2 或﹣1D .﹣2或﹣112.(2019·内江)一个等腰三角形的底边长是6,腰长是一元二次方程28150x x -+=的一根,则此三角形的周长是( )A .16B .12C .14D .12或1613.已知直角三角形的两条直角边长恰好是方程x 2-5x +6=0的两个根,则此直角三角形斜边长是( )A .BC .13D .514.(2019·广西中考模拟)如果三角形的两边长分别为方程x 2﹣8x+15=0的两根,则该三角形周长L 的取值范围是( )A .6<L <15B .6<L <16C .10<L <16D .11<L <1315.已知a+1b =2a +2b≠0,则a b的值为( ) A .-1 B .1 C .2. D .不能确定.16.若a b ,为方程2411()x x =-+的两根,且a b >,则a b = ( ) A .-5 B .-4 C .1 D .317.三角形的一边长为10,另两边长是方程214480x x -+=的两个实数根,则这个三角形是( ) A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形三、解答题18.选用适当的方法解下列方程(1)3x 2-7x+2=0 (2)(x+1)(x-2)=x+1 (3)22(32)(23)x x -=-19.已知关于x 的方程226350x x m m -+--=的一个根为一1,求另一个根及m 的值.20.三角形两边长分别是6和8,第三边长是x 2-16x+60=0的一个实数根,求该三角形的第三条边长和周长。

九年级数学解一元二次方程专项练习题(带答案)【40道】

九年级数学解一元二次方程专项练习题(带答案)【40道】

解一元二次方程专项练习题(带答案)1、用配方法解下列方程:(1) 025122=++x x (2) 1042=+x x(3) 1162=-x x (4)0422=--x x2、用配方法解下列方程:(1) 01762=+-x x (2) x x 91852=-(3) 52342=-x x (4)x x 2452-=3、用公式法解下列方程:(1) 08922=+-x x (2) 01692=++x x(3) 38162=+x x (4)01422=--x x4、运用公式法解下列方程:(1) 01252=-+x x (2) 7962=++x x(3) 2325x x =+ (4) 1)53)(2(=--x x5、用分解因式法解下列方程:(1)01692=++x x (2) x x x 22)1(3-=-(3))32(4)32(2+=+x x (4)9)3(222-=-x x6、用适当方法解下列方程:(1) 22(3)5x x -+= (2) 230x ++=(3) 2)2)(113(=--x x ; (4) 4)2)(1(13)1(+-=-+x x x x7、 解下列关于x 的方程:(1) x 2+2x -2=0 (2) 3x 2+4x -7=(3) (x +3)(x -1)=5 (4) (x -2)2+42x =08、解下列方程(12分)(1)用开平方法解方程:4)1(2=-x (2)用配方法解方程:x 2 —4x +1=0(3)用公式法解方程:3x 2+5(2x+1)=0 (4)用因式分解法解方程:3(x -5)2=2(5-x )9、用适当方法解下列方程:(1)0)14(=-x x (2)027122=++x x(3)562+=x x (4)45)45(+=+x x x(5)x x 314542=- (6)0242232=-+-x x(7)12)1)(8(=-++x x (8)14)3)(23(+=++x x x解一元二次方程专项练习题 答案1、【答案】(1)116±-; (2) 142±-; (3) 523±; (4) 51± 2、【答案】(1)11=x ,612=x (2)31=x ,562=-x(3)41=x ,4132=-x (4)5211±-=x3、【答案】 (1) 4179±=x (2) 3121=-=x x (3) 411=x ,432=-x (4)262±=x4、【答案】 (1) x 1=561,5612--=+-x (2). x 1=-3+7,x 2=-3-7(3)21=x ,312=-x (4)61311±=x 5、【答案】(1)3121=-=x x (2)11=x ,322=-x(3)231=-x ,212=x (4)31=x ,92=x6、【答案】(1)11=x ,22=x (2)321=-=x x (3)4,3521==x x ; (4)3,221-==x x7、【答案】(1)x =-1±3; (2)x 1=1,x 2=-37(3)x 1=2,x 2=-4; (4)25.x 1=x 2=-2 8、【答案】解:(1) 1,321-==x x (2)32,3221-=+=x x(3)3105,310521--=+-=x x (4)313,521==x x 。

初中数学九年级专项训练中考数学试题分类汇编(一次函数的几何应用,一次函数的实际问题)

初中数学九年级专项训练中考数学试题分类汇编(一次函数的几何应用,一次函数的实际问题)

一次函数的几何应用,一次函数的实际问题一、选择5、(陕西省)如图,直线对应的函数表达式是()答案: A9、( 江苏常州 ) 甲、乙两同学骑自行车从 A 地沿同一条路到 B 地, 已知乙比甲先出发 , 他们离出发地的距离 s(km) 和骑行时间 t(h) 之间的函数关系如图所示 , 给出下列说法 : 【】(1)他们都骑行了 20km;(2)乙在途中停留了 0.5h;(3)甲、乙两人同时到达目的地 ;(4)相遇后 , 甲的速度小于乙的速度 .根据图象信息 , 以上说法正确的有A.1 个B.2 个C.3 个D.4 个答案: B10、 ( 湖北仙桃等 ) 如图,三个大小相同的正方形拼成六边形,一动点从点出发沿着→→→→ 方向匀速运动,最后到达点. 运动过程中的面积()随时间( t )变化的图象大致是()答案: B11、( 黑龙江哈尔滨 )9 .小亮每天从家去学校上学行走的路程为900 米,某天他从家去上学时以每分 30 米的速度行走了 450 米,为了不迟到他加快了速度,以每分 45 米的速度行走完剩下的路程,那么小亮行走过的路程 S(米)与他行走的时间 t (分)之间的函数关系用图象表示正确的是().答案: D12、(黑龙江)5月23日8时40分,哈尔滨铁路局一列满载着2400 吨“爱心”大米的专列向四川灾区进发,途中除 3 次因更换车头等原因必须停车外,一路快速行驶,经过 80 小时到达成都.描述上述过程的大致图象是()答案: D13、(湖北天门)均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度 h 随时间 t 的变化规律如图所示 ( 图中 OABC为一折线 ) ,这个容器的形状是图中().答案: A14、( 湖南怀化 ) 如图 1,是张老师晚上出门散步时离家的距离与时间之间的函数图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是()答案:D15、(山东济南)济南市某储运部紧急调拨一批物资,调进物资共用 4 小时,调进物资 2 小时后开始调出物资(调进物资与调出物资的速度均保持不变). 储运部库存物资 S(吨)与时间 t (小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是()A.4 小时 B.4.4小时 C.4.8小时D.5 小时答案: B16、( 重庆 ) 如图,在直角梯形 ABCD中,DC∥AB,∠A=90°,AB=28cm,DC=24cm,AD=4cm,点 M从点 D 出发,以 1cm/s 的速度向点 C 运动,点 N 从点 B 同时出发,以 2cm/s 的速度向点 A 运动,当其中一个动点到达端点停止运动时,另一个动点2也随之停止运动 . 则四边形 AMND的面积 y(cm)与两动点运动的时间 t (s)的函数图象大致答案: D二、填空1、(江苏省南通市)将点A(, 0)绕着原点顺时针方向旋转45°角得到点B,则点 B 的坐标是 ________.答案:( 4,- 4)2、(江苏省无锡市)已知平面上四点,,,,直线将四边形分成面积相等的两部分,则的值为答案:.3、(江苏省苏州市) 6 月 1 日起,某超市开始有偿提供可重复使用的三种环保..购物袋,每只售价分别为 1 元、 2 元和 3 元,这三种环保购物袋每只最多分别能装大米 3 公斤、 5 公斤和 8 公斤. 6 月 7 日,小星和爸爸在该超市选购了 3 只环保购物袋用来装刚买的 20 公斤散装大米,他们选购的 3 只环保购物袋至少应付..给超市元.答案: 8、湖北荆门 ) 如图,l 1反映了某公司的销售收入与销量的关系, l 24 (反映了该公司产品的销售成本与销量的关系,当该公司赢利 ( 收入大于成本 )时,销售量必须 ____________.答案:大于 45、(山东烟台)如图是某工程队在“村村通”工程中,修筑的公路长度(米)与时间(天)之间的关系图象. 根据图象提供的信息,可知该公路的长度是______米.答案: 504三、解答题1、(湖北襄樊)我国是世界上严重缺水的国家之一. 为了增强居民的节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费 . 即一月用水 10 吨以内 ( 包括 10 吨 ) 用户 , 每吨收水费 a 元 ; 一月用水超过 10 吨的用户 ,10 吨水仍按每吨 a 元水费 , 超过的部分每吨按 b 元(b>a) 收费 . 设一户居民月用水 y 元 ,y 与 x 之间的函数关系如图所示 .(1) 求 a 的值 , 若某户居民上月用水8 吨 , 应收水费多少元 ?(2)求 b 的值 , 并写出当 x 大于 10 时 ,y 与 x 之间的函数关系 ;(3)已知居民甲上月比居民乙多用水 4 吨, 两家共收水费 46元 , 求他们上月分别用水多少吨 ?解:( 1)当 x≤ 10 时,有 y=ax.将x=10,y=15代入,得a=1.5用水 8 吨应收水费 8×1.5=12 (元)(2)当 x>10 时,有(3)将 x=20,y=35 代入,得 35=10b+15. b=2(4)故当 x>10 时, y=2x- 5(5)因 1.5 ×10+1.5 ×10+2×4<46.所以甲、乙两家上月用水均超过10 吨则解之,得故居民甲上月用水16 吨,居民乙上月用水12 吨2、(湖北孝感)某股份有限公司根据公司实际情况,对本公司职工实行内部医疗公积金制度,公司规定:(一)每位职工在年初需缴纳医疗公积金m元;(二)职工个人当年治病花费的医疗费年底按表 1 的办法分段处理:表 1分段方式处理办法不超过 150 元(含 150 元)全部由个人承担超过 150 元,不超过 10000 元(不含 150个人承担n%,剩余部分由公司承担元,含 10000 元)的部分超过 10000 元(不含 10000 元)的部分全部由公司承担设一职工当年治病花费的医疗费为x 元,他个人实际承担的费用(包括医疗费个人承担的部分和缴纳的医疗公积金m元)为 y 元( 1)由表 1 可知,当时,;那么,当时,y=;(用含 m、 n、x 的方式表示)(2)该公司职工小陈和大李 2007 年治病花费的医疗费和他们个人实际承担的费用如表 2:职工治病花费的医疗费 x(元)个人实际承担的费用 y(元)小陈300280大李500320请根据表 2 中的信息,求 m、n 的值,并求出当时, y 关于 x 函数解析式;(3)该公司职工个人一年因病实际承担费用最多只需要多少元?(直接写出结果)解: 1)(2)由表2 知,小陈和大李的医疗费超过150 元而小于10000 元,因此有:( 3)个人实际承担的费用最多只需2220 元。

2.房山区2023-2024学年度第二学期综合练习(一)九年级数学答案20240425

2.房山区2023-2024学年度第二学期综合练习(一)九年级数学答案20240425

房山区2023-2024学年度第二学期综合练习(一)答案九年级数学第一部分选择题一、选择题(共16分,每题2分)第二部分非选择题二、填空题(共16分,每题2分)9.3x ≠10.(2)(2)y x x +-11.5x =12.<13.36014.1215.216.(1)答案不唯一:ABD ;ACD ;ACE ;ADE ;BE ;(2)ACD .(注:第16题一空1分)三、解答题(共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题,每题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.解:116sin 45()32-︒++--6232=⨯++-5=.18.解:原不等式组为47135.2x x x x ->-⎧⎪⎨-<⎪⎩①②,解不等式①,得2x >.解不等式②,得5x <.∴原不等式组的解集为25x <<.19.解:22222x xy y x y-+-2()2()x y x y -=-2x y -=.∵30x y --=,∴3x y -=.∴原式322x y -==.20.解:设矩形菜园的宽为x 米,则矩形菜园的长为6x 米.由题意可得,106 4.5223x x --=.解得 1.5x =.∴1060.52x-=.答:预留通道的宽度是0.5米,矩形菜园的宽是1.5米.21.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC .∴ADB CBD ∠=∠.∵ABD CBD ∠=∠,∴ABD ADB ∠=∠.∴AB AD =.∴四边形ABCD 是菱形.(2)解:∵四边形ABCD 是菱形,∴AC BD ⊥,2BD OB =,12DBE ABC ∠=∠.∵DE ∥AC ,∴90BDE BOC ∠=∠=︒.∵OB =,∴2BD OB ==.∵60ABC ∠=︒,∴1302DBE ABC ∠=∠=︒.在Rt △BDE 中,tan 3DBE ∠=,BD =.∴tan 3DE DBE BD ∠==.∴2DE =.22.解:(1)∵函数(0)y kx b k =+≠的图象由函数2y x =的图象平移得到,∴2k =.∴得到函数的解析式为2y x b =+.∵函数2y x b =+的图象过点(23),,∴223b ⨯+=.∴1b =-.∴函数y kx b =+的解析式为21y x =-.(2)1m ≥.23.解:(1)30m =,26n =;(2)<;(3)271.24.(1)证明:∵ AE AE =,∴ACE ABE ∠=∠,又∵BE ∥CD ,∴ABE D ∠=∠.∴ACE D ∠=∠.(2)解:连接OC ,交BE 于点F .∵CD 是⊙O 的切线,切点为C ,∴90OCD ∠=︒.∵BE ∥CD ,∴90OFB OCD ∠=∠=︒.∴BE ⊥OC .∴F 为BE 中点.∵O 为直径AB 中点,∴OF 为△AEB 的中位线,∴OF =12AE .∵3AE =,∴32OF =.∵ AE AE =,∴ACE ABE ∠=∠.∵3tan 4ACE ∠=,∴3tan 4ABE ∠=.∵AB 是⊙O 的直径,∴90AEB ∠=︒.在Rt △AEB 中∵3tan 4ABE ∠=,∴4BE =.由勾股定理得5AB =.∴52OC =.∴1CF =.∵F 为BE 中点,4BE =,∴2EF =.在Rt △ECF 中,由勾股定理得CE ==.25.(1)画出函数2y 的图象,如图.(2)①9.2;② 2.3,3.1,5.0.26.解:(1)令0x =,则22y a =-.当1a =时,1y =-.∴抛物线与y 轴的交点坐标为(01)-,;∵22222()2y x ax a x a =-+-=--,当1a =时,抛物线的顶点坐标为(12)-,.(2)∵11()A x y ,,22()B x y ,是抛物线2222y x ax a =-+-上任意两点,∴211()2y x a =--,222()2y x a =--.∴2212121212()()()(2)y y x a x a x x x x a -=---=-+-.∵1102x <<,2112x <<,∴12x x <,121322x x <+<.∵12x x <,12y y >,∴1220x x a +-<.即122x x a +<.∴322a ≥.∴34a ≥.27.(1)依题意补全图形,如图.(2)90ABE ∠=︒.证明:延长ED 至点M ,使DM ED =,连接AM ,CM .在△EHD 与△MCD 中,HD CD EDH MDC ED DM =⎧⎪∠=∠⎨⎪=⎩,,.∴△EHD ≌△MCD (SAS).∴EHD MCD ∠=∠.∵AD EM ⊥,ED DM =,∴AE AM =.∴22EAM EAD α∠=∠=.∵2BAC α∠=,∴BAE CAM ∠=∠.∵AB AC =,∴△ABE ≌△ACM (SAS).∴ABE ACM ∠=∠.∵EB EH =,∴EBH EHB ∠=∠.设ABC x ∠=,ACM y ∠=.∴EHD MCD x y ∠=∠=+,ABE ACM y ∠=∠=.∴EHB EBH y x ∠=∠=-.∵180EHB EHD y x x y ∠+∠=-++=︒.∴90y =︒.∴90ABE ∠=︒.28.(1)①1P ,2P ;②解:依题意可知,点(20)M ,,点N 为等边三角形边上的点,则12MN ≤≤.∵OP 与以MN 为半径的⊙M 相切于点P ,∴OP MP ⊥,MP MN =.∴90OPM ∠=︒.∴点P 在以OM 为直径的⊙Q 上,且12MN ≤≤,其中点(10)Q ,.∴符合条件的点P 组成的图形为 COD(点O 除外),其中点3(22C ,,33()22D -,,如图,当直线y x b =+与⊙Q 相切时,设切点为G ,与x 轴交点为H ,则QG 与直线y x b =+垂直时,45GHQ ∠=︒.由1QG =,可得QH =∴(10)H .当直线y x b =+过(10)H 时,代入y x b =+中,可得1b =.当直线y x b =+过点3()22D -,时,代入y x b =+中,可得322b =--.∵直线y x b =+上存在“相关切点”,∴b 的取值范围是33122b --≤≤.(2)21m ≤≤或10m ≤.。

九年级数学竞赛辅导系列 讲座三 方程练习(无答案) 试题

九年级数学竞赛辅导系列 讲座三 方程练习(无答案) 试题

数学竞赛辅导系列讲座三 ——方程1、方程|3x|+|x -2|=4的解的个数是( )A 、0B 、1C 、2D 、32、以关于x ,y 的方程组32339mx y x my +=⎧⎨-=⎩的解为坐标的点(x ,y )在第二象限,则符合条件的实数m 的范围是( )A 、m>19B 、m<-2C 、-2<m<19D 、-12<m<93、已知实数a>0,b>0,满足22012,2012a a b b +=+=,则a+b 的值是______.4、关于x 的方程22211axa a x -=+-的解为________. 5、已知p 是质数,且方程24440x px p +-=的两个根都是整数,则p=_____. 6、方程323652x x x y y ++=-+的整数解(x ,y )的个数是( )A 、0B 、1C 、3D 、无数多个7、若a ,b 都是整数,方程220080ax bx +-=的两相异根都是质数,则3a+b 的值是( )A 、100B 、400C 、700D 、10008、对于实数x ,符合[x]表示不大于x 的最大整数,例如[3.14]=3,[-7.59]=-8,则关于x 的方程3747x +⎡⎤=⎢⎥⎣⎦的整数解有( )个 A 、4 B 、3 C 、2 D 、19、已知a ,b ,c ,d ,e ,f 满足1114,9,16,,,4916bcdef acdef abdef abcef abcdf abcde a b c d e f ======,则 (a+c+e)-(b+d+f)的值为________.10、方程||(1)0x x k --=有三个不相等的实根,则k 的取值范围是( )A 、-14<k<0B 、0<k<14C 、k>-14D 、k<1411、若整数m 使得方程220060x mx m -++=的根为非零整数,这样的整数m 的个数为________.12、设x 1,x 2是方程240x x +-=的两根,则3212510x x -+=( )A 、-29B 、-19C 、-15D 、-913、方程22332x xy y x y ++=-的非负整数解(x ,y )的组数为( )A 、0B 、1C 、2D 、314、方程7[2][3]82x x x +=-的所有实数解为_____________. 15、对于实数u ,v ,定义一种运算“*”为:u*v=uv+v ,若关于x 的方程x*(a*x)=- 14 有两个不同的实数根,则满足条件的实数a 的取值范围是____________.16、小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车,假设每辆18路公交车行驶速度一样,而且18路公交车总站每隔固定的时间发一辆车,那么发车间隔为几分钟?17、不定方程5x -14y=11的最小正整数解是____________.18、方程22[]30x x --=的解的个数是( )A 、1B 、2C 、3D 、419、已知t 是实数,若a ,b 是关于x 的一元二次方程2210x x t -+-=,的两个非负实根,则22(1)(1)a b --的最小值是________.20、已知m ,n 是二次方程2201270x x ++=的两根,那么22(20116)(20138)m m n n ++++等于( )A 、2004B 、2005C 、2006D 、200721、若实数x ,y ,z 满足方程组122232xyx y yzy z zxz x ⎧=⎪+⎪⎪=⎨+⎪⎪=⎪+⎩,则( ) A 、x+2y+3z=0B 、7x+5y+2z=0C 、9x+6y+3z=0D 、10x+7y+z=022、已知实数a ,b ,c ,d ,且a ≠b ,c ≠d ,若关系式22222,2,4,4a ac b bc c ac d ad +=+=+=+=同时成立,则6a+2b+3c+2d=__________.23、方程组3322181x y z x y z +=-⎧⎨+=-⎩的正整数解(x ,y ,z )为_____________. 24、方程222522007x xy y ++=的所有不同的整数解共有_______组.25、把三个连续的正整数a ,b ,c 按任意次序(次序不同视为不同组)填入□x 2+□x+□=0的三个方框中,作为一元二次方程的二次项系数,一次项系数和常数项,使得方程至少有一个整数根的a ,b ,c 有( )A 、不存在B 、有一组C 、有两组D 、多于两组26、已知a ,b ,c 为正数,关于x 的一元二次方程20ax bx c ++=有两个相等的实数根,则方程2(1)(2)(1)0a x b x c +++++=的根的情况是( )A 、没有实根B 、有两个相等的实根C 、有两个不等实根D 、根的情况不确定27、求方程232730x xy y -+=的正整数解.28、设x ,y ,z 是都不为零的相异实数,且满足等式y z z x x yy z x+++==,试证明:此等式的值不可能是实数. 29、解方程:222916(3)xx x +=-30、满足方程2221x y -=的所有质数解(即x ,y 都是质数的解)是_______. 31、若2222,x y m n x y m n +=++=+,求证:2012201220122012xymn+=+.32、已知a>0,且b>a+c ,证明方程20ax bx c ++=必有两个不同的实根. 33、解下列方程:(1)4322914920x x x x -+-+=(2)44(2)820x x +--= (3)222(231)(251)9x x x x x -+++=(4)222211114325671221x x x x x x x x +++=+++++++(5)2240119x x x x ⎛⎫⎛⎫+= ⎪ ⎪-+⎝⎭⎝⎭(6)1321121111x x x++=+++34、设a 为整数,使得关于x 的方程2(5)70ax a x a -+++=至少有一个有理根,试求方程所有可能的有理根.35、已知正整数a ,b ,c 满足a<b<c ,且ab+bc+ca=abc ,求所有可能符合条件的a ,b ,c . 36、当a ,b 为何值时,方程2222(1)(3442)0x a x a ab b ++++++=有实根. 37、m 为有理数,试确定方程22443240x mx x m m k -++-+=的根为有理数.38、当12122()p p q q =+时,试证方程2110x p x q ++=和2220x p x q ++=中至少有一个方程有实根.39、周长为6,面积为整数的直角三角形是否存在?若不存在,请给出证明;若存在,请证明共有几个?40、若关于x 的方程2211k x kx x x x x+-=--只有一个解,求k 的值. 41、把最大正整数是31的连续31个正整数分成A ,B 两组,且10在A 组,如果把10从A 组移到B 组中,则A 组中的各数的平均数增加12 ,B 组中各数的平均数也增加12,问A 组中原有多少个数?42、已知a>2,b>2,试判断关于x 的方程2()0x a b x ab -++=与方程20x abx a b -++=有没有公共根,并说明理由.43、求所有的实数k ,使得关于x 的方程2(1)(1)0kx k x k +++-=的根都是整数. 44、设a ,b ,c 为互不相等的非零实数,求证三个方程22220,20,20ax bx c bx cx a cx ax b ++=++=++=不可能同时有两个相等实根.45、设△是整系数二次方程20ax bx c ++=的判别式,(1)4,5,6,7,8五个数值中,哪几个能作为判别式△的值?分别写出一个相应的二次方程; (2)请你从中导出一般规律——一切整数中怎样的整数值不能作为△的值,并给出理由.46.设a 、b 、c 、d 是正整数,a 、b 是方程()02=+--cd x c d x 的两个根.证明:存在边长是整数且面积为ab 的直角三角形.47、已知实数a 、b 、c 、d 互不相等,且.1111x ad d c c b b a =+=+=+=+试求x 的值.。

九年级上册数学练习题

一、单项选择题 (每小题3分,共30九年级上册数学练习题分)1.(3分)−2022的相反数是( )B .A .−20222022C .±2022D .2021 2.(3分)2021年5月15日,我国“天问一号”探测器在火星成功着陆.火星具有和地球相近的环境,与地球最近时候的距离约55000000km .将数字55000000用科学记数法表示为( )A .0.5510×8B .5.510×7C .5.510×6D .5510×63.(3分)下列几何体中,左视图是圆的是( ) A .B .C .D .4.(3分)下列计算正确的是() A .325a b abB .()a a +=326C .a a a =632+=+D .()÷=a b a b 2225.(3分)在庆祝中国共产党成立100周年的“红色记忆”校园歌咏比赛中,15个参赛班级按照成绩(成绩各不相同)取前7名进入决赛,小红知道了自己班级的比赛成绩,如果要判 断自己的班级能否进入决赛,还需要知道这15个参赛班级成绩的( A .平均数B .中位数)DC .众数.方差6.(3分)如图,将直尺与30°角的三角尺叠放在一起,若∠=°140,则∠2的度数是()A .40°B .60°C .70°D .80° 12x x +4807.(3分)不等式组 −<的解集在数轴上表示正确的是()A .B .C .D .8.(3分)下列命题是真命题的是()B .三角形的任意两边之和大于第三边D A .五边形的内角和是720°C .内错角相等.对角线互相垂直的四边形是菱形9.(3分)《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有三人共车,二车空;二人共车,九人步.问:人与车各几何?译文:若3人坐一辆车,则两辆车是空的;若2人坐一辆车,则9人需要步行,问:人与车各多少?设有x 辆车,人数为y ,根据题意可列方程组为( )A .y x =−2932 B y x =+.3(2) 29y x y x =− =+C .=−29y x 32 D =−y x .3(2)29y x y x =− =−10.(3分)图书馆为将某一本书和某一个关键词建立联系,规定:当关键词A i 出现在书B j =0(,j 为正整数).例如:当关键词A 1出现在书B 4中时,a 14=1中时,a ij =1,否则a i ij ,否则a 14=0.根据上述规定,某读者去图书馆寻找关键词A 2,A 5,A 6,则下列相关表述错误的是()A .当a 21+a 51+a 61=3时,只需要选择B 1这本书就可以找到所有的关键词B .当a 2j +a 5j +a 6j =0时,从B j 这本书查不到需要的关键词C .当a 2j +a 5j +a 6j >0时,可以从B j 这本书查到需要的关键词D .当a 22+a 52+a 62<3时,从B 2这本书一定查不到需要的关键词二、填空题 (每小题3分,共18分)11.(3分)分解因式:327a ab 32−=. 12.(3分)在平面直角坐标系中,点M (2,4)−关于原点对称的点的坐标是.13.(3分)掷一枚质地均匀的正方体骰子,骰子的六个面上分别标有1、2、3、4、5、6的点数,掷得面朝上的点数为奇数的概率为. 14.(3分)如图所示,AB 是 O 的直径,弦CD AB 于H ,⊥∠=°A 30,OH =1,则 O 的半径是.15.(3分)扇形的半径为8cm ,圆心角为45°,则该扇形的弧长为cm . 16.(3分)如图,在∆ABC 中,AD BC,且⊥BD CD ,延长BC 至E ,使得=CE CA =,连接AE .若AB =5,AD =4,则∆ABE 的周长为.三、解答题 (本大题共9小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分)117.(6分)计算:6sin 45|1(2022)()π202−°−−−.169 18.(6分)先化简再求值:(1) x x 223++ +÷,其中x =−1x x ++.19.(6分)数学课上,老师正在讲尺规作图专题,发现湘琪同学在走神,便叫她上黑板,完成如下尺规作图:已知直线l 及直线l 外一点P ,要过点P 作直线l 的平行线.由于走神只记得用尺规作图法作线段垂直平分线的湘琪同学,灵机一动,用尺规完成了如下作图步骤:①在直线l 上取一点A ,连接PA ;②作PA 的垂直平分线MN ,分别交直线l 、PA 于点B 、O ;③以O 为圆心,OB 长为半径画弧,交直线MN 于另一点Q ;④连接直线PQ .则直线PQ 即为所求.请根据湘琪同学的作图方法,回答下列问题:(1)湘琪同学通过尺规作图构造的相等的线段有:OB =OP ,=;(2)证明:PQ l //.20.(8分)在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩讲行调查,将获得的数据绘制成两幅不整的统计图.根据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了名学生;(2)请补全条形统计图;(3)扇形统计图中,D等级对应的圆心角度数是度;(4)根据抽样调查的结果,请你估计该校2000名学生中有多少名学生的成绩评定为C等级.21.(8分)为积极响应党中央号召,推进乡村振兴,某地区对A、B两地间的公路进行改建.如图,A、B两地间有一座山,汽车原来从A地到B地需要途经C地沿折线ACB行驶.现开通隧道后,汽车可直接沿直线AB行驶.已知AC=40千米,∠=°A30,∠=°B45.(结果精确到0.11.41≈, 1.73)≈(1)开通隧道前,汽车从A地到B地大约要走多少千米?(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?22.(9分)因国家对新能源的支持以及各种利好因素的影响,某新能源企业的利润逐年提高,据统计,该企业2018年的利润为3亿元,2020年的利润为4.32亿元.(1)求该企业从2018年到2020年利润的年平均增长率;(2)若保持前两年利润的年平均增长率不变,该企业2021年的利润能否超过5亿元?23.(9分)如图,矩形ABCD中,M为BC上一点,EM AM交AD的延长线于点E⊥.(1)求证:∆∆ABM EMA∽;(2)若AB=4,BM=3,求AE的值.24.(10分)“三高四新”战略是习近平总书记来湘考察时,为建设现代化新湖南擘画的宏伟战略蓝图.在数学上,我们不妨约定:在平面直角坐标系中,将点P (3,4)称为“三高四新”点,经过P (3,4)的函数,称为“三高四新”函数.(1)下列函数是“三高四新”函数的有; 12;①y x =−22;②y x x =−+2613;③y x x =−++36112;④y =x(2)若关于x 的一次函数y kx b =+是“三高四新”函数,且它与y 轴的交点在y 轴的正半轴,求k 的取值范围;1(3)关于x 的二次函数yx 4=−(3)2的图象顶点为A ,点M x (1,y 1)和点N x(2,y 2)是该二MAN 90,试判断直线MN 次函数图象上的点且使得∠=°是否为“三高四新”函数,并说明理由.25.(10分)如图,点C是以AB为直径的半圆O上一动点,且AB=2,AD平分∠BAC交BC于点D,CP平分∠BCA交AD于点P,PF AC,⊥PE BC⊥.(1)求证:四边形CEPF为正方形;(2)求AC BC⋅的最大值;(3)求11 AC DC+的最小值.参考答案与试题解析一、单项选择题 (每小题3分,共30分)1.(3分)−2022的相反数是( )B .A .−20222022C .±2022D .2021【分析】直接利用只有符号不同的两个数叫做互为相反数,即可得出答案.【解答】解:−2022的相反数是:2022.故选:B .【点评】此题主要考查了相反数,正确掌握相反数的定义是解题关键.2.(3分)2021年5月15日,我国“天问一号”探测器在火星成功着陆.火星具有和地球相近的环境,与地球最近时候的距离约55000000km .将数字55000000用科学记数法表示为()A .0.5510×8B .5.510×7C .5.510×6D .5510×6,n 为整数.确定n a 【分析】科学记数法的表示形式为a ×10n 的形式,其中1||10<的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值 10时,n 是正数;当原数的绝对值<1时,n 是负数. 【解答】解:将55000000用科学记数法表示为5.510×7.故选:B .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中 a 1||10< ,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.(3分)下列几何体中,左视图是圆的是()A .B .C .D .【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:A .球的左视图是圆,故本选项符合题意.;B .圆柱的左视图是矩形,故本选项不合题意;C .圆锥的左视图是等腰三角形,故本选项不合题意;D .圆台的左视图是等腰梯形,故本选项不合题意;故选:A .【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.(3分)下列计算正确的是()A .325a b abB .()a a +=326C .a a a =632+=+D .()÷=a b a b 222【分析】分别根据合并同类项的法则、同底数幂的除法法则、幂的乘方法则以及完全平方公式解答即可.【解答】解:A 、3a 与2b 不是同类项,故不能合并,故选项A 不合题意; B 、()a a 326=,故选项B 符合题意;C 、a a a 633÷=,故选项C 不符合题意;D 、()2a b a ab b +=++222,故选项D 不合题意.故选:B .【点评】本题主要考查了幂的运算性质、合并同类项的法则以及完全平方公式,熟练掌握运算法则是解答本题的关键.5.(3分)在庆祝中国共产党成立100周年的“红色记忆”校园歌咏比赛中,15个参赛班级按照成绩(成绩各不相同)取前7名进入决赛,小红知道了自己班级的比赛成绩,如果要判断自己的班级能否进入决赛,还需要知道这15个参赛班级成绩的(A .平均数B .中位数)DC .众数.方差 【分析】由于比赛取前7名进入决赛,共有15个参赛班级,根据中位数的意义分析即可.【解答】解:15个不同的成绩按从小到大排序后,中位数之后的共有7个数,故只要知道自己的班级成绩和中位数就可以知道自己的班级能否进入决赛.故选:B .【点评】本题考查了中位数意义.解题的关键是正确理解中位数的意义.6.(3分)如图,将直尺与30°角的三角尺叠放在一起,若∠=°140,则∠2的度数是()A .40°B .60°C .70°D .80°【分析】根据平角的定义和平行线的性质即可得到结论.【解答】解:由题意得,∠°460, ∠=°140,∴∠=°−°−°=°3180604080,//AB CD ,∴∠=∠=°3280,故选:D .【点评】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键.12x x + 480 7.(3分)不等式组 −<的解集在数轴上表示正确的是()A .B .C .D .【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,继而在数轴上表示解集即可.,得:x 1【解答】解:解不等式x +12,解不等式480 x −<,得:x <2, 则不等式组的解集为12 x <,将不等式组的解集表示在数轴上如下: 故选:D .【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式的解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.(3分)下列命题是真命题的是() A .五边形的内角和是720°B .三角形的任意两边之和大于第三边C .内错角相等D .对角线互相垂直的四边形是菱形【分析】根据多边形的内角和,三角形的三边关系,平行线的性质,菱形的判定一一判断即可.【解答】解:A 、五边形的内角和是540°,原命题是假命题,不符合题意;B 、三角形的任意两边之和大于第三边,是真命题,符合题意;C 、两直线平行,内错角相等,原命题是假命题,不符合题意;D 、对角线互相平分且垂直的四边形是菱形,原命题是假命题,不符合题意;故选:B .【点评】考查了命题与定理的知识,解题的关键是根据多边形的内角和,三角形的三边关系,平行线的性质,菱形的判定解答.9.(3分)《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有三人共车,二车空;二人共车,九人步.问:人与车各几何?译文:若3人坐一辆车,则两辆车是空的;若2人坐一辆车,则9人需要步行,问:人与车各多少?设有x 辆车,人数为y ,根据题意可列方程组为()A .y x =−2932B y x =+.y x =−293(2)y x =+C .y x =−2932Dy x =−.y x =−293(2)y x =−【分析】设共有x 人,y 辆车,根据“如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行”,即可得出关于x ,y 的二元一次方程组,此题得解.【解答】解:设共有y 人,x 辆车,y x =−293(2)依题意得:y x =+.故选:B .【点评】本题考查了由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.10.(3分)图书馆为将某一本书和某一个关键词建立联系,规定:当关键词A i 出现在书B j =0(,j 为正整数).例如:当关键词A 1出现在书B 4中时,a 14=1中时,a ij =1,否则a i ij ,否则a 14=0.根据上述规定,某读者去图书馆寻找关键词A 2,A 5,A 6,则下列相关表述错误的是( )A .当a a a 215161++=3时,只需要选择B 1这本书就可以找到所有的关键词B .当a a a 256j j j ++=0时,从B j 这本书查不到需要的关键词C .当a a a 256j j j ++>0时,可以从B j 这本书查到需要的关键词D .当a a a 225262++<3时,从B 2这本书一定查不到需要的关键词【分析】根据题意a ij 的值要么为1,要么为0,当关键词A i 出现在书B j 中时,元素a ij =1,=0(,j 否则a i ij 为正整数),按照此规定对每个选项分析推理即可.【解答】解:根据题意a ij 的值要么为1,要么为0,A 、a a a 215161++=3,说明a 21=1,a 51=1,a 61=1,故关键词“A 2,A 5,A 6”同时出现在书B 1中,而读者去图书馆寻找书中同时有关键词“A 2,A 5,A 6”的书,故A 表述正确; B 、根据前述分析可知,只有当a a a 256j j j ++=3时,才能选择B j 这本书,而a a a 256j j j ++的值可能为0、1、2、3,故B 表述正确,不符合题意. C 、当a 2j ,a 5j ,a 6j 全是1时,则a 2j =1,a 5j =1,a 6j =1,故关键词“A 2,A 5,A 6”同时出现在书B j 中,故C 表述正确; D 、当a 22+a 52+a 62<3时,则a 22、a 52、a 62时必有值为0的,即关键词“A 2,A 5,A 6”不同时具有,从而在B 2查不到所有需要的关键词,故D 表述错误;故选:D .【点评】本题考查了数字的变化规律,推理与论证,读懂题意,按照规定进行计算与推理是解题的关键.二、填空题 (每小题3分,共18分)11.(3分)分解因式:327a ab 32−=3(3)(3)a a b a b +−.【分析】先提取公因式,再根据平方差公式因式分解即可.a a b 22【解答】解:原式=−3(9) =+−3(3)(3)a a b a b ,故答案为:3(3)(3)a a b a b +− . 【点评】本题考查了提公因式法和平方差公式,掌握a b a b a b 22−=+−()()是解题的关键.12.(3分)在平面直角坐标系中,点M (2,4)−关于原点对称的点的坐标是(2,4)−. 【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数,可得答案.【解答】解:点(2,4)关于原点对称的点的坐标为−(2,4)−.故答案为:(2,4)−.【点评】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.13.(3分)掷一枚质地均匀的正方体骰子,骰子的六个面上分别标有1、2、3、4、5、6的 .点数,掷得面朝上的点数为奇数的概率为【分析】直接根据概率公式求解可得.【解答】解:在这6个点数中,奇数有1、3、5这3个,所以掷得面朝上的点数为奇数的概率为31 =,62故答案为:1.2【点评】本题主要考查概率公式,解题的关键是掌握随机事件A 的概率P (A )=事件A 可能出现的结果数÷事件A 可能出现的结果数.14.(3分)如图所示,AB 是 O 的直径,弦CD AB 于H ,⊥∠=° A 30,OH =1,则 O的半径是2.【分析】根据圆周角定理可以求出圆心角∠COB 的度数,所以想到连接OC ,然后在Rt OCH∆中进行计算即可.【解答】解:连接OC , ∠=°A 30,∴∠=∠=°BOC A 260, ⊥CD AB,∴∠=°OHC 90, OH =1,11OH OC∴===2cos60°,2∴ O 的半径是2,故答案为:2.【点评】本题考查了圆周角定理,含30°角的直角三角形,垂径定理,勾股定理,根据题目的已知条件添加适当的辅助线是解题的关键.2πcm .15.(3分)扇形的半径为8cm ,圆心角为45°,则该扇形的弧长为【分析】根据弧长公式进行计算即可.【解答】解:由题意得,扇形的半径为8cm ,圆心角为45°,458π180×=2()πcm ,故此扇形的弧长为:故答案为:2π【点评】此题考查了扇弧长的计算,属于基础题,解答本题的关键是熟练掌握弧长计算公式,难度一般.16.(3分)如图,在∆ABC 中,AD BC ,且⊥BD CD ,延长BC 至E ,使得=CE CA =,连接AE .若AB =5,AD =4,则∆ABE 的周长为16+【分析】利用勾股定理分别计算出BD 和AE 即可求出∆ABE 的周长.【解答】解: ⊥AD BC ,BD CD =,∴AD 是BC 的中垂线,∴=AB AC,在Rt ADB∆中,BD 3,∴==BD CD 3,ACAB CE ===5,BE BD CE 223511,DE CD CE =+=+=358∴=+=×+=,在Rt ADE∆中,AE =,C AB BE AE ∆ABE 51116∴=++=++=+,故答案为:16+【点评】本题考查线段垂直平分线的性质、勾股定理,三角形周长的计算等知识,熟练掌握线段垂直平分线的性质以及勾股定理的应用是解题的关键.三、解答题 (本大题共9小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分)117.(6分)计算:6sin 45|1(2022)()π202−°−−−.【分析】先化简各式,然后再进行计算即可.1【解答】解:6sin 45|1(2022)()π202−°−−−. 61)14=−−−−14=+−−=−3.【点评】本题考查了实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值,准确熟练地化简各式是解题的关键.16918.(6分)先化简再求值:(1) x x 223++ +÷,其中x =−1x x ++.【分析】根据分式的混合运算法则把原式化简,把x 的值代入计算即可.2123x x +++【解答】解:原式=⋅x x x +++269x x ++233=⋅x x ++2(3) 1=x +2,1当x =−1时,原式== 1−+12. 【点评】本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.19.(6分)数学课上,老师正在讲尺规作图专题,发现湘琪同学在走神,便叫她上黑板,完成如下尺规作图:已知直线l 及直线l 外一点P ,要过点P 作直线l 的平行线.由于走神只记得用尺规作图法作线段垂直平分线的湘琪同学,灵机一动,用尺规完成了如下作图步骤:①在直线l 上取一点A ,连接PA ;②作PA 的垂直平分线MN ,分别交直线l 、PA 于点B 、O ;③以O 为圆心,OB 长为半径画弧,交直线MN 于另一点Q ;④连接直线PQ .则直线PQ 即为所求.请根据湘琪同学的作图方法,回答下列问题: (1)湘琪同学通过尺规作图构造的相等的线段有:OB = OQ OP ,=;(2)证明:PQ l //.【分析】(1)利用作图信息解决问题即可;(2)利用全等三角形的性质解决问题即可.【解答】解:(1)相等的线段有:OB OQ=,OP OA=.故答案为:OQ,OA;(2) =OB OQ,OP OA,且∠=∠AOB POQ=,∴∆≅∆AOB POQ,∴∠=∠OPQ OAB,//∴PQ l.【点评】本题考查作图−应用与设计作图,平行线的性质,平行线的判定,全等三角形的判定和性质等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.20.(8分)在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩讲行调查,将获得的数据绘制成两幅不整的统计图.根据统计图提供的信息,解答下列问题:80名学生;(1)在这次调查中一共抽取了(2)请补全条形统计图;(3)扇形统计图中,D等级对应的圆心角度数是度;(4)根据抽样调查的结果,请你估计该校2000名学生中有多少名学生的成绩评定为C等级.频数【分析】(1)由两个统计图可知“A等级”的有32人,占调查人数的40%,根据频率=可求答案;(2)求出“B 总数等级”的人数即可补全条形统计图;(3)求出“D 等级”的学生人数占调查人数的百分比,即可求出相应的圆心角的度数;(4)求出样本中“C 等级”的学生占调查学生总数的百分比,即可估计总体中“C 等级”的学生所占的百分比,进而求出总体“C 等级”的人数.【解答】解:(1)3240%80(名)÷=,故答案为:80;(2)B 等级的学生为:8020%16(名)×=,补全条形图如下,8(3)D 等级所对应的扇形圆心角的度数为:36036 80°×=°,故答案为:36;24(4)2000600(名)80×=,答:估计该校2000学生中有600名学生的成绩评定为C 等级.【点评】本题考查条形统计图、扇形统计图,掌握两个统计图中数量之间的关系是正确解答的关键.21.(8分)为积极响应党中央号召,推进乡村振兴,某地区对A 、B 两地间的公路进行改建.如图,A 、B 两地间有一座山,汽车原来从A 地到B 地需要途经C 地沿折线ACB 行驶.现开通隧道后,汽车可直接沿直线AB 行驶.已知AC =40千米,∠=°A 30,∠=°B 45.(结果精确到0.11.41≈,1.73)≈(1)开通隧道前,汽车从A 地到B 地大约要走多少千米?(2)开通隧道后,汽车从A 地到B 地大约可以少走多少千米?【分析】(1)由题意可知,要求AC 与BC 的和,需要把特殊角30°与45°放在直角三角形中,所以过点C 作CD AB ,垂足为D ,然后在⊥Rt ACD 和∆Rt CDB ∆中进行计算即可; (2)在Rt ACD和∆Rt CDB 中分别求出AD 与BD ∆的长度即可.【解答】解:(1)如图,过点C 作AB 的垂线CD ,垂足为D,⊥AB CD,∴∠=∠=°ADC BDC 90, AC =40千米,∠=°A 30, 1CD AC 202∴==千米,CDB 90, ∠=°∠=°B 45,∴==CD BD 20千米, ∴==BC (千米),AC BC 4040 1.412068.2∴+=+≈+×=(千米).∴开通隧道前,汽车从A 地到B 地大约要走68.2千米;(2)在Rt ADC∆ 中,AD AC =⋅°=cos3040, BD =20(千米),AB AD BD 2020 1.732054.6∴=+=+≈×+=(千米),∴汽车从A 地到B 地比原来少走的路程为:AC BC AB +−=−=68.254.613.6(千米),∴开通隧道后,汽车从A 地到B 地大约可以少走13.6千米.【点评】本题考查了解直角三角形的应用,勾股定理的应用,熟练地利用锐角三角函数的正弦,正切,余弦来计算是解题的关键.22.(9分)因国家对新能源的支持以及各种利好因素的影响,某新能源企业的利润逐年提高,据统计,该企业2018年的利润为3亿元,2020年的利润为4.32亿元.(1)求该企业从2018年到2020年利润的年平均增长率;(2)若保持前两年利润的年平均增长率不变,该企业2021年的利润能否超过5亿元?【分析】(1)设这两年该企业年利润平均增长率为x ,根据题意列出方程,求出方程的解即可得到结果;(2)根据题意列出算式,比较即可.【解答】解:(1)设该企业从2018年到2020年利润的年平均增长率为x.x 根据题意得3(1) 4.322+=.解得x 1==0.220%,x 2=−2.2(不合题意,舍去).答:该企业从2018年到2020年利润的年平均增长率为20%.(2)如果仍保持相同的年平均增长率, 那么该企业的2021年的利润为4.32(120%) 5.1845+=>.答:该企业2021年的利润能超过5亿元.【点评】此题考查了一元二次方程的应用,弄清题意是解本题的关键.23.(9分)如图,矩形ABCD 中,M 为BC 上一点,EM AM交AD 的延长线于点E ⊥.(1)求证:∆∆ABM EMA ∽;(2)若AB =4,BM =3,求AE 的值. 【分析】(1)根据矩形可得//AD BC ,从而得∠=∠EAM AMB ,然后进行解答即可;(2)利用(1)的结论即可解答.【解答】(1)证明: 四边形ABCD 为矩形, B 90,∴∠=°//AD BC ,∴∠=∠EAM AMB , ⊥EM AM ,∴∠=°AME 90,∴∠=∠B AME ,∴∆∆ABM EMA ∽;(2)解: AB =4,BM =3,∠=°B 90,AM 5∴=, ∆∆ABM EMA ∽, AM BM=∴,AE AM ∴53 5AE =,AE 25.∴=3【点评】本题考查了相似三角形的判定与性质,矩形的性质,熟练掌握两角相等的两个三角形相似是解题的关键.24.(10分)“三高四新”战略是习近平总书记来湘考察时,为建设现代化新湖南擘画的宏伟战略蓝图.在数学上,我们不妨约定:在平面直角坐标系中,将点P (3,4)称为“三高四新”点,经过P (3,4)的函数,称为“三高四新”函数.(1)下列函数是“三高四新”函数的有①②④; 12;①y x =−22;②y x x =−+2613;③y x x =−++36112;④y =x(2)若关于x 的一次函数y kx b =+是“三高四新”函数,且它与y 轴的交点在y 轴的正半轴,求k 的取值范围;1(3)关于x 的二次函数y x 4=−(3)2的图象顶点为A ,点M x(2,y 2)(1,y 1)和点N x 是该二MAN 90,试判断直线MN 次函数图象上的点且使得∠=°是否为“三高四新”函数,并说明理由.【分析】(1)将x =3,y =4分别代入四个函数解析式可得出答案;(2)将点(3,4)代入y kx b =+,得出43=+k b ,由b >0可求出k 的取值范围,则可得出答案;(3)设M x (1,1(3))x 1−2,4N x (2,1(3))x 2−24,由两条直线的位置关系可得出11(3)(3)1441(3)2x x 21−⋅−=−,联立直线MN 与抛物线解析式得出4y x kx b=−=+ ,由一元二次方程根与系数的关系整理可得出直线MN 的解析式为y kx k =−+34,由“三高四新”函数可得出结论.【解答】解:(1)①当x =3时,y =×−=2324,∴直线y x =−22经过P (3,4);②当x =3时,y −×+3631342,∴抛物线y x x =−+2613经过P (3,4);③当x =3时,y =−×+×+=33631122,∴抛物线y x x =−++36112不经过P (3,4);12=4④当x =3时,3y ,12经过P (3,4);∴反比例函数y =x故答案为:①②④;(2)将点(3,4)代入y kx b =+,得:43=+k b ,∴=−+b k 34,y kx k =−+34, 该一次函数与y 轴的交点在正半轴, 4∴=−+>b k 340,得:k <,343k 且k ≠0∴<;(3)由题:点A (3,0),点M 、N 在抛物线上,(1设M x ,1(3))x 1−2,4N x (2, 1(3))x 2−24,1(3)4y y 34M A x 1−2利用斜率公式:K x AM 1−===−x x x M A −−1 1(3)1,K x AN 4=−(3)2, k k AM AN ⋅=−1,∴ 11(3)(3)1x x 21−⋅−=−44,展开得:x x x x 1212−++=−3()916①,设直线MN y kx b 1:=+,并将它与抛物线解析式:yx 4=−(3)2联立:1(3)24=+ y kx b y x =−1(3)2 ,即4y x kx b =−=+,展开整理得:x k x b 2(64)940−++−=,+=+64,x x b 由韦达定理:x x k 1212⋅=−94②,将②代入①得:941812916b k −−−+=−,得:12416,b k =−+34k b +=,∴直线MN y kx k :34=−+,经过点(3,4),∴直线MN 是“三高四新”函数.【点评】本题是二次函数综合题,考查了新定义“三高四新”函数,一次函数的性质,二次函数与一元二次方程的关系,正确理解新定义是解题的关键.25.(10分)如图,点C 是以AB 为直径的半圆O 上一动点,且AB =2,AD 平分∠BAC 交BC 于点D ,CP 平分∠BCA 交AD 于点P ,PF AC,⊥PE BC⊥.(1)求证:四边形CEPF 为正方形;(2)求AC BC ⋅的最大值;(3)求11AC DC+的最小值.【分析】(1)先证明四边形CEPF 是矩形,由角平分线的性质得出PE PF=,根据正方形的判定可得出结论;(2)过点C 作CH AB于H ,由三角形ABC 的面积可得出⊥AC BC CH ⋅=2,由圆的性质可得出答案;(3)求出PF =1,求出PF1−,则可得出答案.【解答】(1)证明: AB 为圆O 的直径,∴∠=°ACB 90, ⊥PE AC,PF BC⊥,∴∠=∠=°PFC PEC 90,∴四边形CEPF 是矩形, CP 平分∠ACB ,PE AC,⊥PF BC⊥,∴=PE PF ,∴矩形CEPF 是正方形,(2)解:过点C 作CH AB 于H ⊥,11 由等面积法:S AC BC AB CH ∆22ACB =⋅=⋅,2∴⋅=AC BC CH,当CH为半径时取最大值,∴⋅AC BC的最大值为2;(3)由等面积法:S S S∆∆∆ACD ACP CDP=+,AC CD AC PF CD PE∴⋅=⋅+⋅,由(1)PE PF=,AC CD AC PF CD PF∴⋅=⋅+⋅,AC CD PF AC CD⋅=⋅+(),两边同时除以AC CD⋅11AC CD PFPF()+得:1=⋅=+,⋅AC CD AC CD即:111+=,AC CD PF∴当PF取最大值时,11AC CD+取最小值.2AC BC AB+−由直角三角形内切圆公式:PF==1 1=,当AC BC取最大值时,PF⋅最大.由(2)可知,AC BC最大值为2⋅.代入上式可得PF1,∴11AC CD++1.【点评】本题是圆的综合题,考查了圆的性质,圆周角定理,矩形的判定,正方形的判定,三角形的面积,熟练掌握圆的性质是解题的关键.。

九年级数学圆的综合的专项培优练习题(含答案)附答案解析

九年级数学圆的综合的专项培优练习题(含答案)附答案解析一、圆的综合1.如图,△ABC 是⊙O 的内接三角形,点D 在BC uuu r 上,点E 在弦AB 上(E 不与A 重合),且四边形BDCE 为菱形.(1)求证:AC=CE ;(2)求证:BC 2﹣AC 2=AB•AC ;(3)已知⊙O 的半径为3.①若AB AC =53,求BC 的长; ②当AB AC为何值时,AB•AC 的值最大?【答案】(1)证明见解析;(2)证明见解析;(3)2;②32【解析】 分析:(1)由菱形知∠D=∠BEC ,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC ,据此得证;(2)以点C 为圆心,CE 长为半径作⊙C ,与BC 交于点F ,于BC 延长线交于点G ,则CF=CG=AC=CE=CD ,证△BEF ∽△BGA 得BE BG BF BA =,即B F•BG=BE•AB ,将BF=BC-CF=BC-AC 、BG=BC+CG=BC+AC 代入可得; (3)①设AB=5k 、AC=3k ,由BC 2-AC 2=AB•AC 知6k ,连接ED 交BC 于点M ,Rt △DMC 中由DC=AC=3k 、MC=126k 求得22CD CM -3,可知OM=OD-3,在Rt △COM 中,由OM 2+MC 2=OC 2可得答案.②设OM=d ,则MD=3-d ,MC 2=OC 2-OM 2=9-d 2,继而知BC 2=(2MC )2=36-4d 2、AC 2=DC 2=DM 2+CM 2=(3-d )2+9-d 2,由(2)得AB•AC=BC 2-AC 2,据此得出关于d 的二次函数,利用二次函数的性质可得答案. 详解:(1)∵四边形EBDC 为菱形,∴∠D=∠BEC ,∵四边形ABDC 是圆的内接四边形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC ,∴AC=CE;(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,由(1)知AC=CE=CD,∴CF=CG=AC,∵四边形AEFG是⊙C的内接四边形,∴∠G+∠AEF=180°,又∵∠AEF+∠BEF=180°,∴∠G=∠BEF,∵∠EBF=∠GBA,∴△BEF∽△BGA,∴BE BGBF BA=,即BF•BG=BE•AB,∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,∴(BC﹣AC)(BC+AC)=AB•AC,即BC2﹣AC2=AB•AC;(3)设AB=5k、AC=3k,∵BC2﹣AC2=AB•AC,∴6k,连接ED交BC于点M,∵四边形BDCE是菱形,∴DE垂直平分BC,则点E、O、M、D共线,在Rt△DMC中,DC=AC=3k,MC=126k,∴223CD CM k-=,∴OM=OD﹣DM=33k,在Rt△COM中,由OM2+MC2=OC2得(33)2+6k)2=32,解得:k=33或k=0(舍),∴62;②设OM=d,则MD=3﹣d,MC2=OC2﹣OM2=9﹣d2,∴BC 2=(2MC )2=36﹣4d 2,AC 2=DC 2=DM 2+CM 2=(3﹣d )2+9﹣d 2,由(2)得AB•AC=BC 2﹣AC 2=﹣4d 2+6d+18=﹣4(d ﹣34)2+814, ∴当d=34,即OM=34时,AB•AC 最大,最大值为814, ∴DC 2=272, ∴AC=DC=362, ∴AB=964,此时32AB AC =. 点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点.2.已知AB ,CD 都是O e 的直径,连接DB ,过点C 的切线交DB 的延长线于点E . ()1如图1,求证:AOD 2E 180∠∠+=o ;()2如图2,过点A 作AF EC ⊥交EC 的延长线于点F ,过点D 作DG AB ⊥,垂足为点G ,求证:DG CF =;()3如图3,在()2的条件下,当DG 3CE 4=时,在O e 外取一点H ,连接CH 、DH 分别交O e 于点M 、N ,且HDE HCE ∠∠=,点P 在HD 的延长线上,连接PO 并延长交CM 于点Q ,若PD 11=,DN 14=,MQ OB =,求线段HM 的长.【答案】(1)证明见解析(2)证明见解析(3)37【解析】【分析】(1)由∠D +∠E =90°,可得2∠D +2∠E =180°,只要证明∠AOD =2∠D 即可;(2)如图2中,作OR ⊥AF 于R .只要证明△AOR ≌△ODG 即可;(3)如图3中,连接BC 、OM 、ON 、CN ,作BT ⊥CL 于T ,作NK ⊥CH 于K ,设CH 交DE于W .解直角三角形分别求出KM ,KH 即可;【详解】()1证明:如图1中,O Q e 与CE 相切于点C ,OC CE ∴⊥,OCE 90∠∴=o ,D E 90∠∠∴+=o ,2D 2E 180∠∠∴+=o ,AOD COB ∠∠=Q ,BOC 2D ∠∠=,AOD 2D ∠∠=,AOD 2E 180∠∠∴+=o .()2证明:如图2中,作OR AF ⊥于R .OCF F ORF 90∠∠∠===o Q ,∴四边形OCFR 是矩形,AF//CD ∴,CF OR =,A AOD ∠∠∴=,在AOR V 和ODG V 中,A AOD ∠∠=Q ,ARO OGD 90∠∠==o ,OA DO =,AOR ∴V ≌ODG V ,OR DG ∴=,DG CF ∴=,()3解:如图3中,连接BC 、OM 、ON 、CN ,作BT CL ⊥于T ,作NK CH ⊥于K ,设CH 交DE 于W .设DG 3m =,则CF 3m =,CE 4m =,OCF F BTE 90∠∠∠===o Q ,AF//OC//BT ∴,OA OB =Q ,CT CF 3m ∴==,ET m ∴=,CD Q 为直径,CBD CND 90CBE ∠∠∠∴===o ,E 90EBT CBT ∠∠∠∴=-=o ,tan E tan CBT ∠∠∴=,BT CT ET BT∴=, BT 3m m BT∴=, BT 3m(∴=负根已经舍弃),3m tan E 3∠∴== E 60∠∴=o ,CWD HDE H ∠∠∠=+Q ,HDE HCE ∠∠=,H E 60∠∠∴==o ,MON 2HCN 60∠∠∴==o ,OM ON =Q ,OMN ∴V 是等边三角形,MN ON ∴=,QM OB OM ==Q ,MOQ MQO ∠∠∴=,MOQ PON 180MON 120∠∠∠+=-=o o Q ,MQO P 180H 120∠∠∠+=-=o o , PON P ∠∠∴=,ON NP 141125∴==+=,CD 2ON 50∴==,MN ON 25==,在Rt CDN V 中,2222CN CD DN 501448=-=-=,在Rt CHN V 中,CN 48tan H 3HN HN∠===, HN 163∴=,在Rt KNH V 中,1KH HN 832==,3NK HN 24==, 在Rt NMK V 中,2222MK MN NK 25247=-=-=,HM HK MK 837∴=+=+.【点睛】本题考查圆综合题、全等三角形的判定和性质、平行线的性质、勾股定理、等边三角形的判定和性质、锐角三角函数等知识,添加常用辅助线,构造全等三角形或直角三角形解题的关键.3.已知O e 的半径为5,弦AB 的长度为m ,点C 是弦AB 所对优弧上的一动点. ()1如图①,若m 5=,则C ∠的度数为______o ;()2如图②,若m 6=.①求C ∠的正切值;②若ABC V 为等腰三角形,求ABC V 面积.【答案】()130;()2C ∠①的正切值为34;ABC S 27=V ②或43225. 【解析】【分析】 ()1连接OA ,OB ,判断出AOB V 是等边三角形,即可得出结论;()2①先求出10AD =,再用勾股定理求出8BD =,进而求出tan ADB ∠,即可得出结论;②分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论.【详解】()1如图1,连接OB ,OA ,OB OC 5∴==,AB m 5==Q ,OB OC AB ∴==,AOB ∴V 是等边三角形,AOB 60∠∴=o , 1ACB AOB 302∠∠∴==o , 故答案为30;()2①如图2,连接AO 并延长交O e 于D ,连接BD ,AD Q 为O e 的直径,AD 10∴=,ABD 90∠=o ,在Rt ABD V 中,AB m 6==,根据勾股定理得,BD 8=,AB 3tan ADB BD 4∠∴==, C ADB ∠∠=Q ,C ∠∴的正切值为34; ②Ⅰ、当AC BC =时,如图3,连接CO 并延长交AB 于E ,AC BC =Q ,AO BO =,CE ∴为AB 的垂直平分线,AE BE 3∴==,在Rt AEO V 中,OA 5=,根据勾股定理得,OE 4=,CE OE OC 9∴=+=,ABC 11S AB CE 692722∴=⨯=⨯⨯=V ; Ⅱ、当AC AB 6==时,如图4,连接OA 交BC 于F ,AC AB =Q ,OC OB =,AO ∴是BC 的垂直平分线,过点O 作OG AB ⊥于G ,1AOG AOB 2∠∠∴=,1AG AB 32==, AOB 2ACB ∠∠=Q ,ACF AOG ∠∠∴=,在Rt AOG V 中,AG 3sin AOG AC 5∠==, 3sin ACF 5∠∴=, 在Rt ACF V 中,3sin ACF 5∠=, 318AF AC 55∴==,24CF 5∴=, ABC 111824432S AF BC 225525∴=⨯=⨯⨯=V ; Ⅲ、当BA BC 6==时,如图5,由对称性知,ABC 432S 25=V .【点睛】圆的综合题,主要圆的性质,圆周角定理,垂径定理,等腰三角形的性质,三角形的面积公式,用分类讨论的思想解决问题是解本题的关键.4.如图,AB 为O e 的直径,弦//CD AB ,E 是AB 延长线上一点,CDB ADE ∠=∠. ()1DE 是O e 的切线吗?请说明理由;()2求证:2AC CD BE =⋅.【答案】(1)结论:DE 是O e 的切线,理由见解析;(2)证明见解析.【解析】【分析】(1)连接OD ,只要证明OD DE ⊥即可;(2)只要证明:AC BD =,CDB DBE V V ∽即可解决问题.【详解】()1解:结论:DE 是O e 的切线.理由:连接OD .CDB ADE ∠=∠Q ,ADC EDB ∴∠=∠,//CD AB Q ,CDA DAB ∴∠=∠,OA OD =Q ,OAD ODA ∴∠=∠,ADO EDB ∴∠=∠,AB Q 是直径,90ADB ∴∠=o ,90ADB ODE ∴∠=∠=o ,DE OD ∴⊥,DE ∴是O e 的切线.()2//CD AB Q ,ADC DAB ∴∠=∠,CDB DBE ∠=∠,AC BD ∴=n n, AC BD ∴=,DCB DAB ∠=∠Q ,EDB DAB ∠=∠,EDB DCB ∴∠=∠,CDB ∴V ∽DBE V ,CD DB BD BE∴=, 2BD CD BE ∴=⋅,2AC CD BE ∴=⋅.【点睛】本题考查相似三角形的判定和性质、圆周角定理、切线的判定等知识,解题的关键是学会添加常用辅助线,准确寻找相似三角形解决问题,属于中考常考题型.5.在⊙O 中,点C 是AB u u u r 上的一个动点(不与点A ,B 重合),∠ACB=120°,点I 是∠ABC 的内心,CI 的延长线交⊙O 于点D ,连结AD,BD .(1)求证:AD=BD.(2)猜想线段AB与DI的数量关系,并说明理由.(3)若⊙O的半径为2,点E,F是»AB的三等分点,当点C从点E运动到点F时,求点I 随之运动形成的路径长.【答案】(1)证明见解析;(2)AB=DI,理由见解析(3)23【解析】分析:(1)根据内心的定义可得CI平分∠ACB,可得出角相等,再根据圆周角定理,可证得结论;(2)根据∠ACB=120°,∠ACD=∠BCD,可求出∠BAD的度数,再根据AD=BD,可证得△ABD是等边三角形,再根据内心的定义及三角形的外角性质,证明∠BID=∠IBD,得出ID=BD,再根据AB=BD,即可证得结论;(3)连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧,根据已知及圆周角定理、解直角三角形,可求出AD的长,再根据点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,可证得∠DAI1=∠AI1D,然后利用弧长的公式可求出点I 随之运动形成的路径长.详解:(1)证明:∵点I是∠ABC的内心∴CI平分∠ACB∴∠ACD=∠BCD∴弧AD=弧BD∴AD=BD(2)AB=DI理由:∵∠ACB=120°,∠ACD=∠BCD∴∠BCD=×120°=60°∵弧BD=弧BD∴∠DAB=∠BCD=60°∵AD=BD∴△ABD是等边三角形,∴AB=BD,∠ABD=∠C∵I是△ABC的内心∴BI平分∠ABC∴∠CBI=∠ABI∵∠BID=∠C+∠CBI,∠IBD=∠ABI+∠ABD∴∠BID=∠IBD∴ID=BD∵AB=BD∴AB=DI(3)解:如图,连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧∵∠ACB=120°,弧AD=弧BD∴∠AED=∠ACB=×120°=60°∵圆的半径为2,DE是直径∴DE=4,∠EAD=90°∴AD=sin∠AED×DE=×4=2∵点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,∴∠ADB=60°∴弧AB的度数为120°,∴弧AM、弧BF的度数都为为40°∴∠ADM=20°=∠FAB∴∠DAI1=∠FAB+∠DAB=80°∴∠AI1D=180°-∠ADM-∠DAI1=180°-20°-80°=80°∴∠DAI1=∠AI1D∴AD=I1D=2∴弧I1I2的长为:点睛:此题是一道圆的综合题,有一定的难度,熟记圆的相关性质与定理,并对圆中的弦、弧、圆心角、圆周角等进行灵活转化是解题关键,注意数形结合思想的渗透.6.如图,AB是⊙O的直径,PA是⊙O的切线,点C在⊙O上,CB∥PO.(1)判断PC与⊙O的位置关系,并说明理由;(2)若AB=6,CB=4,求PC的长.【答案】(1)PC是⊙O的切线,理由见解析;(235 2【解析】试题分析:(1)要证PC是⊙O的切线,只要连接OC,再证∠PCO=90°即可.(2)可以连接AC,根据已知先证明△ACB∽△PCO,再根据勾股定理和相似三角形的性质求出PC的长.试题解析:(1)结论:PC是⊙O的切线.证明:连接OC∵CB∥PO∴∠POA=∠B,∠POC=∠OCB∵OC=OB∴∠OCB=∠B∴∠POA=∠POC又∵OA=OC,OP=OP∴△APO≌△CPO∴∠OAP=∠OCP∵PA是⊙O的切线∴∠OAP=90°∴∠OCP=90°∴PC是⊙O的切线.(2)连接AC∵AB是⊙O的直径∴∠ACB=90°(6分)由(1)知∠PCO=90°,∠B=∠OCB=∠POC∵∠ACB=∠PCO∴△ACB∽△PCO∴∴.点睛:本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了勾股定理和相似三角形的性质.7.如图,在RtΔABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF;(2)连接EF,求证:∠FEB=∠GDA;(3)连接GF,若AE=2,EB=4,求ΔGFD的面积.【答案】(1)(2)见解析;(3)9【解析】分析:(1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB 为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=12AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;(2)连接EF ,BG ,由三角形AED 与三角形BFD 全等,得到ED =FD ,进而得到三角形DEF 为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行,再根据平行线的性质和同弧所对的圆周角相等,即可得出结论;(3)由全等三角形对应边相等得到AE =BF =1,在直角三角形BEF 中,利用勾股定理求出EF 的长,利用锐角三角形函数定义求出DE 的长,利用两对角相等的三角形相似得到三角形AED 与三角形GEB 相似,由相似得比例,求出GE 的长,由GE +ED 求出GD 的长,根据三角形的面积公式计算即可.详解:(1)连接BD .在Rt △ABC 中,∠ABC =90°,AB =BC ,∴∠A =∠C =45°. ∵AB 为圆O 的直径,∴∠ADB =90°,即BD ⊥AC ,∴AD =DC =BD =12AC ,∠CBD =∠C =45°,∴∠A =∠FBD .∵DF ⊥DG ,∴∠FDG =90°,∴∠FDB +∠BDG =90°.∵∠EDA +∠BDG =90°,∴∠EDA =∠FDB .在△AED 和△BFD 中,A FBD AD BD EDA FDB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AED ≌△BFD (ASA ),∴AE =BF ; (2)连接EF ,BG . ∵△AED ≌△BFD ,∴DE =DF .∵∠EDF =90°,∴△EDF 是等腰直角三角形,∴∠DEF =45°. ∵∠G =∠A =45°,∴∠G =∠DEF ,∴GB ∥EF ,∴∠FEB =∠GBA . ∵∠GBA =∠GDA ,∴∠FEB =∠GDA ;(3)∵AE =BF ,AE =2,∴BF =2.在Rt △EBF 中,∠EBF =90°,∴根据勾股定理得:EF 2=EB 2+BF 2.∵EB =4,BF =2,∴EF∵△DEF 为等腰直角三角形,∠EDF =90°,∴cos ∠DEF =DEEF. ∵EF=∴DE=2. ∵∠G =∠A ,∠GEB =∠AED ,∴△GEB ∽△AED ,∴GE AE =EBED,即GE •ED =AE •EB ,∴GE =8,即GE,则GD =GE +ED∴11192252S GD DF GD DE =⨯⨯=⨯⨯==.点睛:本题属于圆综合题,涉及的知识有:全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,圆周角定理,以及平行线的判定与性质,熟练掌握判定与性质是解答本题的关键.8.如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.【答案】(1) B(,2).(2)证明见解析.【解析】试题分析:(1)在Rt△ABN中,求出AN、AB即可解决问题;(2)连接MC,NC.只要证明∠MCD=90°即可试题解析:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB=,∴B(,2).(2)连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.考点:切线的判定;坐标与图形性质.9.在平面直角坐标系中,已知点A(2,0),点B(0,),点O(0,0).△AOB绕着O顺时针旋转,得△A'OB',点A、B旋转后的对应点为A',B',记旋转角为α.(Ⅰ)如图1,A'B'恰好经过点A时,求此时旋转角α的度数,并求出点B'的坐标;(Ⅱ)如图2,若0°<α<90°,设直线AA'和直线BB'交于点P,求证:AA'⊥BB';(Ⅲ)若0°<α<360°,求(Ⅱ)中的点P纵坐标的最小值(直接写出结果即可).【答案】(Ⅰ)α=60°,B'(3,);(Ⅱ)见解析;(Ⅲ)点P纵坐标的最小值为﹣2.【解析】【分析】(Ⅰ)作辅助线,先根据点A(2,0),点B(0,),确定∠ABO=30°,证明△AOA'是等边三角形,得旋转角α=60°,证明△COB'是30°的直角三角形,可得B'的坐标;(Ⅱ)依据旋转的性质可得∠BOB'=∠AOA'=α,OB=OB',OA=OA',即可得出∠OBB'=∠OA'A=(180°﹣α),再根据∠BOA'=90°+α,四边形OBPA'的内角和为360°,即可得到∠BPA'=90°,即AA'⊥BB';(Ⅲ)作AB的中点M(1,),连接MP,依据点P的轨迹为以点M为圆心,以MP=AB=2为半径的圆,即可得到当PM∥y轴时,点P纵坐标的最小值为﹣2.【详解】解:(Ⅰ)如图1,过B'作B'C⊥x轴于C,∵OA=2,OB=2,∠AOB=90°,∴∠ABO=30°,∠BAO=60°,由旋转得:OA=OA',∠A'=∠BAO=60°,∴△OAA'是等边三角形,∴α=∠AOA'=60°,∵OB=OB'=2,∠COB'=90°﹣60°=30°,∴B'C =OB’=,∴OC=3,∴B'(3,),(Ⅱ)证明:如图2,∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',∴∠OBB'=∠OA'A=(180°﹣α),∵∠BOA'=90°+α,四边形OBPA'的内角和为360°,∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,即AA'⊥BB';(Ⅲ)点P纵坐标的最小值为-2.理由是:如图,作AB的中点M(1,),连接MP,∵∠APB=90°,∴点P的轨迹为以点M为圆心,以MP=AB=2为半径的圆,除去点(2,2),∴当PM⊥x轴时,点P纵坐标的最小值为﹣2.【点睛】本题属于几何变换综合题,主要考查了旋转的性质,含30°角的直角三角形的性质,四边形内角和以及圆周角定理的综合运用,解决问题的关键是判断点P的轨迹为以点M为圆心,以MP 为半径的圆.10..如图,△ABC中,∠ACB=90°,∠A=30°,AB=6.D是线段AC上一个动点(不与点A重合),⊙D与AB相切,切点为E,⊙D交射线..BC于..DC于点F,过F作FG⊥EF交直线点G,设⊙D的半径为r.(1)求证AE=EF;(2)当⊙D与直线BC相切时,求r的值;(3)当点G落在⊙D内部时,直接写出r的取值范围.【答案】(1)见解析,(2)r=3,(3)63 3r<<【解析】【分析】(1)连接DE,则∠ADE=60°=∠DEF+∠DFE,而∠DEF=∠DFE,则∠DEF=∠DFE=30°=∠A,即可求解;(2)如图2所示,连接DE,当圆与BC相切时,切点为F,∠A=30°,AB=6,则BF=3,AD=2r,由勾股定理,即可求解;(3)分点F在线段AC上、点F在线段AC的延长线上两种情况,分别求解即可.【详解】解:设圆的半径为r;(1)连接DE,则∠ADE=60°=∠DEF+∠DFE,而∠DEF=∠DFE,则∠DEF=∠DFE=30°=∠A,∴AE=EF;(2)如图2所示,连接DE,当圆与BC相切时,切点为F∠A=30°,AB=6,则BF=3,AD=2r,由勾股定理得:(3r)2+9=36,解得:3(3)①当点F 在线段AC 上时,如图3所示,连接DE 、DG ,333,3933FC r GC FC r =-==- ②当点F 在线段AC 的延长线上时,如图4所示,连接DE 、DG ,333,3339FC r GC FC r ===-两种情况下GC 符号相反,GC 2相同,由勾股定理得:DG 2=CD 2+CG 2,点G 在圆的内部,故:DG2<r2, 即:22(332)(339)2r r r +-<整理得:25113180r r -+<6335r <<【点睛】本题考查了圆的综合题:圆的切线垂直于过切点的半径;利用勾股定理计算线段的长.11.如图,⊙O 是△ABC 的外接圆,AB 是直径,过点O 作OD ⊥CB ,垂足为点D ,延长DO 交⊙O 于点E ,过点E 作PE ⊥AB ,垂足为点P ,作射线DP 交CA 的延长线于F 点,连接EF ,(1)求证:OD=OP;(2)求证:FE是⊙O的切线.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(2)证明△POE≌△ADO可得DO=EO;(3)连接AE,BE,证出△APE≌△AFE即可得出结论.试题解析:(1)∵∠EPO=∠BDO=90°∠EOP=∠BODOE=OB∴△OPE≌△ODB∴OD="OP"(2)连接EA,EB∴∠1=∠EBC∵AB是直径∴∠AEB=∠C=90°∴∠2+∠3=90°∵∠3=∠DEB∵∠BDE=90°∴∠EBC+∠DEB=90°∴∠2=∠EBC=∠1∵∠C=90°∠BDE=90°∴CF∥OE∴∠ODP=∠AFP∵OD=OP∴∠ODP=∠OPD∵∠OPD=∠APF∴∠AFP=∠APF∴AF=AP 又AE=AE∴△APE≌△AFE∴∠AFE=∠APE=90°∴∠FED=90°∴FE是⊙O的切线考点:切线的判定.12.如图,点B在数轴上对应的数是﹣2,以原点O为原心、OB的长为半径作优弧AB,使点A在原点的左上方,且tan∠AOB=3,点C为OB的中点,点D在数轴上对应的数为4.(1)S扇形AOB=(大于半圆的扇形);(2)点P是优弧AB上任意一点,则∠PDB的最大值为°(3)在(2)的条件下,当∠PDB最大,且∠AOP<180°时,固定△OPD的形状和大小,以原点O为旋转中心,将△OPD顺时针旋转α(0°≤α≤360°)①连接CP,AD.在旋转过程中,CP与AD有何数量关系,并说明理由;②当PD∥AO时,求AD2的值;③直接写出在旋转过程中,点C到PD所在直线的距离d的取值范围.【答案】(1)103π(2)30(3)①AD=2PC②20+83或20+83③1≤d≤3【解析】【分析】(1)利用扇形的面积公式计算即可.(2)如图1中,当PD与⊙O相切时,∠PDB的值最大.解直角三角形即可解决问题.(3)①结论:AD=2PC.如图2中,连接AB,AC.证明△COP∽△AOD,即可解决问题.②分两种情形:如图3中,当PD∥OA时,设OD交⊙O于K,连接PK交OC于H.求出PC即可.如图④中,当PA∥OA时,作PK⊥OB于K,同法可得.③判断出PC的取值范围即可解决问题.【详解】(1)∵tan∠AOB=3,∴∠AOB=60°,∴S扇形AOB=23002103603ππ⋅⋅=(大于半圆的扇形),(2)如图1中,当PD与⊙O相切时,∠PDB的值最大.∵PD是⊙O的切线,∴OP⊥PD,∴∠OPD =90°, ∵21sin 42OP PDO OD ∠=== ∴∠PDB =30°, 同法当DP ′与⊙O 相切时,∠BDP ′=30°,∴∠PDB 的最大值为30°.故答案为30.(3)①结论:AD =2PC .理由:如图2中,连接AB ,AC .∵OA =OB ,∠AOB =60°,∴△AOB 是等边三角形,∵BC =OC ,∴AC ⊥OB ,∵∠AOC =∠DOP =60°,∴∠COP =∠AOD ,∵2AO OD OC OP==, ∴△COP ∽△AOD , ∴2AD AO PC OC==, ∴AD =2PC . ②如图3中,当PD ∥OA 时,设OD 交⊙O 于K ,连接PK 交OC 于H .∵OP =OK ,∠POK =60°,∴△OPK 是等边三角形,∵PD∥OA,∴∠AOP=∠OPD=90°,∴∠POH+∠AOC=90°,∵∠AOC=60°,∴∠POH=30°,∴PH=12OP=1,OH=3PH=3,∴PC=2222PH CH1(13)523+=++=+,∵AD=2PC,∴AD2=4(5+23)=20+83.如图④中,当PA∥OA时,作PK⊥OB于K,同法可得:PC2=12+(3﹣1)2=5﹣23,AD2=4PC2=20﹣83.③由题意1≤PC≤3,∴在旋转过程中,点C到PD所在直线的距离d的取值范围为1≤d≤3.【点睛】本题属于圆综合题,考查了切线的性质,相似三角形的判定和性质,旋转变换,勾股定理,等边三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题.13.如图,已知AB是⊙O的直径,BC是弦,弦BD平分∠ABC交AC于F,弦DE⊥AB于H,交AC于G.①求证:AG=GD;②当∠ABC满足什么条件时,△DFG是等边三角形?③若AB=10,sin∠ABD=35,求BC的长.【答案】(1)证明见解析;(2)当∠ABC=60°时,△DFG是等边三角形.理由见解析;(3)BC 的长为145. 【解析】【分析】 (1)首先连接AD ,由DE ⊥AB ,AB 是O e 的直径,根据垂径定理,即可得到¶¶AD AE =,然后根据在同圆或等圆中,同弧或等弧所对的圆周角相等,证得∠ADE =∠ABD ,又由弦BD 平分∠ABC ,可得∠DBC =∠ABD ,根据等角对等边的性质,即可证得AG=GD ;(2)当∠ABC=60°时,△DFG 是等边三角形,根据半圆(或直径)所对的圆周角是直角与三角形的外角的性质,易求得∠DGF=∠DFG=60°,即可证得结论;(3)利用三角函数先求出tan ∠ABD 34=,cos ∠ABD =45,再求出DF 、BF ,然后即可求出BC.【详解】(1)证明:连接AD ,∵DE ⊥AB ,AB 是⊙O 的直径,∴¶¶AD AE =,∴∠ADE =∠ABD ,∵弦BD 平分∠ABC ,∴∠DBC =∠ABD ,∵∠DBC =∠DAC ,∴∠ADE =∠DAC ,∴AG =GD ;(2)解:当∠ABC =60°时,△DFG 是等边三角形.理由:∵弦BD 平分∠ABC ,∴∠DBC =∠ABD =30°,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠CAB =90°﹣∠ABC =30°,∴∠DFG =∠FAB+∠DBA =60°,∵DE ⊥AB ,∴∠DGF =∠AGH =90°﹣∠CAB =60°,∴△DGF 是等边三角形;(3)解:∵AB 是⊙O 的直径,∴∠ADB =∠ACB =90°,∵∠DAC =∠DBC =∠ABD ,∵AB =10,sin ∠ABD =35, ∴在Rt △ABD 中,AD =AB•sin ∠ABD =6,∴BD8,∴tan ∠ABD =34AD BD ,cos ∠ABD =4=5BD AB , 在Rt △ADF 中,DF =AD•tan ∠DAF =AD•tan ∠ABD =6×34=92, ∴BF =BD ﹣DF =8﹣92=72, ∴在Rt △BCF 中,BC =BF•cos ∠DBC =BF•cos ∠ABD =72×45=145. ∴BC 的长为:145.【点睛】此题考查了圆周角定理、垂径定理、直角三角形的性质、三角函数的性质以及勾股定理等知识.此题综合性较强,难度较大,解题的关键是掌握数形结合思想与转化思想的应用,注意辅助线的作法.14.如图,AB 是半圆⊙O 的直径,点C 是半圆⊙O 上的点,连接AC ,BC ,点E 是AC 的中点,点F 是射线OE 上一点.(1)如图1,连接FA ,FC ,若∠AFC =2∠BAC ,求证:FA ⊥AB ;(2)如图2,过点C 作CD ⊥AB 于点D ,点G 是线段CD 上一点(不与点C 重合),连接FA ,FG ,FG 与AC 相交于点P ,且AF =FG .①试猜想∠AFG 和∠B 的数量关系,并证明;②连接OG ,若OE =BD ,∠GOE =90°,⊙O 的半径为2,求EP 的长.【答案】(1)见解析;(2)①结论:∠GFA =2∠ABC .理由见解析;②PE 3. 【解析】【分析】 (1)证明∠OFA =∠BAC ,由∠EAO +∠EOA =90°,推出∠OFA +∠AOE =90°,推出∠FAO =90°即可解决问题.(2)①结论:∠GFA=2∠ABC.连接FC.由FC=FG=FA,以F为圆心FC为半径作⊙F.因为»»=,推出∠GFA=2∠ACG,再证明∠ACG=∠ABC.AG AG②图2﹣1中,连接AG,作FH⊥AG于H.想办法证明∠GFA=120°,求出EF,OF,OG即可解决问题.【详解】(1)证明:连接OC.∵OA=OC,EC=EA,∴OF⊥AC,∴FC=FA,∴∠OFA=∠OFC,∵∠CFA=2∠BAC,∴∠OFA=∠BAC,∵∠OEA=90°,∴∠EAO+∠EOA=90°,∴∠OFA+∠AOE=90°,∴∠FAO=90°,∴AF⊥AB.(2)①解:结论:∠GFA=2∠ABC.理由:连接FC.∵OF垂直平分线段AC,∴FG=FA,∵FG=FA,∴FC=FG=FA,以F为圆心FC为半径作⊙F.∵»»AG AG=,∴∠GFA=2∠ACG,∵AB是⊙O的直径,∴∠ACB =90°,∵CD ⊥AB ,∴∠ABC +∠BCA =90°,∵∠BCD +∠ACD =90°,∴∠ABC =∠ACG ,∴∠GFA =2∠ABC .②如图2﹣1中,连接AG ,作FH ⊥AG 于H .∵BD =OE ,∠CDB =∠AEO =90°,∠B =∠AOE ,∴△CDB ≌△AEO (AAS ),∴CD =AE ,∵EC =EA ,∴AC =2CD .∴∠BAC =30°,∠ABC =60°,∴∠GFA =120°,∵OA =OB =2,∴OE =1,AE =,BA =4,BD =OD =1, ∵∠GOE =∠AEO =90°,∴OG ∥AC , 323DG OG ∴==, 22221AG DG AD ∴=+=, ∵FG =FA ,FH ⊥AG ,∴AH =HG 21∠AFH =60°, ∴AF =27sin 603AH ︒=, 在Rt △AEF 中,EF 2213AF AE -=, ∴OF =OE +EF =43 , ∵PE ∥OG , ∴PE EF OG 0F=,∴1342333PE,∴PE=36.【点睛】圆综合题,考查了垂径定理,勾股定理,圆周角定理,全等三角形的判定和性质,锐角三角函数,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.15.如图1,⊙O的直径AB=12,P是弦BC上一动点(与点B,C不重合),∠ABC=30°,过点P作PD⊥OP交⊙O于点D.(1)如图2,当PD∥AB时,求PD的长;(2)如图3,当弧DC=弧AC时,延长AB至点E,使BE=12AB,连接DE.①求证:DE是⊙O的切线;②求PC的长.【答案】(1)26;(2)①证明见解析;②33﹣3.【解析】试题分析:(1)根据题意首先得出半径长,再利用锐角三角三角函数关系得出OP,PD的长;(2)①首先得出△OBD是等边三角形,进而得出∠ODE=∠OFB=90°,求出答案即可;②首先求出CF的长,进而利用直角三角形的性质得出PF的长,进而得出答案.试题解析:(1)如图2,连接OD,∵OP⊥PD,PD∥AB,∴∠POB=90°,∵⊙O的直径AB=12,∴OB=OD=6,在Rt△POB中,∠ABC=30°,∴OP=OB•tan30°=6×=2,在Rt△POD中,PD===;(2)①如图3,连接OD,交CB于点F,连接BD,∵,∴∠DBC=∠ABC=30°,∴∠ABD=60°,∵OB=OD,∴△OBD是等边三角形,∴OD⊥FB,∵BE=AB,∴OB=BE,∴BF∥ED,∴∠ODE=∠OFB=90°,∴DE是⊙O的切线;②由①知,OD⊥BC,∴CF=FB=OB•cos30°=6×=3,在Rt△POD中,OF=DF,∴PF=DO=3(直角三角形斜边上的中线,等于斜边的一半),∴CP=CF﹣PF=3﹣3.考点:圆的综合题。

2020年九年级中考数学考前专项练习:圆的压轴综合题(含答案)

圆的压轴综合题1.如图,已知AB是⊙O的直径,弦CD⊥AB于点E.点P是劣弧上任一点(不与点A,D重合),CP交AB于点M,AP与CD的延长相交于点F.(1)设∠CPF=α,∠BDC=β,求证:α=β+90°;(2)若OE=BE,设tan∠AFC=x,.①求∠APC的度数;②求y关于x的函数表达式及自变量x的取值范围.2.如图,P A、PB是⊙O的切线,A、B为切点,连接AO并延长,交PB的延长线于点C,连接PO,交⊙O于点D.(1)求证:∠APO=∠CPO;(2)若⊙O的半径为3,OP=6,∠C=30°,求PC的长.3.如图所示AB是⊙O的直径,圆心为点O,点C为⊙O上一点,OM⊥AB于点O交AC 于点D,MC=MD,求证:MC为⊙O的切线.4.如图1,以BC为直径的半圆O上有一动点F,点E为弧CF的中点,连接BE、FC相交于点M,延长CF到A点,使得AB=AM,连接AB、CE.(1)求证:AB是⊙O的切线;(2)如图2,连接BF,若AF=FM,求的值;(3)如图3.若tan∠ACB=,BM=10.求EC的长.5.如图,在△ABC中,以AC为直径的⊙O与边AB交于点D,点E为⊙O上一点,连接CE并延长交AB于点F,连接ED.(1)若BC是⊙O的切线,求证:∠B+∠FED=90°;(2)若FC=6,DE=3,FD=2.求⊙O的直径.6.如图,矩形ABCD中,AB=4,BC=3,点E是线段AB上的一个动点,经过A,D,E 三点的⊙O交线段AC于点K,交线段CD于点H,连接DE交线段AC于点F.(1)求证:AE=DH;(2)连结DK,当DE平分∠ADK时,求线段DE的长;(3)连结HK,KE,在点E的运动过程中,①当线段DH,HK,KE中满足某两条线段相等,求所有满足条件的AE的长.②当DA=AE时,连结OA,记△AOF的面积为S1,△EFK的面积为S2,求的值.(请直接写出答案)7.如图,OA、OB是⊙O的两条半径,OA⊥OB,C是半径OB上一动点,连接AC并延长交⊙O于D,过点D作圆的切线交OB的延长线于E,已知OA=6.(1)求证:∠ECD=∠EDC;(2)若BC=2OC,求DE长;(3)当∠A从15°增大到30°的过程中,求弦AD在圆内扫过的面积.8.如图,AB是半⊙O的直径,点C,D在半圆上,CD=BD,过点D作EF⊥AC于E,交AB的延长线于F.(1)求证:EF是⊙O的切线.(2)当BF=4,sin F=时,求AE的长.9.已知:如图,AB是⊙O的直径,直线DC,DA分别切⊙O于点C,点A,连结BC,OD.(1)求证:BC∥OD.(2)若∠ODC=36°,AB=6,求出的长.10.如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,BD=CD,过点D作⊙O的切线交边AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为2,CF=1,求的长(结果保留π).11.如图,AB,CD是圆O的直径,AE是圆O的弦,且AE∥CD,过点C的圆O切线与EA的延长线交于点P,连接AC.(1)求证:AC平分∠BAP;(2)求证:PC2=P A•PE;(3)若AE﹣AP=PC=4,求圆O的半径.12.如图,AB是⊙O的直径,BE是弦,点D是弦BE上一点,连接OD并延长交⊙O于点C,连接BC,在过点D垂直于OC的直线上取点F.使∠DFE=2∠CBE.(1)请说明EF是⊙O的切线;(2)若⊙O的半径是6,点D是OC的中点,∠CBE=15°,求线段EF的长.13.如图,四边形ABCD内接于⊙O,∠BAD=90°,AD、BC的延长线交于点F,点E在CF上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)当AB=AC时,若CE=4,EF=6,求⊙O的半径.14.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE是⊙O的切线;(2)若DE+EA=8,AF=16,求⊙O的半径.15.如图,在⊙O的内接三角形ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.(1)求证:△P AC≌△PDF;(2)若AB=5,=,求PD的长.16.如图,AB是⊙O的直径,点E是劣弧AD上一点,∠PBD=∠BED,且DE=,BE 平分∠ABD,BE与AD交于点F.(1)求证:BP是⊙O的切线;(2)若tan∠DBE=,求EF的长;(3)延长DE,BA交于点C,若CA=AO,求⊙O的半径.17.如图,在△ABC中,AB=AC=10,以AB为直径的OO与BC相交于点D,与AC相交于点E,DF⊥AC,垂足为F,连接DE,过点A作AG⊥DE,垂足为G,AG与⊙O交于点H.(1)求证:DF是⊙O的切线;(2)若∠CAG=25°,求弧AH的长;(3)若tan∠CDF=,求AE的长;18.如图,在Rt△ABC中,∠ACB=90°,点O为△ABC外接圆的圆心,将△ABC沿AB翻折后得到△ABD.(1)求证:点D在⊙O上;(2)在直径AB的延长线上取一点E,使DE2=BE•AE.①求证:直线DE为⊙O的切线;②过点O作OF∥BD交AD于点H,交ED的延长线于点F.若⊙O的半径为5,cos∠DBA=,求FH的长.参考答案1.解:(1)∵CD⊥AB,∴∠+∠=90°,即:180°﹣α+β=90°,∴α=β+90°;(2)如图1,连接OD,①OE=BE,OB⊥BE,设圆的半径为r,∴∠BOD=∠OBD=∠ODB=60°,即:△BOD为等边三角形,∴BC=r,∴∠CDB=30°,∴∠APC=90°﹣30°=60°;②连接BC,过点M组MH⊥BC于点H,则∠MCB=∠F AB,∴∠CMH=∠F,在△CBM中,设BC=r,∠CBA=60°,∴MH=BM sin∠CBA=MB,BH=MB,CH=MH tan∠CMH=MH•x,CH+HB=BC,即,,而AM+BM=2r,即:,∴1x=1+y,即:y=x.2.(1)证明:∵P A、PB是⊙O的切线,∴∠APO=∠CPO;(2)解:∵P A是⊙O的切线,∴∠P AC=90°,∴AP==3,在Rt△CAP中,∠C=30°,∴PC=2AP=3.3.证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠A+∠B=90°,∵OM⊥AB,∴∠AOD=90°,∴∠A+∠ADO=90°,∴∠ADO=∠B,∵∠ADO=∠CDM,∴∠CDM=∠B,∵MC=MD,∴∠MDC=∠MCD,∴∠MCD=∠B,∵OA=OC,∴∠A=∠ACO,∴∠MCD+∠ACO=90°,∴∠MCO=90°,∴MC为⊙O的切线.4.解:(1)如图1,AB=AM,∴∠ABM=∠AMB=∠EMC,点E为弧CF的中点,则∠EBC=∠ECM,∵BC为直径,∴∠BEC=90°,∠BFC=90°,∴∠EMC+∠ECM=90°,∴∠ABM+∠MBC=90°,∴AB是⊙O的切线;(2)如图2,∵AF=FM,∠BFC=90°,∴∠ABF=∠MBF=α=∠MCE,而∠ABF=∠ACB=α,∴∠ABF+∠MBF+∠EBC=∠ABC=90°=3α,∴α=30°,则BF=BC=r,同理BE=r,而BC=2r,∴求==;(3)如图3,tan∠ACB==设:AB=5m,BC=12m,则AC=13m,CM=AC﹣AM=8m,∵∠EBC=∠ECM,∴Rt△CEM∽Rt△BEC,∴,即:,解得:EC=12.5.(1)证明:∵∠A+∠DEC=180°,∠FED+∠DEC=180°,∴∠FED=∠A,∵BC是⊙O的切线,∴∠BCA=90°,∴∠B+∠A=90°,∴∠B+∠FED=90°;(2)解:∵∠CF A=∠DFE,∠FED=∠A,∴△FED∽△F AC,∴=,∴=,解得:AC=9,即⊙O的直径为9.6.(1)证明:连接HE,如图1所示:∵矩形ABCD,∴∠DAB=∠ADC=90°,∴DE为⊙O直径,∴∠DHE=90°,∴四边形ADHE是矩形,∴DH=AE;(2)解:如图2所示:∵四边形ABD是矩形,∴∠B=∠ADC=90°,AD=BC=3,AB∥CD,∴AC==5,∵DE平分∠ADK,∴∠DAE=∠EDK,,∵DE为⊙O直径,∴DE⊥AC,∴∠ADE=∠CAB,∴cos∠ADE=cos∠CAB=,即=,∴DE=;(3)解:①若HK=KE时,过K作MN⊥CD,交CD于M,交AB于N,如图3所示:则,MN=BC=3,∴∠EDK=∠MDK=∠CAB=∠DCA,∵∠ADC=90°,∴DK=AK=CK,∵AB∥CD,∴KM=KN=,AN=CM=DM=2,∵DE为⊙O直径,∴∠DKE=90°,∴tan∠EKN=tan∠MDK=,∴NE=,∴AE=AN﹣NE=2﹣=;若DH=KE时,∴,∴tan∠ADE=tan∠CAB=,即=,∴AE=;若DH=HK时,∵∠ADC=90°,∴∠AKH=90°,设:DH=HK=3x,∵sin∠ACD==,∴CH=5x,∵DH+CH=CD,∴5x+3x=4,∴x=∴DH=AE=;②如图4所示:当DA=AE=3时,△ADE是等腰直角三角形,∴OA⊥DE,DE=AD=3,∴OA=OD=OE=DE=,∵AB∥CD,∴△CDF∽△AEF,∴===,∴DF=×3=,EF=DE=,AF=AC=,∴OF=DF﹣OD=﹣=,∴△AOF的面积为S1=OF×O A=××=,∵∠ADF=∠EKF,∠AFD=∠EFK,∴△ADF∽△EKF,∴=()2=,∴S2=S△EFK===,∴==.7.(1)证明:连接OD,如图1所示:∵DE是⊙O的切线,∴∠EDC+∠ODA=90°,∵OA⊥OB,∴∠ACO+∠OAC=90°,∵OA、OB是⊙O的两条半径,∴OA=OB,∴∠ODA=∠OAC,∴∠EDC=∠ACO,∵∠ECD=∠ACO,∴∠ECD=∠EDC;(2)解:∵BC=2OC,OB=OA=6,∴OC=2,设DE=x,∵∠ECD =∠EDC ,∴CE =DE =x ,∴OE =2+x ,∵∠ODE =90°,∴OD 2+DE 2=OE 2,即:62+x 2=(2+x )2,解得:x =8,∴DE =8;(3)解:过点D 作DF ⊥AO 交AO 的延长线于F ,如图2所示: 当∠A =15°时,∠DOF =30°,∴DF =OD =OA =3,∠DOA =150°,S 弓形ABD =S 扇形ODA ﹣S △AOD =﹣OA •DF =15π﹣×6×3=15π﹣9, 当∠A =30°时,∠DOF =60°,∴DF =OD =OA =3,∠DOA =120°,S 弓形ABD =S 扇形ODA ﹣S △AOD =﹣OA •DF =12π﹣×6×3=12π﹣9,∴当∠A 从15°增大到30°的过程中,AD 在圆内扫过的面积=(15π﹣9)﹣(12π﹣9)=3π+9﹣9.8.(1)证明:连接AD ,OD ,∵CD =BD , ∴=,∴∠1=∠2,∵OA =OD ,∴∠2=∠3,∴∠1=∠3,∴AE∥OD,∵EF⊥AC,∴EF⊥OD,∴EF是⊙O的切线;(2)解:设⊙O的半径为r,在Rt△ODF中,sin F=,∴=,∴r=6,∵AE∥OD,∴,∴=,∴AE=.9.解:(1)连接OC,∵直线DC,DA分别切⊙O于点C,∴CD=AD,在△ADO与△CDO中,,∴△ADO≌△CDO(SSS),∴∠AOD=∠COD,∴∠AOD=AOC,∵∠B=AOC,∴∠B=∠AOD,∴BC∥OD;(2)∵∠ODC=36°,直线DC,DA分别切⊙O于点C,点A,∴∠ADC=2∠CDO=72°,∴∠AOC=180°﹣∠ADC=108°,∴∠BOC=72°,∵AB=6,∴OB=3,∴的长==.10.(1)证明:连接OD,如图所示.∵DF是⊙O的切线,D为切点,∴OD⊥DF,∴∠ODF=90°.∵BD=CD,OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∴∠CFD=∠ODF=90°,∴DF⊥AC.(2)解:连接BE,∵AB是直径,∴BE⊥AC,∵DF⊥AC,∴==,∵FC=1,∴EC=2,∵OD=AC=2,∴A C=4,∴AE=EC=2,∴AB=BC,∵AB=AC=4,∴AB=BC=AC,∴△ABC是等边三角形,∴∠BAC=60°,∵OD∥AC,∴∠BOD=∠BAC=60°,∴的长:=.11.解:(1)∵OA=OC,∴∠OCA=∠OAC,∵CD∥AP,∴∠OCA=∠P AC,∴∠OAC=∠P AC,∴AC平分∠BAP;(2)连接AD,∵CD为圆的直径,∴∠CAD=90°,∴∠DCA+∠D=90°,∵CD∥P A,∴∠DCA=∠P AC,又∠P AC+∠PCA=90°,∴∠P AC=∠D=∠E,∴△P AC∽△PCE,∴,∴PC2=P A•PE;(3)AE=AP+PC=AP+4,由(2)得16=P A(P A+P A+4),P A2+2P A﹣8=0,解得,P A=2,连接BC,∵CP是切线,则∠PCA=∠CBA,Rt△P AC∽Rt△CAB,,而PC2=AC2﹣P A2,AC2=AB2﹣BC2,其中P A=2,解得:AB=10,则圆O的半径为5.12.(1)证明:连接OE交DF于点H,∵DF⊥OC,∴∠FDO=90°,∵∠COE=2∠CBE,∠DFE=2∠CBE.∴∠F=∠DOE,∵∠EHF=∠OHD,∴∠FEH=∠ODH=90°,∴EF是⊙O的切线;(2)解:∵∠CBE=15°,∴∠F=∠COE=2∠CBE=30°.∵⊙O的半径是6,点D是OC中点,∴OD=3,在Rt△ODH中,cos∠DOH=,∴OH=2.∴HE=6﹣2.在Rt△FEH中,tan F==6﹣2=.∴EF=6﹣6.13.解:(1)如图,连接BD,∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°,∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°,∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE,∵点D在⊙O上,∴DE是⊙O的切线;(2)∵∠BAF=∠BDE=90°,∴∠F+∠ABC=∠FDE+∠ADB=90°,∵AB=AC,∴∠ABC=∠ACB,∵∠ADB=∠ACB,∴∠F=∠EDF,∴DE=EF=6,∵CE=4,∠BCD=90°,∴∠DCE=90°,∴CD==2,∵∠BDE=90°,CD⊥BE,∴△CDE∽△CBD,∴=,∴BD==3,∴⊙O的半径=.14.(1)证明:∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC.∵D E⊥AC,OD是半径,∴DE⊥OD,∴DE是⊙O的切线;(2)解:如图,过点O作OH⊥AF于点H,则∠ODE=∠DEH=∠OHE=90°,∴四边形ODEH是矩形,∴OD=EH,OH=DE.∴AH=AF=8,设AE=x.∵DE+AE=8,∴OH=DE=8﹣x,OA=OD=HE=AH+AE=8+x,在Rt△AOH中,由勾股定理知:AH2+OH2=OA2,即82+(8﹣x)2=(8+x)2,解得:x=2,∴OA=8+2=10.∴⊙O的半径为10.15.(1)证明:连接AD,∵AB⊥CD,AB是⊙O的直径,∴=,∴∠ACD=∠B=∠ADC,∵∠FPC=∠B,∴∠ACD=∠FPC,∴∠APC=∠ACF,∵∠F AC=∠CAF,∴△P AC∽△CAF;(2)连接OP,则OA=OB=OP=AB=,∵=,∴OP⊥AB,∠OPG=∠PDC,∵AB是⊙O的直径,∵AC=2BC,∴tan∠CAB=tan∠DCB=,∴==,∴AE=4BE,∵AE+BE=AB=5,∴AE=4,BE=1,CE=2,∴OE=OB﹣BE=2.5﹣1=1.5,∵∠OPG=∠PDC,∠OGP=∠DGE,∴△OPG∽△EDG,∴=,∴==,∴GE=,OG=,∴PG==,GD==,∴PD=PG+GD=.16.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠ABD=90°,∵∠BED=∠DAB,∠PBD=∠BED,∴∠DAB=∠PBD,∴∠PBD+∠ABD=90°,∴AB⊥PB,∴BP是⊙O的切线;(2)解:连接AE,∴∠AEB=90°,∵BE平分∠ABD,∴∠ABE=∠DBE,∴=,∴AE=DE=,∴∠ABE=∠DBE=∠DAE,∴tan∠DBE=tan∠ABE=tan∠DAE==,∴=,∴EF=;(3)解:连接OE,∵OE=OB,∴∠ABE=∠OEB,∵∠ABE=∠DBE,∴∠DBE=∠OEB,∴△CEO∽△CDB,∴,∵CA=AO,设CA=AO=BO=R,∴=,即=2,∴CE=2,∴DC=3,∵∠ADC=∠ABE,∠C=∠C,∴△CAD∽△CEB,∴=,∴=,∴R=,∴⊙O的半径为.17.(1)证明:连接OD、AD,AB是⊙O的半径,∴∠ADB=90°,∵AB=AC,∵点D是BC的中点,O是AB的中点,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∵OD是⊙O的半径,DF是⊙O的切线;(2)解:连接OH,∵AG⊥DG,∴∠G=90°,∵∠CAG=25°,∴∠AEG=65°,∴∠B=∠AEG=65°,∴∠BAC=180°﹣65°﹣65°=50°,∴∠OAH=75°,∴∠AOH=30°,∴l==;弧AH(3)解:∵∠CAD+∠C=90°,∠CDF+∠C=90°,∴∠CAD=∠CDF,∴tan∠CAD=tan∠CDF=,∴AD=2CD,∴DC2+(2CD)2=102,∴CD=2,∵△CDF∽△CAD,∴DC2=CF•AC,∴CF=2,∴CD=DE,∵OF⊥AC,∴EF=CF=2,∴AE=10﹣2﹣2=6.18.(1)证明:连接OD,如图所示:∵∠ACB=90°,∴AB为直径,由翻折可知△ADB≌△ACB,∴∠ADB=90°,∵O为AB中点,∴OD=AB,∴D在⊙O上;(2)①证明:∵DE2=BE•AE,∴,∠E=∠E,∴△EBD∽△EDA,∴∠EDB=∠DAE,∵OD=OB,∴∠ABD=∠ODB,∵∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠EDB+∠ODB=90°,∴∠EDO=90°,∴DE为⊙O切线;②解:在Rt△ADB中,∵cos∠DBA=,AB=10,∴BD=6,∴AD===8,∵∠ADB=90°,OF∥BD,∴∠FHD=∠ADB=90°,∵OH⊥AD,∴HD=AD=4,又∵OA=OB,∴OH=BD=3,∵∠HOD=∠ODB=∠ABD,∴cos∠HOD=,即,∴FO=,∴FH=FO﹣HO=﹣3=.。

人教版九年级上册数学课后习题

4页练习:1、把下列方程化为一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项:(1)5x 2-1=4x (2)4x 2=81(3)4x(x+2)=25 (4)(3x-2)(x+1)=8x-32、根据下列问题,列出关于x 的方程,并将其化为一元二次方程的一般形式: (1)4个完全相同的正方形的面积之和是25,求正方形的边长x ; (2)一个长方形的长比宽多2,面积是100,求正方形的长x ;(3)把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x ; 4页习题21.11、 把下列方程化为一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项:()()()()()()()()()()()()()221316; 24581;350; 42210;55510; 532121.x x x x x x x x x x x x x x x +=+=+=--=+=--+=- 2、 根据下列问题列方程,并将其化为一元二次方程的一般形式: (1) 一个圆的面积是6.282m ,求半径( 3.14π≈);(2) 一个直角三角形的两个直角边相差3cm ,面积是92cm ,求较长的直角边的长。

3、 下列哪些数是方程2120x x +-=的根?-4,-3,-2,-1,0,1,2,3,4 4、写出下列方程的根:()()()222191; 22540; 342;x x x =-==4、 一个长方形的长比宽多1cm ,面积是1322cm ,长方形的长和宽各是多少? 5、 有一根1m 长的铁丝,怎样用它围成一个面积为0.062m 的长方形?6、 参加一次聚会的每两人都握了一次手,所有人共握手10次,有多少人参加聚会?6页练习: 解下列方程:()()()()()()()()2222221280; 2953; 3690;43160 5445; 6961 4.x x x x x x x x -=-=+-=--=-+== ; ++9页练习 1、 填空:()()()()()()()()22222222110; 212;235; 4;3x x x x x x xx x xx x ++=+-+=-++=+-+=- 2、 解下列方程:()()()22222711090; 20;4(3)3640; 44630;(5)49211; x x x x x x x x x x x ++=--=+-=--=+-=-()6(4)812.x x x +=+ 12页练习1、 解下列方程:()()()()222221160; 20;4(3)3620; 4460;(5)48411; 6(24)5x x x x x x x x x x x x +-=-=--=-=++=+-=-8.x14页练习:1、 解下列方程:()()()()()2222210; 20;(3)363; 441210;(5)32142; 6(4)5x x x x x x x x x x +=-=-=--=+=+-=()22.x -2、 把小圆形场地的半径增加5m 得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学辅导练习(九) 一、选择题 1.若抛物线cbxaxy2的顶点在第一象限,与x轴的两个交点分布在原点两侧,则点(a,ac)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限

2.若双曲线)0(kxky的两个分支在第二、四象限内,则抛物线222kxkxy 的图象大致是图中的( )

3.如图是二次函数cbxaxy2的图象,则一次函数bcaxy的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限

第3题图 第5题图 第8题图 4.已知函数772xkxy的图象与x轴有交点,则k的取值范围是( )

A. k>47 B.047kk且 C.47k D.k>47且0k 5.函数y=ax2+bx+c的图象如图所示,那么关于一元二次方程ax2+bx+c-3=0的根的情况是( ) A.有两个不相等的实数根 B.有两个异号的实数根 C .有两个相等的实数根 D.没有实数根 6.现有A,B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6),用小莉掷A立方体朝上的数字为x,小明掷B立方体朝上的数字为y来确定点P(x,y),那么他们各掷一次所确定的点P落在已知抛物线y=-x2+4x上的概率为( ) A.118 B.112 C.19 D.16 7.已知a<-1,点(a-1,y1),(a,y2),(a+1,y2)都在函数y=x2的图象上,则( ) A.y18.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a-b+c<0;③b+2a<0;④abc>0,其中所有正确结论的序号是 ( ) A.③④ B.②③ C.①④ D.①②③

Oyx

xyOxyOxyOOyxDCBA二、填空题 9.若点(2,5),(4,5)是某抛物线图像上的两个点,那么这条抛物线的对称轴是 . 10.如图所示,矩形的窗户分成上、下两部分,用9米长的塑钢制作这个窗户的窗框(包括中间档),设窗宽x(米),则窗的面积y(平方米)用x表示的函数关系式为_____________________________;要使制作的窗户面积最大,那么窗户的高是________米,窗户的最大面积是_______________平方米.

第10题图 第12题图 第16题图 第18题图 11.若二次函数cbxaxy2的图象经过点(-2,10),且一元二次方程02cbxax的根为

21和2,则该二次函数的解析关系式为__________________.

12.抛物线cbxaxy2如图所示,则它关于y轴对称的抛物线的关系式是__________. 13把抛物线y=x2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是 y=x2-3x+5,则b= c= . 14.公路上行驶的汽车急刹车时的行驶路程s(m)与时间t(s)的函数关系式为s=20t—5t2,当遇到紧急情况时,司机急刹车,但由于惯性汽车要滑行___________m才能停直来。 15、老师给出一个函数,甲、乙、丙、丁四位同学各指出这个函数的一个性质,甲:函数的图象不经过第三象限;乙:函数的图象不过第四象限;丙:当x<2时,y随x的增大而减小;丁:当x<2时,y>0。已知这四位同学的描述都正确,请构造出满足上述所有性质的一个二次函数_______________________________.

16、在长度为1的线段AB上取一点P,分别以AP、BP为边作正方形,则这两个正方形面积之和的最小值为 . 17、已知抛物线C1、C2关于x轴对称,抛物线C1、C3关于y轴对称,如果C2的解析式为

1)2(432xy,则C3的解析式为_________________________.

18.如图,直线y=x+2与x轴交于点A,与y轴交于点B,AB⊥BC,且点C在x轴上,若抛物线y=ax2+bx+c以C为顶点,且经过点B,则这条抛物线的关系式为_______________________. 三、解答题

19.已知二次函数322xxy的图像与x轴交于A、B两点,与y轴交于点C, (1)试求△ABC的面积

(2)若点P是该函数图像上的一个动点,且S△PAB=2S△ABC,求P点的坐标。

331O

y

xx

A B P 20.若抛物线的顶点坐标是(1,16),并且抛物线与x轴两交点间的距离为8,试求该抛物线的关系式,并求出这条抛物线上纵坐标为10的点的坐标。

21.某企业投资100万元引进一条农产品加工线,若不计维修、保养费用,预计投产后每年可获利33万元,该生产线投资后,从第1年到第x年的维修、保养费用累计为y(万元),且bxaxy2,若第1年的维修、保养费用为2万元,第2年为4万元。 (1)求y与x之间的关系式; (2)投产后,这个企业在第几年就能收回投资?

22.某瓜果基地市场部为指导该基地种植某蔬菜的生产和销售,在对历年市场行情和生产情况进行调查的基础上,对今年这种蔬菜上市后的市场售价和生产成本进行预测,提供了两个方面的信息,如图所示,请你根据图象提供的信息说明:

(1)在3月从份出售这种蔬菜,每千克的收益是多少元? (2)哪个月出售这种蔬菜,每千克的收益最大?说明理由。

乙月月每千克成本(元)甲

每千克售价(元)001234567

1234512345671234523.已知二次函数y=12x2+bx+c的图象经过点A(c,-2), 求证:这个二次函数图象的对称轴是x=3。 题目中的矩形框部分是一段墨水污染了无法辨认的文字. (1)根据已知和结论中现有的信息,你能否求出题中的二次函数解析式?若能,请写出求解过程;若不能,请说明理由. (2)请你根据已有的信息,在原题中的矩形框中,填加一个适当的条件,把原题补充完整.

24.如图,抛物线212yxmxn交x轴于A、B两点,交y轴于点C,点P是它的顶点,点A的横坐标是3,点B的横坐标是1. (1) 求m、n的值;

(2) 求直线PC的解析式;

(3)请探究以点A为圆心、直径为5的圆与直线PC的位置关系,并说明理由.(参考数:21.41,31.73,52.24) 25.在某市开展的环境创优活动中,某居民小区要在一块靠墙(墙长15米)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长为40m的栅栏围成,若设花园靠墙的一边长为x(m),花园的面积为y(m2)。 (1)求y与x之间的函数关系式,并写出自变量x的取值范围;

(2)满足条件的花园面积能达到200m2吗?若能,求出此时x的值,若不能,说明理由:

(3)根据(1)中求得的函数关系式,判断当x取何值时,花园的面积最大?最大面积是多少? 26.足球场上守门员在O处踢出一高球,球从地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起,据实验,足球在草坪上弹起后的抛物线与原来的抛物线的形状相同,最大高度减少到原来最大高度的一半。 (1)求足球开始飞出到第一次落地时,该抛物线的表达式;

(2)足球第一次落地点C距守门员多少米?(34取7)

(3)运动员乙要抢先到达第二个落地点D,他应再向前跑多少米?(62取5)

421

N

M

DCB

AO

yx第26章《二次函数》测试题 一、选择题(每小题2分,共20分) 题号 1 2 3 4 5 6 7 8 9 10 答案 C A B C C C B C C A 二、填空题(每小题3分,共30分)

11.)30(29232xxxy 49 827。 12.3525352xxy

13.342xxy 14.143)2(22xxyxy或 15.0,0aca 16.20 18.442xxy(答案不唯一) 19. 1)2(4323xy 20、22212xxy 三、解答题(共8小题,共70分) 21.)0(62xxxy

22.(1)1522xxy (2))10,61(,)10,61(

23.(1)xxy2 (2)设投产后的纯收入为/y,则yxy10033/。即: 156)16(1003222/xxxy。

由于当161x时,/y随x的增大而增大,且当x=1,2,3时,/y的值均小于0,当x=4时,.012156)164(2/y可知:

投产后第四年该企业就能收回投资。 24.(1)每千克收益为1元;

(2)5月份出售这种蔬菜,每千克的收益最大,最大为37。 25.(1)能 由结论中的对称轴x=3,得

3)21(2b,则b=—3

又因图象经过点A(C,2),则:23212ccc 0442cc 0)2(2c

∴221cc

∴2c ∴二次函数解析式为23212xxy (2)补:点B(0,2)(答案不唯一)

相关文档
最新文档