201705邗江二模
精品解析:江苏省邗江中学2017-2018学年高二下学期期中考试数学(理)试题(解析版)

江苏省邗江中学2017—2018学年度第二学期高二数学期中试卷(理科)一、填空题(本题包括14小题,每小题5分,共70分.)1.设全集U=Z,集合M={1,2},P={﹣2,﹣1,0,1,2},则P∩(C U M)___.【答案】{﹣2,﹣1,0}【解析】【详解】分析:根据交集的定义求解:详解:P∩(C U M点睛:1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.2.命题“∃x∈[0,1],x2﹣1≥0”是____命题.(选填“真”或“假”)【答案】真【解析】分析:判断存在性问题真假性,可以通过举例子肯定结论,如要否定,需证明所有都不满足.详解:因为,所以命题“∃x∈[0,1],x2﹣1≥0”是真命题.点睛:判定全称命题“”是真命题,需要对集合中的每个元素,证明成立;要判定一个全称命题是假命题,只要举出集合中的一个特殊值,使不成立即可.要判断存在性命题是真命题,只要在限定集合内至少能找到一个,使成立即可,否则就是假命题.3.已知复数z=i(2+i),则|z|=___.【答案】【解析】分析:先计算复数,再根据复数的模的定义求结果.详解:点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为4.若=,则x的值为___.【答案】1或3【解析】分析:根据组合数性质,列方程,解得x的值.详解:或或点睛:组合数有关性质5.用数学归纳法证明等式时,第一步验证n=1时,左边应取的项是【答案】1+2+3+4【解析】试题分析:本题考查的知识点是数学归纳法的步骤,由等式,当n=1时,n+3=4,而等式左边起始为1的连续的正整数的和,由此易得答案.解:在等式中,当n=1时,n+3=4,而等式左边起始为1的连续的正整数的和,故n=1时,等式左边的项为:1+2+3+4故答案为:1+2+3+4点评:在数学归纳法中,第一步是论证n=1时结论是否成立,此时一定要分析等式两边的项,不能多写也不能少写,否则会引起答案的错误.6.在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率的取值范围是.【答案】6【解析】由题意知.7.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ,直线l与曲线C交于A,B两点,则线段AB的长为__.【答案】8【解析】分析:先根据加减消元法得直线的普通方程,再根据将曲线C的极坐标方程化为直角坐标方程,联立方程组解得交点坐标,最后根据两点间距离公式求结果.详解:,由得或,因此点睛:(1)直角坐标方程化为极坐标方程,只要运用公式及直接代入并化简即可; (2)极坐标方程化为直角坐标方程时常通过变形,构造形如的形式,进行整体代换.其中方程的两边同乘以(或同除以)及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.8.已知(1+x)(a﹣x)6=a0+a1x+a2x2+…+a7x7,a∈R,若a0+a1+a2+…+a6+a7=0,则a3=___.【答案】-5【解析】分析:先根据赋值法求a,再根据x3项系数求a3.详解:令,得因此点睛:“赋值法”普遍适用于恒等式,是一种重要的方法,对形如的式子求其展开式的各项系数之和,常用赋值法,只需令即可;对形如的式子求其展开式各项系数之和,只需令即可.9.如果复数z的模不大于1,而z的虚部的绝对值不小于,则复平面内复数z的对应点组成图形的面积是___.【答案】【解析】分析:先根据复数的模以及复数的虚部列不等式,再根据扇形面积减去三角形面积得弓形面积.详解:设,则,如图,因此复平面内复数z的对应点组成图形为两个弓形,其面积为扇形面积减去三角形面积是点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为10.观察下列各等式:55=3125,56=15625,57=78125,…,则52018的末四位数字为__.【答案】5625【解析】分析:先根据等式依次计算末四位数字,再根据规律确定周期,最后根据周期确定结果.详解:55,56,57,58,59末四位数字为3125,5625,8125,0625,3125,从而周期为4,因此52018的末四位数字为56的末四位数字,即为5625.点睛:找寻规律的方法有:观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.11.根据浙江省新高考方案,每位考生除语、数、外3门必考科目外,有3门选考科目,并且每门选考科目都有2次考试机会,每年有两次考试时间,某考生为了取得最好成绩,将3门选考科目共6次考试机会安排在高二与高三的4次考试中,且每次至多考2门,则该考生共有___ 种不同的考试安排方法.【答案】114【解析】分析:先确定分配方案为2211或2220,再确定排列数.详解:分配方案为2211时,排列数为,分配方案为2220时,排列数为,因此安排方法为点睛:求解排列、组合问题常用的解题方法:(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——“间接法”;(5)“在”与“不在”问题——“分类法”.12.如图,在正三棱柱ABC﹣A1B1C1中,AB=1,AA1=2,则二面角C1﹣AB﹣C的余弦值为___.【答案】【解析】分析:过C作CM垂直AB 于M,则根据三垂线定理以及二面角定义可得∠C1MC为二面角C1﹣AB﹣C的平面角,再解三角形得结果.详解:过C作CM垂直AB 于M,连C1M,则由三垂线定理得C1M垂直AB,因此∠C1MC为二面角C1﹣AB﹣C的平面角,所以点睛:二面角找垂面,即找棱垂直的平面,得到平面角之后再解三角形即可13.化简:= (用m、n表示).【答案】.【解析】试题分析:设(1)则函数中含项的系数为,(2)(1)-(2)得,即,化简得,∴函数中含项的系数,即是等式右边含项的系数,∵等式右边含项的系数为即,∴.故答案为:.考点:排列与组合;二项式定理与性质.14.设A,B是集合{a1,a2,a3,a4,a5}的两个不同子集,若使得A不是B的子集,B也不是A的子集,则不同的有序集合对(A,B)的组数为____.【答案】570【解析】分析:分类依次讨论有序集合对(A,B)的组数,根据子集元素个数分类讨论,最后根据加法原理求组数. 详解:不同的有序集合对(A,B)的组数为点睛:求解排列、组合问题常用的解题方法:(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——“间接法”;(5)“在”与“不在”问题——“分类法”.二、解答题:(15、16题均为14分,17、18题均为15分,19、20题均为16分,请在答题纸的指定区域内答题,并写出必要的计算、证明、推理过程.)15.已知集合A是函数y=lg(20﹣8x﹣x2)的定义域,集合B是不等式x2﹣2x+1﹣a2≥0(a>0)的解集,p:x∈A,q:x∈B.(1)若A∩B=∅,求实数a的取值范围;(2)若¬p是q的充分不必要条件,求实数a的取值范围.【答案】(1)a≥11(2)0<a≤1【解析】试题分析:(1)分别求函数的定义域和不等式()的解集化简集合A,由得到区间端点值之间的关系,解不等式组得到的取值范围;(2)求出对应的的取值范围,由是的充分不必要条件得到对应集合之间的关系,由区间端点值的关系列不等式组求解的范围.试题解析:(1)由题意得,或,若,则必须满足,解得,∴的取值范围为.(2)易得或.∵是的充分不必要条件,∴或是或的真子集,则,其中两个等号不能同时成立,解得,∴a的取值范围为.16.在直角坐标系xOy中,圆C的参数方程为(α为参数),以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系.(1)写出圆C的极坐标方程及圆心C的极坐标;(2)直线l的极坐标方程为与圆C交于M,N两点,求△CMN的面积.【答案】(1),圆心C(2,)(2)【解析】分析:(1)先根据三角形同角关系消参数得圆C圆心直角坐标以及圆方程的直角坐标方程,再根据将直角坐标化为极坐标,(2)将直线极坐标方程代入圆极坐标方程得交点极坐标,再根据三点极坐标关系求三角形面积.详解:(1)极坐标(ρ,θ)与直角坐标(x,y)的对应关系为:,所以,根据sin2α+cos2α=1,消元得()2﹣(ρsinθ﹣1)2=4,化简得:.因为圆心C直角坐标为(,1),∴极坐标为(2,).(2)联立,得交点极坐标M(0,0),N(2,),所以|MN|=2,|MC|=2,所以△CMN的面积.点睛:(1)直角坐标方程化为极坐标方程,只要运用公式及直接代入并化简即可; (2)极坐标方程化为直角坐标方程时常通过变形,构造形如的形式,进行整体代换.其中方程的两边同乘以(或同除以)及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.17.如图,在三棱锥中,已知都是边长为的等边三角形,为中点,且平面,为线段上一动点,记.(1)当时,求异面直线与所成角的余弦值;(2)当与平面所成角的正弦值为时,求的值.【答案】(1)(2)【解析】分析:(1)建立空间直角坐标系,设立各点坐标,根据向量数量积求向量夹角,最后根据线线角与向量夹角相等或互补得结果,(2)建立空间直角坐标系,设立各点坐标,利用方程组求平面的一个法向量,再根据向量数量积求向量夹角,最后根据线面角与向量夹角互余列等量关系,解得结果,详解:连接CE,以分别为轴,建立如图空间直角坐标系,则,因为F为线段AB上一动点,且,则,所以.(1)当时,,,所以.(2),设平面的一个法向量为=由,得,化简得,取设与平面所成角为,则.解得或(舍去),所以.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.18.观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49照此规律下去(1)写出第5个等式;(2)你能做出什么一般性的猜想?请用数学归纳法证明你的猜想.【答案】(1)5+6+7+…+13=81(2)见解析【解析】分析:(1)等式左边第一数为n,连续加2n-1个数,右边为平方数,为(2n﹣1)2,即得第5个等式;以及一般性的猜想,(2)数学归纳法证明时关键找出n=k+1时与n=k关系,再代入归纳假设,经过计算可得结论.详解:(1)第5个等式 5+6+7+…+13=81(2)猜测第n个等式为n+(n+1)+(n+2)+…(3n﹣2)=(2n﹣1)2证明:(1)当n=1时显然成立;(2)假设n=k(k≥1,k∈N+)时也成立,即有k+(k+1)+(k+2)+…(3k﹣2)=(2k﹣1)2…(8分)那么当n=k+1时左边=(k+1)+(k+2)+…+(3k﹣2)+(3k﹣1)+(3k)+(3k+1)=k+(k+1)+(k+2)+…+(3k﹣2)+(2k﹣1)+3k+3k+1=(2k﹣1)2+(2k﹣1)+(3k)+(3k+1)=4k2﹣4k+1+8k=(2k+1)2=[2(k+1)﹣1]2而右边=[2(k+1)﹣1]2这就是说n=k+1时等式也成立.根据(1)(2)知,等式对任何n∈N+都成立.点睛:找寻规律的方法有:观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.19.邗江中学高二年级某班某小组共10人,利用寒假参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中选出2人作为该组代表参加座谈会.(1)记“选出2人参加义工活动的次数之和为4”为事件,求事件发生的概率;(2)设为选出2人参加义工活动次数之差的绝对值,求随机变量的分布列和数学期望.【答案】(1)(2)见解析【解析】试题分析:(1)由已知得,即可得到事件的概率.(2)由题意得,得到随机变量的所有可能取值,求得随机变量取每个值的概率,即可得到随机变量的分布列,并计算其数学期望.试题解析:(1)由已知得.所以事件发生的概率为.(2)随机变量的所有可能取值为0,1,2计算,,;所以随机变量的分布列为:随机变量的数学期望为.点睛:本题主要考查了概率的计算及随机变量的分布列、数学期望,此类问题的解答中主要认真审题,正确把握试验的条件,合理求解每个取值对应的概率是解答的关键,同时注意概率公式的应用和准确计算. 【此处有视频,请去附件查看】20.已知…,.记.(1)求的值;(2)化简的表达式,并证明:对任意的,都能被整除.【答案】(1)30;(2)证明见解析.【解析】试题分析:由二项式定理,得(i=0,1,2,…,2n+1),(1)根据,得,即可得解;(2)先根据组合数的性质可得出,再将化简得,即可证明.试题解析:由二项式定理,得(i=0,1,2,…,2n+1).(1);(2)∵∴.∴.∵∴能被整除.。
江苏省八市(南通、泰州、扬州、徐州、淮安、连云港、宿迁、盐城)2023届高三二模数学试题

江苏省八市(南通、泰州、扬州、徐州、淮安、连云港、宿迁、盐城)2023届高三二模数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.若M ,N 是U 的非空子集,M N M ⋂=,则( ) A .M N ⊆B .N M ⊆C .U M N =ðD .U N M =ð2.若()2i?12?i z =- ,则z =( ) A .43i + B .43i -C .43i -+D .43i --3.已知322()nx x +的展开式中各项系数和为243,则展开式中常数项为( ) A .60B .80C .100D .1204.古代数学家刘徽编撰的《重差》是中国最早的一部测量学著作,也为地图学提供了数学基础.现根据刘徽的《重差》测量一个球体建筑物的高度,已知点A 是球体建筑物与水平地面的接触点(切点),地面上B ,C 两点与点A 在同一条直线上,且在点A 的同侧.若在B ,C 处分别测得球体建筑物的最大仰角为60°和20°,且BC = 100 m ,则该球体建筑物的高度约为( )(cos10° ≈ 0.985)A .49.25 mB .50.76 mC .56.74 mD .58.60 m5.在平行四边形ABCD 中,12BE BC =u u u r u u u r ,13AF AE =u u u r u u u r .若A B m D F n A E =+u u u r u u u r u u u r,则m n +=( ) A .12B .34C .56D .436.记函数()π()sin 04f x x ωω⎛⎫=+ ⎪⎝⎭>的最小正周期为T .若ππ2T <<,且π()3f x f ⎛⎫≤ ⎪⎝⎭,则ω= ( )A .34B .94C .154D .2747.已知函数()f x 的定义域为R ,()e x y f x =+是偶函数,()3e xy f x =-是奇函数,则()f x 的最小值为( )A .eB .C .D .2e8.已知F 1,F 2分别是双曲线C :22221(00)y x a b a b-=>>,的左、右焦点,点P 在双曲线上,12PF PF ⊥,圆O :22229()4x y a b +=+,直线PF 1与圆O 相交于A ,B 两点,直线PF 2与圆O 相交于M ,N 两点.若四边形AMBN 的面积为29b ,则C 的离心率为( )A .54B .85CD二、多选题9.已知甲种杂交水稻近五年的产量(单位:t/hm 2)数据为:9.8,10.0,10.0,10.0,10.2,乙种杂交水稻近五年的产量(单位:t/hm 2)数据为:9.6,9.7,10.0,10.2,10.5,则( ) A .甲种的样本极差小于乙种的样本极差 B .甲种的样本平均数等于乙种的样本平均数 C .甲种的样本方差大于乙种的样本方差D .甲种的样本60百分位数小于乙种的样本60百分位数10.已知数列{an }的前n 项和为n S , 7213,16(3)1,6n n n n a n --≤≤⎧=⎨-->⎩,若32k S =-,则k 可能为( ) A .4B .8C .9D .1211.如图,正三棱锥A -PBC 和正三棱锥D -PBC BC = 2.若将正三棱锥A -PBC 绕BC 旋转,使得点A ,P 分别旋转至点A P '',处,且A ',B ,C ,D 四点共面,点A ',D 分别位于BC 两侧,则( )A .A D CP '⊥B .//PP '平面A 'BDCC .多面体PP A BDC ''的外接球的表面积为6πD .点A ,P 旋转运动的轨迹长相等 12.已知0,e ln 1a a b >+=,则( )A .ln 0+<a bB .e 2a b +>C .ln e 0b a +<D .1a b +>三、填空题13.已知点P 在抛物线()2:20C y px p =>上,过P 作C 的准线的垂线,垂足为H ,点F为C 的焦点.若60HPF ∠=o ,点P 的横坐标为1,则p =_______. 14.过点()1,0- 作曲线3y x x =-的切线,写出一条切线的方程_______.15.已知一扇矩形窗户与地面垂直,高为1.5m ,下边长为1m ,且下边距地面1 m .若某人观察到窗户在平行光线的照射下,留在地面上的影子恰好为矩形,其面积为1.5 m 2,则窗户与地面影子之间光线所形成的几何体的体积为_______m 3.四、双空题16.“完全数”是一类特殊的自然数,它的所有正因数的和等于它自身的两倍.寻找“完全数”用到函数()n σ:*n ∀∈N ,()n σ为n 的所有正因数之和,如(6)123612σ=+++=,则(20)σ=_______;(6)n σ=_______.五、解答题17.记ABC V 的内角A B C ,,的对边分别为a b c ,,,已知sin sin C A B . (1)若π3A =,求cos B ; (2)若c ABC V 的面积.18.已知正项数列{}n a 的前n 项和为,且11a = ,2218n n S S n +-=,*N n ∈ . (1)求n S ;(2)在数列{}n a 的每相邻两项1k k a a +,之间依次插入12k a a a ⋯,,,,得到数列{}1121231234n b a a a a a a a a a a ⋯⋯:,,,,,,,,,,,求{}n b 的前100项和. 19.如图,在圆台1OO 中,11,A B AB 分别为上、下底面直径,且11//A B AB ,112AB A B =,1CC 为异于11,AA BB 的一条母线.(1)若M 为AC 的中点,证明:1//C M 平面11ABB A ;(2)若13,4,30OO AB ABC ==∠=︒,求二面角1A C C O --的正弦值.20.我国风云系列卫星可以监测气象和国土资源情况.某地区水文研究人员为了了解汛期人工测雨量x (单位:dm )与遥测雨量y (单位:dm )的关系,统计得到该地区10组雨量数据如下:并计算得1010102222111353.6361.7357.333.6234.4234.02.i i ii i i i x y x y x y x y ======≈≈≈∑∑∑,,,,,(1)求该地区汛期遥测雨量y 与人工测雨量x 的样本相关系数(精确到0.01),并判断它们是否具有线性相关关系;(2)规定:数组(xi ,yi )满足| xi - yi | < 0.1为“Ⅰ类误差”;满足0.1≤| xi - yi | < 0.3为“Ⅱ类误差”;满足| xi - yi |≥0.3为“Ⅲ类误差”.为进一步研究,该地区水文研究人员从“Ⅰ类误差”、“Ⅱ类误差”中随机抽取3组数据与“Ⅲ类误差”数据进行对比,记抽到“Ⅰ类误差”的数据的组数为X ,求X 的概率分布与数学期望.附:相关系数ii()()nx x yy r --=∑17.4.21.已知椭圆()2222:10x y E a b a b +=>>,焦距为2,过E 的左焦点F 的直线l 与E 相交于A 、B 两点,与直线2x =-相交于点M .(1)若()2,1M --,求证:MA BF MB AF ⋅=⋅;(2)过点F 作直线l 的垂线m 与E 相交于C 、D 两点,与直线2x =-相交于点N .求1111MA MB NC ND +++的最大值. 22.已知函数()ln a f x ax x x=--. (1)若1x >,()0f x >,求实数a 的取值范围;(2)设12,x x 是函数()f x 的两个极值点,证明:12()()f x f x -<.。
江苏省扬州市邗江区2017-2018学年高二下学期期中考试数学(理)试卷 (1)

【题文】(本小题满分16分)观察如图:1,2,34,5,6,78,9,10,11,12,13,14,15……问:(1)此表第n 行的最后一个数是多少?(2)此表第n 行的各个数之和是多少?(3)2018是第几行的第几个数?(4)是否存在*n N ∈,使得第n 行起的连续10行的所有数之和为271322120?--若存在, 求出n 的值;若不存在,请说明理由.【答案】解:(1)由已知得出每行的正整数的个数是1,2,4,8,…,其规律:1121314112,22,42,82,----====由此得出第n 行的第一个数为:12n -,共有12n -个, 所以此表第n 行的最后一个数是21n -. .................................... 3分(2)由(1)得到第n 行的第一个数,且此行一共有12n -个数,从而利用等差数列的求和公式得: 第n 行的各个数之和112322(221)3142322284n n n n n n n S ----+-==⋅-⋅=⨯-........ 6分 (3)由(1)可知第n 行的最后一个数是21n -.当11n =时,最后一个数字为1023, 当12n =时,最后一个数字为2047,所以2018在第12行,20181023995-=, 故2018是第12行的第995个数;(4)第n 行起的连续10行的所有数之和9314(144)284n n S =⋅+++-⋅ 21912(221023)n n n -+-=--又271332410221202(2215)--=--…………(*), 故23, 5.n n -≥≥ 5n =时(*)式成立.5n >时,由(*)可得,519124102(221023)2215,n n n -+---=--此等式左边为偶数,右边为奇数,不成立. 故满足条件的5n =. ........... ........................... .... 16分【解析】【标题】江苏省扬州市邗江区2017-2018学年高二下学期期中考试数学(理)试卷【结束】。
【2020扬州二模】江苏省扬州市2020届高三第二次模拟考试(5月) 数学 Word版含答案

2020届高三模拟考试试卷数 学(满分160分,考试时间120分钟)2020.5一、 填空题:本大题共14小题,每小题5分,共70分.1. 已知集合A ={x|-1<x <2},B ={x|x >0},则A ∩B =________.2. 已知(1-i)z =2+i ,其中i 是虚数单位,则复数z 的模为________.3. 已知某校高一、高二、高三年级分别有1 000,800,600名学生,现计划用分层抽样的方法抽取120名学生去参加社会实践,则在高三年级需抽取________名学生.S ←0For I From 1 To 5 S ←S +I End For Print S4. 如图伪代码的输出结果为________.5. 若实数x ,y 满足⎩⎪⎨⎪⎧x ≥0,y ≥-1,x +y -1≤0,则2x -y 的最小值为________.6. 已知a ∈{-1,1},b ={-3,1,2},则直线ax +by -1=0不经过第二象限的概率为________.7. 已知双曲线x 24-y 2b 2=1的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的虚轴长为________.8. 已知α为锐角,且cos(α+π6)=13,则cos α=________.9. 等比数列{a n }的前n 项和为S n ,已知a 1a 6=3a 3,且a 4与a 5的等差中项为2,则S 5=________.10. 在正四棱柱ABCDA 1B 1C 1D 1中,AB =2,AA 1=3,O 为上底面ABCD 的中心.设正四棱柱ABCDA 1B 1C 1D 1与正四棱锥OA 1B 1C 1D 1的侧面积分别为S 1,S 2,则S 1S 2=________.11. 已知曲线C :f(x)=x 3-x ,直线l :y =ax -a ,则“a =-14”是“直线l 与曲线C 相切”的____________条件.(选填“充分不必要”“必要不充分”“充分必要”或“既不充分又不必要”)12. 已知x >0,y >0,则x +y x +16xy的最小值为________.13. 已知点D 为圆O :x 2+y 2=4的弦MN 的中点,点A 的坐标为(1,0),且AM →·AN →=1,则OA →·OD →的最小值为________.14. 在数列{a n }中,a 1=1,a n +1=⎩⎨⎧a n +1,n4∉N *,a n ,n4∈N *.设{a n }的前n 项和为S n ,若S 4n ≤λ·2n-1恒成立,则实数λ的取值范围是________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)在△ABC 中,已知2S =bccos A ,其中S 为△ABC 的面积,a ,b ,c 分别为角A ,B ,C 的对边.(1) 求角A 的值;(2) 若tan B =65,求sin 2C 的值.16.(本小题满分14分)如图,在三棱柱ABCA 1B 1C 1中,BC =B 1C ,O 为四边形ACC 1A 1对角线的交点,F 为棱BB 1的中点,且AF ⊥平面BCC 1B 1.求证:(1) OF ∥平面ABC ;(2) 四边形ACC 1A 1为矩形.17. (本小题满分14分)某厂根据市场需求开发三角花篮支架(如图),上面为花篮,支架由三根细钢管组成.考虑到钢管的受力和花篮质量等因素,设计支架应满足:① 三根细钢管长均为1米(粗细忽略不计),且与地面所成的角均为θ(π6≤θ≤π3);② 架面与架底平行,且架面三角形ABC 与架底三角形A 1B 1C 1均为等边三角形;③ 三根细钢管相交处的节点O 分三根细钢管上、下两段之比均为2∶3.定义:架面与架底的距离为“支架高度”,架底三角形A 1B 1C 1的面积与“支架高度”的乘积为“支架需要空间”.(1) 当θ=π3时,求“支架高度”;(2) 求“支架需要空间”的最大值.18. (本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点(1,22),且椭圆的离心率为22.直线l :y =x +t 与椭圆E 相交于A ,B 两点,线段AB 的中垂线交椭圆E 于C ,D 两点.(1) 求椭圆E 的标准方程; (2) 求线段CD 长的最大值;(3) 求AC →·AD →的值.19. (本小题满分16分)已知函数f(x)=a(x -1x)(a ∈R ),g(x)=ln x.(1) 当a =1时,解不等式:f(x)-g(x)≤0; (2) 设u(x)=xf(x)-g(x).①当a <0时,若存在m ,n ∈(0,+∞)(m ≠n),使得u(m)+u(n)=0,求证:mn <1; ②当a >0时,讨论u(x)的零点个数.20. (本小题满分16分) 对数列{a n },规定{Δa n }为数列{a n }的一阶差分数列,其中Δa n =a n +1-a n (n ∈N *).规定{Δ2a n }为{a n }的二阶差分数列,其中Δ2a n =Δa n +1-Δa n (n ∈N *).(1) 已知数列{a n }的通项公式a n =n 2(n ∈N *),试判断{Δa n },{Δ2a n }是否为等差数列,请说明理由;(2) 若数列{b n }是公比为q 的正项等比数列,且q ≥2,对于任意的n ∈N *,都存在m ∈N *,使得Δ2b n =b m ,求q 所有可能的取值构成的集合;(3) 设各项均为正数的数列{c n }的前n 项和为S n ,且Δ2c n =0.对满足m +n =2k ,m ≠n 的任意正整数m ,n ,k ,都有c m ≠c n ,且不等式S m +S n >tS k 恒成立,求实数t 的最大值.2020届高三模拟考试试卷(十五)数学附加题(满分40分,考试时间30分钟)21. (本小题满分10分)已知矩阵M =⎣⎢⎡⎦⎥⎤a 22b ,M =⎣⎢⎡⎦⎥⎤1223,且MN =⎣⎢⎡⎦⎥⎤1001.(1) 求矩阵M ;(2) 若直线l 在矩阵M 对应的变换作用下变为直线x +3y =0,求直线l 的方程.22.(本小题满分10分)在平面直角坐标系中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3t ,y =1-3t(t 为参数),以坐标原点为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C :ρ=22sin (θ-π4),求直线l 被曲线C 截得的弦长.23. (本小题满分10分)某商场举行元旦促销回馈活动,凡购物满1 000元,即可参与抽奖活动,抽奖规则如下:在一个不透明的口袋中装有编号为1,2,3,4,5的5个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次(每次摸出的小球均不放回口袋),编号依次作为一个三位数的个位、十位、百位,若三位数是奇数,则奖励50元,若三位数是偶数,则奖励100m 元(m 为三位数的百位上的数字,如三位数为234,则奖励100×2=200元).(1) 求抽奖者在一次抽奖中所得三位数是奇数的概率;(2) 求抽奖者在一次抽奖中获奖金额X 的概率分布与数学期望E(X).24.(本小题满分10分)(1) 求证:1k +1C k n =1n +1C k +1n +1(n ∈N *,k ∈N );(2) 计算:(-1)0C 02 020+(-1)112C 12 020+(-1)213C 22 020+…+(-1)2 02012 021C 2 0202 020; (3) 计算:∑2 020k =0(-1)k C k 2 0202k +2.2020届高三模拟考试试卷(扬州)数学参考答案及评分标准1. {x|0<x <2}2. 1023. 304. 155. -16. 16 7. 25 8. 3+2269. 121 10.3105 11. 充分不必要 12. 42 13. -1 14. λ≥33215. 解:(1) 因为2S =bccos A ,所以2×12bcsin A =bccos A ,则sin A =cos A .(3分)在△ABC 中,因为A ∈(0,π),所以sin A =cos A >0, 所以tan A =1,(5分) 所以A =π4.(7分)(2) 由(1)知A =π4,又tan B =65,所以tan(A +B)=tan(π4+B)=1+tan B1-tan B=1+651-65=-11.(9分)在△ABC 中,因为A +B +C =π,所以tan C =-tan(A +B)=11,所以sin 2C =2sin Ccos C =2sin Ccos C sin 2C +cos 2C =2tan C1+tan 2C =2×111+112=22122=1161.(14分)16. 证明:(1) 取AC 中点D ,连结OD.在三棱柱ABCA 1B 1C 1中,四边形ACC 1A 1为平行四边形,BB 1∥CC 1∥AA 1,且BB 1=AA 1.因为O 为平行四边形ACC 1A 1对角线的交点,所以O 为A 1C 的中点.又D 为AC 的中点,所以OD ∥AA 1,且OD =12AA 1.(2分)又BB 1∥AA 1,BB 1=AA 1,所以OD ∥BB 1,且OD =12BB 1.又F 为BB 1的中点,所以OD ∥BF ,且OD =BF ,所以四边形ODBF 为平行四边形,所以OF ∥BD.(5分)因为BD ⊂平面ABC ,OF ⊄平面ABC , 所以OF ∥平面ABC.(7分)(2) 因为BC =B 1C ,F 为BB 1的中点,所以CF ⊥BB 1.因为AF ⊥平面BCC 1B 1,BB 1⊂平面BCC 1B 1,所以AF ⊥BB 1.(9分)因为CF ⊥BB 1,AF ⊥BB 1,CF ⊂平面AFC ,AF ⊂平面AFC ,CF ∩AF =F , 所以BB 1⊥平面AFC.(11分)又AC ⊂平面AFC ,所以BB 1⊥AC. 又由(1)知BB 1∥CC 1,所以AC ⊥CC 1.在三棱柱ABCA 1B 1C 1中,四边形ACC 1A 1为平行四边形, 所以四边形ACC 1A 1为矩形.(14分)17. 解:(1) 因为架面与架底平行,且AA 1与地面所成的角为π3,AA 1=1米,所以“支架高度” h =1×sinπ3=32(米).(4分) (2) 过O 作OO 1⊥平面A 1B 1C 1,垂足为O 1.又O 1A 1⊂平面A 1B 1C 1,所以OO 1⊥O 1A 1.又AA 1与地面所成的角为θ,所以O 1A 1=35cos θ.同理O 1C 1=O 1B 1=35cos θ,所以O 1为等边三角形A 1B 1C 1的外心,也为其重心, 所以B 1C 1=A 1O 1·32×23=35cos θ·3=335cos θ,S △A 1B 1C 1=34×(335cos θ)2=273100cos 2θ. 记“支架需要空间”为V ,则V =273100cos 2θ·sin θ,θ∈[π6,π3].(8分)令t =sin θ,则t ∈⎣⎡⎦⎤12,32.所以V =273100(1-t 2)t =273100(t -t 3),t ∈⎣⎡⎦⎤12,32.又V′=273100(1-3t 2)=-813100(t 2-13)=-813100(t +33)(t -33),则当t ∈(12,33)时,V ′>0,V 单调递增;当t ∈(33,32)时,V ′<0,V 单调递减,所以当t =33时,V max =273100[33-(33)3]=273100×33×23=950(立方米).(13分) 答:(1) 当θ=π3时,“支架高度”为32米;(2) “支架需要空间”的最大值为950立方米.(14分)18. 解:(1) 设椭圆E 的焦距为2c(c >0),则e =c a =a 2-b 2a =22,可知a 2=2b 2.(2分)因为椭圆E 过点(1,22), 所以1a 2+12b 2=1,解得a 2=2,b 2=1,所以椭圆的标准方程为x 22+y 2=1.(4分)(2) 设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),D(x 4,y 4).由⎩⎪⎨⎪⎧y =x +t ,x 2+2y 2=2得3x 2+4tx +2t 2-2=0. 又直线l :y =x +t 与椭圆E 相交于A ,B 两点,所以⎩⎨⎧x 1+x 2=-43t ,x 1x 2=2t 2-23,且Δ=(4t)2-4×3×(2t 2-2)>0,则-3<t < 3.(6分) 设AB 的中点为M(x M ,y M ),则x M =x 1+x 22=-23t ,y M =x M +t =13t ,所以AB 的中垂线的方程为y =-x -13t ,即直线CD 的方程为y =-x -13t.由⎩⎪⎨⎪⎧y =-x -13t ,x 2+2y 2=2得27x 2+12tx +2t 2-18=0,则⎩⎨⎧x 3+x 4=-49t ,x 3x 4=2t 2-1827,(8分) 所以CD =(x 4-x 3)2+(y 4-y 3)2=1+(-1)2·(x 3+x 4)2-4x 3x 4 =2·(-49t )2-4×2t 2-1827=2·-881t 2+83. 又t ∈(-3,3),所以当t =0时,CD max =2×83=433.(10分) (3) 由(2)知AC →·AD →=(x 3-x 1,y 3-y 1)·(x 4-x 1,y 4-y 1) =(x 3-x 1)(x 4-x 1)+(y 3-y 1)(y 4-y 1)=(x 3-x 1)(x 4-x 1)+(-x 3-x 1-43t)(-x 4-x 1-43t)=x 3x 4-(x 3+x 4)x 1+x 21+x 3x 4+(x 1+43t)(x 3+x 4)+x 21+83tx 1+169t 2=2x 3x 4+43t(x 3+x 4)+2x 21+83tx 1+169t 2.(13分) 又⎩⎨⎧x 3+x 4=-49t ,x 3x 4=2t 2-1827,3x 21+4tx 1+2t 2-2=0,所以AC →·AD →=2x 3x 4+43t(x 3+x 4)+23(3x 21+4tx 1)+169t 2 =2×2t 2-1827+43t ×(-49t)+23(2-2t 2)+169t 2=(427-1627-3627+4827)t 2=0.(16分) 19. (1) 解:设h(x)=f(x)-g(x)=x -1x -ln x ,则h′(x)=1+1x 2-1x =x 2-x +1x 2=(x -12)2+34x 2>0,所以h(x)在(0,+∞)上递增.又h(1)=0,所以0<x <1,所以f(x)-g(x)≤0的解集为(0,1).(4分) (2) ①证明:由u(m)+u(n)=0得a(m 2-1)-ln m +a(n 2-1)-ln n =0, 即a(m 2+n 2-2)-ln m -ln n =0,又a <0,所以a(m 2+n 2-2)-ln m -ln n =0≤a(2mn -2)-ln(mn). 因为m ≠n ,所以“=”不成立.(7分) 思路一:设mn =t ,v(t)=a(2t -2)-ln t(t >0),则v′(t)=2a -1t<0,所以v(t)在(0,+∞)上单调递减.又v(1)=0,所以t <1,即mn <1.(10分) 思路二:假设mn ≥1,则2mn -2≥0,ln(mn)≥0,所以a(2mn -2)-ln(mn)≤0, 这与a(2mn -2)-ln(mn)>0矛盾,故mn <1.(10分) ②解:u(x)=xf(x)-g(x)=a(x 2-1)-ln x ,当a >0时,u ′(x)=2ax -1x =2ax 2-1x .令u′(x)=0得x =±12a(负值舍去). 所以当x ∈(0,12a)时,u ′(x)<0,u(x)为减函数; 当x ∈(12a,+∞)时,u ′(x)>0,u(x)为增函数. 又u(1)=0, 1° 当12a =1,即a =12时,u(x)有1个零点;(12分) 2° 当12a <1,即a >12时,由u(1)=0可知u(12a)<u(1)=0, 又u(e -a )>0,且e -a <1,所以u(x)在(0,1)上有1个零点,故此时u(x)有2个零点;(14分) 3° 当12a >1,即0<a <12时,由u(1)=0可知u(12a)<u(1)=0, 令φ(x)=ln x -(x -1),则φ′(x)=1x -1=1-x x,所以当x ∈(0,1)时,φ′(x)>0,φ(x)单调递增;当x ∈(1,+∞)时,φ′(x)<0,φ(x)单调递减,所以φ(x)max =φ(1)=0,故ln x ≤x -1,则-ln x ≥-(x -1).所以u(x)>a(x 2-1)-(x -1),所以u(1a -1)>0,且1a -1>1,所以u(x)在(1,+∞)上有1个零点,故此时u(x)有2个零点.综上,当a =12时,u(x)有1个零点;当a >0时a ≠12时,u(x)有2个零点.(16分)20. 解:(1) 因为a n =n 2,所以Δa n =a n +1-a n =(n +1)2-n 2=2n +1,则Δa n +1-Δa n =2.又Δa 1=3,所以{Δa n }是首项为3,公差为2的等差数列.因为Δ2a n =Δa n +1-Δa n =2,则{Δ2a n }是首项为2,公差为0的等差数列.(2分)(2) 因为数列{b n }是公比为q 的正项等比数列,所以b n =b 1q n -1.又Δ2b n =Δb n +1-Δb n =b n +2-b n +1-(b n +1-b n )=b n +2-2b n +1+b n ,且对任意的n ∈N *,都存在m ∈N *,使得Δ2b n =b m ,所以对任意的n ∈N *,都存在m ∈N *,使得b 1q n +1-2b 1q n +b 1q n -1=b 1q m -1,即(q -1)2=q m -n .因为q ≥2,所以m -n ≥0. 1° 若m -n =0,则q 2-2q +1=1,解得q =0(舍)或q =2,即当q =2时,对任意的n ∈N *,都有Δ2b n =b n .2° 若m -n =1,则q 2-3q +1=0,解得q =3-52(舍)或q =3+52,即当q =3+52时,对任意的n ∈N *,都有Δ2b n =b n +1.3° 若m -n ≥2,则q m -n ≥q 2>(q -1)2,故对任意的n ∈N *,不存在m ∈N *,使得Δ2b n=b m .综上所述,q 所有可能的取值构成的集合为⎩⎨⎧⎭⎬⎫2,3+52.(8分) (3) 因为Δ2c n =0,所以Δ2c n =Δc n +1-Δc n =c n +2-c n +1-(c n +1-c n )=c n +2-2c n +1+c n =0,所以c n +2-c n +1=c n +1-c n ,所以{c n }是等差数列. 设{c n }的公差为d ,则c n =c 1+(n -1)d. 若d =0,则c m =c n ;若d <0,则当n >1-c 1d 时,c n <0,与数列{c n }的各项均为正数矛盾,故d >0.(10分)由等差数列前n 项和公式可得S n =d 2n 2+(c 1-d2)n ,所以S n +S m =d 2n 2+(c 1-d 2)n +d 2m 2+(c 1-d 2)m =d 2(n 2+m 2)+(c 1-d2)(m +n),S k =d 2(m +n 2)2+(c 1-d 2)·m +n2.又m ≠n ,m 2+n 22>(m +n )24,所以S n +S m =d 2(n 2+m 2)+(c 1-d 2)(m +n)>d 2·(m +n )22+(c 1-d 2)(m +n)=2S k ,则当t ≤2时,不等式S m +S n >tS k 都成立.(12分)另一方面,当t >2时,令m =k +1,n =k -1(k ∈N *,k ≥2), 则S m +S n =d 2[(k +1)2+(k -1)2+(c 1-d 2)·2k]=d 2(2k 2+2)+2k(c 1-d2),S k =d 2k 2+(c 1-d 2)k , 则tS k -(S m +S n )=d 2tk 2+(c 1-d 2)tk -d 2(2k 2+2)-2k(c 1-d 2) =(d 2t -d)(k 2-k)+(t -2)c 1k -d. 因为d 2t -d >0,k 2-k ≥0,所以当k >d (t -2)c 1,tS k -(S n +S m )>0,即S m +S n <tS k . 综上,t 的最大值为2.(16分)2020届高三模拟考试试卷(扬州)数学附加题参考答案及评分标准21. 解:(1) 用待定系数或公式可求得M =⎣⎢⎡⎦⎥⎤-3 2 2-1.(5分) (2) 设直线l 上任一点(x ,y)在矩阵M 对应的变换作用下为(x′,y ′),即⎣⎢⎡⎦⎥⎤-3 2 2-1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤-3x +2y 2x -y =⎣⎢⎡⎦⎥⎤x′y′在x +3y =0上,(8分) 则-3x +2y +6x -3y =0,即3x -y =0,所以直线l 的方程为3x -y =0.(10分)22. 解:把直线的方程l :⎩⎪⎨⎪⎧x =3t ,y =1-3t (t 为参数)化为普通方程为x +y =1.(3分) 圆ρ=22sin (θ-π4)化为普通方程为x 2+2x +y 2-2y =0, 即(x +1)2+(y -1)2=2.(6分) 圆心C 到直线l 的距离d =12=22.(8分) 所以直线l 被圆C 截得的弦长为2(2)2-(22)2= 6.(10分) 23. 解:(1) 因为n =A 35=60,m =A 13A 24=36,所以P 1=3660=35. 答:摸到三位数是奇数的概率是35.(4分) (2) 获奖金额X 的可能取值为50,100,200,300,400,500,则P(X =50)=35,P(X =100)=1×3×260=110,P(X =200)=1×3×160=120, P(X =300)=1×3×260=110,P(X =400)=1×3×160=120,P(X =500)=1×3×260=110,(7分) 获奖金额X 的概率分布为数学期望E(X)=50×35+100×110+200×120+300×110+400×120+500×110=150元. 答:期望是150元.24. 解:(1)1k +1C k n =1k +1·n !k !(n -k )!=1n +1·(n +1)!(k +1)!(n -k )!=1n +1C k +1n +1.(2分)(2) (-1)0C 02 020+(-1)112C 12 020+(-1)213C 22 020+…+(-1)2 02012 021C 2 0202 020=∑2 020k =0(-1)k 1k +1C k 2 020=12 021∑2 020k =0(-1)k C k +12 021=12 021.(4分) (3) (解法1)设a n =∑n k =0(-1)k C k n 2k +2, 则a n =1+∑n -1k =1(-1)k (C k n -1+C k -1n -1)2k +2+(-1)n 2n +2=a n -1+∑nk =1(-1)k C k -1n -12k +2=a n -1+2n ∑n k =1(-1)k C k n k k +2 =a n -1+2n ⎣⎡⎦⎤∑n k =0 (-1)k C k n -∑n k =0 (-1)k C k n 2k +2=a n -1+2n(0-a n ),(7分) 所以a n =n n +2a n -1⇒a n =n n +2·n -1n +1a n -2=…=n (n -1)·…·3·2(n +2)(n +1)·…·5·4a 1. 又a 1=13,所以a n =n !2!(n +2)!=1C n n +2. 所以∑2 020k =0(-1)k C k 2 0202k +2=a 2 020=1C 2 0202 022=1C 22 022=11 011×2 021=12 043 231.(结果没化简,不扣分)(10分)(解法2)∑2 020k =0(-1)k C k 2 0202k +2=∑2 020k =0(-1)k · 2 020!k !(2 020-k )!·2(k +1)(k +2)(k +1) =∑2 020k =0(-1)k · 2 022!(k +2)!(2 020-k )!·2(k +1)2 022×2 021=22 022×2 021·∑2 020k =0(-1)k ·(k -1)·C k +22 022 =22 022×2 021·∑2 020k =0(-1)k ·(k +2-1)·C k +22 022 =22 022×2 021·⎣⎡⎦⎤∑2 020k =0 (-1)k ·(k +2)·C k +22 022-∑2 020k =0 (-1)k ·C k +22 022 =22 022×2 021·⎣⎡⎦⎤∑2 020k =0(-1)k ·2 022·C k +12 021-∑2 020k =0 (-1)k +2·C k +22 022 =22 022×2 021·⎩⎨⎧⎭⎬⎫-2 022∑2 020k =0 (-1)k +1·C k +12 021-[(1-1)2 022-1-C 22 022(-1)1] =22 022×2 021·{-2 022·[(1-1)2 021-1]+1-2 022}=22 022×2 021=11 011×2 021=12 043 231.(结果没化简,不扣分)(10分)。
江苏省扬州树人学校2022年中考二模数学试题含解析

2021-2022中考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:3,则AB的长为A.12米B.43米C.53米D.63米2.下列各式计算正确的是( )A.633-=B.1236⨯=C.3535+=D.1025÷=3.实数4的倒数是()A.4 B.14C.﹣4 D.﹣144.《九章算术》是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两。
问:牛、羊各直金几何?译文:“假设有 5 头牛、2 只羊,值金10 两;2 头牛、5 只羊,值金8 两。
问:每头牛、每只羊各值金多少两?” 设每头牛值金x 两,每只羊值金y 两,则列方程组错误的是()A.5210258x yx y+=⎧⎨+=⎩B.52107718x yx y+=⎧⎨+=⎩C.7718258x yx y+=⎧⎨+=⎩D.5282510x yx y+=⎧⎨+=⎩5.如图,在四边形ABCD中,∠A=120°,∠C=80°.将△BMN沿着MN翻折,得到△FMN.若MF∥AD,FN∥DC,则∠F的度数为()A.70°B.80°C.90°D.100°6.光年天文学中的距离单位,1光年大约是9500000000000km,用科学记数法表示为() A.1095010km⨯B.129510km⨯C.129.510km⨯D.130.9510km⨯7.下列计算正确的是()A.(﹣8)﹣8=0 B.3+=3C.(﹣3b)2=9b2D.a6÷a2=a38.如图,△ABC中,DE∥BC,13ADAB=,AE=2cm,则AC的长是()A.2cm B.4cm C.6cm D.8cm9.学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60 70 80 90 100人数(人)7 12 10 8 3则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分10.抛物线y=mx2﹣8x﹣8和x轴有交点,则m的取值范围是()A.m>﹣2 B.m≥﹣2 C.m≥﹣2且m≠0D.m>﹣2且m≠0二、填空题(共7小题,每小题3分,满分21分)11.二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)的图象如图所示,则a+b+2c__________0(填“>”“=”或“<”).12.在一个不透明的口袋中,有3个红球、2个黄球、一个白球,它们除颜色不同之外其它完全相同,现从口袋中随机摸出一个球记下颜色后放回,再随机摸出一个球,则两次摸到一个红球和一个黄球的概率是_____.13.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是_______.14.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为 kg15.已知A 、B 两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A 地到B 地匀速前行,甲、乙行进的路程s 与x (小时)的函数图象如图所示.(1)乙比甲晚出发___小时;(2)在整个运动过程中,甲、乙两人之间的距离随x 的增大而增大时,x 的取值范围是___.16.如图,在正方形ABCD 中,AD=5,点E ,F 是正方形ABCD 内的两点,且AE=FC=3,BE=DF=4,则EF 的长为__________.17.分解因式:32816a a a -+=__________.三、解答题(共7小题,满分69分)18.(10分)(操作发现)(1)如图1,△ABC 为等边三角形,先将三角板中的60°角与∠ACB 重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB 交于点D ,在三角板斜边上取一点F ,使CF=CD ,线段AB 上取点E ,使∠DCE=30°,连接AF ,EF .①求∠EAF 的度数;②DE 与EF 相等吗?请说明理由;(类比探究)(2)如图2,△ABC 为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB 重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB 交于点D ,在三角板另一直角边上取一点F ,使CF=CD ,线段AB 上取点E ,使∠DCE=45°,连接AF ,EF .请直接写出探究结果:①∠EAF的度数;②线段AE,ED,DB之间的数量关系.19.(5分)某单位为了扩大经营,分四次向社会进行招工测试,测试后对成绩合格人数与不合格人数进行统计,并绘制成如图所示的不完整的统计图.(1)测试不合格人数的中位数是.(2)第二次测试合格人数为50人,到第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,若这两次测试的平均增长率相同,求平均增长率;(3)在(2)的条件下补全条形统计图和扇形统计图.20.(8分)如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).(1)求点B,C的坐标;(2)判断△CDB的形状并说明理由;(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.21.(10分)某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子.帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的3.问该兴趣小组男生、女生各有多少人?522.(10分)如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22º时,教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面的夹角是45º时,教学楼顶A在地面上的影子F与墙角C有13m的距离(B、F、C在一条直线上).求教学楼AB的高度;学校要在A、E之间挂一些彩旗,请你求出A、E之间的距离(结果保留整数).23.(12分)某农场用2台大收割机和5台小收割机同时工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机同时工作5小时共收割小麦8公顷.1台大收割机和1台小收割机每小时各收割小麦多少公顷?24.(14分)如图,已知抛物线过点A(4,0),B(﹣2,0),C(0,﹣4).(1)求抛物线的解析式;(2)在图甲中,点M是抛物线AC段上的一个动点,当图中阴影部分的面积最小值时,求点M的坐标;(3)在图乙中,点C和点C1关于抛物线的对称轴对称,点P在抛物线上,且∠PAB=∠CAC1,求点P的横坐标.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】试题分析:在Rt △ABC 中,BC=6米,BCAC =,∴.∴AB 12===(米).故选A. 【详解】请在此输入详解!2、B【解析】AB ,∴本选项正确;C 选项中,∵D 2=2≠ 故选B.3、B【解析】根据互为倒数的两个数的乘积是1,求出实数4的倒数是多少即可.【详解】 解:实数4的倒数是:1÷4=14. 故选:B .【点睛】此题主要考查了一个数的倒数的求法,要熟练掌握,解答此题的关键是要明确:互为倒数的两个数的乘积是1. 4、D【解析】由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,据此可得答案.【详解】解:设每头牛值金x两,每只羊值金y两,由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,所以方程组5282510x yx y+=⎧⎨+=⎩错误,故选:D.【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意找到相等关系及等式的基本性质.5、B【解析】首先利用平行线的性质得出∠BMF=120°,∠FNB=80°,再利用翻折变换的性质得出∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,进而求出∠B的度数以及得出∠F的度数.【详解】∵MF∥AD,FN∥DC,∠A=120°,∠C=80°,∴∠BMF=120°,∠FNB=80°,∵将△BMN沿MN翻折得△FMN,∴∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,∴∠F=∠B=180°-60°-40°=80°,故选B.【点睛】主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出∠FMN=∠BMN,∠FNM=∠MNB是解题关键.6、C【解析】科学记数法的表示形式为10na⨯的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将9500000000000km 用科学记数法表示为129.510⨯.故选C .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7、C【解析】选项A ,原式=-16;选项B ,不能够合并;选项C ,原式=;选项D ,原式=.故选C. 8、C【解析】由DE ∥BC 可得△ADE ∽△ABC ,再根据相似三角形的性质即可求得结果.【详解】∵DE ∥BC∴△ADE ∽△ABC ∴13AD AE AB AC == ∵2cm =AE∴AC=6cm故选C.考点:相似三角形的判定和性质点评:解答本题的关键是熟练掌握相似三角形的对应边成比例,注意对应字母在对应位置上.9、C【解析】解:根据表格中的数据,可知70出现的次数最多,可知其众数为70分;把数据按从小到大排列,可知其中间的两个的平均数为80分,故中位数为80分.故选C .【点睛】本题考查数据分析.10、C根据二次函数的定义及抛物线与x 轴有交点,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围.【详解】解:∵抛物线288y mx x =--和x 轴有交点, 20(8)4(8)0m m ≠⎧∴⎨--⋅-⎩, 解得:m 2≥﹣且m 0≠.故选C .【点睛】本题考查了抛物线与x 轴的交点、二次函数的定义以及解一元一次不等式组,牢记“当240b ac ∆=-≥时,抛物线与x 轴有交点是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、<【解析】由抛物线开口向下,则a <0,抛物线与y 轴交于y 轴负半轴,则c <0,对称轴在y 轴左侧,则b <0,因此可判断a+b+2c 与0的大小【详解】∵抛物线开口向下∴a <0∵抛物线与y 轴交于y 轴负半轴,∴c <0∵对称轴在y 轴左侧 ∴﹣2b a<0 ∴b <0∴a+b+2c <0故答案为<.【点睛】本题考查了二次函数图象与系数的关系,正确利用图象得出正确信息是解题关键.12、13先画树状图展示所有36种等可能的结果数,再找出两次摸到一个红球和一个黄球的结果数,然后根据概率公式求解.【详解】画树状图如下:由树状图可知,共有36种等可能结果,其中两次摸到一个红球和一个黄球的结果数为12,所以两次摸到一个红球和一个黄球的概率为121= 363,故答案为1 3 .【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.13、1 6【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到白球的情况,再利用概率公式即可求得答案.【详解】画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:212=16.故答案为:1 6 .【点睛】本题考查用树状图法求概率,解题的关键是掌握用树状图法求概率.14、20【解析】设函数表达式为y=kx+b把(30,300)、(50、900)代入可得:y=30x-600当y=0时x=20所以免费行李的最大质量为20kg15、2,0≤x≤2或43≤x≤2.【解析】(2)由图象直接可得答案;(2)根据图象求出甲乙的函数解析式,再求出方程组的解集即可解答【详解】(2)由函数图象可知,乙比甲晚出发2小时.故答案为2.(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,有两种情况:一是甲出发,乙还未出发时:此时0≤x≤2;二是乙追上甲后,直至乙到达终点时:设甲的函数解析式为:y=kx,由图象可知,(4,20)在函数图象上,代入得:20=4k,∴k=5,∴甲的函数解析式为:y=5x①设乙的函数解析式为:y=k′x+b,将坐标(2,0),(2,20)代入得:202k bk b=+⎧⎨=+⎩,解得2020kb=⎧⎨=-⎩,∴乙的函数解析式为:y=20x﹣20 ②由①②得52020y xy x=⎧⎨=-⎩,∴43203xy⎧=⎪⎪⎨⎪=⎪⎩,故43≤x≤2符合题意.故答案为0≤x≤2或43≤x≤2.【点睛】此题考查函数的图象和二元一次方程组的解,解题关键在于看懂图中数据16、2 【解析】分析:延长AE 交DF 于G ,再根据全等三角形的判定得出△AGD 与△ABE 全等,得出AG =BE =4,由AE =3,得出EG =1,同理得出GF =1,再根据勾股定理得出EF 的长.详解:延长AE 交DF 于G ,如图, ∵AB =5,AE =3,BE =4,∴△ABE 是直角三角形,同理可得△DFC 是直角三角形,可得△AGD 是直角三角形,∴∠ABE +∠BAE =∠DAE +∠BAE ,∴∠GAD =∠EBA ,同理可得:∠ADG =∠BAE .在△AGD 和△BAE 中,∵EAB GDA AD AB ABE DAG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AGD ≌△BAE (ASA ),∴AG =BE =4,DG =AE =3,∴EG =4﹣3=1,同理可得:GF =1,∴EF =22112+=.故答案为2.点睛:本题考查了正方形的性质,关键是根据全等三角形的判定和性质得出EG =FG =1,再利用勾股定理计算.17、a (a -4)2【解析】首先提取公因式a ,进而利用完全平方公式分解因式得出即可.【详解】32816a a a -+22816()4.)(a a a a a =-+=-故答案为:2()4.a a -【点睛】本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.三、解答题(共7小题,满分69分)18、(1)①110°②DE=EF;(1)①90°②AE1+DB1=DE1【解析】试题分析:(1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=110°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;(1)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE1+AF1=EF1,即可得出结论.试题解析:解:(1)①∵△ABC是等边三角形,∴AC=BC,∠BAC=∠B=60°.∵∠DCF=60°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=110°;②DE=EF.理由如下:∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF;(1)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°.∵∠DCF=90°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;②AE1+DB1=DE1,理由如下:∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF.在Rt△AEF中,AE1+AF1=EF1,又∵AF=DB,∴AE1+DB1=DE1.19、(1)1;(2)这两次测试的平均增长率为20%;(3)55%.【解析】(1)将四次测试结果排序,结合中位数的定义即可求出结论;(2)由第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,可求出第四次测试合格人数,设这两次测试的平均增长率为x,由第二次、第四次测试合格人数,即可得出关于x的一元二次方程,解之取其中的正值即可得出结论;(3)由第二次测试合格人数结合平均增长率,可求出第三次测试合格人数,根据不合格总人数÷参加测试的总人数×100%即可求出不合格率,进而可求出合格率,再将条形统计图和扇形统计图补充完整,此题得解.【详解】解:(1)将四次测试结果排序,得:30,40,50,60,∴测试不合格人数的中位数是(40+50)÷2=1.故答案为1;(2)∵每次测试不合格人数的平均数为(60+40+30+50)÷4=1(人),∴第四次测试合格人数为1×2﹣18=72(人).设这两次测试的平均增长率为x ,根据题意得:50(1+x )2=72,解得:x 1=0.2=20%,x 2=﹣2.2(不合题意,舍去),∴这两次测试的平均增长率为20%;(3)50×(1+20%)=60(人),(60+40+30+50)÷(38+60+50+40+60+30+72+50)×100%=1%, 1﹣1%=55%.补全条形统计图与扇形统计图如解图所示.【点睛】本题考查了一元二次方程的应用、扇形统计图、条形统计图、中位数以及算术平均数,解题的关键是:(1)牢记中位数的定义;(2)找准等量关系,正确列出一元二次方程;(3)根据数量关系,列式计算求出统计图中缺失数据.20、 (Ⅰ)B(3,0);C(0,3);(Ⅱ)CDB ∆为直角三角形;(Ⅲ)22333(0)221933(3)222t t t S t t t ⎧-+<≤⎪⎪=⎨⎪=-+<<⎪⎩. 【解析】(1)首先用待定系数法求出抛物线的解析式,然后进一步确定点B ,C 的坐标.(2)分别求出△CDB 三边的长度,利用勾股定理的逆定理判定△CDB 为直角三角形.(3)△COB 沿x 轴向右平移过程中,分两个阶段:①当0<t≤32时,如答图2所示,此时重叠部分为一个四边形; ②当32<t <3时,如答图3所示,此时重叠部分为一个三角形. 【详解】解:(Ⅰ)∵点()1,0A -在抛物线()21y x c =--+上, ∴()2011c =---+,得4c =∴抛物线解析式为:()214y x =--+,令0x =,得3y =,∴()0,3C ;令0y =,得1x =-或3x =,∴()3,0B .(Ⅱ)CDB ∆为直角三角形.理由如下:由抛物线解析式,得顶点D 的坐标为()1,4.如答图1所示,过点D 作DM x ⊥轴于点M ,则1OM =,4DM =,2BM OB OM =-=.过点C 作CN DM ⊥于点N ,则1CN =,1DN DM MN DM OC =-=-=.在Rt OBC ∆中,由勾股定理得:22223332BC OB OC =+=+=;在Rt CND ∆中,由勾股定理得:2222112CD CN DN =+=+=;在Rt BMD ∆中,由勾股定理得:22222425BD BM DM =+=+=.∵222BC CD BD +=,∴CDB ∆为直角三角形.(Ⅲ)设直线BC 的解析式为y kx b =+,∵()()3,0,0,3B C ,∴303k b b +=⎧⎨=⎩, 解得1,3k b =-=,∴3y x =-+,直线QE 是直线BC 向右平移t 个单位得到,∴直线QE 的解析式为:()33y x t x t =--+=-++;设直线BD 的解析式为y mx n =+,∵()()3,0,1,4B D ,∴304m n m n +=⎧⎨+=⎩,解得:2,6m n =-=, ∴26y x =-+.连续CQ 并延长,射线CQ 交BD 交于G ,则3,32G ⎛⎫⎪⎝⎭. 在COB ∆向右平移的过程中:(1)当302t <≤时,如答图2所示:设PQ 与BC 交于点K ,可得QK CQ t ==,3PB PK t ==-.设QE 与BD 的交点为F ,则:263y x y x t =-+⎧⎨=-++⎩. 解得32x t y t=-⎧⎨=⎩,∴()3,2F t t -. 111222QPE PBK FBE F S S S S PE PQ PB PK BE y ∆∆∆=--=⋅-⋅-⋅ ()221113333232222t t t t t =⨯⨯---⋅=-+. (2)当332t <<时,如答图3所示:设PQ 分别与BC BD 、交于点K 、点J .∵CQ t =,∴KQ t =,3PK PB t ==-. 直线BD 解析式为26y x =-+,令x t =,得62y t =-,∴(),62J t t -.1122PBJ PBK S S S PB PJ PB PK ∆∆=-=⋅-⋅ ()()()211362322t t t =---- 219322t t =-+. 综上所述,S 与t 的函数关系式为:2233302219333222t t t S t t t ⎧⎛⎫-+<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪=-+<< ⎪⎪⎝⎭⎩. 21、男生有12人,女生有21人.【解析】设该兴趣小组男生有x 人,女生有y 人,然后再根据:(男生的人数-1)×2-1=女生的人数,(女生的人数-1) ×35=男生的人数 ,列出方程组,再进行求解即可.【详解】设该兴趣小组男生有x 人,女生有y 人, 依题意得:2(1)13(1)5y x x y =--⎧⎪⎨=-⎪⎩, 解得:1221x y =⎧⎨=⎩. 答:该兴趣小组男生有12人,女生有21人.【点睛】本题主要考查了二元一次方程组的应用,解题的关键是明确题中各个量之间的关系,并找出等量关系列出方程组.22、(1)2m (2)27m【解析】(1)首先构造直角三角形△AEM ,利用0AM tan22ME =,求出即可. (2)利用Rt △AME 中,0ME cos22AE=,求出AE 即可. 【详解】 解:(1)过点E 作EM ⊥AB ,垂足为M .设AB 为x .在Rt △ABF 中,∠AFB=45°,∴BF=AB=x ,∴BC=BF +FC=x +1.在Rt △AEM 中,∠AEM=22°,AM=AB -BM=AB -CE=x -2,又∵0AM tan22ME =,∴x 22x 135-≈+,解得:x≈2. ∴教学楼的高2m .(2)由(1)可得ME=BC=x+1≈2+1=3.在Rt △AME 中,0ME cos22AE=,∴AE =MEcos22°≈15252716⨯≈. ∴A 、E 之间的距离约为27m .23、1台大收割机和1台小收割机每小时各收割小麦0.4hm 2和0.2hm 2.【解析】此题可设1台大收割机和1台小收割机每小时各收割小麦x 公顷和y 公顷,根据题中的等量关系列出二元一次方程组解答即可【详解】设1台大收割机和1台小收割机每小时各收割小麦x 公顷和y 公顷根据题意可得()22x 5y 3.6{ 5328x y +=+=解得0.4{ 0.2x y ==答:每台大小收割机每小时分别收割0.4公顷和0.2公顷.【点睛】此题主要考查了二元一次方程组的实际应用,解题关键在于弄清题意,找到合适的等量关系24、 (1)y =x 2-x -4(2)点M 的坐标为(2,-4)(3)-或-【解析】【分析】(1)设交点式y=a(x+2)(x-4),然后把C 点坐标代入求出a 即可得到抛物线解析式; (2) 连接OM ,设点M 的坐标为.由题意知,当四边形OAMC 面积最大时,阴影部分的面积最小.S 四边形OAMC =S △OAM +S △OCM -(m -2)2+12. 当m =2时,四边形OAMC 面积最大,此时阴影部分面积最小;(3) 抛物线的对称轴为直线x =1,点C 与点C 1关于抛物线的对称轴对称,所以C 1(2,-4).连接CC 1,过C 1作C 1D ⊥AC 于D ,则CC 1=2.先求AC =4,CD =C 1D =,AD =4-=3;设点P ,过P 作PQ 垂直于x 轴,垂足为Q. 证△PAQ ∽△C 1AD ,得,即,解得解得n =-,或n =-,或n =4(舍去).【详解】(1)抛物线的解析式为y = (x -4)(x +2)=x 2-x -4.(2)连接OM ,设点M 的坐标为.由题意知,当四边形OAMC面积最大时,阴影部分的面积最小.S四边形OAMC=S△OAM+S△OCM=× 4m+× 4=-m2+4m+8=-(m-2)2+12.当m=2时,四边形OAMC面积最大,此时阴影部分面积最小,所以点M的坐标为(2,-4).(3)∵抛物线的对称轴为直线x=1,点C与点C1关于抛物线的对称轴对称,所以C1(2,-4).连接CC1,过C1作C1D⊥AC于D,则CC1=2.∵OA=OC,∠AOC=90°,∠CDC1=90°,∴AC=4,CD=C1D=,AD=4-=3,设点P,过P作PQ垂直于x轴,垂足为Q.∵∠PAB=∠CAC1,∠AQP=∠ADC1,∴△PAQ∽△C1AD,∴,即,化简得=(8-2n),即3n2-6n-24=8-2n,或3n2-6n-24=-(8-2n),解得n=-,或n=-,或n=4(舍去),∴点P的横坐标为-或-.【点睛】本题考核知识点:二次函数综合运用. 解题关键点:熟记二次函数的性质,数形结合,由所求分析出必知条件.。
苏锡常镇2017届高三二模(5月)数学试题word版含附加含答案

2016-2017学年度苏锡常镇四市高三教学情况调研(二) 数学 Ⅰ 试 题 2017.5注意事项:1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分160分,考试时间120分钟.2.答题前,请您务必将自己的姓名、考试号用0.5毫米黑色字迹的签字笔填写在答题卡的指定位置.3.答题时,必须用0.5毫米黑色字迹的签字笔填写在答题卡的指定位置,在其它位置作答一律无效.4.如有作图需要,可用2B 铅笔作答,并请加黑加粗,描写清楚.5. 请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.一、填空题:本大题共14小题,每小题5分,共70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上......... 1.已知集合{}13A x x =-<<,{}2B x x =<,则A B =I ▲ . 2.已知i 为虚数单位,复数13i z y =+()R y ∈,22i z =-,且121i z z =+,则y = ▲ .3.下表是一个容量为10的样本数据分组后的频数分布.若利用组中值近似计算本组数据的平均数x ,则x 的值为 ▲ .4.已知直线20x =为双曲线22221(0,0)x y a b a b -=>>的一条渐近线,则该双曲线的离心率的值为 ▲ .5.据记载,在公元前3世纪,阿基米德已经得出了前n 个自然数平方和的一般公式.右图是一个求前n 个自然数平方和的算法流程图,若输入x 的值为1,则输出S 的值为 ▲ . 6.已知1Ω是集合{}22(,)1x y x y +„所表示的区域,2Ω是集合{}(,)x y y x „所表示的区域,向区域1Ω内随机的投一个点,则该点落在区域2Ω内的概率为 ▲ .7.已知等比数列{}n a 的前n 项和为n S ,公比3q =,34533S S +=,则3a = ▲ .8.已知直四棱柱底面是边长为2的菱形,侧面对角线的长为积为 ▲ .9.已知α是第二象限角,且sin α=tan()2αβ+=-,则tan β= ▲ .10.已知直线l :210mx y m +--=,圆C :22240x y x y +--=,当直线l 被圆C 所截得的弦长最短时,实数m = ▲ .11.在△ABC 中,角,,A B C 对边分别是,,a b c,若满足2cos =2b A c ,则角B 的大小为 ▲ .12.在△ABC 中,AB AC ⊥,1AB t=,AC t =,P 是△ABC 所在平面内一点,若4||||AB ACAP AB AC =+u u u r u u u ru u u r u u ur u u u r ,则△PB C 面积的最小值为 ▲ . 13.已知函数24,0,()3,0,x x x f x x x⎧-⎪=⎨<⎪⎩… 若函数()()3g x f x x b =-+有三个零点,则实数b 的取值范围为▲.14.已知,a b均为正数,且20ab a b--=,则22214aba b-+-的最小值为▲.二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分14分)已知向量m,1)x=-,n2(sin,cos)x x=.(1)当π3x=时,求⋅m n的值;(2)若π0,4x⎡⎤∈⎢⎥⎣⎦,且⋅mn12=-,求cos2x的值.16.(本小题满分14分)如图,在四面体ABCD中,平面ABC⊥平面ACD,E,F,G分别为AB,AD,AC的中点,AC BC=,90ACD∠=︒.(1)求证:AB⊥平面EDC;(2)若P为FG上任一点,证明EP∥平面BCD.17.(本小题满分14分)某科研小组研究发现:一棵水蜜桃树的产量w(单位:百千克)与肥料费用x(单位:百元)满足如下关系:341wx=-+,且投入的肥料费用不超过5百元.此外,还需要投入其他成本(如施肥的人工费等)2x百元.已知这种水蜜桃的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水蜜桃树获得的利润为()L x(单位:百元).(1)求利润函数()L x的函数关系式,并写出定义域;(2)当投入的肥料费用为多少时,该水蜜桃树获得的利润最大?最大利润是多少? 18.(本小题满分16分)已知函数3()ln f x a x bx =-,a ,b 为实数,0b ≠, e 为自然对数的底数,e 2.71828≈…. (1)当0a <,1b =-时,设函数()f x 的最小值为()g a ,求()g a 的最大值; (2)若关于x 的方程()=0f x 在区间(1e],上有两个不同实数解,求ab的取值范围.19.(本小题满分16分)已知椭圆2222:1(0)x y C a b a b +=>>的左焦点为(1,0)F -,左准线方程为2x =-.(1)求椭圆C 的标准方程;(2)已知直线l 交椭圆C 于A ,B 两点. ①若直线l 经过椭圆C 的左焦点F ,交y 轴于点P ,且满足PA AF λ=u u u r u u u r,PB BF μ=u u u r u u u r.求证:λμ+为定值; ②若A ,B 两点满足OA OB ⊥(O 为 坐标原点),求△AOB 面积的取值范围.20.(本小题满分16分)已知数列{}n a 满足21141,2n n n n a a a a a λμ+++==+,其中*N n ∈,λ,μ为非零常数.(1)若3,8λμ==,求证:{}1n a +为等比数列,并求数列{}n a 的通项公式; (2)若数列{}n a 是公差不等于零的等差数列. ①求实数,λμ的值;②数列{}n a 的前n 项和n S 构成数列{}n S ,从{}n S 中取不同的四项按从小到大排列组成四项子数列.试问:是否存在首项为1S 的四项子数列,使得该子数列中的所有项之和恰好为2017?若存在,求出所有满足条件的四项子数列;若不存在,请说明理由.2016-2017学年度苏锡常镇四市高三教学情况调研(二)数学Ⅱ(附加)试题2017.5注意事项:1.本试卷只有解答题,供理工方向考生使用.本试卷第21题有4个小题供选做,每位考生在4个选做题中选答2题,如多答,则按选做题中的前2题计分.第22,23题为必答题.每小题10分,共40分.考试用时30分钟.2.答题前,请您务必将自己的姓名、考试号用0.5毫米黑色字迹的签字笔填写在试卷的指定位置.3.答题时,必须用0.5毫米黑色字迹的签字笔填写在试卷的指定位置,在其它位置作答一律无效.4.如有作图需要,可用2B 铅笔作答,并请加黑加粗,描写清楚.5.请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.21.【选做题】本题包括A ,B ,C ,D 四小题,每小题10分. 请选定其中两题......,并在相...应的..答题区域....内作答...,若多做,则按作答的前两题评分.解答时应写出必要的文字说明、证明过程或演算步骤. A .(选修4-1:几何证明选讲)如图,直线DE 切圆O 于点D ,直线EO 交圆O 于,A B 两点,DC OB ⊥于点C , 且2DE BE =,求证:23OC BC =. B .(选修4—2:矩阵与变换)已知矩阵M 13a b ⎡⎤=⎢⎥⎣⎦的一个特征值11λ=-及对应的特征向量e 11⎡⎤=⎢⎥-⎣⎦. 求矩阵M 的逆矩阵.C .(选修4—4:坐标系与参数方程)在平面直角坐标系xO y 中,以O 为极点,x 轴的正半轴为极轴,取相同的单位长度,建立极坐标系.已知曲线1C 的参数方程为[]2cos (0,2π,32sin x y αααα⎧=⎪∈⎨=+⎪⎩,为参数),曲线2C 的极坐标方程为πsin()3a ρθ+=(R a ∈).若曲线1C 与曲线2C 有且仅有一个公共点,求实数a 的值.D.(选修4—5:不等式选讲)已知,,a b c 为正实数,求证:222b c a a b c a b c ++++….【必做题】第22,23题,每小题10分,共20分. 请把答案写在答题卡的指定区域内,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)已知袋中装有大小相同的2个白球、2个红球和1个黄球.一项游戏规定:每个白球、红球和黄球的分值分别是0分、1分和2分,每一局从袋中一次性取出三个球,将3个球对应的分值相加后称为该局的得分,计算完得分后将球放回袋中.当出现第n 局得n 分(*N n ∈)的情况就算游戏过关,同时游戏结束,若四局过后仍未过关,游戏也结束.(1)求在一局游戏中得3分的概率;(2)求游戏结束时局数X 的分布列和数学期望()E X .23.(本小题满分10分)已知01()(1)(1)()(1)()n n k k n n nn n nn n n f x C x C x C x k C x n =--++--++--L L , 其中*,R N N x n k k n ∈∈∈,,„. (1)试求1()f x ,2()f x ,3()f x 的值;(2)试猜测()n f x 关于n 的表达式,并证明你的结论.2016-2017学年度苏锡常镇四市高三教学情况调研(二)数学参考答案2017.5一、填空题.1.{}12x x -<< 2.1 3.19.7 4.35.14 6.347.3 8. 9.17 10.-1 11.π6 12.3213.1(,6)(,0]4-∞--U 14.7二、解答题:本大题共6小题,共计90分.15.解:(1)当π3x =时,m 1)=-,n 1)4=, ……………………………4分所以⋅m n 311442=-=.…………………………………………………………6分(2)⋅m n 2sin cos x x x -=11π12cos2sin(2)2262x x x =--=--, ………………………8分若⋅m n 12=-,则π1sin(2)1262x ---,即πsin(2)6x -因为π[0,]4x ∈,所以πππ2663x --剟,所以πcos(2)6x -, ……………10分则ππππ1cos2cos[(2)]cos(2)sin(2)66662x x x x =-+=---⨯ ……………12分12==. ……………………………14分 16.(1)因为平面ABC ⊥平面ACD ,90ACD ∠=︒,即CD ⊥AC , 平面ABC I 平面ACD =AC ,CD ⊂平面ACD ,所以CD ⊥平面ABC , ………………………………………………………………3分 又AB ⊂平面ABC ,所以CD ⊥AB , ………………………………………………4分 因为AC BC =,E 为AB 的中点,所以CE ⊥AB , …………………………………6分又CE CD C =I ,CD ⊂平面EDC ,CE ⊂平面EDC ,所以AB ⊥平面EDC . …………………………………………………………………7分 (2)连EF ,EG ,因为E ,F 分别为AB ,AD 的中点,所以EF ∥BD ,又BD ⊂平面BCD ,EF ⊄平面BCD ,所以EF ∥平面BCD , ………………………………………………………………10分 同理可证EG ∥平面BCD ,且EF I EG =E ,EF ⊂平面BCD ,EG ⊂平面BCD ,所以平面EFG ∥平面BCD , ………………………………………………………12分 又P 为FG 上任一点,所以EP ⊂平面EFG ,所以EP ∥平面BCD .……………14分17.解:(1)348()164264311L x x x x x x ⎛⎫=---=-- ⎪++⎝⎭(05x 剟).………………4分 (2)法一:()4848()643673111L x x x x x ⎛⎫=--=-++ ⎪++⎝⎭6743-=….……………………………………8分 当且仅当()48311x x =++时,即3x =时取等号.……………………………10分 故()max 43L x =.………………………………………………………………12分答:当投入的肥料费用为300元时,种植该果树获得的最大利润是4300元.…14分法二:()()24831L x x '=-+,由()0L x '=得,3x =.……………………………7分 故当()0,3x ∈时,()0L x '>,()L x 在()0,3上单调递增;当()3,10x ∈时,()0L x '<,()L x 在()3,5上单调递减;…………………10分 故()max 43L x =.………………………………………………………………12分 答:当投入的肥料费用为300元时,种植该果树获得的最大利润是4300元.…14分 18.解:(1)当1b =-时,函数3()ln f x a x x =+,则323()3a a x f x x x x+'=+=, ………………………………………………………2分所以()ln()3333a a a ag a f a ===--, ……………………………4分令()ln t x x x x =-+,则()ln t x x '=-,令()0t x '=,得1x =, 且当1x =时,()t x 有最大值1, 所以()g a 的最大值为1(表格略),(分段写单调性即可),此时3a =-.………6分(2)由题意得,方程3ln 0a x bx -=在区间(1e],上有两个不同实数解,所以3ln a x b x=在区间(1e],上有两个不同的实数解,即函数1ay b=图像与函数3()ln x m x x =图像有两个不同的交点,…………………9分因为22(3ln 1)()(ln )x x m x x -'=,令()0m x '=,得x所以当x ∈时,()(3e,)m x ∈+∞,……………………………………………14分 当e]x ∈时,3()(3e,e ]m x ∈, 所以,a b 满足的关系式为 33e e a b <…,即ab 的取值范围为33e e ](,.…………16分 19.解:(1)由题设知2=e ,22222==+a c b c ,即222=a b ,……………………1分 (1,2代入椭圆C 得到2211122+=b b ,则21=b ,22=a ,…………………2分 ∴22:12x C y +=. ……………………………………………………………………3分(2)①由题设知直线l 的斜率存在,设直线l 的方程为(1)y k x =+,则(0,)P k .设1122(,),(,)A x y B x y ,直线l 代入椭圆得2222(1)2x k x ++=,整理得,2222(12)4220k x k x k +++-=,∴22121222422,1212k k x x x x k k --+==++. ……………5分 由λ=u u u r u u u r PA AF ,μ=u u u r u u u r PB BF 知,1212,11x x x x λμ--==++, ……………………………7分 ∴222212122212122244424121244221111212k k x x x x k k k k x x x x k k λμ--+++-+++=-=-=-=---+++-++++(定值).………9分 ②当直线,OA OB 分别与坐标轴重合时,易知△AOB 的面积2S =,……………10分 当直线,OA OB 的斜率均存在且不为零时,设1:,:OA y kx OB y x k==-,设1122(,),(,)A x y B x y ,将y kx =代入椭圆C 得到22222x k x +=,∴222112222,2121k x y k k ==++,同理222222222,22k x y k k==++, …………………12分△AOB 的面积2OA OBS ⋅== ………………………………13分令[)211,t k =+∈+∞,S =令1(0,1)u t =∈,则23S ⎡=⎢⎣⎭. ……………15分综上所述,23S ⎡∈⎢⎣⎦. ………………………………………………………16分20.解:(1)当3,8λμ==时,21384(32)(2)3222n n n n n n n n a a a a a a a a +++++===+++, ∴113(1)n n a a ++=+.……………………………………………………………………2分 又10n a +≠,不然110a +=,这与112a +=矛盾,…………………………………3分 ∴{}1n a +为2为首项,3为公比的等比数列,∴1123n n a -+=⋅,∴1231n n a -=⋅-. …………………………………………………4分 (2)①设1(1)1n a a n d dn d =+-=-+, 由2142n n n n a a a a λμ+++=+得21(2)4n n n n a a a a λμ++=++,∴2(3)(1)(1)(1)4dn d dn dn d dn d λμ-++=-++-++, …………………………5分 ∴222222(4)3(2(1))(1)(1)4d n d d n d d n d dn d d λλμλμ⋅+--+=+-++-+-+ 对任意*∈N n 恒成立. ………………………………………………………………7分∴22224(2(1))3(1)(1)4d d d d d d d d d λλμλμ⎧=⎪-=-+⎨⎪-+=-+-+⎩,,,即122λ=⎧⎪=+⎨⎪=⎩u d d ,,,∴1,4,2λ===u d .…………9分综上,14,21n a n λμ===-,. ……………………………………………………10分②由①知2(121)2n n n S n +-==.设存在这样满足条件的四元子列,观察到2017为奇数,这四项或者三个奇数一个偶数、或者一个奇数三个偶数.ο1若三个奇数一个偶数,设121212,,,x y z S S S S ++是满足条件的四项,则2221(21)(21)42017x y z +++++=,∴2222()1007x x y y z ++++=,这与1007为奇数矛盾,不合题意舍去. ……11分ο2若一个奇数三个偶数,设1222,,,x y z S S S S 是满足条件的四项,则222214442017x y z +++=,∴222504x y z ++=. ……………………………12分由504为偶数知,,,x y z 中一个偶数两个奇数或者三个偶数. 1)若,,x y z 中一个偶数两个奇数,不妨设111221,21,x x y y z z ==+=+,则222111112()251x y y z z ++++=,这与251为奇数矛盾. ………………………13分 2)若,,x y z 均为偶数,不妨设1112,2,2x x y y z z ===,则222111126x y z ++=,继续奇偶分析知111,,x y z 中两奇数一个偶数,不妨设122x x =,1221y y =+,1221z z =+,则2222222231x y y z z ++++=. …14分 因为2222(1),(1)y y z z ++均为偶数,所以2x 为奇数,不妨设220y z 剟,当21x =时,22222230y y z z +++=,22214y y +„,检验得20y =,25z =,21x =, 当23x =时,22222222y y z z +++=,22210y y +„,检验得21y =,24z =,23x =, 当25x =时,2222226y y z z +++=,2222y y +„,检验得20y =,22z =,25x =, 即14844,,,S S S S 或者1122436,,,S S S S 或者142040,,,S S S S 满足条件,综上所述,{}14844,,,S S S S ,{}1122436,,,S S S S ,{}142040,,,S S S S 为全部满足条件的四元子列.…………………………………………………………………………………………16分(第Ⅱ卷 理科附加卷)21.【选做题】本题包括A ,B ,C ,D 四小题,每小题10分.A .(选修4-1 几何证明选讲).解:连结OD ,设圆的半径为R ,BE x =,则OD R =,22DE BE x ==. …………2分在Rt △ODE 中,∵DC OB ⊥,∴2OD OC OE =g ,即2()R OC R x =+g, ① 又∵直线DE 切圆O 于点D ,则2DE BE OE =g ,即24()x x R x =+g ,② ………6分 ∴23R x =,代入①,22()3R R OC R =+g ,35ROC =, ……………………………8分 ∴BC OB OC =-35R R =-25R=, ∴23OC BC =. ……………………………………………………………………10分 B .(选修4—2:矩阵与变换)解:由题知,111111113131131a a a b b b ---=-⎧⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⋅==-⋅=⇒⎨⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----=⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎩,,……………………4分 ∴2,2a b ==,1232M ⎡⎤=⎢⎥⎣⎦.…………………………………………………………6分 12det()1223432M ==⨯-⨯=-, …………………………………………………8分∴111223144M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦. ………………………………………………………………10分 C .(选修4—4:坐标系与参数方程)解:2222((3)4cos 4sin 4x y αα+-=+=,∴曲线C 的普通方程为22(1)(3)4x y ++-=. ……………………………………4分1sin()sin cos 32a a πρθρθθ+=⇒=,∴曲线D20y a +-=, ……………………………………6分曲线C 圆心到直线D的距离为2d =, ………………………8分∴32-=a ,∴1=a 或5a =.………………………………10分(少一解,扣一分) D .(选修4—5:不等式选讲) 解法一:基本不等式∵22b a b a +…,22c b c b +…,22a c a c +…,∴222b c a a b c a b c +++++222a b c ++…, ………………………………………6分∴222b c a a b c a b c++++…, ………………………………………………………10分解法二:柯西不等式2222()()()b c a a b c b c a a b c++++++…,∴222b c aa b c a b c ++++…, …………………………………………………………10分【必做题】第22,23题,每小题10分,计20分. 22.解:(1)设在一局游戏中得3分为事件A ,则111221352()5C C C P A C ==.… …………………………………………………………2分 答:在一局游戏中得3分的概率为25.………………………………………………3分 (2)X 的所有可能取值为1,2,3,4.在一局游戏中得2分的概率为1221222135310C C C C C +=,…………………………………5分 2122351(1)5C C P X C ===; 436(2)51025P X ==⨯=; 43228(3)(1)5105125P X ==⨯-⨯=; 43342(4)(1)5105125P X ==⨯-⨯=.所以………………………………………………………………………………………………8分 ∴162842337()1234525125125125E X =⨯+⨯+⨯+⨯=.…………………………………10分23.解:(1)01111()(1)11f x C x C x x x =--=-+=;………………………………………1分0212222222()(1)(2)f x C x C x C x =--+- 2222(21)(44)2x x x x x =--++-+=; ………………………………………2分0313233333333()(1)(2)(3)f x C x C x C x C x =--+---33333(1)3(2)(3)6x x x x =--+---=. ………………………………………3分(2)猜测:()!n f x n =. …………………………………………………………………4分而!!!()!(1)!()!k n n n kC k k n k k n k ==---,11(1)!!(1)!()!(1)!()!k n n n nC n k n k k n k ---==----, 所以11k k n n kC nC --=. …………………………………………………………………5分用数学归纳法证明结论成立.①当1n =时,1()1f x =,所以结论成立.②假设当n k =时,结论成立,即01()(1)(1)()!k k k k k k k kk f x C x C x C x k k =--++--=L . 当1n k =+时,01111111111()(1)(1)(1)k k k k k k k k k f x C x C x C x k +++++++++=--++---L 0111111111(1)(1)(1)()()(1)(1)k k k k k k k k k k k k C x C x x C x k x k C x k ++++++++=---++---+---L011111211111111[(1)(1)()][(1)2(2)(1)()](1)(1)kk kk kk k k k k k k k k k k k k k k x Cx Cx Cx k C x C x kC x k C x k +++++++++++=--++--+---+--+---L L010*******[()(1)(1)()()](1)[(1)(2)(1)()](1)(1)(1)k k k k k k k k k k k k k k k k k k k k k k x C x C C x C C x k k x C x C x k C x k x k -+-+++=-+-++-+-++---+--+-----L L010*******[(1)(1)()][(1)(1)()](1)[(1)(2)(1)()](1)(1)(1)(1)(1)k k k k k k k k k k k k k k k k k k k k k k k k k kk x C x C x C x k x C x C x k k x C x C x k x C x k k x k --+-++=--++----++--++---+--+----+---L L L010-11111[(1)(1)()][(1)(1)()(1)(1)](1)[(1)(2)(1)()(1)(1)]k k k k k k k k k k k k k k k k k k k k k k k k k k k x C x C x C x k x C x C x k C x k k x C x C x k x k ---=--++----++--+---++---+--+---L L L (*)由归纳假设知(*)式等于!!(1)!(1)!x k x k k k k ⋅-⋅++⋅=+. 所以当1n k =+时,结论也成立.综合①②,()!n f x n =成立. ………………………………………………………10分。
【精编】2016年江苏省扬州市邗江区梅苑双语学校数学中考二模试卷及解析
2016年江苏省扬州市邗江区梅苑双语学校中考数学二模试卷一、选择题(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项符合题目要求的,请根据正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)下列无理数中,在﹣1与2之间的是()A.﹣B.﹣C.D.2.(3分)我区深入实施环境污染整治,关停和整改了一些化工企业,使得每年排放的污水减少了167000吨.将167000用科学记数法表示为()A.167×103B.16.7×104C.1.67×105D.1.6710×1063.(3分)在体育达标测试中,某校初三5班第一小组六名同学一分钟跳绳成绩如下:93,138,98,152,138,183;则这组数据的极差是()A.138 B.183 C.90 D.934.(3分)下列二次根式中,最简二次根式是()A.B.C.D.5.(3分)一个几何体的三视图如图所示,那么这个几何体是()A.B.C.D.6.(3分)如图,已知四边形ABCD是平行四边形,要使它成为菱形,那么需要添加的条件可以是()A.AC⊥BD B.AB=AC C.∠ABC=90°D.AC=BD7.(3分)已知圆O是正n边形A1A2…A n的外接圆,半径长为18,如果弧A1A2的长为π,那么边数n为()A.5 B.10 C.36 D.728.(3分)如图,△ABC与△DEF都是等腰三角形,且AB=AC=3,DE=DF=2,若∠B+∠E=90°,则△ABC与△DEF的面积比为()A.9:4 B.3:2 C.D.二、填空题(本大题共10小题,每小题3分,共30分,不需要写出解决过程,请把答案直接填在答题卡相应位置上)9.(3分)﹣2的相反数是.10.(3分)分解因式:﹣x3+2x2﹣x=.11.(3分)如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是.12.(3分)事件A发生的概率为,大量重复做这种试验,事件A平均每100次发生的次数是.13.(3分)已知x2﹣2x﹣3=0,则2x2﹣4x的值为.14.(3分)已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为.15.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为.16.(3分)如图,直线l1∥l2,l3⊥l4,∠1+∠2=°.17.(3分)如图,在△ABC中,AB=4,将△ABC绕点B按逆时针方向旋转45°后得到△A′BC′,则阴影部分的面积为.18.(3分)如图,等腰△ABC中,AB=AC=4,BC=m,点D是边AB的中点,点P 是边BC上的动点,且不与B、C重合,∠DPQ=∠B,射线PQ交AC于点Q.当点Q总在边AC上时,m的最大值是.三、解答题(本大题共10小题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(8分)(1)计算:|1﹣|﹣(﹣)﹣2﹣2sin60°;(2)解不等式组:.20.(8分)先化简,再求值:÷(1﹣),其中m满足一元二次方程m2﹣4m+3=0.21.(8分)某地区在一次九年级数学质量检测试题中,有一道分值为8分的解答题,所有考生的得分只有四种,即:0分,3分,5分,8分,老师为了解本题学生得分情况,从全区4500名考生试卷中随机抽取一部分,分析、整理本题学生得分情况并绘制了如下两幅不完整的统计图:请根据以上信息解答下列问题:(1)本次调查从全区抽取了份学生试卷;扇形统计图中a=,b=;(2)补全条形统计图;(3)该地区这次九年级数学质量检测中,请估计全区考生这道8分解答题的平均得分是多少?得8分的有多少名考生?22.(8分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到元购物券,至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.23.(10分)如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求∠ACE的度数;(3)求证:四边形ABFE是菱形.24.(10分)在我市开展“五城联创”活动中,某工程队承担了某小区900米长的污水管道改造任务.工程队在改造完360米管道后,引进了新设备,每天的工作效率比原来提高了20%,结果共用27天完成了任务,问引进新设备前工程队每天改造管道多少米?25.(10分)如图,点B、C、D都在⊙O上,过C点作CA∥BD交OD的延长线于点A,连接BC,∠B=∠A=30°,BD=2.(1)求证:AC是⊙O的切线;(2)求由线段AC、AD与弧CD所围成的阴影部分的面积.(结果保留π)26.(10分)定义:如果代数式a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与a2x2+b2x+c2(a2≠0,a2,b2,c2是常数),满足a1+a2=0,b1+b2=0,c1+c2=0,则称两个代数式互为”牛郎织女式”(1)写出﹣x2+2x﹣3的“牛郎织女式”;(2)若﹣x2﹣18mx﹣3与x2﹣2nx+n互为“牛郎织女式”,求(mn)2015的值;(3)无论x取何值时,代数式x2﹣2x+a的值总大于其“牛郎织女式”的值,求a 的取值范围.27.(12分)某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足下列关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价﹣成本)(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m 天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?28.(12分)已知:如图①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E.点F是点E关于AB的对称点,连接AF、BF.(1)求AE和BE的长;(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B 沿BD方向所经过的线段长度).当点F分别平移到线段AB、AD上时,直接写出相应的m的值.(3)如图②,将△ABF绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD交于点P,与直线BD交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.2016年江苏省扬州市邗江区梅苑双语学校中考数学二模试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项符合题目要求的,请根据正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)下列无理数中,在﹣1与2之间的是()A.﹣B.﹣C.D.【解答】解:A.﹣<﹣1,故错误;B.﹣<﹣1,故错误;C.﹣1<,故正确;D.>2,故错误;故选:C.2.(3分)我区深入实施环境污染整治,关停和整改了一些化工企业,使得每年排放的污水减少了167000吨.将167000用科学记数法表示为()A.167×103B.16.7×104C.1.67×105D.1.6710×106【解答】解:167 000=1.67×105.故选C.3.(3分)在体育达标测试中,某校初三5班第一小组六名同学一分钟跳绳成绩如下:93,138,98,152,138,183;则这组数据的极差是()A.138 B.183 C.90 D.93【解答】解:由题意可知,极差为183﹣93=90.故选C.4.(3分)下列二次根式中,最简二次根式是()A.B.C.D.【解答】解:因为:A、=|a|;B、=;C、=;所以,这三个选项都可化简,不是最简二次根式.故本题选D.5.(3分)一个几何体的三视图如图所示,那么这个几何体是()A.B.C.D.【解答】解:由于俯视图为三角形.主视图为两个长方形和左视图为长方形可得此几何体为三棱柱.故选:A.6.(3分)如图,已知四边形ABCD是平行四边形,要使它成为菱形,那么需要添加的条件可以是()A.AC⊥BD B.AB=AC C.∠ABC=90°D.AC=BD【解答】解:A、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,故本选项正确;B、∵四边形ABCD是平行四边形,AB=AC≠BC,∴平行四边形ABCD不是,故本选项错误;C、∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,不能推出,平行四边形ABCD是菱形,故本选项错误;D、∵四边形ABCD是平行四边形,AC=BD∴四边形ABCD是矩形,不是菱形.故选:A.7.(3分)已知圆O是正n边形A1A2…A n的外接圆,半径长为18,如果弧A1A2的长为π,那么边数n为()A.5 B.10 C.36 D.72【解答】解:设正多边形的中心角的度数是x,根据题意得:=π,解得:x=10.则n==36.故选C.8.(3分)如图,△ABC与△DEF都是等腰三角形,且AB=AC=3,DE=DF=2,若∠B+∠E=90°,则△ABC与△DEF的面积比为()A.9:4 B.3:2 C.D.【解答】解:∵△ABC与△DEF都是等腰三角形,∴∠B=∠C,∠E=∠F,∵∠B+∠E=90°,∴∠A+∠D=180°,∴sinA=sinD,=AB•ACsin∠A=sinA,∵S△BACS△EDF=DE•DFsin∠D=2sinD,∴S△BAC :S△EDF=:2=9:4.故选A.二、填空题(本大题共10小题,每小题3分,共30分,不需要写出解决过程,请把答案直接填在答题卡相应位置上)9.(3分)﹣2的相反数是2.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故答案为:2.10.(3分)分解因式:﹣x3+2x2﹣x=﹣x(x﹣1)2.【解答】解:﹣x3+2x2﹣x,=﹣x(x2﹣2x+1)…(提取公因式)=﹣x(x﹣1)2.…(完全平方公式)11.(3分)如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是x>2或﹣2<x <0.【解答】解:∵正比例函数与反比例函数的图象均关于原点对称,点A的横坐标为2,∴点B的横坐标为﹣2.∵由函数图象可知,当x>2或﹣2<x<0时,正比例函数的图象在反比例函数图象的上方,∴当y1>y2时,x的取值范围是x>2或﹣2<x<0.故答案为:x>2或﹣2<x<0.12.(3分)事件A发生的概率为,大量重复做这种试验,事件A平均每100次发生的次数是5.【解答】解:事件A发生的概率为,大量重复做这种试验,则事件A平均每100次发生的次数为:100×=5.故答案为:5.13.(3分)已知x2﹣2x﹣3=0,则2x2﹣4x的值为6.【解答】解:∵x2﹣2x﹣3=0,∴x2﹣2x=3,∴2x2﹣4x=2(x2﹣2x)=2×3=6.故答案为:6.14.(3分)已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为10.【解答】解:设母线长为x,根据题意得:2πx÷2=2π×5,解得x=10.故答案为:10.15.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为.【解答】解:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴=;故答案为:.16.(3分)如图,直线l1∥l2,l3⊥l4,∠1+∠2=90°.【解答】解:如图,∵l1∥l2,∴∠1=∠3,∵l3⊥l4,∴∠4=90°,∴∠3+∠2=90°,∴∠1+∠2=90°,故答案为∠1+∠2=90°17.(3分)如图,在△ABC中,AB=4,将△ABC绕点B按逆时针方向旋转45°后得到△A′BC′,则阴影部分的面积为4.【解答】解:∵在△ABC中,AB=4,将△ABC绕点B按逆时针方向旋转45°后得到△A′BC′,∴△ABC≌△A′BC′,∴A′B=AB=4,∴△A′BA是等腰三角形,∠A′BA=45°,∴S△A′BA=×4×2=4,又∵S阴影=S△A′BA+S△A′BC′﹣S△ABC,S△A′BC′=S△ABC,∴S阴影=S△A′BA=4.故答案为:4.18.(3分)如图,等腰△ABC中,AB=AC=4,BC=m,点D是边AB的中点,点P 是边BC上的动点,且不与B、C重合,∠DPQ=∠B,射线PQ交AC于点Q.当点Q总在边AC上时,m的最大值是4.【解答】解:设BP=x,则PC=m﹣x,∵AB=AC,∴∠B=∠C,∵∠DPQ=∠B,∴∠C=∠DPQ,∵∠PQC=180°﹣∠QPC﹣∠C,∠BPD=180°﹣∠DPQ﹣∠QPC,∴∠PQC=∠BPD,∴△BPD∽△CQP,∴,即,∴CQ=x(m﹣x)=﹣x2+mx,当x=m时,CQ取最大值,最大值为m2,要使Q永远在AC上,则CQ≤AC,即CQ≤4,∴m2≤4,∴m2≤32,∴0<m≤4,∴m的最大值为4;故答案为:4.三、解答题(本大题共10小题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(8分)(1)计算:|1﹣|﹣(﹣)﹣2﹣2sin60°;(2)解不等式组:.【解答】解:(1)原式=﹣1﹣4﹣2×=﹣1﹣4﹣=﹣5;(2)∵解不等式①得:x≤3,解不等式②得:x>﹣2,∴不等式组的解集为﹣2<x≤3.20.(8分)先化简,再求值:÷(1﹣),其中m满足一元二次方程m2﹣4m+3=0.【解答】解:原式=÷=•=,由m2﹣4m+3=0,变形得:(m﹣1)(m﹣3)=0,解得:m=1(不合题意,舍去)或m=3,则当m=3时,原式=.21.(8分)某地区在一次九年级数学质量检测试题中,有一道分值为8分的解答题,所有考生的得分只有四种,即:0分,3分,5分,8分,老师为了解本题学生得分情况,从全区4500名考生试卷中随机抽取一部分,分析、整理本题学生得分情况并绘制了如下两幅不完整的统计图:请根据以上信息解答下列问题:(1)本次调查从全区抽取了240份学生试卷;扇形统计图中a=25,b= 20;(2)补全条形统计图;(3)该地区这次九年级数学质量检测中,请估计全区考生这道8分解答题的平均得分是多少?得8分的有多少名考生?【解答】解:(1)24÷10%=240份,240﹣24﹣108﹣48=60份,60÷240=25%,48÷240=20%,抽取了240份学生试卷;扇形统计图中a=25,b=20;(2)如图:(3)0×10%+3×25%+5×45%+8×20%=4.6分,4500×20%=900名.答:这道8分解答题的平均得分是4.6分;得8分的有900名考生.22.(8分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到10元购物券,至多可得到50元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.【解答】解:(1)10,50;(2)解法一(树状图):从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=;解法二(列表法):(以下过程同“解法一”)23.(10分)如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求∠ACE的度数;(3)求证:四边形ABFE是菱形.【解答】(1)证明:∵△ABC绕点A按逆时针方向旋转100°,∴∠BAC=∠DAE=40°,∴∠BAD=∠CAE=100°,又∵AB=AC,∴AB=AC=AD=AE,在△ABD与△ACE中∴△ABD≌△ACE(SAS).(2)解:∵∠CAE=100°,AC=AE,∴∠ACE=(180°﹣∠CAE)=(180°﹣100°)=40°;(3)证明:∵∠BAD=∠CAE=100°AB=AC=AD=AE,∴∠ABD=∠ADB=∠ACE=∠AEC=40°.∵∠BAE=∠BAD+∠DAE=140°,∴∠BFE=360°﹣∠BAE﹣∠ABD﹣∠AEC=140°,∴∠BAE=∠BFE,∴四边形ABFE是平行四边形,∵AB=AE,∴平行四边形ABFE是菱形.24.(10分)在我市开展“五城联创”活动中,某工程队承担了某小区900米长的污水管道改造任务.工程队在改造完360米管道后,引进了新设备,每天的工作效率比原来提高了20%,结果共用27天完成了任务,问引进新设备前工程队每天改造管道多少米?【解答】解:设原来每天改造管道x米,由题意得:+=27,解得:x=30,经检验:x=30是原分式方程的解,答:引进新设备前工程队每天改造管道30米.25.(10分)如图,点B、C、D都在⊙O上,过C点作CA∥BD交OD的延长线于点A,连接BC,∠B=∠A=30°,BD=2.(1)求证:AC是⊙O的切线;(2)求由线段AC、AD与弧CD所围成的阴影部分的面积.(结果保留π)【解答】(1)证明:连接OC,交BD于E,∵∠B=30°,∠B=∠COD,∴∠COD=60°,∵∠A=30°,∴∠OCA=90°,即OC⊥AC,∴AC是⊙O的切线;(2)解:∵AC∥BD,∠OCA=90°,∴∠OED=∠OCA=90°,∴DE=BD=,∵sin∠COD=,∴OD=2,在Rt△ACO中,tan∠COA=,∴AC=2,=×2×2﹣=2﹣.∴S阴影26.(10分)定义:如果代数式a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与a2x2+b2x+c2(a2≠0,a2,b2,c2是常数),满足a1+a2=0,b1+b2=0,c1+c2=0,则称两个代数式互为”牛郎织女式”(1)写出﹣x2+2x﹣3的“牛郎织女式”;(2)若﹣x2﹣18mx﹣3与x2﹣2nx+n互为“牛郎织女式”,求(mn)2015的值;(3)无论x取何值时,代数式x2﹣2x+a的值总大于其“牛郎织女式”的值,求a 的取值范围.【解答】解:(1)设﹣x2+2x﹣3的“牛郎织女式”为ax2+bx+c由题意可知:a=1,b=﹣2,c=3,∴﹣x2+2x﹣3的“牛郎织女式”为x2﹣2x+3;(2)由题意可知:﹣18m﹣2n=0,﹣3+n=0,解得:m=﹣,n=3,∴原式=(﹣1)2015=﹣1;(3)x2﹣2x+a的“牛郎织女式”为﹣x2+2x﹣a,∴由题意可知:x2﹣2x+a>﹣x2+2x﹣a对于任何x都成立,∴x2﹣2x+a﹣(﹣x2+2x﹣a)>0,∴a>﹣x2+2x,∴a>﹣(x﹣1)2+1对于任何的x都成立,∵﹣(x﹣1)2+1的最大值为1,∴a>1,27.(12分)某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足下列关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价﹣成本)(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m 天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?【解答】解:(1)设李明第n天生产的粽子数量为420只,由题意可知:30n+120=420,解得n=10.答:第10天生产的粽子数量为420只.(2)由图象得,当0≤x≤9时,p=4.1;当9≤x≤15时,设P=kx+b,把点(9,4.1),(15,4.7)代入得,,解得,∴p=0.1x+3.2,=513(元);①0≤x≤5时,w=(6﹣4.1)×54x=102.6x,当x=5时,w最大②5<x≤9时,w=(6﹣4.1)×(30x+120)=57x+228,∵x是整数,=741(元);∴当x=9时,w最大③9<x≤15时,w=(6﹣0.1x﹣3.2)×(30x+120)=﹣3x2+72x+336,∵a=﹣3<0,∴当x=﹣=12时,w=768(元);最大综上,当x=12时,w有最大值,最大值为768.(3)由(2)可知m=12,m+1=13,设第13天提价a元,由题意得,w13=(6+a﹣p)(30x+120)=510(a+1.5),∴510(a+1.5)﹣768≥48,解得a≥0.1.答:第13天每只粽子至少应提价0.1元.28.(12分)已知:如图①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E.点F是点E关于AB的对称点,连接AF、BF.(1)求AE和BE的长;(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B 沿BD方向所经过的线段长度).当点F分别平移到线段AB、AD上时,直接写出相应的m的值.(3)如图②,将△ABF绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD交于点P,与直线BD交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.【解答】解:(1)在Rt△ABD中,AB=5,AD=,由勾股定理得:BD===.=BD•AE=AB•AD,∵S△ABD∴AE===4.在Rt△ABE中,AB=5,AE=4,由勾股定理得:BE=3.(2)设平移中的三角形为△A′B′F′,如答图2所示:由对称点性质可知,∠1=∠2.由平移性质可知,AB∥A′B′,∠4=∠1,BF=B′F′=3.①当点F′落在AB上时,∵AB∥A′B′,∴∠3=∠4,∴∠3=∠2,∴BB′=B′F′=3,即m=3;②当点F′落在AD上时,∵AB∥A′B′,∴∠6=∠2,∵∠1=∠2,∠5=∠1,∴∠5=∠6,又易知A′B′⊥AD,∴△B′F′D为等腰三角形,∴B′D=B′F′=3,∴BB′=BD﹣B′D=﹣3=,即m=.(3)存在.理由如下:假设存在,在旋转过程中,等腰△DPQ依次有以下4种情形:①如答图3﹣1所示,点Q落在BD延长线上,且PD=DQ,易知∠2=2∠Q,∵∠1=∠3+∠Q,∠1=∠2,∴∠3=∠Q,∴A′Q=A′B=5,∴F′Q=F′A′+A′Q=4+5=9.在Rt△BF′Q中,由勾股定理得:BQ===.∴DQ=BQ﹣BD=﹣;②如答图3﹣2所示,点Q落在BD上,且PQ=DQ,∴∠2=∠P,∵∠1=∠2,∴∠1=∠P,∴BA′∥PD,∵PD∥BC,∴此时点A′落在BC边上.∵∠3=∠2,∴∠3=∠1,∴BQ=A′Q,∴F′Q=F′A′﹣A′Q=4﹣BQ.在Rt△BQF′中,由勾股定理得:BF′2+F′Q2=BQ2,即:32+(4﹣BQ)2=BQ2,解得:BQ=,∴DQ=BD﹣BQ=﹣=;③如答图3﹣3所示,点Q落在BD上,且PD=DQ,易知∠3=∠4.∵∠2+∠3+∠4=180°,∠3=∠4,∴∠4=90°﹣∠2.∵∠1=∠2,∴∠4=90°﹣∠1.∴∠A′QB=∠4=90°﹣∠1,∴∠A′BQ=180°﹣∠A′QB﹣∠1=90°﹣∠1,∴∠A′QB=∠A′BQ,∴A′Q=A′B=5,∴F′Q=A′Q﹣A′F′=5﹣4=1.在Rt△BF′Q中,由勾股定理得:BQ===,∴DQ=BD﹣BQ=﹣;④如答图3﹣4所示,点Q落在BD上,且PQ=PD,易知∠2=∠3.∵∠1=∠2,∠3=∠4,∠2=∠3,∴∠1=∠4,∴BQ=BA′=5,∴DQ=BD﹣BQ=﹣5=.综上所述,存在4组符合条件的点P、点Q,使△DPQ为等腰三角形;DQ的长度分别为﹣、、﹣或.。
江苏省扬州市邗江区2017-2018学年高二下学期期中考试数学(理)试卷(精编含解析)
20172018学年度第二学期高二数学期中测试卷数学(理科)(全卷满分160分,考试时间120分钟)注意事项:1.答卷前,请考生务必将自己的学校、姓名、考试号等信息填写在答卷规定的地方.2.试题答案均写在答题卷相应位置,答在其它地方无效.一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1. ______【答案】20【解析】分析:利用组合数公式求解即可.详解:,故答案是.点睛:该题考查的是组合数公式,属于简单题目.2. 已知复数(是虚数单位),则||=______【答案】【解析】分析:首先利用复数的除法运算,将复数z化简,之后应用复数模的公式求得其结果.详解:,所以,故答案是.点睛:该题考查的是有关复数的运算以及复数模的求解问题,在解题的过程中,需要明确复数的除法运算法则,以及复数模的运算公式.3. 已知(1)正方形的对角线相等;(2)平行四边形的对角线相等;(3)正方形是平行四边形.由(1)、(2)、(3)组合成“三段论”,根据“三段论”推理出一个结论,则这个结论是________【答案】正方形的对角线相等【解析】分析:三段论是由两个含有一个共同项的性质判断作前提得出一个新的性质判断为结论的演绎推理.在三段论中,含有大项的前提叫大前提,如本例中“平行四边形的对角线相等”,含有小项的前提叫小前提,如本例中的“正方形是平行四边形”,另外一个就是结论.详解:由演绎推理三段论可得,本例中的“平行四边形的对角线相等”是大前提,本例中的“正方形是平行四边形”是小前提,则结论为“正方形的对角线相等”,所以答案是:正方形的对角线相等.点睛:该题考查的是有关演绎推理的概念问题,要明确三段论中三段之间的关系,分析得到大前提、小前提以及结论是谁,从而得到结果.4. 观察式子,,,……,则可以归纳出________【答案】【解析】分析:根据已知中,分析左边式子中的数与右边式子中的数之间的关系,由此可以写出结论.详解:根据题意,每个不等式的右边的分母是,不等号的右边的分子是,所以,所以答案是.点睛:该题考查的是有关归纳推理的问题,在解题的过程中,需要认真分析式子中出现的量之间的关系,以及对应的式子的特点,得出结果.5. 若向量,满足条件,则________【答案】2【解析】试题分析:依题意可得,,所以由,所以.考点:空间向量的坐标运算.视频6. 对于命题:三角形的内角至多有一个是钝角,若用反证法证明,正确的反设是________【答案】假设至少有两个钝角【解析】分析:求出要证命题:“三角形的内角至多有一个钝角”的否定为“三角形的内角至少有两个钝角”,从而得到结论.详解:用反证法证明数学命题时,应先假设要证的命题的否定成立,而要证命题:“三角形的内角至多有一个钝角”的否定为“三角形的内角至少有两个钝角”,故应先假设三角形的内角至少有两个钝角.点睛:该题考查的是有关反证法的问题,要明确反证法的证明思路,反证法的证明步骤以及反证法的理论依据,从而正确得出结果.7. 用数学归纳法证明:“”,在验证成立时,左边计算所得的结果是____________【答案】【解析】试题分析:用数学归纳法证明“,()”时,在验证成立时,将代入,左边以1即开始,以结束,所以左边应该是.考点:数学归纳法.8. 复平面内有三点,点对应的复数为,向量对应的复数为,向量对应的复数为,则点对应的复数是___________【答案】【解析】试题分析:由得,同理,所以点对应的复数是.考点:复数的几何意义.9. 设平面的法向量为,平面的法向量为,若∥,则的值为______【答案】-4【解析】分析:设平面的法向量,平面的法向量,由∥,可得,因此存在实数,使得,再利用向量共线定理的坐标运算即可求得结果.详解:设平面的法向量,平面的法向量,因为∥,所以,所以存在实数,使得,所以有,解得,故答案为.点睛:该题考查的是向量平行的条件,以及向量平行时坐标所满足的关系,在解题的过程中,首先需要利用两个平面平行的条件,得到其法向量共线的结论,之后根据坐标的关系求得结果.10. 从个男生个女生中挑选人参加智力竞赛,要求既有男生又有女生的选法共有______种.(用数字作答)【答案】30【解析】这人中既有男生又有女生,包括男女和男女两种情况:若人中有男女,则不同的选法共有种;若人中男女,则不同的选法共有种,根据分类计数原理,既有男生又有女生的选法共有种,故答案为.【方法点睛】本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.11. 用数学归纳法证明“能被整除”的过程中,当时,式子应变形为____________【答案】【解析】分析:用数学归纳法证明:能被6整除的过程中,当时,式子应变形为.详解:用数学归纳法证明:能被6整除的过程中,当时,式子应变形为,由于假设能够被6整除,而能被2整除,因此能被6整除,故答案为.点睛:该题考查的是有关数学归纳法的问题,所涉及的知识点是从假设成立,推导成立时,一定要用到假设时的条件,从而得到结果.12. 某单位安排位员工在春节期间大年初一到初七值班,每人值班天,若位员工中的甲、乙排在相邻的两天,丙不排在初一,丁不排在初七,则不同的安排方案共有_______【答案】1008【解析】分析:本题的要求比较多,有三个限制条件,甲、乙排在相邻两天可以把甲和乙看做一个元素,注意两元之间有一个排列,丙不排在初一,丁不排在初七,则可以甲乙排初一、初二和初六、初七,丙排初七和不排初七,根据分类原理得到结果.详解:分两类:第一类:甲乙相邻排初一、初二或初六、初七,这时先安排甲和乙,有种,然后排丙或丁,有种,剩下的四人全排有种,因此共有种方法;第二类:甲乙相邻排中间,有种,当丙排在初七,则剩下的四人有种排法,若丙排在中间,则甲有种,初七就从剩下的三人中选一个,有种,剩下三人有种,所以共有种,故共有种安排方案,故答案为.点睛:该题考查的是由多个限制条件的排列问题,在解题的过程中,注意相邻问题捆绑法,特殊元素优先考虑的原则,利用分类加法计数原理求得结果.13. 我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.它体现了一种无限与有限的转化过程.比如在表达式中,“……”即代表无数次重复,但原式却是个定值,它可以通过方程,求得.类比上述过程,则_________【答案】3【解析】由已知代数式的求值方法:先换元,再列方程,解方程,求解(舍去负根),可得要求的式子。
优质金卷:江苏省邗江中学2017-2018学年高二下学期期中考试理数试题(解析版)
1.{﹣2,﹣1,0}【解析】分析:根据交集的定义求解:详解:P∩C U M点睛:1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.2.真【解析】分析:判断存在性问题真假性,可以通过举例子肯定结论,如要否定,需证明所有都不满足. 详解:因为,所以命题“∃x∈[0,1],x2﹣1≥0”是真命题.点睛:判定全称命题“”是真命题,需要对集合中的每个元素,证明成立;要判定一个全称命题是假命题,只要举出集合中的一个特殊值,使不成立即可.要判断存在性命题是真命题,只要在限定集合内至少能找到一个,使成立即可,否则就是假命题.3.【解析】分析:先计算复数,再根据复数的模的定义求结果.详解:点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为5.1+2+3+4【解析】试题分析:本题考查的知识点是数学归纳法的步骤,由等式,当n=1时,n+3=4,而等式左边起始为1的连续的正整数的和,由此易得答案.解:在等式中,当n=1时,n+3=4,而等式左边起始为1的连续的正整数的和,故n=1时,等式左边的项为:1+2+3+4故答案为:1+2+3+4点评:在数学归纳法中,第一步是论证n=1时结论是否成立,此时一定要分析等式两边的项,不能多写也不能少写,否则会引起答案的错误.6.6【解析】由题意知.点睛:(1)直角坐标方程化为极坐标方程,只要运用公式及直接代入并化简即可; (2)极坐标方程化为直角坐标方程时常通过变形,构造形如的形式,进行整体代换.其中方程的两边同乘以(或同除以)及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.8.-5【解析】分析:先根据赋值法求a,再根据x3项系数求a3.详解:令,得因此点睛:“赋值法”普遍适用于恒等式,是一种重要的方法,对形如的式子求其展开式的各项系数之和,常用赋值法,只需令即可;对形如的式子求其展开式各项系数之和,只需令即可.9.【解析】分析:先根据复数的模以及复数的虚部列不等式,再根据扇形面积减去三角形面积得弓形面积.详解:设,则,如图,因此复平面内复数z的对应点组成图形为两个弓形,其面积为扇形面积减去三角形面积是点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为点睛:找寻规律的方法有:观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.11.114【解析】分析:先确定分配方案为2211或2220,再确定排列数.详解:分配方案为2211时,排列数为,分配方案为2220时,排列数为,因此安排方法为点睛:求解排列、组合问题常用的解题方法:(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——“间接法”;(5)“在”与“不在”问题——“分类法”.12.【解析】分析:过C 作CM 垂直AB 于M ,则根据三垂线定理以及二面角定义可得∠C 1MC 为二面角C 1﹣AB ﹣C 的平面角,再解三角形得结果.详解:过C 作CM 垂直AB 于M ,连C 1M ,则由三垂线定理得C 1M 垂直AB,因此∠C 1MC 为二面角C 1﹣AB ﹣C 的平面角,所以点睛:二面角找垂面,即找棱垂直的平面,得到平面角之后再解三角形即可化简得()()()()2111mm nm nx h x x x nx x ++=+-+++,∴函数()h x 中含m x 项的系数,即是等式右边含m+2x 项的系数, ∵等式右边含m+2x 项的系数为()()()()()()()()()()()()211!!12!2!2!1!1!21!1!112m m m n m n m m nm n n m n n n m m n C nC m n m n m m n m n C m ++++++++--+++-+=-+=⨯+-+-++-++=+即()112111232m m mmm m m m m n m nm n C C C nC C m ++++-+++++++=+,∴()()121111232m m mm m m m m n m m nm n C C C nC C m +++-++++++++=+.故答案为:(1)12m n m +++.考点:排列与组合;二项式定理与性质.14.570【解析】分析:分类依次讨论有序集合对(A,B)的组数,根据子集元素个数分类讨论,最后根据加法原理求组数.详解:不同的有序集合对(A,B)的组数为点睛:求解排列、组合问题常用的解题方法:(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——“间接法”;(5)“在”与“不在”问题——“分类法”.15.(1)a≥11(2)0<a≤1试题解析:(1)由题意得,或,若,则必须满足,解得,∴的取值范围为.(2)易得或.∵是的充分不必要条件,∴或是或的真子集,则,其中两个等号不能同时成立,解得,∴a的取值范围为.16.(1),圆心C(2,)(2)【解析】分析:(1)先根据三角形同角关系消参数得圆C圆心直角坐标以及圆方程的直角坐标方程,再根据将直角坐标化为极坐标,(2)将直线极坐标方程代入圆极坐标方程得交点极坐标,再根据三点极坐标关系求三角形面积.详解:(1)极坐标(ρ,θ)与直角坐标(x,y)的对应关系为:,所以,根据sin2α+cos2α=1,消元得()2﹣(ρsinθ﹣1)2=4,化简得:.因为圆心C直角坐标为(,1),∴极坐标为(2,).(2)联立,得交点极坐标M(0,0),N(2,),所以|MN|=2,|MC|=2,所以△CMN的面积.点睛:(1)直角坐标方程化为极坐标方程,只要运用公式及直接代入并化简即可; (2)极坐标方程化为直角坐标方程时常通过变形,构造形如的形式,进行整体代换.其中方程的两边同乘以(或同除以)及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.17.(1)(2)则,因为F为线段AB上一动点,且,则,所以.(1)当时,,,所以.(2),设平面的一个法向量为=由,得,化简得,取设与平面所成角为,则.解得或(舍去),所以.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.18.(1)5+6+7+…+13=81(2)见解析【解析】分析:(1)等式左边第一数为n,连续加2n-1个数,右边为平方数,为(2n﹣1)2,即得第5个等式;以及一般性的猜想,(2)数学归纳法证明时关键找出n=k+1时与n=k关系,再代入归纳假设,经过计算可得结论.那么当n=k+1时左边=(k+1)+(k+2)+…+(3k﹣2)+(3k﹣1)+(3k)+(3k+1)=k+(k+1)+(k+2)+…+(3k﹣2)+(2k﹣1)+3k+3k+1=(2k﹣1)2+(2k﹣1)+(3k)+(3k+1)=4k2﹣4k+1+8k=(2k+1)2=[2(k+1)﹣1]2而右边=[2(k+1)﹣1]2这就是说n=k+1时等式也成立.根据(1)(2)知,等式对任何n∈N+都成立.点睛:找寻规律的方法有:观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.19.(1)(2)见解析【解析】试题分析:(1)由已知得,即可得到事件的概率.(2)由题意得,得到随机变量的所有可能取值,求得随机变量取每个值的概率,即可得到随机变量的分布列,并计算其数学期望.所以随机变量的分布列为:随机变量的数学期望为.点睛:本题主要考查了概率的计算及随机变量的分布列、数学期望,此类问题的解答中主要认真审题,正确把握试验的条件,合理求解每个取值对应的概率是解答的关键,同时注意概率公式的应用和准确计算. 20.(1)30;(2)证明见解析.【解析】试题分析:由二项式定理,得21Cii n a +=(i =0,1,2,…,2n+1),(1)根据()021nn n k k T k a -==+∑,得221035T a a a =++,即可得解;(2)先根据组合数的性质可得出()()12121C 21C n kn kn n n k n ++++++=+,再将()021nn n k k T k a -==+∑化简得()21221C n n n T n -=+,即可证明.试题解析:由二项式定理,得21C i i n a +=(i =0,1,2,…,2n+1).(1)210221055535C 3C 5C 30T a a a =++=++=;()()()()()()122122122011221C21C 2212C 21221C 22nnn k n k n nn n nn n n k k n n n n n +++++===+-+=+⋅⋅+-+⋅⋅=+∑∑.∴()()()()1221212121C 21C C 221C n n n nn n n n n T n n n ----=+=++=+. ∵*21C n n N -∈∴n T 能被42n +整除.。
江苏省扬州市邗江区2017-2018学年高二下学期期中考试数学(理)试卷 (3)
【题文】(本小题满分16分)如图,在长方体ABCD -A 1B 1C 1D 1中,14,2,2,AB AD A A ===点F 是棱BC 的中点,点E 在棱C 1D 1上,且11D E EC λ=(λ为实数).(1)求二面角1D AC D --的余弦值;(2)当13λ=时,求直线EF 与平面1D AC 所成角的正弦值的大小; (3)求证:直线EF 与直线EA 不可能垂直.【答案】解:(1)如图所示,建立空间直角坐标系D xyz -.则(2,0,0),(0,4,0),A C 1(0,0,2),D 1(2,0,2)D A =-,1(0,4,2)D C =-....................2分 设平面1D AC 的法向量为(,,)x y z =n ,则110,0D A D C ⋅=⋅=n n .即,2x z z y ==.令1y =,则2x z ==.∴平面1D AC 的一个法向量(2,1,2)=n .又平面DAC 的一个法向量为(0,0,1)=m ......4分 故22cos ,||133⋅〈〉===⋅⨯m n m n m |n |,即二面角1D AC D --的余弦值为23................5分(2)当λ =13时,E (0,1,2),F (1,4,0),(1,3,2)EF =-.所以cos ,||||EF EF EF ⋅〈〉===⋅n n n ..................................8分 因为 cos ,0EF 〈〉>n ,所以,EF 〈〉n 为锐角,从而直线EF 与平面1D AC .....................10分(3)假设EF EA ⊥,则0EF EA ⋅=......................12分∵4(0,,2),(1,4,0)1E F λλ+,∴4(2,,2)1EA λλ=--+,4(1,4,2)1EF λλ=--+......................14分∴442(4)4011λλλλ--+=++.化简得23230λλ-+=. 该方程无解,所以假设不成立,即直线EF 不可能与直线EA 不可能垂直...............16分【解析】【标题】江苏省扬州市邗江区2017-2018学年高二下学期期中考试数学(理)试卷【结束】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
邗江区2017年九年级中考第二次模拟考试物理试卷(测试时间:100分 试卷满分:100分)注意事项:本试卷g 取10N/Kg一、选择题(本题共12小题,每小题2分,共24分,每小题只有一个选项正确)1.笔记本电脑、手机等电子设备可通过 Wi ﹣Fi 实现无线上网,Wi ﹣Fi 传递信息依靠的是A .电磁波B .次声波C .可见光D .超声波2.下列声现象中,能说明声音的传播需要介质的是A .倒车雷达判断车与障碍物的距离B .蝙蝠靠超声波发现昆虫C .超声波清洗机清洗眼镜D .真空罩中的钟声变小3.百花绽放时,蜜蜂从远处便能嗅到花香,从而来采食花蜜,该现象表明A .分子具有一定的质量B .分子间有一定的间隙C .分子间有引力D .分子是运动的4. 下列估测最接近实际的是A .一页纸的厚度约为0.01mB .一个鸡蛋的质量约为50gC .一个中学生从一楼走上二楼做的功约150JD .家用液晶电视的电功率约2kW5.下列事例中,属于内能转化为机械能的是A .内燃机做功冲程中,燃气对外做功B .用打气筒打气,气筒壁发热C .锯木头时,锯条发热D .冬天搓手,手的温度升高6.下列说法中正确的是A .水沸腾时如果继续加热,水因吸热温度会升高B .夏天,剥开冰棒纸,冰棒上冒的“白气”是水蒸气C .冬天,向手心“呵气”,口中呼出的水蒸气因液化放热而使手心变暖D .衣柜里的樟脑球变小是升华现象,需要放热7.李娜同学利用如图所示的装置进行探究“平面镜成像特点”的实验,下列说法正确的是A .选用玻璃板代替平面镜的目的是便于确定像的位置B .为了便于观察,该实验最好在较明亮的环境中进行C .将完全相同的点燃的蜡烛B 放到玻璃板后寻找像的位置D .点燃蜡烛A ,将光屏放到像的位置能呈现出蜡烛的像8.图中的实验中不能揭示流体压强与流速关系的实验是9.小华同学想设计一个电子温度计,他利用热敏电阻作为该温度计的探头.热敏电阻Rt的阻值会随温度升高而减小.在小华的温度计中,要求温度升高时,电表的示数增大,下列符合要求的电路是10.把篮球抛向空中,忽略空气阻力,能正确反映球离手后至落回地面前机械能(E )与篮球离地高度(h )的关系的图线是11.现有一个盛有适量水的透明玻璃杯和一支吸管.小明同学将吸管斜插入玻璃杯中,透过玻璃杯的侧面俯视水杯(如图所示),可能看到的是以下哪种情况?12.如图探究二力平衡的条件,下列说法或过程操作不合理的是(小卡片重力不计).A .图甲中研究对象是轻质小卡片B .两边挂上不同数目的钩码C .图乙轻质小卡片此时不能平衡D .甲方案优于丙是可以减少阻力对实验结果的影响二、填空题 (本题共8题,每空1分,共28分)13.如图,将小球从A 点竖直向上抛出,C 点是小球运动的最高点,小球脱手后能继续上升,是由于小球具有 ▲ ;小球最终会掉下来,是因为▲ ;若小球在C 点时重力突然消失,则小球将 ▲ .(不计空气阻力)14.超级油轮素有海上“浮动油库”之称.像“球形鼻子”样的船头可以减小航行时的阻力,从而提高油轮的 ▲ .一艘总质量约25万吨的超级油轮所受的浮力约为 ▲ N .在给某船队的船只提供油料后,油轮里剩余油料的密度 ▲ ,油轮底部所受的海水压强 ▲ (后两空选填增大/不变/减小).15.天然气是一种清洁燃料,它是 ▲ (可再生/不可再生)能源,某出租车在一段时间内消耗了400g 天然气,若这些天然气完全燃烧,可放出 ▲ J 的热量(天然气的热值为4.4×107J/kg ),若放出的热量的84%被水吸收,能将 ▲ kg 初温为35 ℃的水加热到55 ℃(c 水=4.2×103J/(kg ·℃).16.如图所示的实验说明 ▲ ,最早发现这 一 现 象 的 是 丹 麦 物理 学家 ▲ (奥斯特/法拉第/安培). 如 果 移 走 小 磁 针,该 结论 ▲ (成立/不成立)17.图甲为宾馆的房卡,把房卡插入槽中,房内的用电器才能工作,插入房卡相当于闭合电路中的 ▲ .该宾馆的电能表如图乙所示,其读数为 ▲ kW•h.接入电路的用电器的总功率最多允许达到 ▲ W .某用电器单独接入家庭电路工作5min ,发现电能表转盘转过了300转,则该用电器的电功率为▲ W ;该电能表 ▲ (允许/不允许)另一个标有“220V ,2200W”的用电器与上述用电器同时使用.18.如图所示,用漆包线绕成矩形线圈,将线圈两端的导线拉直并用刀将漆全部刮掉,作为转动轴,将线圈放在金属支架上,在它下面放一块小磁体,用纸做一个小风车固定在转动轴上,将装置与小量程电流表相连.使小风车转动,可观察到电流表指针偏转,此过程中 ▲ 能转化为 ▲ 能,若将电流表换成干电池接入电路,线圈 ▲ (能/不能)持续转动.19.小芳用如图甲所示的实验装置探究水的沸腾特点.(1)请指出图甲中操作错误: ▲ .(2)图乙曲线a 是根据实验数据画出水的温度随时间变化的图像.由图像可知,水沸腾时的特点是 ▲ .(3)为了说明水在沸腾过程中是否需要吸热,应 ▲,观察水是否继续沸腾.(4)小芳第二次实验时采取两项措施节省了加热时间,图乙中能同时体现那两项措施的是图线 ▲ (b/c/d ).20.这是参加“扬马”的三名运动员发布在微信朋友圈中的成绩统计,甲跑完整个过程的平均速度约为 ▲ m/s, 由表可知平均配速越大,平均速度越 ▲ (大/小),经计算,平均配速5ˊ20〞(5分20秒)物理意义是 ▲ .三、解答题(本题共8小题,共48分,解答22、23题时应有解题过程)21.(6分)按照题目要求作图:(1)如图1所示,发光点A 被平面镜反射的一条光线中,有一条经过点B ,请作出这条入射光线和反射光线.(2)画出图2中物体在光滑斜面上向下滑时受力示意图.(3)图3中的开关闭合后,铭牌上“220V 60W”的两盏灯都能正常工作,请根据安全用电原则,用笔画线代替导线画出完整的电路图.22.(4分)如图所示,工人用滑轮组提升重240N 的物体,所用的拉力为150N,物体在5s内匀速上升1m .求:(1)拉力所做的有用功;(2)拉力的功率;(3)滑轮组的机械效率.23.(6分)图甲是某电子秤的原理示意图.电压表量程为0~3V (可对应显示质量大小).已知电阻R 0=60Ω.压力传感器R 的阻值随所受压力变化的图像如图乙所示,压力传感器表面能承受的最大压强为2×106Pa ,压杆与压力传感器的接触面积是2cm 2.设托盘和压杆的质量可以忽略不计,电源电压恒定不变.试求: (1)该压力传感器能承受的最大压力;(2)若要求传感器受到最大压力时,电压表的示数达到最大值,则电源电压是多大? (3)在图丙刻度盘上分别标出电压1V 、2V 所对应的质量值为多少?并写出电压1V 所对应的质量值的计算过程。
24.(5分)在探究“凸透镜成像规律”的实验中.(1)图甲平行光正对凸透镜照射,光屏上出现一个最小最亮光斑,则凸透镜的焦距f= ▲ cm (要有估读).(2)如图乙,光屏上呈现清晰的像,此像的性质是 ▲ 的实像(填全倒正、大小),若保持蜡烛和光屏位置不变,移动透镜至 ▲ cm 刻度线处,光屏上能再次呈现清晰的像.(3)如图丙,保持蜡烛位置不变,移动透镜至16cm 刻度线处,则人眼在图中 ▲ (A/B/C )处能观察到烛焰的像.(4)如图丁,在烛焰和凸透镜之间放一副眼镜,发现光屏上的像由清晰变模糊了,将光屏向透镜移动适当距离后光屏上再次呈现清晰的像.则该眼镜是▲眼镜(近视/远视).25.(5分)小敏用如图甲所示的电路图,研究通过导体的电流与导体电阻的关系,电源电压恒为6V.改变电阻R的阻值,调节滑动变阻器滑片,保持R两端的电压不变,记下相应的4次实验的电流和电阻值,描绘在乙图中.(1)实验过程中,移动变阻器滑片时,眼睛应注视▲(选填序号);A.变阻器滑片 B.电压表示数 C.电流表示数(2)在丙图中,用笔线代替导线,将电压表正确连入电路;(3)变阻器应选择的是▲(选填序号A.10Ω0.5A B.20Ω1A C.50Ω2A)(4)乙图中阴影部分面积表示的物理量是▲;(5)实验过程中,出现了电流表示数为0,电压表示数接近6V(若采用0—15V量程),电路发生的故障可能▲.26.(6分)小明想在小烧杯中注入20g某种液体,其实验步骤如下:a在天平右盘放上20g砝码Array b调节天平平衡c天平左盘上放上小烧杯,测出小烧杯的质量(图乙所示)d从量筒中取液体注入烧杯中,并用橡皮滴管配合使天平平衡(1)烧杯的质量为▲ g(2)若小明在调节天平平衡时,尚未把游码移到零刻度处,就调节平衡螺母使指针指在分度盘中央,用此天平测出的小烧杯质量结果会偏▲(大/小)(3)改正错误后,正确的实验步骤顺序为▲(填字母序号).(4)若在称量液体质量的过程中出现图甲情况,小明应▲(5)若量筒中液体体积原为42 cm3,称量结束后如图丙所示,则这种液体密度为▲kg/m3.(6)细心的小明发现,橡皮滴管中还含有少量液体,则所测液体密度结果会偏▲(大/小).27. (7分)小宇用图1的电路图测量小灯泡的额定功率,选用的电源电压为3V,小灯泡的额定电压为2.5V,图2是未连接完整的实验电路.(1)按照电路图将图2中的实物电路元件连接补充完整,要求当滑动变阻器的滑片向右滑动时,电流表的示数减小,在连接电路时,导线不能交叉.(2)连接电路时,开关应▲,滑片P放在阻值最大位置处.(3)闭合开关后,缓慢移动滑片P,当电压表的示数如图3所示时,其读数为▲V;若要测得小灯泡的额定功率,滑片P应向▲(A/B)端移动.(4)图4是测出的小灯泡电流随其两端电压变化的图像,在该图像中电流不与电压成正比,这是因为▲.(5)小宇测出了小灯泡的额定功率是▲ W,还测出了小灯泡正常发光时电阻是▲Ω. 28.(9分)走进2017年扬州“4.18”国际经贸旅游节开幕式主会场——花都汇,可看到如图所示的环境监测系统,表格中记录的是当天某两个时刻系统显示的相关指标及其数值. (1)环境监测系统的表面涂成白色,是为了▲(反射/吸收)太阳光,避免阳光照射时,太阳光中的▲(红外线/紫外线)对箱内温度的影响.(2)PM2.5在空气中的运动▲(能/不能)说明分子在做无规则的运动;环境监测系统▲(能/不能)减弱噪声;某一时刻气压为1004 ▲(帕/百帕/千帕/兆帕).(3)湿度是表示大气干燥程度的物理量,常用绝对湿度、相对湿度等物理量来表示.“绝对湿度”是单位体积空气中所含水蒸气的质量,通常用1立方米空气内所含有的水蒸气的克数来表示;“相对湿度”是空气中实际所含水蒸气密度和同温度下饱和水蒸气密度的百分比值,也可以用水气压强的比来表示.①空气饱和蒸气压在15℃时约为1600Pa,在35℃时约为6000Pa.若35℃时,空气中含有水气的压强为1200Pa,则此时空气的相对湿度为▲ %,并请你判断环境监测系统显示的湿度是▲(相对/绝对)湿度.②一天之中,中午的绝对湿度一般要比夜晚▲(大/小),这是因为▲.出卷:王永新校对:郭春贵。