九年级数学下册 第三章 圆 3.5 确定圆的条件练习课件 (新版)北师大版

合集下载

北师大版九年级数学下册3.1圆 课件(共32张PPT)

北师大版九年级数学下册3.1圆 课件(共32张PPT)

根据圆的定义,“圆”指 的是“ 圆周 ”,而不 是“圆面”。
O
A
确定一个圆的要素:
一是圆心, 二是半径, 圆心确定其位置, 半径确定其大小.
O
A
如图,连接圆上任意两点的线段 叫做弦,如AB; 经过圆心弦叫做直径, 如直径CD. 我们知道,圆上任意 两点的部分叫做圆弧, 简称弧. 圆的任意一条直径的两个 端点分圆成两条弧,每一 弧都叫做半圆. 弧包括优弧和劣弧,大于半圆的弧叫做优弧,小于 半圆的弧叫做劣弧. 如图中,以A,D为端点的弧有两条:优弧ACD(记 作ACD),劣弧ABD(记作AD或ABD).
B
C
已知圆P的半径为3,点Q在圆P外,点R在圆P上,点 H在圆P内,则PQ___3 = < > ,PR____3,PH_____3. 如图, △ ABC中,∠C=90°,BC=3,AC=6, CD
3 5 为中线,以C为圆心,以 2 为半径作圆,则点A、
B 、 D 与圆 C 的关系如何? 点A在圆外,点B在圆内, 点D在圆上.
解(1)过点A作AD⊥BC,垂足为D, 在Rt△ABC中,∠ABC=30°,AB=220, ∴AD=110(km),110÷20=5.5,12-5.5=6.5>4, ∴A城市受这次台风影响; A (2)在BD及BD的延长线上分别取E,F D 两点,使AE=AF=160千米.由于当A点距 台风中心不超过160千米时,将会受到 台风的影响.所以当台风中心从E点移到 B F点时,该城市都会到这次台风的影响. 在Rt△ADE中,由勾股定理,得DE= 30 15 所以EF=2DE=60 15 (3)当台风中心位于D处时,A市所受这次台风的 风力最大,其最大风马牛不相及力为12110/20=6.5级
(1)分别以点A、点B为圆心,以2cm的长为半径 画圆,两圆的交点即为所求。 P

中考数学总复习 九年级下册 第三章 圆(知识归纳+考点攻略+方法技巧)课件 北师大版

中考数学总复习 九年级下册 第三章 圆(知识归纳+考点攻略+方法技巧)课件 北师大版
d=R-r 0≤d<R-r
最新北师大版初中数学精品
数学·新课标(BS)
下册第三章复习(二)┃ 知识归类
[注意] (1)两圆内含时,若 d 为 0,则两圆为同心圆. (2)由两圆构成的图形都是轴对称图形,其对称轴是两圆的圆 心所在的直线. 12.弧长及扇形的面积公式 (1)弧长公式
nπR 半径为 R 的圆中,n°的圆心角所对的弧长 l= 180 . (2)扇形的面积公式 半径为 R,圆心角是 n°的扇形面积是 S 扇形=3n60πR2;
方法技巧 (1)垂径定理是根据圆的对称性推导出来的,该定理及其推论是 证明线段相等、垂直关系、弧相等的重要依据.利用垂径定理常作 “垂直于弦的直径”辅助线(往往又只是作圆心到弦的垂线段,如本 例);(2)垂径定理常与勾股定理结合在一起,进行有关圆的半径、圆 心到弦的距离、弦长等数量的计算.这些量之间的关系是 r2=d2+a2 2(其中 r 为圆半径,d 为圆心到弦的距离,a 为弦长).
数学·新课标(BS)
下册第三章复习(二)┃ 考点攻略
图X3-7
[解析] D 连接AO,因为OC⊥AB,所以AD=BD=3 cm,因 为OD=4 cm,在直角三角形ADO中,由勾股定理可以得到AO=5 cm,所以OC=5 cm,所以DC=1 cm.
最新北师大版初中数学精品
数学·新课标(BS)
下册第三章复习(二)┃ 考点攻略
数学·新课标(BS)
下册第三章复习(二)┃ 知识归类
┃知识归纳┃
1.确定圆的要素
圆心确定其位置,半径确定其大小.只有圆心没有半径, 虽圆的位置固定,但大小不定,因而圆不确定;只有半径而没 有圆心,虽圆的大小固定,但圆心的位置不定,因而圆也不确 定;只有圆心和半径都固定,圆才被唯一确定.

3.5 确定圆的条件(教案)-北师大版数学九下

3.5 确定圆的条件(教案)-北师大版数学九下

第5节确定圆的条件1.经历不在同一条直线上的三个点确定一个圆的探索过程.2.了解不在同一条直线上的三个点确定一个圆,会用尺规过不在同一直线上的三个点作圆,了解三角形的外接圆、三角形的外心等概念.1.经历不在同一条直线上的三个点确定一个圆的探索过程,培养学生的探索能力.2.通过探索不在同一条直线上的三个点确定一个圆的问题,进一步体会解决数学问题的策略.1.形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神.2.学会与人合作,并能与他人交流思维的过程和结果.【重点】掌握过不在同一条直线上的三个点作圆的方法.了解三角形的外接圆、三角形的外心等概念.【难点】经历不在同一条直线上的三个点确定一个圆的探索过程,过不在同一条直线上的三个点作圆.【教师准备】多媒体课件.【学生准备】1.复习线段垂直平分线的尺规作法.2.圆规,直尺.导入一:如右图所示,一只花猫发现一只老鼠溜进了一个内部连通的鼠洞,鼠洞只有三个出口A,B,C,要想同时顾及这三个出口以防老鼠出洞,这只花猫最好蹲守在什么位置?学生分析:要想同时顾及三个出口,就要满足花猫所在的点到三个洞口A,B,C的距离相等.【问题】A,B,C可以看成△ABC的三个顶点,在三角形的内部有没有到三个顶点的距离相等的点呢[设计意图]利用“猫捉老鼠”的游戏进行引入,极大地吸引了学生的注意力,激发了他们学习的欲望,为下面新知的探究奠定了良好的基础.导入二:长沙马王堆一号汉墓的发掘,在我国的考古界算得上惊人的发现,在世界考古学史上,也产生了深远的影响.一位考古学家在马王堆汉墓挖掘时,发现一破损的圆形铜镜,如图所示,你能帮助这位考古学家将这个圆形铜镜复原,以便于进行深入的研究吗?教师引导学生思考:要复原圆形铜镜,即画出和铜镜一样大小的圆,关键是什么呢?【学生活动】学生相互讨论后发言:关键是要找出圆形铜镜的圆心和半径.【引入】确定圆的两个要素就是圆心和半径.那么如何才能找出它的圆心和半径呢?通过本节课的学习,相信大家一定能找到解决问题的办法.[设计意图]通过创设问题情境,吸引学生的注意,激发学生的学习兴趣,并感受祖国历史文化的源远流长;通过问题的思考讨论,让学生回忆圆的定义及作圆的关键是确定圆心和半径,自然地引入课题.[过渡语]我们知道经过一点可以作无数条直线,经过两点可以确定一条直线,那么经过几点能确定一个圆呢?课件出示:活动1:作圆,使它经过已知点A,你能作出几个这样的圆?【师生活动】先由学生自己动手尝试画图,师巡视发现学生出现的问题.学生完成后,根据学生的画法,发现了以下两种情况,供学生判定对与错.1.有的同学以点A为圆心画了很多同心圆.2.经过点A画了很多圆.学生分析:第二种作法正确,因为经过点A意味着点A在圆上,而不是圆心.【教师点评】以点A以外的任意一点为圆心,以这一点与点A所连的线段为半径就可以作一个圆.(教师利用多媒体动画演示画圆)【学生小结】经过已知一点的圆有无数个,如图所示.活动2:作圆,使它经过已知点A,B.你是如何做的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么?【师生活动】先由学生自己动手尝试画图.师巡视发现学生出现的问题.待学生完成后,询问作出的圆的个数.根据学生的回答,展示三种作法让学生进行对比.1.有的同学取线段AB的中点为圆心,作出一个圆;2.有的同学作线段AB的垂直平分线,作出两个圆.3.有的同学作线段AB的垂直平分线,能作出无数多个圆.【教师点评】在线段AB的垂直平分线上任意取一点,都能满足到A,B两点的距离相等,所以在线段AB的垂直平分线上任取一点都可以作为圆心,这点到A的距离即为半径.圆就确定下来了.因为有无数个圆心,所以作出的圆就有无数个.(教师多媒体动画演示画圆)【学生小结】经过已知两点的圆也有无数个,如图所示.活动3:作圆,使它经过已知点A,B,C(A,B,C三点不在同一条直线上).你是如何做的?你能作出几个这样的圆?【学生活动】先由学生自己动手尝试画图,可能会有很多同学不知道如何下手.【师生活动】教师让学生说出自己利用尺规过不在同一条直线上的三点作圆的方法和步骤,教师同时利用多媒体展示作法,让没完成的同学跟着完成.作法图示(1)连接AB,BC(2)分别作线段AB,BC的垂直平分线DE和FG,DE和FG相交于点O(3)以O为圆心,OB为半径作圆.☉O就是所要求作的圆想一想:这样作出的圆符合要求吗?与同伴交流.【学生活动】学生分组讨论后,代表发言:因为连接AB,作AB的垂直平分线ED,则ED上任意一点到A,B的距离相等,连接BC,作BC的垂直平分线FG,则FG上的任一点到B,C的距离相等.ED与FG的交点O满足OA=OB=OC,因此这样的画法满足条件.因为两条直线的交点只有一个,所以只有一个圆心,即只能作出一个满足条件的圆.【教师点评】不在同一条直线上的三个点确定一个圆.活动4:过同一直线上的三点能作圆吗?学生动手操作后都感觉疑惑,然后继续分组讨论.代表发言:不能,找不到圆心.原因是:线段AB的垂直平分线和线段BC的垂直平分线平行,没有交点,如图所示.【教师强调】过同一直线上的三点是无法确定圆的,所以要注意“不在同一条直线上”这个条件的重要性.[设计意图]通过前两个问题的探究,不但使学生掌握了经过一个点和两个点都不能确定圆的事实,还进一步激发了学生的探究欲望,使其自然而然的想要探究经过三个点是否可以确定一个圆,为【想一想】三角形的三个顶点可以确定一个圆吗?学生分析:因为三角形的三个顶点一定不会在同一直线上,所以经过三角形的三个顶点肯定能作一个圆.【教师点评】这个三角形和圆之间有如下的特殊关系.三角形外接圆和外心的概念:三角形的三个顶点可以确定一个圆,这个圆就叫做三角形的外接圆.外接圆的圆心是三角形三边垂直平分线的交点,叫做三角形的外心.师出示示意图,如图所示,供学生加深印象.【议一议】三角形的外心具有什么样的特征?【学生小结】三角形的外心是三角形三边垂直平分线的交点,到三角形三个顶点的距离相等.[设计意图]学生亲自动手画图,体会不在同一直线上的三个点确定一个圆的事实.在其参与知识的探索过程中,享受发现知识的快乐.[知识拓展]三角形外心的位置:(1)锐角三角形的外心在三角形的内部,如图(1)所示;(2)直角三角形的外心在斜边中点上,如图(2)所示;(3)钝角三角形的外心在三角形的外部,如图(3)所示.课件出示:【做一做】你能设法确定一个圆形纸片的圆心吗你有哪些方法?与同伴进行交流.【学生活动】学生根据所学到的知识动手操作,然后与同伴交流做法.方法1:把圆形纸片对折两次,两次折痕的交点即是圆形纸片的圆心.方法2:在圆形纸片上任取两条不平行的线段,作出这两条线段的垂直平分线,其交点即是圆形纸片的圆心.[设计意图]通过此问题,让学生体会数学在生活中的应用,用数学知识可以解决一些实际问题,培养学生“用数学”的意识.1.确定圆的条件:不在同一条直线上的三个点确定一个圆.2.三角形外接圆和外心的概念.3.三角形外心的位置和性质.1.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第①块B.第②块C.第③块D.第④块解析:第②块出现一段完整的弧,可在这段弧上任作两条不平行的弦,作出这两条弦的垂直平分线,交点就是圆心,进而可得到半径的长.故选B.2.如图(1)所示,在5×5的正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()A.点PB.点MC.点RD.点Q解析:如图(2)所示,连接BC,根据垂径定理的推论,作弦AB和BC的垂直平分线,交点Q即为圆心.故选D.3.(2014·抚州中考)如图所示,△ABC内接于☉O,∠OAB=20°,则∠C的度数为.解析:∵∠OAB=20°,OA=OB,∴∠OBA=∠OAB=20°,∴∠AOB=180°-∠OAB-∠OBA=140°,∴∠ACB=∠AOB=70°.故填70°.4.如图所示,破残的圆形纸片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.已知AB=24 cm,CD=8cm.(1)求作此残片所在的圆(不写作法,保留作图痕迹);(2)求(1)中所作圆的半径.解:(1)如图(1)所示的圆O.(2)如图(2)所示,连接OA,设OA=x cm,由题知AD=12cm,OD=(x-8)cm,则根据勾股定理列方程为:x2=144+(x-8)2,解得x=13.所以圆的半径为13cm.5确定圆的条件1.确定圆的条件:不在同一条直线上的三个点确定一个圆.2.三角形外接圆和外心的概念:三角形的三个顶点可以确定一个圆,这个圆就叫做三角形的外接圆.外接圆的圆心是三角形三边垂直平分线的交点,叫做三角形的外心.一、教材作业【必做题】1.教材第86页随堂练习.2.教材第87页习题3.6第1,2题.【选做题】教材第88页习题3.6第3,4题.二、课后作业【基础巩固】1.下列关于确定一个圆的说法中,正确的是()A.三个点一定能确定一个圆B.以已知线段为半径能确定一个圆C.以已知线段为直径能确定一个圆D.菱形的四个顶点能确定一个圆2.如图所示,☉O是△ABC的外接圆,已知∠B=60°,则∠CAO的度数是()A.15°B.30°C.45°D.60°3.(2014·龙岩中考)如图所示,A,B,C是半径为6的☉O上三个点,若∠BAC=45°,则弦BC=.4.(2014·宁夏中考)如图所示,将△ABC放在每个小正方形的边长为1的网格中,点A,B,C均落在格点上,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形的最小圆面的半径是.【能力提升】5.在Rt△ABC中,AB=12,BC=16,那么这个三角形的外接圆的直径是()A.10B.20C.10或8D.20或166.如图所示,△ABC的三个顶点的坐标分别为A(-1,3),B(-2,-2),C(4,-2),则△ABC外接圆半径的长度为.7.如图所示,☉O是△ABC的外接圆,且半径为10,∠A=60°,求弦BC的长.8.如图所示,△ABC内接于☉O,AD为边BC上的高.(1)若AB=6,AC=4,AD=3,求☉O的直径AE的长度;(2)若AB+AC=10,AD=4,求☉O的直径AE的长的最大值,并指出此时边AB的长.【拓展探究】9.如图所示,将△AOB置于直角坐标系中,O为原点,A(3,0),∠ABO=60°.若△AOB的外接圆与y轴交于点D.(1)直接写出∠ADO的度数;(2)求△AOB的外接圆半径r.【答案与解析】1.C(解析:不在同一直线上的三点可确定一个圆,没有强调不在同一直线上,故本选项错误;B.以已知线段为半径能确定2个圆,分别以线段的两个端点为圆心,故本选项错误;C.以已知线段为直径能确定一个圆,此时圆心为线段的中点,半径为线段长度的一半,故本选项正确;D.菱形的四个顶点不一定能确定一个圆,故本选项错误.故选C.)2.B(解析:如图所示,连接OC,由圆周角定理知∠AOC=2∠B=120°,在△OAC中,∵OA=OC,∴∠CAO=∠ACO=30°.故选B.)3.6(解析:如图所示,连接OB,OC,∵∠BAC=45°,∴∠BOC=2∠BAC=90°,∵OB=OC=6,∴BC==6.)4.(解析:如图所示,点O为△ABC外接圆圆心,则AO为外接圆半径,故能够完全覆盖这个三角形的最小圆面的半径是.)5.D(解析:根据题意得:(1)斜边是BC,即外接圆直径是16;(2)斜边是AC,即外接圆直径是=20.故选D.)6.(解析:设△ABC的外心为M.∵B(-2,-2),C(4,-2),∴M必在直线x=1上,由图知AC的垂直平分线过(1,0),故M(1,0).过M作MD⊥BC于D,连接MB,Rt△MBD中,MD=2,BD=3,由勾股定理得MB==,即△ABC的外接圆半径为.)7.解:如图所示,过O作OD⊥BC于D.∵∠BOC=2∠BAC,且∠BOD=∠COD=∠BOC,∴∠BOD=∠BAC=60°.在Rt△BOD中,OB=10,∠BOD=60°,∴BD=OB=5,∴BC=2BD=10.8.解:(1)如图所示,连接BE.∵AE是直径,AD⊥BC,∴∠ABE=90°=∠ADC.又∵∠E=∠C(同弧所对的圆周角相等),∴△ABE∽△ADC.∴=,∴AE===8.(2)∵AB+AC=10,∴AC=10-AB,∵AD=4,由(1)中=,得AE==-+AB=-(AB-5)2+,∴☉O的直径AE的长的最大值为,此时边AB的长为5.9.解:(1)∠ADO=60°.(2)设三角形AOB外接圆的圆心为M,如图所示,连接OM,过M作MN⊥OA于N,那么∠OMN=∠OBA=60°,ON=OA=.直角三角形OMN中,OM=ON÷sin60°=÷=,因此三角形AOB外接圆的半径r=.由实际背景的问题引出学习主题,有助于激发学生的探究热情.通过四个探究活动,逐步使学生亲身感受结论的形成过程和结论的确定性.在教学中大胆放手让学生探究,在动手实践中去经历、体验、观察、类比、讨论、合作、归纳.通过充分的过程探究,最后总结归纳出相关知识要点.这有助于学生经历真正的“学数学”和“用数学”的过程,逐步发展学生的应用意识和推理能力.(1)线段中垂线的性质与找三角形的外心的相互关系有少数学生理解得还不是很透彻.(2)学生的探究活动时间不够充分,应让学生真正成为学习的主人.关于“内接”与“外接”这两个术语,学生容易混淆,教学中应重点强调.随堂练习(教材第86页)解:作图略.锐角三角形的外心在三角形的内部;直角三角形的外心在斜边中点上;钝角三角形的外心在三角形的外部.习题3.6(教材第87页)1.解:连接放牧点1和放牧点2,并作其垂直平分线;连接放牧点2和放牧点3,并作其垂直平分线.这两条垂直平分线的交点为P ,则点P 即为定居点位置.2.解:这样的圆能作两个,圆心在线段AB 的垂直平分线上,且到线段AB 的距离为cm .3.解:不能.例如:四点中有三个点共线时,同时过四点就不能作圆.4.解:最少用2次.第一次作A 1B 1的垂直平分线M 1N 1,第二次作A 2B 2(A 1B 1与A 2B 2不平行)的垂直平分线M 2N 2,两条直线的交点就是圆形工件的圆心.理由如下:圆心到A 1,B 1两点的距离相等,因此圆心一定在A 1B 1的垂直平分线上.同理,圆心一定在A 2B 2的垂直平分线上.直线M 1N 1与M 2N 2的交点到点A 1,B 1,A 2,B 2的距离相等,所以它是圆心.1.本节课的主要任务是通过动手操作逐步探究确定圆的条件,所以尺规作图的能力是本节课探究学习的保障,特别是关于线段的垂直平分线的作法,学生在课前一定要及时复习,要达到非常熟练地程度.2.在动手实践中要让学生积极地去经历、体验、观察,并结合类比、讨论、合作、归纳等思想,亲身感受结论的形成过程和结论的确定性,逐步发展自己的应用意识和推理能力.。

2020-2021学年北师大版九年级数学下册第三章 3.5确定圆的条件 同步练习题(含答案)

2020-2021学年北师大版九年级数学下册第三章 3.5确定圆的条件 同步练习题(含答案)

2020-2021学年北师大版九年级数学下册第三章 3.5确定圆的条件同步练习题A组(基础题)1.如图,在5×5的正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是( )A.点P B.点Q C.点R D.点M2.在同一平面上有A,B,C三点,若经过A,B,C这三点画圆,则可画( )A.0个 B.1个C.0个或1个D.无数个3.如图,AC,BE是⊙O的直径,弦AD与BE相交于点F,则下列三角形中,外心不是点O的是( )A.△ABE B.△ACF C.△ABD D.△ADE4.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( )A.第①块 B.第②块C.第③块D.第④块5.有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A的度数.”嘉嘉的解答为:画△ABC以及它的外接圆⊙O,连接OB,OC,如图,由∠BOC=2∠A=130°,得∠A =65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是( )A.淇淇说的对,且∠A的另一个值是115°B.淇淇说的不对,∠A就得65°C.嘉嘉求的结果不对,∠A应得50°D.两人都不对,∠A应有3个不同值6.若一个直角三角形的两条直角边长分别为7 cm 和24 cm ,则这个三角形的外接圆的直径长为_____cm.7.已知圆的半径是6,则圆内接正三角形的边长是_____.8.已知直线l :y =x -4,点A(1,0),点B(0,2),设点P 为直线l 上一动点,则当点P 的坐标为_____时,过P ,A ,B 不能作出一个圆.9.小明家的房前有一块矩形的空地,空地上有三棵树A ,B ,C ,小明想建一个圆形花坛,使三棵树都在花坛的边上.(1)请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹);(2)若在△ABC 中,AB =8米,AC =6米,∠BAC =90°,试求小明家圆形花坛的面积.B 组(中档题)10.如图,在△ABC 中,∠A =60°,BC =5 cm.能够将△ABC 完全覆盖的最小圆形纸片的直径是_____11.(2020·成都树德中学二诊)如图,△ABC 内接于⊙O ,AB =AC ,CO 的延长线交AB 于点D.若BC =6,sin ∠BAC =35,则AC =_____,CD =_____12.如图,在△ABC 中,D ,E 分别是△ABC 两边的中点,如果DE ︵(可以是劣弧、优弧或半圆)上的所有点都在△ABC 的内部或边上,则称DE ︵为△ABC 的中内弧,例如,图中DE ︵是△ABC 其中的某一条中内弧.若在平面直角坐标系中,已知点F(0,4),O(0,0),H(4,0),在△FOH 中,M ,N 分别是FO ,FH 的中点,则△FOH 的中内弧MN ︵所在圆的圆心P 的纵坐标m 的取值范围是_____13.如图,已知锐角△ABC的外接圆圆心为O,半径为R.(1)求证:ACsinB=2R;(2)若在△ABC中,∠A=45°,∠B=60°,AC=3,求BC的长及sinC的值.14.已知:如图1,在△ABC中,BA=BC,D是平面内不与A,B,C重合的任意一点,∠ABC=∠DBE,BD=BE.(1)求证:△ABD≌△CBE;(2)如图2,当点D是△ABC的外接圆圆心时,请判断四边形BECD的形状,并证明你的结论.C组(综合题)15.如图,在正方形ABCD中,AB=42,E,F分别为BC,AD上的点,过点E,F的直线将正方形ABCD的面积分为相等的两部分,过点A作AG⊥EF于点G,连接DG,则线段DG 的最小值为_____.参考答案2020-2021学年北师大版九年级数学下册第三章 3.5确定圆的条件同步练习题A组(基础题)1.如图,在5×5的正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是(B)A.点P B.点Q C.点R D.点M2.在同一平面上有A,B,C三点,若经过A,B,C这三点画圆,则可画(C)A.0个 B.1个C.0个或1个D.无数个3.如图,AC,BE是⊙O的直径,弦AD与BE相交于点F,则下列三角形中,外心不是点O的是(B)A.△ABE B.△ACF C.△ABD D.△ADE4.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是(B)A.第①块 B.第②块C.第③块D.第④块5.有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A的度数.”嘉嘉的解答为:画△ABC以及它的外接圆⊙O,连接OB,OC,如图,由∠BOC=2∠A=130°,得∠A =65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是(A)A.淇淇说的对,且∠A的另一个值是115°B.淇淇说的不对,∠A就得65°C.嘉嘉求的结果不对,∠A应得50°D.两人都不对,∠A应有3个不同值6.若一个直角三角形的两条直角边长分别为7 cm和24 cm,则这个三角形的外接圆的直径长为25cm.7.已知圆的半径是6,则圆内接正三角形的边长是8.已知直线l:y=x-4,点A(1,0),点B(0,2),设点P为直线l上一动点,则当点P的坐标为(2,-2)时,过P,A,B不能作出一个圆.9.小明家的房前有一块矩形的空地,空地上有三棵树A,B,C,小明想建一个圆形花坛,使三棵树都在花坛的边上.(1)请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹);(2)若在△ABC中,AB=8米,AC=6米,∠BAC=90°,试求小明家圆形花坛的面积.解:(1)用尺规作出AB,AC的垂直平分线,交于O点,以O为圆心,OA长为半径作出⊙O,⊙O即为花坛的位置,如图.(2)∵∠BAC=90°,AB=8米,AC=6米,∴BC=10米.∴△ABC外接圆的半径为5米.∴小明家圆形花坛的面积为25π平方米.B组(中档题)10.如图,在△ABC中,∠A=60°,BC=5 cm.能够将△ABC完全覆盖的最小圆形纸片311.(2020·成都树德中学二诊)如图,△ABC 内接于⊙O ,AB =AC ,CO 的延长线交AB于点D.若BC =6,sin ∠BAC =35,则AC CD =9013.12.如图,在△ABC 中,D ,E 分别是△ABC 两边的中点,如果DE ︵(可以是劣弧、优弧或半圆)上的所有点都在△ABC 的内部或边上,则称DE ︵为△ABC 的中内弧,例如,图中DE ︵是△ABC 其中的某一条中内弧.若在平面直角坐标系中,已知点F(0,4),O(0,0),H(4,0),在△FOH 中,M ,N 分别是FO ,FH 的中点,则△FOH 的中内弧MN ︵所在圆的圆心P 的纵坐标m 的取值范围是m ≤1或m ≥2.13.如图,已知锐角△ABC 的外接圆圆心为O ,半径为R. (1)求证:ACsinB=2R ;(2)若在△ABC 中,∠A =45°,∠B =60°,AC =3,求BC 的长及sinC 的值.解:(1)证明:连接AO 并延长交⊙O 于点D ,连接CD , ∵AD 为直径, ∴∠ACD =90°.在Rt △ACD 中,sin ∠ADC =AC AD =AC2R ,∵∠B =∠ADC ,∴sinB =AC2R .∴ACsinB=2R. (2)由(1)知AC sinB =2R ,同理可得AB sin ∠ACB =BC sin ∠BAC=2R. ∴2R =3sin60°=2.∴BC =2R ·sin ∠BAC =2sin45°= 2. 作CE ⊥AB ,垂足为E , ∴BE =BC ·cosB =2cos60°=22, AE =AC ·cos ∠BAC =3cos45°=62. ∴AB =AE +BE =62+22. ∴sin ∠ACB =AB 2R =6+24.14.已知:如图1,在△ABC 中,BA =BC ,D 是平面内不与A ,B ,C 重合的任意一点,∠ABC =∠DBE ,BD =BE.(1)求证:△ABD ≌△CBE ;(2)如图2,当点D 是△ABC 的外接圆圆心时,请判断四边形BECD 的形状,并证明你的结论.解:(1)证明:∵∠ABC =∠DBE , ∴∠ABD =∠CBE.又∵BA =BC ,BD =BE , ∴△ABD ≌△CBE(SAS). (2)四边形BECD 是菱形.证明:∵△ABD ≌△CBE ,∴AD =CE. ∵点D 是△ABC 的外接圆圆心, ∴AD =BD =CD.又∵BD =BE ,∴BD =BE =EC =CD. ∴四边形BECD 是菱形.C 组(综合题)15.如图,在正方形ABCD 中,AB =42,E ,F 分别为BC ,AD 上的点,过点E ,F 的直线将正方形ABCD 的面积分为相等的两部分,过点A 作AG ⊥EF 于点G ,连接DG ,则线段DG的最小值为。

北师大版九年级数学下册第三章圆第5节确定圆的条件课堂练习

北师大版九年级数学下册第三章圆第5节确定圆的条件课堂练习

第三章圆第5节确定圆的条件课堂练习学校:___________姓名:___________班级:___________考生__________评卷人得分一、单选题1.直角三角形三边垂直平分线的交点位于三角形的()A.三角形内B.三角形外C.斜边的中点D.不能确定2.如图所示,△ABC内接于△O,△C=45°.AB=4,则△O的半径为()A.22B.4C.23D.53.在同一平面内,过已知A,B,C三个点可以作的圆的个数为()A.0B.1C.2D.0或1 4.有下列四个命题:△经过三个点一定可以作圆;△等弧所对的圆周角相等;△三角形的外心到三角形各顶点的距离都相等;△在同圆中,平分弦的直径一定垂直于这条弦.其中正确的有()A.0B.1C.2D.35.有一边长为23的正三角形,则它的外接圆的面积为()A.23πB.43πC.4πD.12π6.A,B,C为平面上的三点,AB=2,BC=3,AC=5,则()A.可以画一个圆,使A,B,C都在圆周上B.可以画一个圆,使A,B在圆周上,C在圆内C.可以画一个圆,使A,C在圆周上,B在圆外D.可以画一个圆,使A,C在圆周上,B在圆内7.用一根铁丝围成一个正方形,正方形的边长是4.71厘米,如果用这根铁丝围成一个圆,这个圆的直径是()厘米?(π取3.14)A.6B.3C.60D.208.下列命题:①三角形的内心是三角形内切圆的圆心;②三角形的外心是三角形三边垂直平分线的交点;③平分弦的直径垂直于这条弦;④平面上任意三点确定一个圆.⑤圆内接四边形的对角互补.其中,真命题有().A.两个B.三个C.四个D.五个评卷人得分二、填空题9.已知三角形的边长分别为6,8,10,则它的外接圆的半径是___________.10.如图,O的半径为1,P是O外一点,2OP ,Q是O上的动点,线段PQ 的中点为M,连接OP、OM.则线段OM的最小值是__________.11.下面是“作出弧AB所在的圆”的尺规作图过程.已知:弧AB.求作:弧AB所在的圆.作法:如图,(1)在弧AB上任取三个点D,C,E;(2)连接DC,EC;(3)分别作DC和EC的垂直平分线,两垂直平分线的交点为点O.(4)以O为圆心,OC长为半径作圆,所以⊙O即为所求作的弧AB所在的圆.请回答:该尺规作图的依据是_____.12.如图,在平面直角坐标系xOy中,△ABC外接圆的圆心坐标是________,半径是________.13.以矩形ABCD的顶点A为圆心作A,要使B、C、D三点中至少有一点在A 内,且至少有一点在A外,如果12BC=,5CD=,则A的半径r的取值范围为________.14.已知正ABC的边长为6,那么能够完全覆盖这个正ABC的最小圆的半径是_____.15.如图,ABC与DEF均为等边三角形,△O是ABC的内切圆,同时也是DEF的外接圆.若AB=1cm,则DE=_____cm.16.如图,在△O中,弦BC=1,点A是圆上一点,且△BAC=30°,则△O的半径是.评卷人得分三、解答题17.尺规作图:已知△ABC,如图.(1)求作:△ABC的外接圆△O;(2)若AC=4,△B=30°,则△ABC的外接圆△O的半径为.18.(1)如图,已知AB、CD是大圆△O的弦,AB=CD,M是AB的中点.连接OM,以O为圆心,OM为半径作小圆△O.判断CD与小圆△O的位置关系,并说明理由;(2)已知△O,线段MN,P是△O外一点.求作射线PQ,使PQ被△O截得的弦长等于MN.(不写作法,但保留作图痕迹)19.如图,AD为△ABC外接圆的直径,AD△BC,垂足为点F,△ABC的平分线交AD 于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.20.如图,在Rt△ABC中,△ACB=90°,AC=6,CB=8,AD是△ABC的角平分线,过A、C、D三点的圆与斜边AB交于点E,连接DE.(1)求证:AC=AE;(2)求△ACD外接圆的直径.参考答案:1.C【解析】【分析】垂直平分线的交点是三角形外接圆的圆心,由此可得出此交点在斜边中点.【详解】△直角三角形的外接圆圆心在斜边中点,△直角三角形三边垂直平分线的交点位于三角形的斜边中点.故选:C.【点睛】本题主要考查了三角形外接圆的性质,熟练掌握相关概念是解题关键.2.A【解析】【详解】试题解析:连接OA,OB.45,C∠=︒90AOB∴∠=︒,△在Rt AOB△中,2 2.OA OB==故选A.点睛:在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.3.D【解析】【详解】分析:分两种情况讨论:△A、B、C三个点共线,不能做圆;△A、B、C三个点不在同一条直线上,有且只有一个圆.解答:解:当A、B、C三个点共线,过A、B、C三个点不能作圆;当A、B、C不在同一条直线上,过A、B、C三个点的圆有且只有一个,即三角形的外接圆;故选D.4.C【解析】【分析】根据圆的认识、圆周角定理、三角形外心的性质对各小题进行逐一分析即可.【详解】解:△经过在同一条直线上的三个点不能作圆,只有三个点不在同一条直线上时才可以作圆,故本小题错误;△等弧所对的圆周角相等,符合圆周角定理,故本小题正确;△三角形的外心是三角形三边垂直平分线的交点,所以到三角形各顶点的距离都相等,故本小题正确;△在同圆中,平分弦(不是直径)的直径一定垂直于这条弦,故本小题错误.故选:C.【点睛】本题考查的是命题与定理,熟知圆的性质、圆周角定理、三角形外心的性质及其垂径定理的推论是解答此题的关键.5.C【解析】【详解】解:△正三角形的边长为3,可得其外接圆的半径为223cos3023︒÷⨯=,故其面积为4π故选C.【点睛】本题考查等边三角形的性质与运用,其三边相等,三个内角相等,均为60度.6.D【解析】【分析】由已知可得AB+BC=AC,故可知可以画一个圆,使A,C在圆上,B在圆内.【详解】△A,B,C是平面内的三点,AB=2,BC=3,AC=5,△AB+BC=AC,△可以画一个圆,使A,C在圆上,B在圆内.故选D.【点睛】本题主要考查确定圆的条件,正确确定A、B、C三点的位置关系是解决本题的关键.7.A【解析】【分析】根据正方形的周长与圆的周长公式即可列出方程进行求解.【详解】设圆的直径为d,依题意得4×4.71=3.14×d解得d=6,故选A.【点睛】此题主要考查一元一次方程的应用,解题的关键根据题意找到等量关系进行求解.8.B【解析】【分析】根据三角形的内心△进行判断;根据三角形的外心对△进行判断;根据垂径定理对△进行判断;根据确定圆的条件△进行判断;根据圆内接四边形的性质对△进行判断;【详解】①三角形的内心是三角形内切圆的圆心;正确.②三角形的外心是三角形三边垂直平分线的交点;正确.③平分弦(不是直径)的直径垂直于这条弦;故错误.④平面上不在同一条直线上的三点确定一个圆.故错误.⑤圆内接四边形的对角互补.正确.正确的有3个.故选B.【点睛】考查三角形的内心,外心,垂径定理等,比较基础.难度不大.9.5【解析】【分析】根据勾股定理的逆定理得到三角形为直角三角形,那么外接圆的半径等于斜边的一半,计算即可解答.根据直角三角形外接圆的圆心是斜边的中点,由勾股定理求得斜边,即可得出答案.【详解】△三角形的三条边长分别为6,8,10,62+82=102,△此三角形是以10为斜边的直角三角形,△这个三角形外接圆的半径为10÷2=5.故答案为5.【点睛】本题考查了三角形的外接圆与外心:经过三角形的三个顶点的圆,叫做三角形的外接圆;三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.10.0.5【解析】【分析】设OP与△O交于点N,连结MN,OQ,如图可判断MN为△POQ的中位线,则MN=1 2OQ=12,则点M在以N为圆心,12为半径的圆上,当点M在ON上时,OM最小,最小值为12.【详解】解:设OP与△O交于点N,连结MN,OQ,如图,△OP=2,ON=1,△N是OP的中点,△M为PQ的中点,△MN为△POQ的中位线,△MN=12OQ=12×1=12,△点M在以N为圆心,12为半径的圆上,当点M在ON上时,OM最小,最小值为12,△线段OM的最小值为0.5.故答案为0.5.【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.11.线段垂直平分线上的点到线段两个端点的距离相等;平面内,到定点的距离等于定长的点在同一个圆上.【解析】【分析】由中垂线的性质知OD=OC=OE,继而根据“平面内,到定点的距离等于定长的点在同一个圆上”可得.【详解】△分别作DC和EC的垂直平分线,两垂直平分线的交点为点O,△OD=OC=OE(线段垂直平分线上的点到线段两个端点的距离相等),△点A、B、C、D、E在以O为圆心,OC长为半径的圆上(平面内,到定点的距离等于定长的点在同一个圆上),故答案为线段垂直平分线上的点到线段两个端点的距离相等;平面内,到定点的距离等于定长的点在同一个圆上.【点睛】本题主要考查作图﹣尺规作图,解题的关键是熟练掌握中垂线的性质和圆的概念.12.(5,2)25【解析】【分析】找出三角形两边的垂直平分线的交点即可确定三角形的外心,再利用勾股定理即可求出半径.【详解】△△ABC 外接圆的圆心到三角形三个顶点的距离相等,又△BC 与AB 的垂直平分线交于点(5,2),△点(5,2)到三角形三个顶点距离相等,△(5,2)点是三角形的外接圆圆心.△△ABC 外接圆的半径为,224225+=.故答案为(5,2);25.【点睛】本题主要考查了三角形的外接圆与外心.利用三角形两边的垂直平分线的交点确定△ABC 外接圆的圆心是解题的关键.13.513r <<【解析】【分析】先求出矩形对角线的长,然后由B 、C 、D 与△A 的位置,确定△A 的半径的取值范围.【详解】根据题意画出图形如下所示:△AB=CD=5,AD=BC=12,△AC=BD=22512+=13.△B 、C 、D 中至少有一个点在△A 内,且至少有一个点在△A 外,△点B 在△A 内,点C 在△A 外.△5<r <13.故答案是:5<r<13.【点睛】本题考查的是点与圆的位置关系,要确定点与圆的位置关系,主要根据点与圆心的距离与半径的大小关系来进行判断.当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.14.23【解析】【分析】能够完全覆盖这个正△ABC的最小圆的半径是△ABC外接圆的半径,求出△ABC外接圆的半径即可解决问题.【详解】如图,那么能够完全覆盖这个正△ABC的最小圆的半径就是△ABC外接圆的半径,设△O是△ABC的外接圆,连接OB,OC,作OE△BC于E,△△ABC是等边三角形,△△A=60°,△BOC=2△A=120°,△OB=OC,OE△BC,△△BOE=60°,BE=EC=3,△sin60°=BEOB,△OB=23考点:(1)三角形的外接圆与外心;(2)等边三角形的性质15.12.【解析】【详解】试题分析:设AB与△O相切于M,连接OB,OM,得到OM△AB,由△O是等边△ABC的内切圆和等边三角形的性质,求出圆的半径,连接OD,过O作ON△DE于N,由△O 是等边△DEF的外接圆.解直角三角形即可得到结论.试题解析:设AB与△O相切于M,连接OB,OM,△OM△AB,△△O是等边△ABC的内切圆△△ABO=30°,OA=OB,△BM=12AB=12,△OM=36,连接OD,过O作ON△DE于N,△△O是等边△DEF的外接圆.△OD=OM=36,△ODN=30°,△DN=14,△DE=2DN=12.考点:1.三角形的内切圆与内心;2.等边三角形的性质;3.三角形的外接圆与外心.16.1【解析】【分析】连接OB,OC,根据△BAC=30°可得△BOC=60°,则△OBC为等边三角形,则OB=BC=1,即可得圆的半径是1.【详解】如图,连接OB,OC,△△BAC=30°,△△BOC=2△BAC=60°.△OB=OC,△△BOC是等边三角形.△OB=BC=1.故答案为:1.17.(1)答案见解析;(2)4.【解析】【分析】(1)确定三角形的外接圆的圆心,根据其是三角形边的垂直平分线的交点进行确定即可;(2)连接OA,OC,先证明△AOC是等边三角形,从而得到圆的半径.【详解】解:(1)作法如下:△作线段AB的垂直平分线,△作线段BC的垂直平分线,△以两条垂直平分线的交点O为圆心,OA长为半圆画圆,则圆O即为所求作的圆;(2)连接OA,OC,△△B=30°,△△AOC=60°,△OA=OC,△△AOC是等边三角形,△AC=4,△OA=OC=4,即圆的半径是4,故答案为4.【点睛】本题考查了尺规作三角形外接圆、圆中的计算问题,解题的关键是熟知“三角形边的垂直平分线的交点是三角形的外接圆的圆心”.18.(1)相切,证明见解析;(2)答案见解析【解析】【分析】(1)过点O作ON△CD,连接OA,OC,根据垂径定理及其推论可得△AMO=△ONC=90°,AM=CN,从而求证△AOM△△CON,从而判定CD与小圆O的位置关系;(2)在圆O上任取一点A,以A为圆心,MN为半径画弧,交圆O于点B,过点O 做AB的垂线,交AB于点C,然后以点O为圆心,OC为半径画圆,连接PO,取PO的中点D,以点D为圆心,OD为半径画圆,交以OC为半径的圆于点E,连接PE,交以OA为半径的圆于F,H两点,FH即为所求.【详解】解:(1)过点O作ON△CD,连接OA,OC△AB、CD是大圆△O的弦,AB=CD,M是AB的中点,ON△CD△△AMO=△ONC=90°,AM=12AB,CN12CD,△AM=CN又△OA=OC△△AOM△△CON △ON=OM△CD与小圆O相切(2)如图FH即为所求【点睛】本题考查垂径定理及其推论,全等三角形的判定和性质,以及利用垂径定理作图,掌握相关知识灵活应用是本题的解题关键.19.(1)见解析(2)是【解析】【详解】试题分析:()1利用等弧对等弦即可证明.()2利用等弧所对的圆周角相等,BAD CBD∠=∠再等量代换得出DBE DEB∠=∠,从而证明DB DE DC==,所以B E C,,三点在以D为圆心,以DB为半径的圆.试题解析:(1)证明:△AD为直径,AD△BC,△由垂径定理得:.BD CD=△根据圆心角、弧、弦之间的关系得:BD=CD.(2)B,E,C三点在以D为圆心,以DB为半径的圆上.理由:由(1)知:.BD CD=△△1=△2,又△△2=△3,△△1=△3,△△DBE =△3+△4,△DEB =△1+△5, △BE 是△ABC 的平分线,△△4=△5,△△DBE =△DEB ,△DB =DE .由(1)知:BD =CD△DB =DE =DC .△B ,E ,C 三点在以D 为圆心,以DB 为半径的圆上. 20.(1)见解析;(2)35【解析】【详解】试题分析:()1先根据:90ACB ∠=︒得出AD 为圆O 的直径,可得出ACB AED ∠=∠.再由AD 是ABC 中BAC ∠的平分线可知CAD EAD ∠=∠,由HL 得出ACD AED △≌△,根据全等三角形的性质可知=.AC AE ()2根据勾股定理求出AB 的长,设,CD DE x == 则8,DB BC CD x =-=-1064EB AB AE =-=-=,在Rt BED △中,根据勾股定理得出x 的值,再由ACD △ 是直角三角形即可得出AD 的长. (1)证明△90ACB ∠=︒,且ACB ∠为圆O 的圆周角, △AD 为圆O 的直径,90AED ∴∠=︒,.ACB AED ∴∠=∠又AD 是ABC 中BAC ∠的平分线, △CAD EAD ∠=∠CD DE ∴=,△.ACD AED ≌△=.AC AE(2)△ABC 为直角三角形,且6,8AC CB ==,△根据勾股定理得:10.AB =由()1得到90,AED ∠=︒ 则有90BED ∠=︒,设,CD DE x == 则8,DB BC CD x =-=-1064EB AB AE =-=-=,在Rt BED △中,根据勾股定理得:222BD BE ED =+, 即222(8)4x x ,-=+解得: 3.x =3CD ∴=,又6AC =,ACD △为直角三角形, △根据勾股定理得:222226345.AD AC CD =+=+= 3 5.AD =。

北师大版九年级数学下第三章5 确定圆的条件(含答案)

北师大版九年级数学下第三章5  确定圆的条件(含答案)

北师大版九年级数学下第三章5 确定圆的条件(含答案)一、选择题1.下列四个命题中,正确的有()①经过三角形顶点的圆是三角形的外接圆;②任何一个三角形一定有一个外接圆,并且只有一个外接圆;③任何一个圆一定有一个内接三角形,并且只有一个内接三角形;④三角形的外心是三角形三条边的垂直平分线的交点.A.1个B.2个C.3个D.4个2.下列关于三角形的外心的说法中,正确的是()A.到三角形三个顶点的距离相等B.到三角形三条边的距离相等C.是三角形三条角平分线的交点D.是三角形三条中线的交点3.如图1,点A,B,C在同一条直线上,点D在直线AB外,过这四个点中的任意三个点,能画圆的个数是()图1A.1 B.2C.3 D.44.如图2,在平面直角坐标系xOy中,点A的坐标为(0,3),点B的坐标为(2,1),点C的坐标为(2,-3),则经画图操作可知,△ABC的外心的坐标应是()图2A.(0,0) B.(1,0)C.(-2,-1) D.(2,0)5.如图3,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()图3A.△ABE B.△ACF C.△ABD D.△ADE6.小明不慎把家里的圆形镜子打碎了,其中三块碎片如图4所示,利用三块碎片中的一块最有可能配到与原来一样大小的圆形镜子的碎片是()图4A.①B.②C.③D.均不可能7.若点O是△ABC的外心,且∠BOC=70°,则∠BAC的度数为()A.35°B.110°C.35°或145°D.35°或140°二、填空题8.如图5,将△ABC放在每个小正方形的边长均为1的网格中,点A,B,C均落在格点上,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形的最小圆面的半径是________.图59.如图6,△ABC是⊙O的内接三角形,且AB是⊙O的直径,P为⊙O上的动点,且∠BPC=60°,⊙O 的半径为6,则点P到AC的距离的最大值是________.图610.若点O 是等腰三角形ABC 的外心,且∠BOC =60°,底边BC =2,则△ABC 的面积为________________________________________________.三、解答题11.如图7,已知圆弧上有三点A ,B ,C.(1)用尺规作图法,找出BAC ︵所在圆的圆心O(保留作图痕迹,不写作法);链接听P34例1归纳总结 (2)若△ABC 为等腰三角形,底边BC =16 cm ,腰AB =10 cm ,求圆片的半径R.图712.如图8,O 为平面直角坐标系的原点,点A 的坐标为(6,8),点B 的坐标为(12,0). (1)求证:AO =AB ;(2)用直尺和圆规作出△AOB 的外心P ; (3)求点P 的坐标.图813.如图9①,在△ABC中,BA=BC,D是平面内不与点A,B,C重合的任意一点,∠ABC=∠DBE,BD=BE.(1)求证:△ABD≌△CBE;(2)如图②,当点D是△ABC的外接圆圆心时,请判断四边形BECD的形状,并证明你的结论.图9附加题我们知道:过任意一个三角形的三个顶点都能作一个圆,那么我们来探究过四边形的四个顶点作圆的条件.(1)分别测量图10①②③中四边形的内角,如果过某个四边形的四个顶点能作一个圆,那么其相对的两个角之间有什么关系?图10(2)如果过某个四边形的四个顶点不能作一个圆,那么其相对的两个角之间有上面的关系吗?试写出图④⑤中∠B+∠D与180°之间的关系;(3)由上面的探究,试归纳出判定过四边形的四个顶点能作一个圆的条件.。

北师大版九年级数学下册:第三章3.5《确定圆的条件》精品说课稿

北师大版九年级数学下册:第三章 3.5《确定圆的条件》精品说课稿一. 教材分析北师大版九年级数学下册第三章3.5《确定圆的条件》这一节的内容,是在学生已经掌握了圆的基本概念、性质以及圆的画法的基础上进行学习的。

本节课主要让学生了解确定圆的三个重要条件:圆心、半径和圆的方程,从而培养学生运用几何知识解决实际问题的能力。

教材从生活实例出发,引导学生探究确定一个圆所需满足的条件。

通过观察、分析、归纳等方法,让学生发现圆心、半径在确定圆的位置和大小方面起着关键作用。

进而引入圆的标准方程和一般方程,使学生能够运用方程来表示和解决问题。

二. 学情分析九年级的学生已经具备了一定的几何知识基础,对圆的概念和性质有一定的了解。

但学生在解决实际问题时,往往不能灵活运用所学知识。

因此,在教学过程中,我将以引导为主,让学生在探究中掌握圆的条件,提高解决问题的能力。

三. 说教学目标1.知识与技能:使学生了解确定圆的三个重要条件,掌握圆的标准方程和一般方程的运用。

2.过程与方法:培养学生观察、分析、归纳的能力,提高运用几何知识解决实际问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养合作意识,感受数学在生活中的应用。

四. 说教学重难点1.教学重点:确定圆的三个重要条件,圆的标准方程和一般方程的运用。

2.教学难点:灵活运用圆的条件解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作探究法、引导发现法等。

2.教学手段:多媒体课件、黑板、粉笔。

六. 说教学过程1.导入:以生活实例引入,让学生观察并思考:如何确定一个圆的位置和大小?2.探究:引导学生分组讨论,发现确定圆的三个重要条件:圆心、半径和圆的方程。

3.讲解:讲解圆的标准方程和一般方程的定义及运用。

4.练习:让学生运用圆的条件解决实际问题,巩固所学知识。

5.总结:对本节课的内容进行总结,强调圆的条件在解决问题中的重要性。

七. 说板书设计板书设计如下:确定圆的条件3.圆的方程八. 说教学评价本节课结束后,将通过以下方式进行教学评价:1.课堂表现:观察学生在课堂上的参与程度、思考问题和解决问题的能力。

北师大版九年级数学下册第三章3.1 圆 课件(共19张PPT)


课堂小结,感悟收获
1.我们探究了_______________________; 2.我掌握了_________________________; 3.我的感悟是_______________________.
学习反馈 当堂检测
准确 快速 安静
拓展新知
如图,一根
3m 长 的 绳 子 , 一
B
端栓在柱子上,

10、阅读一切好书如同和过去最杰出的人谈话。09:56:4109:56:4109:568/31/2021 9:56:41 AM

11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。21.8.3109:56:4109:56Aug-2131-Aug-21

17、儿童是中心,教育的措施便围绕他们而组织起来。上午9时56分41秒上午9时56分09:56:4121.8.31

You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。

探究新知
圆的定义
ห้องสมุดไป่ตู้
平面上到定点的距离等于定长 的所有点组成的图形叫做圆.
另一端栓着一只
羊(羊只能在草
地上活动),请画
出羊的活动区域.
A
O
拓展新知
如图,一根 5m 长 的 绳 子 , 一 端栓在柱子上, 另一端栓着一只 羊(羊只能在草 地上活动),请画 出羊的活动区域.
B
5m
A
O
拓展新知
如图,一根 6m 长 的 绳 子 , 一 端栓在柱子上, 另一端栓着一只 羊(羊只能在草 地上活动),请画 出羊的活动区域.

北师大版九年级下册数学《圆周角和圆心角的关系》圆PPT课件教学课件(第2课时)


北京师范大学出版社 九年级 | 下册
北京师范大学出版社 九年级 | 下册
课时小结:
1.本节课我们探索了圆的对称性. 2.利用圆的轴对称性研究了垂径定理及其逆定理. 3.垂径定理和勾股定理相结合,构造直角三角形,可解决弦长、半径、 弦心距等计算问题.
北京师范大学出版社 九年级 | 下册
课后作业:
(一)课本习题3.2,1、2.试一试1. (二) 预习课本:P94~97内容
新课讲解
知识点2 直角所对的弦是直径
在如图中,圆周角∠A=90°,弦BC是直径吗?为什么?
新课讲解
90°的圆周角所对的弦是直径.
新课讲解
典例分析
例 如图,已知经过原点的⊙P与x轴、y轴分别交于A,B 两点,点C是劣弧OB上一点,则∠ACB等于( B ) A.80° B.90° C.100° D.无法确定
拓展与延伸
已知在半径为4的⊙O中,弦AB=4 3 ,点P在圆上,则 ∠APB=_6_0_°__或__1_2_0_°_.
第3单元 · 圆
圆的对称性
北京师范大学出版社 九年级 | 下册
问题: 前面我们已探讨过轴对称图形,哪位同学能叙述一下轴对称图形的定义?
我们是用什么方法研究轴对称图形的?
北京师范大学出版社 九年级 | 下册
交点,即垂足. 4.将纸打开,新的折痕与圆交于另一点B,如图.
问题:(1)右图是轴对称图形吗? 如果是,其对称轴是什么?
(2)你能发现图中有哪些等量关系? 说一说你的理由。
北京师范大学出版社 九年级 | 下册
总结得出垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的 弧。 推理格式:如图所示 ∵CD⊥AB,CD为⊙O的直径 ∴AM=BM,AD BD, AC BC .

3.3垂径定理(课件)九年级数学下册(北师大版)

C
➢特别说明:圆的两条直径是互相平分的.
A
·O
B
D
二、自主合作,探究新知
典型例题
C
例2:如图,一条公路的转弯处是一段圆弧(即图中弧CD,
点O是弧CD的圆心),其中CD=600m,E为弧CD上的一点,
且OE⊥CD,垂足为F,EF=90m.求这段弯路的半径.
E

解:连接OC. 设这段弯路的半径为Rm,则OF=(R-90)m.
股定理计算或建立方程.
五、当堂达标检测
1.已知☉O的半径为13cm,弦AB的长为10cm,则圆心到
弦AB的距离为( D )
A.8cm
B.5cm
·O
C.9cm
D.12cm
2.坐标网格中一段圆弧经过点A,B,C,其中点B
的坐标为(4,3),点C坐标为(6,1),则该圆
弧所在圆的圆心坐标为( B )A.(0,0) B.

六、布置作业
教材习题3.3;
圆心的 直线 .对称中心为 圆心 。
2.在 同圆或等圆 中,相等的圆心角所对的弧相等,所对的弦也相等.
3.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相
等,那么它们所对应的其余各组量都分别
相等 .
一、创设情境,引入新知
问题:你知道赵州桥吗? 它的主桥是圆弧形,它的跨度(弧所对的弦的长)
O
F
D
三、即学即练,应用知识
1.如图,CD是☉O的直径,弦AB⊥CD于点E,连接OA,
OB,下列结论中不一定正确的是( C )
⌒ ⌒
A.AE=BE
B.AD=BD
C.OE=DE
D.∠AOD=∠BOD
2.如图,在☉O中,弦AB的长为8cm,圆心O到AB
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档