分式化简和一元二次方程

分式化简和一元二次方程
分式化简和一元二次方程

(1)先化简,再求值:12112---x x ,其中x =-2. 2、2(61)250x --=

(二)姓名_________ 得分__________

1.先化简,再求值:,

2.210x x +-=(配方法) 其中a=﹣1.

(三)姓名_________ 得分__________

1.先化简,再求值:,

2、23610x x +-=(配方法) 其中x=.

(四)姓名_________ 得分__________

1.先化简,再求值:,

2、21(1)2(1)02x x ---+= 其中.

1、 先化简,再求值

, 2、2884x x -=;

其中x 满足x 2﹣x ﹣1=0.

(六)姓名_________ 得分__________ 1、 先化简211111

x x x x -÷-+-(),再从﹣1、0、1三个数中, 2、0342=+-x x ; 选择一个你认为合适的数作为x 的值代入求值.

(七)姓名_________ 得分__________

1、先化简,再求值:,

2、()()2465-=-+x x ; 其中a=

(八)姓名_________ 得分__________

1、先化简,再求值:

, 2、()()03232=-+-x x x 其中

1、先化简再求值:6

2296422+-÷++-a a a a a ,其中5-=a 2、06262=--x x

(十)姓名_________ 得分__________

1、先化简再求值:232()111x x x x x x --÷+--,其中32

x =. 2、()()2231623-=+x x

(十一)姓名_________ 得分__________

1、 先化简再求值: 2222121111

a a a a a a a +-+?---+, 2、2(3)2(3)x x x -=- 其中12a =-

(十二)姓名_________ 得分__________

1、 先化简再求值:???

?1+ 1 x -2÷ x 2-2x +1 x 2-4, 2、2(3)2(1)7x x x --+=- 其中x =-5.

1、先化简22()5525x x x x x x -÷---, 然后从不等组23212

x x --≤??

2、无论m 为何值时,方程04222

=---m mx x 总有两个不相等的实数根吗?给出答案并说明理由

(十四)姓名_________ 得分__________ 1、先化简再求值()1

21112222+--++÷-+a a a a a a 其中a=3+1 2、2310x x -+=

(十五)姓名_________ 得分__________

1、 先化简,再求值:(x x -2-2)÷x 2-16x 2-2x

,其中x =3-4.

2、已知一元二次方程0132

=-+-m x x .

(1)若方程有两个不相等的实数根,求m 的取值范围.

(2)若方程有两个相等的实数根,求此时方程的根

分式化简求值几大常用技巧

分式化简求值几大常用技巧 在给定的条件下求分式的值,大多数条件下难以直接代入求值,它必须根据题目本身的特点,将已知条件或所求分式适当变形,然后巧妙求解.常用的变形方法大致有以下几种: 1、 应用分式的基本性质 例1 如果1 2x x +=,则242 1x x x ++的值是多少? 解:由0x ≠,将待求分式的分子、分母同时除以2 x ,得 原式=. 2222 1111 1 1 213 1()1x x x x = ==-++ +-. 2、倒数法 例2 如果1 2x x +=,则2421x x x ++的值是多少? 解:将待求分式取倒数,得 42222 22 1111()1213x x x x x x x ++=++=+-=-= ∴原式=1 3 . 3、平方法 例3 已知12x x + =,则221 x x +的值是多少? 解:两边同时平方,得 2222 1124,42 2.x x x x ++ =∴+=-= 4、设参数法 例4 已知 0235a b c ==≠,求分式2 22 2323ab bc ac a b c +-+-的值. 解:设235 a b c k ===,则 2,3,5a k b k c k ===. ∴原式=22222 2323532566 .(2)2(3)3(5)5353 k k k k k k k k k k k ?+??-??==-+-- 例5 已知 ,a b c b c a ==求a b c a b c +--+的值. 解:设a b c k b c a ===,则 ,,.a bk b ck c ak ===

∴3 c ak bk k ck k k ck ==?=??=, ∴3 1,1k k == ∴a b c == ∴原式= 1.a b c a b c +-=-+ 5、整体代换法 例6 已知 113,x y -=求2322x xy y x xy y +---的值. 解:将已知变形,得 3,y x xy -=即3x y xy -=- ∴原式= 2()32(3)333 .()23255 x y xy xy xy xy x y xy xy xy xy -+?-+-===----- 例: 例5. 已知a b +<0 ,且满足a a b ba b 2 2 22++--=,求a b a b 33 13+-的值。 解:因为a a b ba b 2 2 22++--= 所以()()a b a b +-+-=220 所以()()a b a b +-++=210 所以a b +=2或a b +=-1 由a b +<0 故有a b +=-1 所以a b a b a ba a b b a b 3322 1313+-= +-+-()() = -?-+-= -+-11331 2222() a a b b ab a a b b ab = +--=---= --()()a b a b a b a b a b a b a b 2233113311331 =-1 评注:本题应先对已知条件a a b ba b 22 22++--=进行变换和因式分解,并由a b +<0确定出a b +=-1,然后对所给代数式利用立方和公式化简,从而问题迎刃而解。 6、消元代换法 例7 已知1,abc =则 111a b c ab a bc b ac c ++=++++++ . 解:∵1,abc =∴1,c ab = ∴原式=1 11111a b ab ab a b ab b a ab ab ++ ++?++?++

分式方程转化为一元二次方程

21.5一元二次方程的应用(5) 学习目标:1.掌握分式方程的计算方法; 2.进一步掌握列一元二次方程解应用题的方法和技能; 学习重点:分式方程转化为一元二次方程 学习难点:用换元法解分式方程 一. 学前准备 1. 分式方程的定义:_________________________________________________; 2. 解分式方程的思想是______________,步骤有__________________________ 3. 解下列分式方程 6710(1);453x x -=-+ 221(2);11x x =--- 1(3)0;22y y y y --=+- 2233(4)111x x x x +-=-+- 二. 探究活动 (一) 师生互动·合作交流 1. 某校组织学生春游,预计共需费用120元,后来又有2人参加进来,费用不变,这样每人可少分摊3元。问原来这组学生的人数是多少? 本题的等量关系是:原来这组学生每人分摊的费用-加人后该组学生每人分摊的费用=3元,由此可得方程。

2. 印刷一张矩形的张贴广告,如图。它的印刷面积是322 dm ,上下空白各1dm ,两边空白 各0.5dm 。当要求四周空白处的面积是182dm 时,求用来印刷这张广告的纸张的长和宽。 思路分析:根据图形知: 广告纸的面积=印刷面积+四周空白处的面积=____+____=____ 广告纸的长=印刷部分的长+____dm 广告纸的宽=印刷部分的宽+_____dm 由印刷部分和广告纸都是矩形,且面积已知。因而,可确定它们的长和宽的关系,再借助图形的面积关系就可列出方程。 (二) 步步高升·解决问题 请同学们思考一下下面的这个分式方程我 们该如何去解决呢? 221512 x x x x ++=+ 思路分析:本方程在求解时如直接去分母,就会得到一个次数高于二次的整式方程,不易求解。这时,可考虑如下面所采用的换元的方法求解:用一个未知数y 替换方程中某个含原未知数x 的式子,然后,先解出y ,再去解x,这种方法叫做换元法。 解: 三. 自我测试 1. 解方程22315132x x x x +-+=-+时,设231 x y x +=-,则原方程化成整式方程就是_____________________; 2. 方程241x x x =+的解是__________. 3. 如果用换元法解分式方程2214301x x x x +-+=+,并设21x y x +=,那么原方程可化为____________________; 4. 用换元法解方程2( )2()8011 x x x x +-=++ 5. 用换元法解方程223433x x x x +-=+

分式的化简求值和分式方程

海豚教育个性化简案 学生姓名:年级:科目: 授课日期:月日上课时间:时分------ 时分合计:小时 教学目标1. 理解分式方程的意义; 2. 了解解分式方程的基本思路和解法; 3. 理解解分式方程时,可能无解的原因,并掌握解分式方程的验根方法。 重难点导航1. 解分式方程的基本思路和解法; 2. 理解解分式方程时可能无解的原因。 教学简案: 一:分式的化简求值 题型一:直接化简求值 题型二:先化简,再取适当的数代入求值题型三:整体代入求值 二:分式方程 考点一:分式方程的概念 考点二:分式方程的解法 考点三:增根的应用 授课教师评价:□ 准时上课:无迟到和早退现象 (今日学生课堂表□ 今天所学知识点全部掌握:教师任意抽查一知识点,学生能完全掌握现符合共项)□ 上课态度认真:上课期间认真听讲,无任何不配合老师的情况 (大写)□ 海豚作业完成达标:全部按时按量完成所布置的作业,无少做漏做现象审核人签字:学生签字:教师签字:

海豚教育个性化教案(真题演练) 1.(2012?攀枝花)若分式方程:x x kx -=--+ 21 212有增根,则k= 。 2.(2013?威海)若关于x 的方程x m x x 21051-=--无解,则m= 。

海豚教育个性化教案 分式的化简求值及分式方程 一:分式的化简求值 题型一:直接化简求值 例1:先化简,再求值:(1-x x +11-x )÷1 212+-+x x x ,其中x= -2. 例2:先化简,后求值:2242 22a a a a a a +??-÷ ?--?? ,其中a = 3. 例3:先化简再求值:222222322a b b b a a ab b a b a b -+??+÷ ? -+--??,其中5, 2.a b == 练习1:先化简,再求值:x x x x x +÷++--2 24 )1111(,其中x=-2. 练习2:先化简,再求值:1 1112 -÷??? ??+-x x x ,其中x =23-.

初中奥数讲义_二次根式的化简求值附答案

1 二次根式的化简求值 用运算符号把数或表示数的字母连结而成的式子,叫做代数式,有理式和无理式统称代数式,整式和分式统称有理式. 有条件的二次根式的化简求值问题是代数式的化简求值的重点与难点.这类问题包容了有理式的众多知识,又涉及最简根式、同类根式、有理化等二次根式的重要概念,同时联系着整体代入、分解变形、构造关系式等重要的技巧与方法,解题的关键是,有时需把已知条件化简,或把已知条件变形,有时需把待求式化简或变形,有时需把已知条件和待求式同时变形. 例题求解 【例l 】已知21 =+x x ,那么191322++-++x x x x x x 的值等于 . (河北省初中数学创新与知识应用竞赛题) 思路点拨 通过平方或分式性质,把已知条件和待求式的被开方数都用x x 1+的代数式表示. 【例2】 满足等式2003200320032003=+--+xy y x x y y x 的正整数对(x ,y)的个数是( ) A .1 B .2 C . 3 D . 4 (全国初中数学联赛题) 思路点拨 对条件等式作类似于因式分解的变形,将问题转化为求不定方程的正整数解. 【例3】已知a 、b 是实数,且1)1)(1(22=++++b b a a ,问a 、b 之间有怎样的关系?请推导. (第20届俄罗斯数学奥林匹克竞赛题改编) 思路点拨 由特殊探求一般,在证明一般性的过程中,由因导果,从化简条件等式入手,而化简的基本方法是有理化. 【例4】 已知:a a x 1 += (0ad ,有一个三角形的三边长分别为22c a +,22d b +,22)()(c d a b -+-,求此三角形的面积; ( “五羊杯”竞赛题)

可化为一元二次方程的分式方程

可化为一元二次方程的分式方程 【知识要点】 1. 分式方程的定义 2. 一般分式方程的解法 3. 列方程解应用题 【重难点】 分式方程的判别及其解法 【经典例题】 例1.下列方程哪些是分式方程? (1)0152=-+x x (2)13222=+x x (3)10 15711=-++x x (4) z x y x z y -=-+-111 (5)5 41212-+-x x x 例2.解分式方程2132=+-x x 例3.解方程25311322=-+-x x x x 例4、k 为何值时,方程3 232 -=--x k x x 会产生增根?

例5.某空调厂的装配车间,原计划用若干天组装150台空调,厂家为了使空调提前上市,决定每天多组装3台,这样提前3天超额完成了任务,总共比原计划多组装6台,问原计划每天组装多少台? 例6.某村计划开挖一条长为1500m 的水渠,渠道的断面为等腰梯形,渠道深0.8m ,下底宽 1.2m ,坡角为 45,实际开始挖渠道时,每天比原计划多挖土203m ,结果比原计划提前4天完工,求原计划每天挖土多少立方米. 例7、今年五月,某工程队(有甲、乙两组)承包人民路中段的路基改造工程,规定若干天内完成.(1)已知甲组单独完成这项工程所需时间比规定时间的2倍多4天,乙组单独完成这项工程所需时间比规定时间的2倍少16天.如果甲、乙两组合做24天完成,那么甲、乙 两组合做能否在规定时间内完成?(2)在实际工作中,甲、乙两组合做完成这项工程的6 5后,工程队又承包了东段的改造工程,需抽调一组过去,从按时完成中段任务考虑,你认为抽调哪一组最好?请说明理由.

分式及分式方程知识点总结

分式及分式方程 聚焦考点☆温习理解 一、分式 1、分式的概念 一般地,用A 、B 表示两个整式,A ÷B就可以表示成B A 的形式,如果B 中含有字母,式子B A 就叫做分式。其中,A叫做分式的分子, B 叫做分式的分母。分式和整式通称为有理式。 2、分式的性质 (1)分式的基本性质: 分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。 (2)分式的变号法则: 分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。 3、分式的运算法则 ;;bc ad c d b a d c b a bd ac d c b a =?=÷=? );()(为整数n b a b a n n n = ;c b a c b c a ±=± bd bc ad d c b a ±=± 二、分式方程 1、分式方程 分母里含有未知数的方程叫做分式方程。 2、分式方程的一般方法 解分式方程的思想是将“分式方程”转化为“整式方程”。它的一般解法是: (1)去分母,方程两边都乘以最简公分母 (2)解所得的整式方程 (3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。

3、分式方程的特殊解法 换元法: 换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。 名师点睛☆典例分类 考点典例一、分式的值 【例1】(2015·黑龙江绥化)若代数式6 265x 2-+-x x 的值等于0 ,则x=_________. 【点睛】分式6 265x 2-+-x x 的值为零则有x2-5x +6为0分母2x-6不为0,从而即可求出x 的值. 【举一反三】 1.要使分式x 1x 2 +-有意义,则x 的取值应满足( ) A. x 2≠ B. x 1≠- C. x 2= D. x 1=- 2.(2015·湖南常德)若分式211 x x -+的值为0,则x = 考点典例二、分式的化简 【例2】化简:2x x x 1x 1 ---=( ) A、0 B 、1 C 、x D、 1 x x - 【点睛】观察所给式子,能够发现是同分母的分式减法。利用同分母分式的减法法则计算即可得到结果. 【举一反三】 1.化简22 a b ab b a --结果正确的是【 】 2.若241()w 1a 42a +?=--,则w =( )

八年级数学_二次根式的化简求值_练习题及答案

二次根式的化简求值 练习题

m n,m n,则 m B. 2n )n)n()n 13 33= 3 23 23 = 2 (23) (23)(23) =43, 分母中的根号化去或把根号中的分母化去,叫做分母有理化 1 276 3 23 . 13 3 23(23)(23) ,33,23.

1111(20121)21 3 2 4 3 2012 2011 . 111 1 (1)(1 ) n n n n n n n n n n ,将各个分式分别分母有理化 324320122011)1)=(2012)2-12=2012-1=2011. 3 232,b=32 3 2 ,23ab b 的值. 2 2(32)5263 2 (32)(32),同理22632 ;26+526=10,a b=(526)(526)=1,然后将所要求值的式子用表示,再整体代入求值即可252632 ,22632 ,26+526=10,a b=26)(526)23ab b =2()5a b ab 51=95.

举一反三: 2.如图,数轴上与1,2对应的点分别为A,B,点B关于点A的对称点为C,设点C表示的数为x,则|x-2|+2 x =() A.2 B.22 C.32 D. 2 解析:因为点B和点C关于点A对称,点A和点B所表示的数分别为1,2,所以点C表 示的数为2-2,即x=2-2,故|x-2|+2 x =|2-2-2|+2 22 =22-2+22=32. 例3 比较大小:(1)11-3与10-2;(2)22-5与10-7. 解析:(1)用平方法比较大小;(2)用倒数法比较大小. 答案:解:(1)(11-3)2=11-2×11×3+3=14-233, (10-2)2=10-2×10×2+4=14-240. ∵33<40,∴33<40,∴-233>-240,∴14-233>14-240, ∴(11-3)2>(10-2)2.又∵11-3>0,10-2>0,∴11-3>10-2. (2) 1 225 =225 (225)(225) =225 3 , 1 107=107 (107)(107) =107 3 . ∵225 3 =85 3 <107 3 ,

分式化简求值练习题库(经典精心整理)复习过程

分式化简求值练习题库(经典精心整理)

1.先化简,再求值: 12112---x x ,其中x =-2. 2、先化简,再求值: ,其中a=﹣1. 3、(2011?綦江县)先化简,再求值: ,其中x=. 4、先化简,再求值:,其中. 5先化简,再求值 ,其中x 满足x 2﹣x ﹣1=0. 6、化简: b a b a b a b 3a -++-- 7、(2011?曲靖)先化简,再求值: ,其中a=. 8、(2011?保山)先化简211111 x x x x -÷-+-(),再从﹣1、0、1三个数中,选择一个你认为合适的数作为x 的值代入求值.

9、(2011?新疆)先化简,再求值:( +1)÷,其中x=2. 10、先化简,再求值:3x –3 – 18x 2 – 9,其中x = 10–3 11、(2011?雅安)先化简下列式子,再从2,﹣2,1,0,﹣1中选择一个合适的数进行计算. . 12、先化简,再求值: 12-x x (x x 1--2),其中x =2. 13、(2011?泸州)先化简,再求值: ,其中. 14、先化简22()5525x x x x x x -÷---,然后从不等组23212 x x --≤??

求值:2222121111a a a a a a a +-+?---+,其中12 a =-。 18.先化简,再求值:? ?? ??1+1x -2÷x 2 -2x +1x 2-4,其中x =-5. 19. 先化简再计算:22121x x x x x x --??÷- ?+?? ,其中x 是一元二次方程2220x x --=的正数根. 20 化简,求值: 111(1 1222+---÷-+-m m m m m m ) ,其中m =. 21、(1)化简:÷.(2)化简:22a b ab b a (a b )a a ??--÷-≠ ??? 22、先化简,再求值: ,其中. 23请你先化简分式2223691,x 1211 x x x x x x x +++÷+--++再取恰的的值代入求值. 24、(本小题8分)先化简再求值()1 21112222+--++÷-+a a a a a a 其中a=3+1 25、化简,其结果是. 3

中考总复习:一元二次方程、分式方程的解法及应用--知识讲解

中考总复习:一元二次方程、分式方程的解法及应用—知识讲解 【考纲要求】 1.理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程; 2.会解分式方程,解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想. 【知识网络】 【考点梳理】 考点一、一元二次方程 1.一元二次方程的定义 只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程. 它的一般形式为2 0ax bx c ++=(a ≠0). 2.一元二次方程的解法 (1)直接开平方法:把方程变成2 x m =的形式,当m >0时,方程的解为x m =m =0时, 方程的解1,20x =;当m <0时,方程没有实数解.

(2)配方法:通过配方把一元二次方程2 0ax bx c ++=变形为2 22 424b b ac x a a -? ?+= ?? ?的形式,再利用直接开平方法求得方程的解. (3)公式法:对于一元二次方程2 0ax bx c ++=,当2 40b ac -≥时,它的解为 x =. (4)因式分解法:把方程变形为一边是零,而另一边是两个一次因式积的形式,使每一个因式等于零,就得到两个一元一次方程,分别解这两个方程,就得到原方程的解. 要点诠释: 直接开平方法和因式分解法是解一元二次方程的特殊方法,配方法和公式法是解一元二次方程的一般方法. 易错知识辨析: (1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元 二次方程一般形式中0≠a . (2)用公式法和因式分解的方法解方程时要先化成一般形式. (3)用配方法时二次项系数要化1. (4)用直接开平方的方法时要记得取正、负. 3.一元二次方程根的判别式 一元二次方程根的判别式为ac 4b 2 -=?. △>0?方程有两个不相等的实数根; △=0?方程有两个相等的实数根; △<0?方程没有实数根. 上述由左边可推出右边,反过来也可由右边推出左边. 要点诠释: △≥0?方程有实数根. 4.一元二次方程根与系数的关系 如果一元二次方程0c bx ax 2=++(a ≠0)的两个根是21x x 、,那么a c x x a b x x 2121=?-=+,. 要点诠释: (1)对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0. (2)解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解法,再考虑用公式法. (3)一元二次方程0c bx ax 2 =++(a ≠0)的根的判别式正反都成立.利用其可以①不解方程判定方程根的情况;②根据参系数的性质确定根的范围;③解与根有关的证明题. (4)一元二次方程根与系数的应用很多:①已知方程的一根,不解方程求另一根及参数系数;②已知方程,求含有两根对称式的代数式的值及有关未知数系数;③已知方程两根,求作以方程两根或其代数式为根的一元二次方程.

分式方程及分式化简

分式方程及分式化简 【知识精读】 1. 解分式方程的基本思想:把分式方程转化为整式方程。 2. 解分式方程的一般步骤: (1)在方程的两边都乘以最简公分母,约去分母,化成整式方程; (2)解这个整式方程; (3)验根:把整式方程的根代入最简公分母,看结果是否等于零,使最简公分母等于零的根是原方程的增根,必须舍去,但对于含有字母系数的分式方程,一般不要求检验。 3. 列分式方程解应用题和列整式方程解应用题步骤基本相同,但必须注意,要检验求得的解是否为原方程的根,以及是否符合题意。 下面我们来学习可化为一元一次方程的分式方程的解法及其应用。 【分类解析】 例1. 解方程: x x x --+=121 1 分析:首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根 解:方程两边都乘以()()x x +-11,得 x x x x x x x x x 222211121232 3 2 --=+---=--∴==()()(),即,经检验:是原方程的根。 例2. 解方程 x x x x x x x x +++++=+++ ++1267235 6 分析:直接去分母,可能出现高次方程,给求解造成困难,观察四个分式的分母发现 ()()()()x x x x ++++6723与、与的值相差1,而分子也有这个特点,因此,可将分母 的值相差1的两个分式结合,然后再通分,把原方程两边化为分子相等的两个分式,利用分式的等值性质求值。

解:原方程变形为:x x x x x x x x ++-++=++- ++6756231 2 方程两边通分,得 1671 236723836 9 2 ()()()()()()()()x x x x x x x x x x ++= ++++=++=-∴=- 所以即 经检验:原方程的根是x =-92 。 例3. 解方程: 1210433234892423871619 45 x x x x x x x x --+--=--+ -- 分析:方程中的每个分式都相当于一个假分数,因此,可化为一个整数与一个简单的分数式之和。 解:由原方程得:31434289328741 45 --++-=--++ -x x x x 即28928628102 87 x x x x ---=-- - 于是 , 所以解得:经检验:是原方程的根。 189861 810878986810871 1()()()() ()()()()x x x x x x x x x x --=----=--== 例4. 解方程:612444444 0222 2y y y y y y y y +++---++-=2 分析:此题若用一般解法,则计算量较大。当把分子、分母分解因式后,会发现分子与分母有相同的因式,于是可先约分。 解:原方程变形为:62222222022 2 ()()()()()()()y y y y y y y y ++-+--++-= 约分,得 62222202 y y y y y y +-+-++-=()()

二次根式的化简求值(习题)

二次根式的化简求值 【例题求解】 例1 已知21=+ x x ,那么191322++-++x x x x x x 的值等于__________. 例2 满足等式2003200320032003=+--+xy y x xy y x 的正整数对),(y x 的个数是( ). A .1 B .2 C .3 D .4 例 3 已知b a 、是实数,且1)1)(1(22=++++b b a a ,问b a ,之间有怎样的关系?请推导. 例4 有这样一道题,计算222224 444 x x x x x x x x x -++--+---+的值,其中1005=x ,某同学 把“1005=x ”错钞成“1050=x ”,但他的计算结果是正确的.清你回答这是怎么回事?试说明理由. 例5 (1)设d c b a 、、、为正实数,ad bc d c b a <<<,,,有一个三角形的三边长分别为222222)()(,,c d a b d b c a -+-++,求此三角形的面积; (2)已知b a 、均为正数,且14,222+++= =+b a U b a 求的最小值. 【学力训练】 基础夯实 1. 已知__________________141402 2=??? ? ?-+-??? ??+-

4. 已知a 是34-的小数部分,那么代数式??? ? ?-????? ??++++-+a a a a a a a a a 42442222的值为________________. 5. 若y x ,为有理数,且xy y x x 则,42112=+-+-的值为( ). A .0 B . 2 1 C . 2 D .不能确定 6. 已知实数a 满足22000,20012000-=-+-a a a a 那么的值是( ). A .1999 B .2000 C .2001 D .2002 7. 设c b a c b a 、、,则10002,9991001,9971003=+=+=之间的大小关系 是( ). A .c b a << B .a b c << C .b a c << D .b c a << 8. 若a a x -= 1,则24x x +的值为( ). A .a a 1- B .a a -1 C .a a 1+ D .不能确定 9.有一道题:“先化简,再求值:4 1442222-÷??? ??-++-x x x x x ,其中3-=x .”小玲做题时把“3-=x ”错钞成了“3= x ”,但她的计算结果是正确的,请你解释这是怎么回事. 10.已知x x x x x x +++-+=--4 141,) 1(1222化简. 能力拓展 11.已知_______________________2 14121,312=---+++=x x x x 那么. 12.已知__________________________26,514=-=-++a a a 则. 13.代数式9)12(422+-++x x 的最小值为______________________________. 14.已知=+----=++++586643,2002)2002)(2002(2222y x y xy x y y x x 则 ______________. 15.如果3333333,,22002,22002c b a c b c b b a b a --=+-=-+= +那么的 值为( ). A .20022002 B .2001 C .1 D .0

专题训练 二次根式化简求值有技巧(含答案)

专题训练(一) 二次根式化简求值有技巧(含答案) ? 类型之一 利用二次根式的性质a 2=|a|化简 对于a 2的化简,不要盲目地写成a ,而应先写成绝对值的形式,即|a|,然后再根据a 的符号进行化简.即a 2=|a|=?????a (a >0),0(a =0),-a (a <0). 1.已知a =2-3,则a 2-2a +1=( ) A .1-3 B .3-1 C .3-3 D .3-3 2.当a <12且a ≠0时,化简:4a 2-4a +12a 2-a =________. 3.当a <-8时,化简:|(a +4)2-4|. 4.已知三角形的两边长分别为3和5,第三边长为c ,化简:c 2-4c +4- 14c 2-4c +16. ? 类型之二 逆用二次根式乘除法法则化简 5.当ab <0时,化简a 2b 的结果是( ) A .-a b B .a -b C .-a -b D .a b 6.化简:(1)(-5)2×(-3)2; (2)(-16)×(-49); (3) 2.25a 2b ; (4) -25-9; (5)9a 34 . ? 类型之三 利用隐含条件求值 7.已知实数a 满足(2016-a )2+a -2017=a ,求a -12016 的值.

8.已知x +y =-10,xy =8,求x y +y x 的值. ? 类型之四 巧用乘法公式化简 9.计算:(1)(-4-15)(4-15); (2)(26+32)(32-26); (3)(23+6)(2-2); (4)(15+4)2016(15-4)2017. ? 类型之五 巧用整体思想进行计算 10.已知x =5-26,则x 2-10x +1的值为( ) A .-30 6 B .-186-2 C .0 D .10 6 11.已知x =12(11+7),y =12(11-7),求x 2-xy +y 2的值. 12.已知x >y 且x +y =6,xy =4,求x +y x -y 的值. ? 类型之六 巧用倒数法比较大小 13.设a =3-2,b =2-3,c =5-2,则a ,b ,c 的大小关系是( ) A .a >b >c B .a >c >b C .c >b >a D .b >c >a _

专题训练七分式化简求值解题技巧

专题训练七分式化简求值 解题技巧 Prepared on 21 November 2021

【专题训练七】 分式化简求值解题技巧 例1、(1)如果242114x x x =++,那么42251553x x x -+= 。 (2)若 a b c d b c d a ===,则a b c d a b c d -+-=+-+ 。 例2、若a b c 、、满足1111a b c a b c ++=++,则a b c 、、中 ( ) A 、必有两个数相等 B 、必有两个数互为相反数 C 、必有两个数互为倒数 D 、每两个数都不相等 例3、化简求值:22214( )2442a a a a a a a a ----÷++++,其中a 满足2210a a +-= 。 例4、已知2410,a a ++=且42321533a ma a ma a ++=++,求m 的值。 例5、已知a b c 、、满足222222222 1222b c a c a b a b c bc ac ab +-+-+-++=,求证:这三个分数的值有两个为1,一个为1-。 针对性训练 1、已知30,x y -=那么22 2()2x y x y x xy y +?-=-+ 。 2、已知7x y +=且12xy =,则当x y <时,11x y -= 。 3、已知0abc ≠,且 a b c b c a ==,则3223a b c a b c ++=-- 。 4、已知2310x x -+=,则2 421 x x x =++ 。 5、已知0abc ≠,0,a b c ++=则111111()()()a b c b c c a a b +++++= 。 6、已知323x y -=,则23796x y xy xy y x --=+- 。 7、若4360,270(0)x y z x y z xyz --=+-=≠,则代数式222 222 522310x y z x y z +-=-- 。

一元二次方程(含答案)

第十六期:一元二次方程 一元二次方程是在一元一次方程及分式方程的基础上学习的,一元二次方程根与系数的关系以及一元二次方程的应用是中考的重点。题型多样,一般分值在6-9分左右。 知识点1:一元二次方程及其解法 例1:方程0232 =+-x x 的解是( ) A .11=x ,22=x B .11-=x ,22-=x C .11=x ,22-=x D .11-=x ,22=x 思路点拨:考查一元二次方程的解法,一元二次方程的解法有:一是因式分解法;二是配方法;三是求根公式法.此题可以用此三种方法求解,此题以因式分解法较简单,此式可以分解为(x -1)(x -2)=0,所以x -1=0或x -2=0,解得x 1=1,x 2=2.故此题选A. 例2:若2 20x x --= ) A B C D 思路点拨:本题考查整体思想,即由题意知x 2-x=2, 所以原式=3 3 23 123222= +-+,选A. 练习: 1.关于x 的一元二次方程2x 2-3x -a 2 +1=0的一个根为2,则a 的值是( ) A .1 B C . D .2.如果1-是一元二次方程2 30x bx +-=的一个根,求它的另一根. 3.用配方法解一元二次方程:x 2-2x -2=0. 答案:1.D. 2.解: 1-是230x bx +-=的一个根, 2(1)(1)30b ∴-+--=.解方程得2b =-.

∴原方程为2230x x --= 分解因式,得(1)(3)0x x +-= 11x ∴=-,23x =. 3.移项,得x 2-2x=2. 配方x 2-2x+12=2+12, (x -1)2=3. 由此可得x -1=±3, x 1=1+3,x 2=1-3. 最新考题 1.(2009威海)若关于x 的一元二次方程2 (3)0x k x k +++=的一个根是2-,则另一个根是______. 2.(2009年山西省)请你写出一个有一根为1的一元二次方程: . 3.(2009山西省太原市)用配方法解方程2250x x --=时,原方程应变形为( ) A .()216x += B .()216x -= C .()2 29x += D .()2 29x -= 答案:1.1; 2.答案不唯一,如2 1x = 3. B 知识点2:一元二次方程的根与系数的关系 例1:如果21,x x 是方程0122 =--x x 的两个根,那么21x x +的值为: (A )-1 (B )2 (C )21- (D )21+ 思路点拨:本题考查一元二次方程02 =++c bx ax 的根与系数关系即韦达定理,两根之和是a b - , 两根之积是a c ,易求出两根之和是2。答案:B 例2:设一元二次方程2 730x x -+=的两个实数根分别为1x 和2x , 则12x x += ,x 1、·x 2 .

分式的化简及分式方程练习题

分式的化简中考题集锦 先化简,再求值: 取一个你认为符合题意的x 的值代入求值. 7、先化简,再求值:(1角)牛,其中3 = '2-1 - 你认为合适的a 值,代入求值. 9、 先化简代数式— —十,然后选取一个合适的a 值,代入 a 2 a 2 a 4 求值 10、 先化简,再求值: — x? 2x 1 ,其中x=2. x 1 x 1 11、先化简,再求值: 2 x 2 4 x 2 x ,其中 x = 2—, 2 . x 4x 4 x 1 x 2 1、 先化简,再求值: 壬,其中x = — 2. 2、 先化简,再求值: x — 2 x xT11 十 (X - 1 2x 2 — x x 2+ 2x + 1,其中 x 满足 x — x — 1 3、 先化简,再求值: (1 1 x 2 1 (x 2),其中 x . 6 4、先化简, 再求值: ( 2a 1 ( ~2 a 三) 其中a 2 5、先化简, 再求值: x 2 2x 1 x 2 1 其中x 2. 6先化简( 丘) 是5,然后从不等组 x 2 < 2x 』12 3 3 的解集中,选 8、先化简分式 a 2 — 9 ~2 a + 6a + 9 a — 3 a 2 + 3a a — a 2 a —1,然后在°, 1, 2, 3中选一个

13、化简 1 + x —!化简,再从—3 V X V 3的范围内选取一个合适的整 x — 1 数X 代入求值. 20、先化简,再求值: 2 J : ;3 a',其中,a - 其中a 2008,b 2009,小明把a 、b 错抄成a 2009,b 2008,但老师发现他的答案 还是正确的,你认为这是怎么回事?说说你的理由. 解方程: 12、先化简,再求值: x 2 4 4x 4 2 八 x x 3 其中X - 14、- X X 2 2x 1 2 1 一,其中 x . 3 2o x 1 X 2 15、化简 2a 1 a ,并任选一个你喜欢的数a 代入求值. 16、计算 (a 2ab b 2) a 17、 化简:丄空 4y 8 (y 5 -2) 18、先化简再计算: 2x y ,其中 x =3, y =2. 19、先将代数式x — 2 .2 21、老师布置了一道计算题:计算(导 a b a b) a b 2ab (a b)(a b)2 (a b)的值,

分式的化简求值经典练习题(带答案)

分式的化简 一、比例的性质: ⑴ 比例的基本性质: a c ad bc b d =?=,比例的两外项之积等于两内项之积. ⑵ 更比性(交换比例的内项或外项): ( ) ( ) ( )a b c d a c d c b d b a d b c a ?=???=?=???=?? 交换内项 交换外项 同时交换内外项 ⑶ 反比性(把比例的前项、后项交换):a c b d b d a c =?= ⑷ 合比性:a c a b c d b d b d ±±=?=,推广:a c a kb c kd b d b d ±±=?=(k 为任意实数) ⑸ 等比性:如果....a c m b d n ===,那么......a c m a b d n b +++=+++(...0b d n +++≠) 二、基本运算 分式的乘法:a c a c b d b d ??=? 分式的除法:a c a d a d b d b c b c ?÷=?=? 乘方:()n n n n n a a a a a a a a b b b b b b b b ?=?=?个 个n 个=(n 为正整数) 整数指数幂运算性质: ⑴m n m n a a a +?=(m 、n 为整数) ⑵()m n mn a a =(m 、n 为整数) ⑶()n n n ab a b =(n 为整数) ⑷m n m n a a a -÷=(0a ≠,m 、n 为整数) 负整指数幂:一般地,当n 是正整数时,1n n a a -=(0a ≠),即n a -(0a ≠)是n a 的倒数 知识点睛 中考要求

分式的加减法法则: 同分母分式相加减,分母不变,把分子相加减,a b a b c c c +±= 异分母分式相加减,先通分,变为同分母的分式再加减, a c ad bc ad bc b d bd bd bd ±±=±= 分式的混合运算的运算顺序:先算乘方,再算乘除,后算加减,如有括号,括号内先算. 结果以最简形式存在. 一、分式的化简求值 【例1】 先化简再求值:21 1 1x x x ---,其中2x = 【考点】分式的化简求值 【难度】2星 【题型】解答 【关键词】2010年,湖南郴州 【解析】原式()()111x x x x x =---()11 1x x x x -==- 当2x =时,原式11 2x == 【答案】1 2 【例2】 已知:22 21()111a a a a a a a ---÷?-++,其中3a = 【考点】分式的化简求值 【难度】2星 【题型】解答 【关键词】 【解析】22 2221 (1)()4111(1)a a a a a a a a a ---+÷?=-=--++- 【答案】4- 【例3】 先化简,再求值: 22144 (1)1a a a a a -+-÷--,其中1a =- 【考点】分式的化简求值 【难度】2星 【题型】解答 【关键词】2010年,安徽省中考 【解析】()()2221144211122a a a a a a a a a a a a --+-?? -÷=?= ?----??- 例题精讲

《分式化简求值的几种常见方法》公开课教案

《分式化简求值的几种常见方法》公开课教案 【教学目标】 1、复习分式计算的相关知识。 2、归纳总结分式化简的几种常见方法技巧。 3、通过探究把新旧知识有机结合起来找出解决问题的方法。 4、通过有效引导,提高学生解决问题的能力,激发学生数学学习的兴趣。 【教学重点】 熟练掌握分式化简求值的几种常见方法。 【教学难点】 能够根据题型特点迅速的找出解决问题的途径。 【教学方法】 合作探究,练习,归纳 【辅助手段】 多媒体 【教学过程】 一、复习准备 1、提问:平方差公式和完全平方式。 2、计算 (1)已知2x-y=3,则2y+9-4x的值是多少? (2)(2x+3)2=

3、因式分解 (1)x 2-2x+1= (2)9x 2+9x+1= 二、问题研讨 (一)、连比设k 法 例1:已知x 3=y 4=z 5 ≠0,求 3x?2y+z x?2y?z 针对练习: (二)、整体代入法 针对练习: (三)倒数法 22 2317x x xy y y -==、已知:,则2、已知三条线段x,y,z,且x:y:z=3:5:7,x y z x y z ++-+则 的值为 23242x xy y x y xy x xy y +--=--例2、已知:,求: 的值。 11 12a b ab a b -=-=、已知:,则 112x+3xy-2y 2、已知:-=3,求:的值. x y x-2xy-y 111,y x x y x y x y +=+= +3、已知:则2 2 113,x x x x +=+=4、已知:则

针对练习: (四)非负代数式之和等于零 针对练习: 以上环节,教师展示例题之后学生合作探究,结果展示之后师生共同明确,教师引导学生归纳总结方法,特点以及注意事项。 针对练习原则上学生自主完成,个别同学板演,如果出现难度则由教师引导完成,如果时间紧张一部分由学生课下完成。 三、巩固练习 选用适当的方法进行化简求值 2 311x x ++++2 24x 1x 例、已知:=,求:的值x 7x 11+2 24x 、已知:x +4x+1=0,求:的值 x 2 231a =++2 24 a 、若a -3a+1=0,则a 2 2 a+b 例4、已知:a +b +4a-2b+5=0,求:的值 a-b 12a b -+21 、已知-4b+4=0,则 = 2(1)(1)ab a b -++2 1 2、已知:+(b-1)=0,则 = 1 a b c = ++2 1b+1+c -2c+1=0,则23::3:4:52a b c a b c a b c -+== -+2、若,则

相关文档
最新文档