杀菌剂作用原理

杀菌剂作用原理
杀菌剂作用原理

杀菌剂作用原理

杀菌剂按来源分,除农用抗生素属于生物源杀菌剂外,主要的品种都是化学合成杀菌剂,杀菌剂是一类用来防治植物病害的药剂。凡是对病原物有杀死作用或抑制生长作用,但又不防碍植物正常生长的药剂,统称为杀菌剂。杀菌剂可根据作用方式、原料来源及化学组成进行分类。

按杀菌剂的原料来源分

1、无机杀菌剂如硫磺粉、石硫合剂、硫酸铜、升汞、石灰波尔多液、氢氧化铜、氧化亚铜等。

2、有机硫杀菌剂如代森铵、敌锈钠、福美锌、代森锌、代森锰锌、福美双等。

3、有机磷、砷杀菌剂如稻瘟净、克瘟散、乙磷铝、甲基立枯磷、退菌特、稻脚青等。

4、取代苯类杀菌剂如甲基托布津、百菌清、敌克松、五氯硝基苯等。

5、唑类杀菌剂如粉锈宁、多菌灵、恶霉灵、苯菌灵、噻菌灵等。

6、抗菌素类杀菌剂井冈霉素、多抗霉素、春雷霉素、农用链霉素、抗霉菌素120等。

7、复配杀菌剂如灭病威、双效灵、炭疽福美、杀毒矾M8、甲霜铜、DT 杀菌剂、甲霜灵?锰锌、拌种灵?锰锌、甲基硫菌灵?锰锌、广灭菌乳粉、甲霜灵—福美双可湿性粉剂等。

8、其他杀菌剂如甲霜灵、菌核利、腐霉利、扑海因、灭菌丹、克菌丹、特富灵、敌菌灵、瑞枯霉、福尔马林、高脂膜、菌毒清、霜霉威、喹菌酮、烯酰吗啉?锰锌等。

按杀菌剂的使用方式分

1、保护剂在病原微生物没有接触植物或没浸入植物体之前,用药剂处理植物或周围环境,达到抑制病原孢子萌发或杀死萌发的病原孢子,以保护植物免受其害,这种作用称为保护作用。具有此种作用的药剂为保护剂。如波尔多液、代森锌、硫酸铜、绿乳铜、代森锰锌、百菌清等。

2、治疗剂病原微生物已经浸入植物体内,但植物表现病症处于潜伏期。药物从植物表皮渗人植物组织内部,经输导、扩散、或产生代谢物来杀死或抑制病原,使病株不再受害,并恢复健康。具有这种治疗作用的药剂称为治疗剂或化学治疗剂。如甲基托布津、多菌灵、春雷霉素等。

3、铲除剂指植物感病后施药能直接杀死已侵入植物的病原物。具有这种铲除作用的药剂为铲除剂。如福美砷、五氯酚钠、石硫合剂等。

按杀菌剂在植物体内传导特性分

1、内吸性杀菌剂能被植物叶、茎、根、种子吸收进入植物体内,经植物体液输导、扩散、存留或产生代谢物,可防治一些深入到植物体内或种子胚乳内病害,以保护作物不受病原物的浸染或对已感病的植物进行治疗,因此具有治疗和保护作用。如多菌灵、力克菌、

绿亨2号、多霉清、霜疫清、噻菌铜、甲霜灵、乙磷铝、甲基托布津、敌克松、粉锈宁、甲霜铜、杀毒矾、拌种双等。

2、非内吸性杀菌剂指药剂不能被植物内吸并传导、存留。目前,大多数

品种都是非内吸性的杀菌剂,此类药剂不易使病原物产生抗药性,比较经济,但大多数只具有保护作用,不能防治深入植物体内的病害。如硫酸锌、硫酸铜、多果定、百菌清、绿乳铜、表面活性剂、增效剂、硫合剂、草木灰、波尔多液、代森锰锌、福美双、百菌清等。此外,杀菌剂还可根据使用方法分类,如种子处理剂、土壤消毒剂、喷洒剂等。

作用方式

杀菌剂的作用方式有两种:一是保护性杀菌剂,二是内吸性杀菌剂。保护性杀菌剂在植物体外或体表直接与病原菌接触,杀死或抑制病原菌,使之无法进入植物,从而保护植物免受病原菌的危害。此类杀菌剂称为保护性杀菌剂,其作用有两个方面:一是药剂喷洒后与病原菌接触直接杀死病原菌,即“接触性杀菌作用”;另一种是把药剂喷洒在植物体表面上,当病原菌落在植物体上接触到药剂而被毒杀,称为“残效性杀菌作用”。保护性杀菌剂主要有以下几类:硫及无机硫化合物,如硫磺悬浮剂,固体石硫合剂等;铜制剂,主要有波尔多液,铜氨合剂等;有机硫化合物,如福美双、代森锌、代森铵、代森锰锌等;酞酰亚铵类,如克菌丹、敌菌丹和灭菌丹等;抗生素类,如井冈霉素、灭瘟素、多氧霉素等;其它类,如叶枯灵、叶枯净、百菌清、禾穗宁等。

内吸性杀菌剂施用于作物体的某一部位后能被作物吸收,并在体内运输到

作物体的其他部位发生作用,具有这种性能的杀菌剂称为“内吸性杀菌剂”。内吸性杀虫剂有两种传导方式,一是向顶性传导,即药剂被吸收到植物体内以后随蒸腾流向植物顶部传导至顶叶、顶芽及叶类、叶缘。目前的内吸性杀菌剂多属此类。另一种是向基性传导,即药剂被植物体吸收后于韧皮部内沿光合作用产物的运输向下传导。内吸性杀菌剂中属于此类的较少。还有些杀菌剂如乙膦铝等可向上下两个方向传导。内吸性杀菌剂主要有以下几类:苯并咪唑类,如苯菌灵、多菌灵、噻菌灵、硫菌灵与甲基硫菌灵等;二甲酰亚胺类,如异菌脲、乙烯菌核利等;有机磷类,如稻瘟净、异稻瘟净、三乙膦酸铝等;苯基酰胺类,如甲霜灵等;甾醇生物合成抑制剂类,此类杀菌剂包括十三吗啉、嗪氨灵、丁赛特、甲菌啶和乙菌啶、抑霉唑和咪酰胺、三唑醇和三唑酮等,从化学结构上看,他们分别属于吗啉、吡啉、吡啶、嘧啶、咪唑、1,2,4-三唑类化合物。

甾醇合成抑制剂类杀菌剂兼具保护作用和治疗作用,杀菌谱较广。

作用机理

不同的杀菌剂的作用方式也不同。在病菌侵染前施于植物表面起预防保护

作用的,称为保护性杀菌剂即保护剂;在施药部位能消灭已侵染病菌的,称为铲除性杀菌剂;能被植物吸收并在体内传导至病菌侵染的部位而消灭病菌的,称为内吸性杀菌剂,许多铲除剂也是内吸剂,两者大多有化学治疗作用。

因此,实用上常简单地将杀菌剂分成保护性和内吸性两种作用方式。它们的作用机理,也可大致分为两类:1、干扰病菌的呼吸过程,抑制能量的产生。2、干扰菌体生命物质如蛋白质、核酸、甾醇等的生物合成。保护性杀菌剂大多为杀菌谱广而杀菌力较低的产品。内吸性杀菌剂一般杀菌力较强,杀菌谱则较窄,其中有些品种对某种病原菌有专一的选择毒性。由于内吸剂在菌体内的作用点比较单一,病菌容易由遗传基因的突变而产生抗药性。为了避免或延缓抗药性的产生,通常可选择适当的保护剂和内吸剂混合施用或轮换使用,这样可取长补短得到较好的防治效果。在使用时应根据病害发生的特点,采取种子处理、叶面喷布和土壤处理等各种施药方法。

催化剂的组成与功能

催化剂的组成与功能 催化剂的组成:活性组分 载体 助催化剂 催化剂组分与功能关系: 一、 活性组分 它是催化剂的主要组分,有时由一种物质组成,有时由多种物质组成 如:乙烯氧化制环氧乙烷的银催化剂;丙烯氨氧化制丙烯腈用的钼和铋催化剂 2% 4% 6% 8% 10% 氨 含量 Mo的混合比 Mo-Fe合金组成与活性关系

活性组分的分类: 二、载体 载体是催化剂活性组分的分散剂、粘合剂和支撑物,是负载活性组分的骨架。 例如,乙烯氧化制环氧乙烷催化剂中的Ag就是负载在“α—Al2O3上的,这里的α—Al2O 3称为载体。 载体还常分为惰性载体与活性载体。严格来说,催化剂中的组分都不是惰性的,都对主剂与助剂有所影响,只不过活性载体的作用更为明显而已。 载体的作用与助催化剂的作用在很多方面有类似之处,不同的是载体量大,助催化剂量小;前者作用较缓和,后者较明显。另外,由于载体量大,可赋予催化剂以基本的物理结构与性能,如孔结构、比表面、宏观外形、机械强度等。此外,对主催化剂和助催化剂起分散作用,尤其对贵金属既可减少其用量,又可提高其活性,降低催化剂成本。作为高效催化剂,活

性组分与裁体的选择都非常重要。 下面是载体的分类和部分常见载体的种类: 催化剂的活性随载体比表面的增加而增加,为获得较高的活性,往往将活性组分负载于大比表面载体上。 载体与催化剂的活性、选择性、热稳定性、机械强度以及催化过程的传递特性有关,因此,在筛选和制造优良的催化剂时,需要弄清载体的物理性质和它的功能。 催化剂组分与含量的表示方法:例如:合成氨催化剂Fe—K2O—Al2O3用“—’将催化剂中的各组分隔开:加氢脱硫催化剂Co—Mo/α—Al2O3,斜线上为主剂和助剂,斜线下为载体。各组分的含量可用重量%、重量比表示,也可用原子%、原子比表示。

杀菌剂分类大全1

杀菌剂大全1 酰胺类杀菌剂 卵菌纲:高效甲霜灵、高效苯霜灵、噻酰菌胺、环丙酰菌胺、氟吡菌胺、吡噻菌胺(菌核病、灰霉病、白粉病)、双炔酰菌胺、苯酰菌胺、噻唑菌胺、氟啶酰菌胺、双炔酰菌胺 稻瘟病:氰菌胺、双氯氰菌胺、环酰菌胺(灰霉病) 土壤病害:磺菌胺、噻氟菌胺、 叶枯酞(抑制细菌)、环氟菌胺(白粉病)、硅噻菌胺(全蚀病)、萎锈灵(黑穗病、黄萎病、立枯病、防腐剂、具有生长刺激作用)、甲呋酰胺(黑穗病)、呋吡菌胺(纹枯病、菌核病、白绢病)、啶酰菌胺(白粉病、灰霉病、各种腐烂病、褐腐病和根腐病等)、甲磷菌胺、氟菌胺 通过抑制琥珀酸脱氢酶破坏病菌呼吸而致效 酰胺类化合物作为杀菌剂已有几十年的历史,大多数酰胺类杀菌剂的杀菌谱比较窄,近期又有许多新颖的化合物商品化,最明显的结构特点是杂环,特别值得提及的是吡噻菌胺(penthiopyrad)和啶酰菌胺(boscalid)具有较广的活性谱。 氟吗啉是沈阳化工研究院开发的丙烯酰胺类杀菌剂。是我国有史以来真正创制的农用杀菌剂、是首次获得中国和美国发明专利的农用杀菌剂。具有良好的内吸、保护和治疗活性。对卵菌亚纲病原菌引起的病害如霜霉病、疫病如黄瓜霜霉病、葡萄霜霉病、马铃薯晚疫病、番茄疫病、辣椒疫病、烟草疫病等有优异的活性。 噻氟菌胺是琥珀酸酯脱氢酶抑制剂,即在真菌三羧酸循环中抑制琥珀酸酯脱氢酶的合成。对丝核菌属、柄锈菌属、黑粉菌属、腥黑粉菌属、伏革菌属和核腔菌属等致病真菌有活性,对担子菌纲真菌引起的病害如立枯病等有特效。

氰菌胺和双氯氰菌胺分别是由日本农药公司和住友化学公司开发的酰胺类杀菌剂。主要用于防治稻瘟病。 环酰菌胺主要用于防治各种灰霉病以及相关的菌核病、黑斑病等。 硅噻菌胺是含硅的噻酚酰胺类杀菌剂。具体作用机理尚不清楚,可能是ATP 抑制剂。主要用于小麦全蚀病的防治。 呋吡菌胺(纹枯病、菌核病、白绢病)是日本住友化学公司开发的吡唑酰胺类杀菌剂,主要抑制真菌线粒体中琥珀酸的氧化作用,具有优异的预防和治疗效果。 噻唑菌胺(ethaboxam)是韩国LG农化公司研制开发的噻唑酰胺类杀菌剂,主要用于防治卵菌纲病害。 噻酰菌胺(tiadinil)是由日本农药公司开发的噻二唑酰胺类杀菌剂,主要用于防治稻瘟病。 啶酰菌胺(白粉病、灰霉病、各种腐烂病、褐腐病和根腐病等)0(boscalid)是由巴期夫公司开发的吡啶酰胺类杀菌剂,主要用于防治菌核病、锈病、马铃薯早疫病和灰霉病等。 吡噻菌胺(penthiopyrad)是由日本三井化学公司开发的吡唑酰胺类杀菌剂。主要用于防治白粉病和灰霉病等。 氟啶酰菌胺(fluopicolide)和双炔酰菌胺(mandipropami)分别由拜耳和先正达公司开发,具有优异的杀菌活性,均对霜霉病有特效。 二羧酰亚胺类杀菌剂 乙菌利(黑穗菌核白粉)、异菌脲(灰霉病)、腐霉利(菌核病、灰霉病、黑星病、褐腐病、大斑病)、乙烯菌核利(菌核菌、白粉、黑斑病、灰霉病)、克菌丹(地下地上方方面面保护)、灭菌丹(多种病害)、菌核利(菌核病、灰霉病)传统杀菌剂,通过抑制NADH细胞色素C还原酶破坏类酯类和膜的合成而致效甲氧基丙烯酸酯类杀菌剂 基本上所有真菌病害:嘧菌酯、氟嘧菌酯、醚菌酯、唑菌胺酯、烯肟菌酯、烯肟菌胺

催化燃烧原理及催化剂

催化燃烧的基本原理 催化燃烧是典型的气-固相催化反应,其实质是活性氧参与的深度氧化作用。在催化燃烧过程中,催化剂的作用是降低活化能,同时催化剂表面具有吸附作用,使反应物分子富集于表面提高了反应速率,加快了反应的进行。借助催化剂可使有机废气在较低的起燃温度条件下,发生无焰燃烧,并氧化分解为CO2和H20, 同时放出大量热能,其反应过程为: 2 催化燃烧的特点及经济性 2.1催化燃烧的特点 2.1.1起燃温度低,节省能源 有机废气催化燃烧与直接燃烧相比,具有起燃温度低,能耗也小的显著特点。在某些情况下,达到起燃温度后便无需外界供热。 二、催化剂及燃烧动力学 2.1催化剂的主要性能指标 在空速较高,温度较低的条件下,有机废气的燃烧反应转化率接近100%,表明该催化剂的活性较高[9]。催化剂的活性分诱导活化、稳定、衰老失活3 个阶段,有一定的使用限期,工业上实用催化剂的寿命一般在2年以上。使用期的长短与最佳活性结构的稳定性有关,而稳定性取决于耐热、抗毒的能力。对催化燃烧所用催化剂则要求具有较高的耐热和抗毒的性能。有机废气的催化燃烧一般不会在很严格的操作条件下进行,这是由于废气的浓度、流量、成分等往往不稳定,因此要求催化剂具有较宽的操作条件适应性。催化燃烧工艺的操作空速较大,气流对催化剂的冲击力较强,同时由于床层温度会升降,造成热胀冷缩,易使催化剂载体破裂,因而催化剂要具有较大的机械强度和良好的抗热胀冷缩性能。 2.2催化剂种类 目前催化剂的种类已相当多,按活性成分大体可分3 类。2.2.1贵金属催化剂 铂、钯、钌等贵金属对烃类及其衍生物的氧化都具有很高的催化活性,且使用寿命长,适用范围广,易于回收,因而是最常用的废气燃烧催化剂。如我国最早采用的Pt-Al203 催化剂就属于此类催化剂。但由于其资源稀少,价格昂贵,耐中毒性差,人们一直努力寻找替代品或尽量减少其用量。2.2.2过渡金属氢化物催化剂 作为取代贵金属催化剂,采用氧化性较强的过渡金属氧化物,对甲烷等烃类和一氧化碳亦具有较高的活性,同时降低了催化剂的成本,常见的有Mn0x、CoOx和CuOx等催化剂。大连理工大学研制的含Mn02催化剂,在130C及空速13000h-1 的条件下能消除甲醇蒸气,对乙醛、丙酮、苯蒸气的清除也很有效果。

常用杀菌剂的分类及简介

常用杀菌剂的分类及简介 杀菌剂可根据作用方式、原料来源及化学组成进行分类。 (一)按杀菌剂的原料来源分 1、无机杀菌剂如硫磺粉、石硫合剂、硫酸铜、升汞、石灰波 尔多液、氢氧化铜、氧化亚铜等。 2、有机硫杀菌剂如代森铵、敌锈钠、福美锌、代森锌、代森 锰锌、福美双等。 3、有机磷、砷杀菌剂如稻瘟净、克瘟散、乙磷铝、甲基立枯 磷、退菌特、稻脚青等。 4、取代苯类杀菌剂如甲基托布津、百菌清、敌克松等。 5、唑类杀菌剂如粉锈宁、多菌灵、恶霉灵、世高、丙环唑等。 6、抗菌素类杀菌剂井冈霉素、多抗霉素、春雷霉素、农用链 霉素、农抗120等。 7、复配杀菌剂如炭疽福美、杀毒矾、霜脲锰锌、甲霜灵• 锰锌、甲基硫菌灵•锰锌、甲霜灵—福美双可湿性粉剂等。 8、其他杀菌剂如甲霜灵、菌核利、腐霉利、扑海因、灭菌丹、 克菌丹等。 (二)按杀菌剂的使用方式分 1、保护剂在病原微生物没有接触植物或没浸入植物体之前, 用药剂处理植物或周围环境,达到抑制病原孢子萌发或杀死萌发的病原孢子,以保护植物免受其害,这种作用称为保护作用。具有此种作用的药剂为保护剂。如波尔多液、代森锌、硫酸铜、代森锰锌、百菌清等。

2、治疗剂病原微生物已经浸入植物体内,但植物表现病症处于潜伏期。药物从植物表皮渗人植物组织内部,经输导、扩散、或产生代谢物来杀死或抑制病原,使病株不再受害,并恢复健康。具有这种治疗作用的药剂称为治疗剂或化学治疗剂。如甲基托布津、多菌灵、春雷霉素等。 3、铲除剂指植物感病后施药能直接杀死已侵入植物的病原物。具有这种铲除作用的药剂为铲除剂。如福美砷、石硫合剂等。 (三)按杀菌剂在植物体内传导特性分 1、内吸性杀菌剂能被植物叶、茎、根、种子吸收进入植物体内,经植物体液输导、扩散、存留或产生代谢物,可防治一些深入到植物体内或种子胚乳内病害,以保护作物不受病原物的浸染或对已感病的植物进行治疗,因此具有治疗和保护作用。如多菌灵、力克菌、绿亨2号、多霉清、霜疫清、甲霜灵、乙磷铝、甲基托布津、敌克松、粉锈宁、、杀毒矾、拌种双等。 2、非内吸性杀菌剂指药剂不能被植物内吸并传导、存留。目前,大多数品种都是非内吸性的杀菌剂,此类药剂不易使病原物产生抗药性,比较经济,但大多数只具有保护作用,不能防治深入植物体内的病害。如硫酸锌、硫酸铜、多果定、百菌清、绿乳铜、表面活性剂、增效剂、硫合剂、草木灰、波尔多液、代森锰锌、福美双等。 此外,杀菌剂还可根据使用方法分类,如种子处理剂、土壤消毒剂、喷洒剂等。

(整理)常用杀菌剂的种类

常用杀菌剂的种类、性质及作用 奥美塞克——750g/十三吗啉 1、“奥美塞克”杀灭枝干腐烂病、干腐病、轮纹病特效。是目前防治枝干病害最为特效的产品。 2、“奥美塞克”具有内吸、保护、治疗、铲除四大高能作用。既安全,又不易产生抗性。对白粉病、霉心病、赤星病、褐斑病及烂根病也具有显著防效。 (一)农用抗生素 1、多抗霉素 【中文通用名称】多抗霉素 【英文通用名称】polylxin 【商品名称】宝丽安、多氧霉素、科生霉素、多氧清等。 【化学名称】肽嘧啶核苷类抗生素 【制剂类型】10%、3%、2%、1.5%多抗霉素可湿性粉剂,0.3%多抗霉素水剂 【理化性质】该类抗生素含有A至N 14种同系物的混合物。我国生产的多抗霉素主要成分是多抗霉素A和多抗霉素B,是多抗霉素金色产色链霉菌(Streptomyces aureo chromogenes)所产生的代谢物,含量为84%(相当于84×10单位/g),系无色针状结晶,熔点(m.p.)180℃。日本产的多抗霉素称为多氧霉素,是可可链霉素阿苏变种(Streptomyces cacaoi var.asoensis)产生的代谢产物,主要成分为多抗霉素B,占22%~25%(相当于22×10~25×10单位/g),系无定形结晶,分解温度(m.p.)为160℃。多抗霉素易溶于水,多抗霉素对人、畜低毒,在动物体内无蓄积,易排出体外。对鱼、水生生物及蜜蜂低毒。是环保型绿色农药。 【作用】多抗霉素是广谱性、具有内吸传导作用的抗生素类杀菌剂。对链格孢菌、葡萄孢菌、灰霉菌等真菌病害有较好防治效果。当药剂喷到病菌体上后,病原菌细胞壁壳多糖的生物合成受到干扰,使以壳多糖为基质构成细胞壁的真菌,芽管和菌丝体局部膨大、破裂,细胞内容物溢出,导致病原菌细胞不能正常生长发育而死亡。同时,该药剂还具有抑制病菌产生孢子及病斑扩大等作用。 多抗霉素在北方落叶果树上,主要是用来防治苹果斑点落叶病、霉心病、梨黑斑病、草莓的灰霉病等。尤其对霉心病的防治,苹果落花60%~80%时,喷布多抗霉素,防治霉心病效果显著,而且不影响坐果。 2、嘧啶核苷类抗菌素 【中文通用名称】嘧啶核苷类抗菌素 【英文通用名称】TF-120 【商品名称】农抗120、抗霉菌素120、120农用抗菌素 【化学名称】嘧啶核苷类抗菌素

杀菌剂机理和特点及防治对象

类别品种作用机理和特点防治对象 酰胺类 氟吗啉防治卵菌纲病原菌产生的病害,保护、治疗、铲除;渗透、内吸,高活性,持效16d 霜/疫霉病特效 烯酰吗啉抑制卵菌细胞壁的形成,内吸霜/疫霉病特效 叶枯酞抑制细菌在水稻中的繁殖,阻碍转移,内吸水稻白叶枯病 磺菌胺抑制孢子萌发,土壤杀菌剂,对白菜根肿病特效根肿/根腐/猝倒 甲磺菌胺土壤杀菌剂 噻氟菌胺强内吸传导,对担子菌特效立枯/黑粉/锈病 环氟菌胺抑制白粉菌吸器、菌丝和附着孢的形成,内吸活性差白粉病 硅噻菌胺能量抑制剂,具有良好的保护活性,长残效,种子处理小麦全蚀病 吡噻菌胺机理独特,高活性、广谱、无交互抗性粉锈/霜霉/菌核 环酰菌胺机理独特,灰霉特效灰霉/黑斑/ 菌核 苯酰菌胺杀卵菌机理独特:抑制菌核分裂,无交抗,保护剂晚疫/霜霉病 环丙酰菌胺内吸保护,抑制黑色素合成,感病后加速抗菌素产生稻瘟病 噻酰菌胺阻止侵入,诱导抗性,内吸传导,持效期长,环境影响小白粉/霜霉/稻瘟病 氰菌胺内吸和残留活性好,黑色素生物合成抑制剂稻瘟病 双氯氰菌胺黑色素生物合成抑制剂稻瘟病 高效甲霜灵核糖体RNAⅠ合成抑制剂,保护、治疗、内吸运转霜/疫/腐霉 高效苯霜灵卵菌病害 萎锈灵选择性内吸杀菌,萌芽种子除菌,刺激省黑穗/锈病 呋吡酰胺强烈抑制琥珀基质电子传递,内吸传导,长残效水稻纹枯病 甲呋酰胺内吸,种子处理,黑穗病(玉米除外)麦类黑穗病 氟酰胺琥珀酸酯脱氢酶抑制剂,保护/治疗/内吸,稻纹枯特效立枯/纹枯/雪腐 甲丙烯和咪唑类 嘧菌酯线粒体呼吸抑制剂,新型/高效/广谱,保/治/铲/吸/渗所有真菌病害 肟菌酯线粒体呼吸抑制剂,无交抗,广谱/渗透/内吸/保护白粉/叶斑等 啶氧菌酯线粒体呼吸抑制剂,广谱/内吸/熏蒸/耐雨水冲刷麦类病害 唑菌胺酯线粒体呼吸抑制剂,广谱/内吸/转移/混用所有真菌病害 氟嘧菌酯线粒体呼吸抑制剂,广谱/内吸/长效/速效所有真菌病害 烯肟菌酯新型/高效/广谱/内吸所有真菌病害 苯氧菌胺线粒体呼吸抑制剂,保/治/铲/吸/渗水稻稻瘟病 烯肟菌胺-- 嘧菌胺线粒体呼吸抑制剂,广谱,保/治/铲/吸/渗白粉/霜霉/纹枯 肟嘧菌胺-- 水稻病害 噻菌灵抑制线粒体呼吸和细胞繁殖,有交抗,卵菌无效青霉/脐腐/菌核 氟菌唑甾醇脱甲基化抑制剂,保/治/铲/吸白粉/锈病/黑穗 高效抑霉唑广谱,保护、治疗,优/广于抑霉唑锈病/灰霉/稻瘟 咪唑菌酮线粒体呼吸抑制剂(辅酶Q-细胞色素C),常混用霜/疫/黑斑病 氰霜唑线粒体呼吸抑制剂,保护/长效/耐雨,卵菌特效霜霉/疫病 抑霉唑破坏霉菌细胞膜,常混用,多做保鲜剂青霉/绿霉/白粉 咪鲜胺甾醇生物合成抑制剂,广谱/ 非内吸/传导褐斑/白粉/叶枯

催化原理习题要点

《催化原理》习题(一) 第一章 一、填空题 a)本世纪初,合成NH3 ,HNO3 ,H2SO4催化剂的研制成功为近代无 机化学工业的发展奠定了基础。催化裂化,催化加氢裂化,催化 重整催化剂的研制成功促进了石油化工的发展。 b)随着科学的进步,所研制的催化剂活性的提高和寿命的延长,为化工 工艺上降低反应温度、压力,缩短流程,简化反应装置提供了有 力的条件。 四.回答题 1.简单叙述催化理论的发展过程。 答:从一开始,催化剂的应用就走在其理论的前面。 1925年,Taylor的活性中心学说为现代催化理论的奠定了基础。 在以后的20多年中,以均相反应为基础,形成了中间化合物理论。 50年代,以固体能带模型为弎,又形成了催化电子理论。 60年以后,以均相配位催化为研究对象,又形成表面分子模型理论。 由此,催化理论逐渐发展起来。 2.哪几种反应可以在没有催化剂的情况下进行,在此基础上分析催化作 用的本质是什么。 答:(1)下列反应可在没有催化剂时迅速进行: a)纯粹离子间的反应 b)与自由基有关的反应 c)极性大或配们性强的物质间的反应 d)提供充分能量的高温反应 (2)在含有稳定化合物的体系中加入第三物质(催化剂),在它的作用下,反应物的某些原子会发生离子化,自由基化或配位化,从而导致 反应历程的变化,使反应较容易进行。这就是催化剂催化作用的本质。第二章 一.概念题(催化剂的) 选择性,催化剂失活,可逆中毒,催化剂机械强度 答:催化剂的选择性:是衡量催化剂加速某一反应的能力。 催化剂失活:催化剂在使用过程中,其结构和组成等逐渐遭到破坏,导致催化剂活性和选择性下降的现象,称为催化剂失活。 可逆中毒:指毒物在活性中心上的吸附或化合较弱,可用简单方法使催化剂的活性恢复。 催化剂机械强度:指固体催化剂颗粒抵抗摩擦、冲击、重力的作用,以及温度、相变作用的能力。 二.填空题: a) 按照反应机理中反应物被活化的方式催化反应可分为: 氧化还原催化反 应,酸碱催化反应,配位催化反应。 b)结构性助剂可改变活性组分的物理性质,而调变形助剂可改变活性组

催化剂与催化作用复习资料(很有用的)

第1、2章复习思考题 1、催化剂是如何定义的? 催化剂是一种能够改变化学反应速度而不能改变反应的热力学平衡位置,且自身不被明显消耗的物质。 2、催化剂在工业上的作用功能或者效果有哪些? 1)使得原来难以在工业上实现的过程得以实现。 2)由过去常常使用的一种原料,可以改变为多种原料。 3)原来无法生产的过程,可以实现生产。 4)原来需要多步完成的,变为一步完成。 5)由原来产品质量低,能耗大,变为生产成本低,质量高 6)由原来转化率低,副产物多,污染严重,变为转化率高,产物单一,污染减少 3、载体具有哪些功能和作用? ①分散作用,增大表面积,分散活性组分;②稳定化作用,防止活性组分熔化或者再结晶;③支撑作用,使催化剂具备一定机械强度,不易破损;④传热和稀释作用,能及时移走热量,提高热稳定性;⑤助催化作用,某些载体能对活性组分发生诱导作用,协助活性组分发生催化作用。 4、代表催化剂性能的重要指标是什么? 催化剂的反应性能是评价催化剂好坏的主要指标,它主要包括催化剂的活性、选择性和稳定性。 (1)催化剂的活性:指催化剂能加快化学反应的反应速度的程度 (2)催化剂的选择性:使反应向生成某一特定产物的方向进行。 (3)催化剂的稳定性:是指在使用条件下,催化剂具有稳定活性的周期 5、多相催化反应的过程步骤可分为哪几步?实质上可分为几步? (1)外扩散—内扩散—化学吸附—表面反应—脱附—内扩散—外扩散 (2)物理过程—化学过程—物理过程 6、吸附是如何定义的? 气体与固体表面接触时,固体表面上气体的浓度高于气相主体浓度的现象。 7、物理吸附与化学吸附的本质不同是什么? 本质:二者不同在于其作用力不同,前者为范德华力,后者为化学键力,因此吸附形成的吸附物种也不同,而且吸附过程也不同等诸多不同。 不同的表现形式为:(后面) 8、为何说Langmuir吸附为理想吸附?基本假设是什么? 模型假设:①吸附表面均匀,各吸附中心能量相同;②吸附分子间无相互作用;③单分子层吸附,吸附分子与吸附中心碰撞进行吸附,一个分子只占据一个吸附中心;④在一定条件下,吸附与脱附可建立动态平衡。 9、催化剂的比表面测定有哪些实验方法? (1)BET法测比表面积 1)测定原理和计算方法 依据BET提出的多层吸附理论以及BET吸附等温曲线进行测定和计算的。利用BET方程进行作图,采用试验采集数据并利用图解法进行计算。 2)实验方法 测定表面积的实验方法通常有,低温氮吸附容量法、重量法和色谱法等,当表面积比较小时,采用氮吸附法。 (2)色谱法测定比表面积 色谱法测定比表面积时载气一般采用He或H2,用N2做吸附质,吸附在液氮温度下进行。 10、何为扩散?催化剂颗粒内部存在几种扩散形式? (1)扩散:分子通过随机运动,从高浓度向低浓度进行传播的现象。 (2)1)普通扩散(分子扩散):分子扩散的阻力来自分子间的碰撞,通常在大孔(孔径大于100nm)或者压力较高的条件下发生的扩散多为分子扩散。 2)微孔扩散(努森扩散Kundsen):微孔扩散的阻力重要来自分子与孔壁的碰撞 3)过渡区扩散:指介于分子扩散与微孔扩散之间的过渡区。 4)构型扩散:在同一孔隙中扩散,由于分子构型不同,而扩散系数相差很大的扩散,称为构型扩散。 5)表面扩散:由于表面上分子的运动而产生的传质过程

杀菌剂的作用方式有哪些

杀菌剂的作用方式有两种:一是保护性杀菌剂,二是内吸性杀菌剂。保护性杀菌剂在植物体外或体表直接与病原菌接触,杀死或抑制病原菌,使之无法进入植物,从而保护植物免受病原菌的危害。德化新陆专家讲述此类杀菌剂称为保护性杀菌剂,其作用有两个方面:一是药剂喷洒后与病原菌接触直接杀死病原菌,即“接触性杀菌作用”;另一种是把药剂喷洒在植物体表面上,当病原菌落在植物体上接触到药剂而被毒杀,称为“残效性杀菌作用”。 内吸性杀菌剂施用于作物体的某一部位后能被作物吸收,并在体内运输到作物体的其他部位发生作用,具有这种性能的杀菌剂称为“内吸性杀菌剂”。内吸性杀虫剂有两种传导方式,一是向顶性传导,即药剂被吸收到植物体内以后随蒸腾流向植物顶部传导至顶叶、顶芽及叶类、叶缘。目前的内吸性杀菌剂多属此类。另一种是向基性传导,即药剂被植物体吸收后于韧皮部内沿光合作用产物的运输向下传导。内吸性杀菌剂中属于此类的较少。还有些杀 菌剂如乙膦铝等可向上下两个方向传导。 不同的杀菌剂的作用方式也不同。在病菌侵染前施于植物表面起预防保护作用的,称为保护性杀菌剂即保护剂;在施药部位能消灭已侵染病菌的,称为铲除性杀菌剂;能被植物吸收并在体内传导至病菌侵染的部位而消灭病菌的,称为内吸性杀菌剂,许多铲除剂也是内吸剂,两者大多有化学治疗作用。因此,实用上常简单地将杀菌剂分成保护性和内吸性两种作用方式。德化新陆专家讲述它们的作用机理,也可大致分为两类:1、干扰病菌的呼吸过程,抑制能量的产生。2、干扰菌体生命物质如蛋白质、核酸、甾醇等的生物合成。保护性杀菌剂大多为杀菌谱广而杀菌力较低的产品。内吸性杀菌剂一般杀菌力较强,杀菌谱则较窄,其中有些品种对某种病原菌有专一的选择毒性。由于内吸剂在菌体内的作用点比较单一,病菌容易由遗传基因的突变而产生抗药性。为了避免或延缓抗药性的产生,通常可选择适当的保护剂和内吸剂混合施用或轮换使用,这样可取长补短得到较好的防治效果。在使用时应根据病害发生的特点采取种子处理、叶面喷布和土壤处理等各种施药方法。 杀菌剂有哪些作用特性 要知道杀菌剂的作用性质。根据药剂对病害防治的作用来划分,大体分为三类: 保护性杀菌剂:这类杀菌剂能够保护未被病菌侵染的部位,免受病菌侵染,需要在作物没有接触到病源或病害发生之前,喷药才可收到效果

杀菌剂 30种常用杀菌剂

三十种常用杀菌剂 通用名称有效成分商品名称作用机理防治对象氢氧化铜波 尔多液(Copper hydroxide) 氢氧化铜 可杀得101、冠 菌铜、杀菌得、 冠菌清、猛杀 得、瑞扑、真菌 克 主要靠铜离子,铜离子被萌发的孢子 吸收,当达到一定浓度时,就可以杀 死孢子细胞,从而起到杀菌作用,但 此作用仅限于阻止孢子萌发,也即仅 有保护作用。 细菌性病害,适用于瓜类的叶 斑病、早(晚)疫病、霜霉病、 炭疽病、立枯病等多种病害, 以保护作用为主。 代森锰锌(Mancozeb)代森锰锌 大生M45、大生 富、喷克、新万 生、山德生、丰 收、大胜 抑制菌体内丙酮酸的氧化。 主要防治蔬菜霜霉病、炭疽 病、褐斑病等。 三乙膦酸铝 乙磷铝Fosety-Aluminiu m 三-(乙基磷 酸)铝 疫霉灵、乙磷 铝、疫霜灵 抑制病原真菌的孢子的萌发或阻止孢 子和菌丝体的生长。 主要防治黄瓜和白菜霜霉病、 水稻纹枯和稻瘟病、棉花疫 病、烟草黑胫病、橡胶割面条 溃疡病、胡椒病 甲霜灵·锰锌metalaxyl+m ancozeb [D,L-N-(2,6- 二甲基苯 基)-N-(2甲氧 基乙酰)丙氨 酸甲酯] 瑞毒霉.锰锌、 蕾多米尔.锰 锌、 甲霜灵主要是抑制了对a-鹅膏蕈碱 不敏感的RNA聚合酶A,从而阻碍了 rRNA前体的转录,具体胡抵制机理尚 不清楚。代森锰锌主要是抑制菌体内 丙酮酸的氧化。 对霜霉菌、疫霉菌和腐霉菌所 致的病害均有效 氟吗啉flumorph 4-[3-(3,4-二甲 基苯基)-3-(4- 氟苯基)丙烯 酰]吗啉 灭克 有关氟吗啉的具体作用机制目前仍不 清楚。Kuhn等根据其杀菌谱、杀菌活 性及形态学方面的研究结果推测其主 要作用机制是干扰病菌细胞壁物质的 合成或组装。 防治卵菌纲病原菌引起的霜 霉病及晚疫病等病害.。 霜霉威Propamocarb 3-(二甲基 氨基)丙基 氨基甲酸丙 酯 普力克、霜霉威 盐酸盐、丙酰胺 可抑制病菌细胞膜的形成,抑制菌丝 生长和孢子萌发,减少孢子囊形成和 游动孢子数量,从而达到防治病害的 目的。 防治蔬菜、果树的霜霉病、疫 病、猝倒病(腐霉和疫霉)有 优异的效果(对霜霉病、晚疫 病特效)藻状菌引起的病害。 重点卵菌门 烯酰吗啉· 锰锌Mancozeb+ Dimethomorph, W.P. 4-[3-(4-氯苯 基)-3-(3,4-二 甲氧基苯氧 基)丙烯酰]吗 啉和代森锰锌 安克-锰锌 抑制卵菌细胞壁的形成而起作用,只 有Z型异构体有活性,但是,由于在光 照下两异构体间可迅速相互转变,因 此Z型异构体在应用屯E型异构体是 一样的, 用于防治霜霉病、疫病、灰霉 病等病害 氟吡菌胺· 霜霉威Fluopicolide+ Propamocarb 氟吡菌胺和 3-(二甲基 氨基)丙基 氨基甲酸丙 酯 银法利 主要作用于细胞膜和细胞间的特点特 异性蛋白而表现杀菌活性,具有独特 的“薄层穿透力”,可加强药剂的横向 传导性及纵向输送力,对病原菌的各 主要形态均有很好的抑制活性;另一 单剂霜霉威是一种氨基甲酸酯类杀菌 剂,其作用机理是抑制病菌细胞膜成 分的磷脂和脂肪酸的生化合成,抑制 菌丝生长、孢子囊形成和孢子萌发, 具有局部内吸作用 主要防治霜霉病、疫病、晚疫 病、猝倒病等常见卵菌纲病害 霜脲氰·锰锌Cymoxanil+M ancozeb 1-(2-氰基-2- 甲氧基亚胺 基)-3-乙基脲 和代森锰锌 克霜、霜霸、 克露、妥冻 通过抑制病原菌细胞线粒体的电子转 移使氧化磷酸化的作用停止,使病原 菌细胞丧失能量来源而死亡 对疫霉、壳二孢属、尾孢属等 真菌性病害如疫霉病、霜霉病 均特效。 多菌灵Carbendazim 苯并咪唑-2- 氨基甲酸丙酯 苯并咪唑44号、 棉萎灵、贝芬 替、保卫田、枯 萎立克、 干扰真菌的有丝分裂中纺锤体的形 成,从而细胞分裂 防治瓜类枯萎病、蔓枯病、炭 疽病、白粉病、霜霉病,叶斑 病等多种病

络合催化剂及其催化作用机理

络合催化剂及其催化作用机理 1 基本知识 络合催化剂,是指催化剂在反应过程中对反应物起络合作用,并且使之在配位空间进行催化的过程。 催化剂可以是溶解状态,也可以是固态;可以是普通化合物,也可以是络合物,包括均相络合催化和非均相络合催化。 络合催化的一个重要特征,是在反应过程中催化剂活性中心与反应体系,始终保持着化学结合(配位络合)。能够通过在配位空间内的空间效应和电子因素以及其他因素对其过程、速率和产物分布等,起选择性调变作用。故络合催化又称为配位催化。 络合催化已广泛地用于工业生产。有名的实例有: ①Wacker工艺过程: C2H4 + O2 CH3?CHO C2H4 + O2 + CH3?COOH CH3?COO C2H4 + H2O R?CH? (CHO) ?CH3R?CH2?CH2?CH② 0X0 工艺过程: R?CH=CH2 + CO/H2 催化剂:HCo(CO)4 , 150 °C, 250X 105Pa;RhCI(CO)(PPh3)2 , 100 C, 15X 105Pa ③Monsanto甲醇羰化工艺过程: CH3OH + CO CH3?COOH 催化剂:RhCI(CO)(PPh3)2/CH3I 从以上的几例可以清楚地看到,络合催化反应条件较温和,反应温度一般在100~200 C左右,反应压 力为常压到20X105Pa上下。反应分子体系都涉及一些小分子的活化,如CO、H2、O2、C2H4、C3H6等,便于研究反应机理。主要的缺点是均相催化剂回收不易,因此均相催化剂的固相化,是催化科学领域较重要的课题之一。 2 过渡金属离子的化学键合 (1 )络合催化中重要的过渡金属离子与络合物 过渡金属元素(T.M.)的价电子层有5个(n - 1)d,1个ns和3个np,共有9个能量相近的原子轨道,容易组成d、s、p 杂化轨道。这些杂化轨道可以与配体以配键的方式结合而形成络合物。凡是含有两个或两个以上的孤对电子或n键的分子或离子都可以作配体。过渡金属有很强的络合能力,能生成多种类型的络合物,其催化活性都与过渡金属原子或离子的化学特性有关,也就是和过渡金属原子(或离子)的电子结构、成键结构有关。同一类催化剂,有时既可在溶液中起均相催化作用,也可以使之成为固体催化剂在多相催化中起作用。 空的(n - 1)d轨道,可以与配体L(CO、C2H4…等)形成配键(M?:L),可以与H、R-①-基形成M-H、M-C型b键,具有这种键的中间物的生成与分解对络合催化十分重要。由于(n - 1)d轨道或nd外轨道参与 成键,故T.M.可以有不同的配位数和价态,且容易改变,这对络合催化的循环十分重要。 大体趋势是:①可溶性的Rh、lr、Ru、Co的络合物对单烯烃的加氢特别重要;②可溶性的Rh、Co 的络合物对低分子烯烃的羰基合成最重要;③Ni络合物对于共轭烯烃的齐聚较重要;④ Ti、V、Cr络合物 催化剂适合于a烯烃的齐聚和聚合;⑤第VHI族T.M.元素的络合催化剂适合于烯烃的齐聚。这些可作为研 究开发工作的参考。 (2)配位键合与络合活化各种不同的配体与T.M.相互作用时,根据各自的电子结构特征形成不同的配位键合,配位体本身得到活化, 具有孤对电子的中性分子与金属相互作用时,利用自身的孤对电子与金属形成给予型配位键,记之为L- M,如:NH3、H2就是。给予电子对的L:称为L碱,接受电子对的M称为L酸。M要求具有空的d或p空轨道。 H?, R?等自由基配体,与T.M.相互作用,形成电子配对型b键,记以L-M。金属利用半填充的d、p轨道电 子,转移到L 并与L 键合,自身得到氧化。 带负电荷的离子配位体,如C-、Br- OH -等,具有一对以上的非键电子对,可以分别与T.M.的2个 空d或p轨道作用,形成一个b键和一个n键。这类配位体称为n-给予配位体,形成o- n键合。具有重键的配位

催化原理习题 (2)

河南理工大学催化原理复习重点 第2章催化剂与催化作用 1.什么是催化剂? 催化剂是一种能够改变一个化学反应的反应速度,却不改变化学反应热力学平衡位置,本身在化学反应中不被明显地消耗的化学物质。 什么是催化作用? 催化作用是指催化剂对化学反应所产生的效应。 催化作用的特征有哪些? 1、催化剂只能加速热力学上可以进行的反应 2、催化剂只能加速化学反应趋于平衡,而不能改变平衡的位置(平衡常数) 3、催化剂对反应具有选择性 4、催化剂的使用寿命是有限的 2.工业生产中可逆反应为什么往往选择不同的催化剂? 第一,对某一催化反应进行正反应和进行逆反应的操作条件(温度、压力、进料组成)往往会有很大差别,这对催化剂可能会产生一些影响。 二,对正反应或逆反应在进行中所引起的副反应也是值得注意的,因为这些副反应会引起催化剂性能变化。 3.催化剂是如何加快化学反应速度的? 催化剂通过改变化学反映历程,从而实现低活化能的化学反应途径进而加快了反应速度。 4.催化剂的活性、选择性的含义是什么? 活性是指催化剂对反应进程影响的程度,具体是指反应速率增加的程度,催化剂的活性是判断其性能好坏的重要标志。 当反应物在一定的反应条件下可以按照热力学上几个可能的方向进行反应时,使用特定的催化剂就可以对其中一个方向产生强烈的加速作用。这种专门对某一化学反应起加速作用的能力称为催化剂的选择性。 5.催化剂为什么具有寿命?影响催化剂的寿命的因素有哪些? 催化剂在长期受热和化学作用下,会经受一些不可逆的物理的和化学的变化,如晶相变化,晶粒分散程度的变化,易挥发组分的流失,易熔物的熔融等导致活性下降至失活。 (1)催化剂热稳定性的影响(催化剂在一定温度下,特别是高温下发生熔融和烧结,固相间的化学反应、相变、相分离等导致催化剂活性下降甚至失活。)(2)催化剂化学稳定性的影响(在实际反应条件下,催化剂活性组分可能发生流失、或活性组分的结构发生变化从而导致活性下降和失活。) (3)催化剂中毒或被污染(催化剂发生结焦积炭污染或中毒。) (4)催化剂力学性能的影响(催化剂发生破碎、磨损,造成催化剂床层压力降增大、传质差等,影响了最终效果。) 4.催化反应的活化能是否与非催化反应的相同?为什么? 不相同,催化剂反应改变了化学反应需的活化能 6.均相催化有什么特点? (1)反应条件温和,有利于节能。 (2)反应性能单一,具有特定的选择性。 (3)作用机理研究清楚明晰,催化剂的活性和选择性易于精心调配和设计。(4)催化剂的稳定性差,且不易与产物分离。

杀菌剂的分类及使用

杀菌剂的分类及使用 对杀菌剂进行分类,以便更好地了解其使用特点。 1、按作用原理分类 1、1保护性杀菌剂: 定义:在病原菌尚未接触寄主组织前施药,形成一种保护层以阻止病菌萌发与入侵,从而使植物得到保护。 特点:一般具有广泛性和耐抗药性,可连续使用。 分类代表:主要包括代森锰锌类杀菌剂、矿物源类保护剂和铜制剂类。 1) 代森锰锌类杀菌剂。主要是控制病菌侵染,防治果树上的锈病、早期落叶病、炭疽病等。常用产品有代森锰锌、喷克、易保、新万生、比克、科博等。 2) 铜制剂。可防治炭疽病、白粉病、褐斑病、锈病、黑星病和细菌性溃疡病等多种病害(波尔多液等对作物安全性较差,且易引发红蜘蛛,影响农产品外观质量)。主要有碱式硫酸铜、绿得宝、绿乳铜等。 3) 矿物源类保护剂。属选择性杀菌、杀螨、杀虫剂,作用成分是硫,可防治多种真菌病害如腐烂病、炭疽病、白粉病、锈病等,同时对越冬螨、介壳虫的幼虫和若虫有效。常用产品有硫磺、石硫合剂、晶体石硫合剂、多硫化钡、硫悬浮剂等。 1、2 内吸治疗性杀茵剂 定义:使用后能渗入树体内或被树体吸收后在体内传导,具有抑制和杀灭侵入植物组织内部的病原菌,使作物恢复健康的杀菌剂, 特点:一般专化性较强,强调对症下药,病菌容易产生抗药性。 分类代表:主要包括农用抗生素、有机杂环类制剂(苯并咪唑类和硫脲基甲酸酯类等)。 1)农用抗生素。本身无杀菌作用,主要是对植物病源菌有强烈的抑制作用,能使病菌孢子发芽管和菌丝末端膨大为球形,失去入侵能力,抑制菌丝伸长,阻碍菌丝、菌核形成和病斑出现,对果树的枝干、叶部病害有良好的防治效果,用于病害发生初期或前期。常用产品有农抗120、多抗霉素、多氧霉素、多效霉素、宝丽安、多氧素、井岗霉素等。 2)有机杂环类制剂。内吸作用强,对真菌类的子囊菌和担子菌有特效。常用产品有甲基托布津(甲基硫菌灵)、多菌灵、三唑酮(粉锈宁)、烯唑醇、福星、世高、信生(腈菌唑)、(腈菌唑+代森锰锌)、扑海因(异菌脲)、等。 1、3 铲除性杀菌剂 定义:药物与病菌接触产生很强的还原性,将病菌迅速氧化成非活性物质, 特点:杀菌彻底迅速,无公害,是替代福美砷的最佳药物。 代表:最常用的是过氧乙酸类产品,主治腐烂病、轮纹病、炭疽病等。常用产品有百菌敌、9281、菌杀特、康菌灵等。 其他还包括在幼苗上接种病毒时期产生抗性的“疫苗杀菌剂”;诱导植物产生毒素对抗病毒的诱抗杀菌剂;通过有益病菌与有害病菌争夺营养以挤垮病菌的杀菌剂等。 2、按其化学成份分类:

催化作用原理课论文

各类催化剂的特点及应用 姓名 xxx 学号 201400xx 院系化学工程学院 专业化学工程与技术 年级研究生1班 科目催化作用原理

1.前言 催化剂的主要作用是降低化学反应的活化能,加快反应速度,因此被广泛应用于炼油、化工、制药、环保等行业。催化剂的技术进展是推动这些行业发展的最有效的动力之一。一种新型催化材料或新型催化工艺的问世,往往会引发革命性的工业变革,并伴随产生巨大的社会和经济效益。1913年,铁基催化剂的问世实现了氨的合成,从此化肥工业在世界范围迅速发展;20世纪50年代末,Ziegler-Natta催化剂开创了合成材料工业;20世纪50年代初,分子筛凭借其特殊的结构和性能引发了催化领域的一场变革;20世纪70年代,汽车尾气净化催化剂在美国实现工业化,并在世界范围内引起了普遍重视;20世纪80年代,金属茂催化剂使得聚烯烃工业出现新的发展机遇。 目前,人类正面临着诸多重大挑战,如:资源的日益减少,需要人们合理开发、综合利用资源,建立和发展资源节约型农业、工业、交通运输以及生活体系;经济发展使环境污染蔓延、自然生态恶化,要求建立和发展物质全循环利用的生态产业,实现生产到应用的清洁化。这些重大问题的解决无不与催化剂和催化技术息息相关。因此,许多国家尤其是发达国家,非常重视新催化剂的研制和催化技术的发展,均将催化剂技术作为新世纪优先发展的重点。 催化剂和催化作用:催化剂能加速化学反应而本身不被消耗的物质。催化作用是一种化学作用,是靠少量催化剂来加速化学反应的现象。 催化剂的基本特性:加快反应速度,但只能加速热力学上可能进行的化学反应;不能改变化学平衡的位置,故对正反应有效的催化剂对逆反应也有效;对反应有选择性。 催化剂的分类:目前工业上用的催化剂有2000多种,有不同的分类方法,按工艺与工程特点分为多相固体催化剂、均相配合物催化剂和酶催化剂三类。2. 均相催化 催化剂和反应物同处于一相,没有相界存在而进行的反应,称为均相催化作用,能起均相催化作用的催化剂为均相催化剂。均相催化剂包括液体酸、碱催化剂和色可赛思固体酸和碱性催化剂。溶性过渡金属化合物(盐类和络合物)等。均相催化剂以分子或离子独立起作用,活性中心均一,具有高活性和高选择性。

制取氧气的原理及催化剂0001

制取氧气的原理及催化剂 制取氧气的原理及催化剂一.选择题(共7 小题) 1 .常温下,实验室用过氧化氢制取氧气时,没有加催化剂,其结果是() A .不影响化学反应速度 B .反应速度很慢,产生氧气的量减少 C .不能产生氧气 D .产生氧气的总量不变,但反应速度较慢 2 .下列有关催化剂的说法正确的是() A .在化学反应后其质量减小 B .催化剂能改变化学反应速率 C .在化学反应后其质量增加 D .在化学反应后其化学性质发生了变化 3 .加热氯酸钾和高锰酸钾混合物片刻,试管里最多可能含有几种固体物质() A .五种 B .四种 C .三种 D .二种 4 .如图所示,打开分液漏斗的旋塞,滴下少量双氧水.下列现象正确的是() A .气球涨大,红墨水左移 B .气球缩小,红墨水右移 C .气球涨大,红墨水右移 D .气球缩小,红墨水左移 5 .实验室制取氧气必须满足的条件是() A .一定要加入催化剂 B .反应物中一定有液体 C .反应物中一定有含氧化合物 D .反应一定需要加热 6 .“神州七号”太空舱将利用NiFe 2O 4 将航天员呼出的CO 2转化为O 2,而NiFe 2O 4 的质量和化学性质都不改变,在该过程中NiFe 2O 4 是() A .反应物 B .生成物 C .催化剂 D .消毒剂

7 ?关于“催化剂”的下列说法有:①在任何化学反应里,二氧化锰为催化剂 只能加快反应速率③能增加生成物的质量④质量不变?⑤性质不变,其中正确的有() A ?①④⑤ B ?②④ 二.填空题(共3小题) 8 ?科学探究是奇妙的过程?在一次实验中,小明不小心把硫酸铜溶液滴加到了盛有5%H2O 2容液的试管中,立即有大量的气泡产生?请你和小明一起填写空白. (1)检验试管中产生的气体为氧气的方法是; (2)小明根据实验现象推测硫酸铜溶液可能是此反应的; (3)小明如果要进一步确定硫酸铜溶液是此反应的催化剂,还须通过实验确认它在化学反应前后质量和都没有发生变化. C ?①②③ D ?只有④ 9 ?学校化学兴趣小组知道二氧化锰能做过氧化氢分解的催化剂后,在想探究其他一些物质如氧化铝是否也可做过氧化氢的催化剂?请你一起参与他们的探究过程,并填写下列空白. (1)【问题】氧化铝能不能做过氧化氢分解的催化剂? (2)【猜想】氧化铝能做过氧化氢分解的催化剂 (3)【实验验证】 (4)【结论】氧化铝能加快过氧化氢的分解速率,故氧化铝能做过氧化氢分解的催化剂(5)【讨论与反思】经过讨论,有的同学认为只有上述两个证据,不能证明氧化铝能作过氧化氢分解的催化剂,还要补充一个探究实验: 实验三:【实验目的】探究? 【实验步骤】①准确称量氧化铝(少量)的质量;②完成实验二③待反应结束,将实验而试管里的物质进行过滤,洗涤,,称量;对比反应前后氧化铝的质量. 【讨论】如果氧化铝在反应前后质量不变,则说明氧化铝可以做过氧化氢分解的催化剂. (6)但小华认为,要证明猜想,上述三个实验还不足够,还需要再增加一个探究实验:探究? 10 .如表是二氧化锰用量与一定质量氯酸钾制取氧气反应速率关系的实验数据

杀菌剂分类

酰胺类 1、氟吗啉防治卵菌纲病原菌产生的病害,保护、治疗、铲除;渗透、内吸,高活性,持效16d 霜/疫霉病特效 2、烯酰吗啉抑制卵菌细胞壁的形成,内吸霜/疫霉病特效 3、叶枯酞抑制细菌在水稻中的繁殖,阻碍转移,内吸水稻白叶枯病 4、磺菌胺抑制孢子萌发,土壤杀菌剂,对白菜根肿病特效根肿/根腐/猝倒 5、甲磺菌胺土壤杀菌剂 6、噻氟菌胺强内吸传导,对担子菌特效立枯/黑粉/锈病 7、环氟菌胺抑制白粉菌吸器、菌丝和附着孢的形成,内吸活性差白粉病 8、硅噻菌胺能量抑制剂,具有良好的保护活性,长残效,种子处理小麦全蚀病 9、吡噻菌胺机理独特,高活性、广谱、无交互抗性粉锈/霜霉/菌核 10、环酰菌胺机理独特,灰霉特效灰霉/黑斑/ 菌核 11、苯酰菌胺杀卵菌机理独特:抑制菌核分裂,无交抗,保护剂晚疫/霜霉病 12、环丙酰菌胺内吸保护,抑制黑色素合成,感病后加速抗菌素产生稻瘟病 13、噻酰菌胺阻止侵入,诱导抗性,内吸传导,持效期长,环境影响小白粉/霜霉/稻瘟病 14、氰菌胺内吸和残留活性好,黑色素生物合成抑制剂稻瘟病 15、双氯氰菌胺黑色素生物合成抑制剂稻瘟病 16、高效甲霜灵核糖体RNAⅠ合成抑制剂,保护、治疗、内吸运转霜/疫/腐霉 17、高效苯霜灵卵菌病害 18、萎锈灵选择性内吸杀菌,萌芽种子除菌,刺激省黑穗/锈病 19、呋吡酰胺强烈抑制琥珀基质电子传递,内吸传导,长残效水稻纹枯病 20、甲呋酰胺内吸,种子处理,黑穗病(玉米除外)麦类黑穗病 21、氟酰胺琥珀酸酯脱氢酶抑制剂,保护/治疗/内吸,稻纹枯特效立枯/纹枯/雪腐 甲丙烯和咪唑类 1、嘧菌酯线粒体呼吸抑制剂,新型/高效/广谱,保/治/铲/吸/渗所有真菌病害 2、肟菌酯线粒体呼吸抑制剂,无交抗,广谱/渗透/内吸/保护白粉/叶斑等 3、啶氧菌酯线粒体呼吸抑制剂,广谱/内吸/熏蒸/耐雨水冲刷麦类病害 4、唑菌胺酯线粒体呼吸抑制剂,广谱/内吸/转移/混用所有真菌病害 5、氟嘧菌酯线粒体呼吸抑制剂,广谱/内吸/长效/速效所有真菌病害 6、烯肟菌酯新型/高效/广谱/内吸所有真菌病害 7、苯氧菌胺线粒体呼吸抑制剂,保/治/铲/吸/渗水稻稻瘟病 8、烯肟菌胺-- 9、嘧菌胺线粒体呼吸抑制剂,广谱,保/治/铲/吸/渗白粉/霜霉/纹枯 10、肟嘧菌胺 -- 水稻病害 11、噻菌灵抑制线粒体呼吸和细胞繁殖,有交抗,卵菌无效青霉/脐腐/菌核 12、氟菌唑甾醇脱甲基化抑制剂,保/治/铲/吸白粉/锈病/黑穗 13、高效抑霉唑广谱,保护、治疗,优/广于抑霉唑锈病/灰霉/稻瘟 14、咪唑菌酮线粒体呼吸抑制剂(辅酶Q-细胞色素C),常混用霜/疫/黑斑病 15、氰霜唑线粒体呼吸抑制剂,保护/长效/耐雨,卵菌特效霜霉/疫病 16、抑霉唑破坏霉菌细胞膜,常混用,多做保鲜剂青霉/绿霉/白粉 17、咪鲜胺甾醇生物合成抑制剂,广谱/ 非内吸/传导褐斑/白粉/叶枯

相关文档
最新文档