孙子算经中的鸡兔同笼_鸡兔同笼

合集下载

鸡兔同笼类问题中的各种解法分析小总结

鸡兔同笼类问题中的各种解法分析小总结

鸡兔同笼类问题中的各种解法分析小总结————————————————————————————————作者:————————————————————————————————日期:鸡兔同笼类问题中的各种解法分析小汇总1.典型鸡兔同笼问题详解例1鸡兔同笼是我国古代的著名趣题。

大约在1500年前,《孙子算经》中就记载着“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”翻译成通俗易懂的内容如下:鸡兔共有35个头,94只脚,问鸡兔各有多少只?经梳理,对于这一类问题,总共有以下几种理解方法。

(1)站队法让所有的鸡和兔子都列队站好,鸡和兔子都听哨子指挥。

那么,吹一声哨子让所有动物抬起一只脚,笼中站立的脚:94-35=59(只)那么再吹一声哨子,然后再抬起一只脚,这时候鸡两只脚都抬起来就一屁股坐地上了,只剩下用两只脚站立的兔子,站立脚:59-35=24(只)兔:24÷2=12(只);鸡:35-12=23(只)(2)松绑法由于兔子的脚比鸡的脚多出了2个,因此把兔子的两只前脚用绳子捆起来,看作是一只脚,两只后脚也用绳子捆起来,看作是一只脚。

那么,兔子就成了2只脚。

则捆绑后鸡脚和兔脚的总数:35×2=70(只)比题中所说的94只要少:94-70=24(只)。

现在,我们松开一只兔子脚上的绳子,总的脚数就会增加2只,不断地一个一个地松开绳子,总的脚数则不断地增加2,2,2,2……,一直继续下去,直至增加24,因此兔子数:24÷2=12(只)从而鸡数:35-12=23(只)(3)假设替换法实际上替代法的做题步骤跟上述松绑法相似,只不过是换种方式进行理解。

假设笼子里全是鸡,则应有脚70只。

而实际上多出的部分就是兔子替换了鸡所形成。

每一只兔子替代鸡,则增加每只兔脚减去每只鸡脚的数量。

兔子数=(实际脚数-每只鸡脚数*鸡兔总数)/(每只兔脚数-每只鸡脚数)与前相似,假设笼子里全是兔,则应有脚120只。

鸡兔同笼ppt免费课件

鸡兔同笼ppt免费课件

05
如何教授鸡兔同笼问题
教授给小学生的方法
1 2
3
故事化教学
将鸡兔同笼问题转化为一个有趣的故事,通过故事情节引导 学生进入问题情境,增加学习的趣味性。
实物演示
准备一些小玩具或道具,模拟鸡和兔子的数量及动作,帮助 学生直观理解问题。
画图法
教会学生使用简单的图形和线条表示鸡和兔子,通过画图来 理解数量关系。
$number {01}
鸡兔同笼问题
目录
• 鸡兔同笼问题简介 • 鸡兔同笼问题的解决方法 • 鸡兔同笼问题的变种与扩展 • 鸡兔同笼问题的实际应用 • 如何教授鸡兔同笼问题 • 鸡兔同笼问题的趣味性和挑战性
01
鸡兔同笼问题简介
起源与背景
01
鸡兔同笼问题起源于中国古代的 数学趣题,最早的记录可以追溯 到《孙子算经》等古代数学著作 。
例如,题目中给出笼子里有35个头和80只脚,我们可以假设所有的动物都是鸡,那么应该有35只鸡和0只兔,但是这样就会 有70只脚而不是80只脚,所以我们需要增加兔子的数量来使得脚的数量符合题目要求。通过调整我们可以得出实际的鸡和兔 的数量。
03
鸡兔同笼问题的变种与扩展
多个笼子的问题
多个笼子的情况
当有多个笼子,每个笼子里有不 同种类的动物和不同数量的腿时 ,需要分别对每个笼子进行推理 和计算,最后汇总结果。
系统分析
在科学研究和工程领域,系统分析是非 常重要的一环。解决鸡兔同笼问题所使 用的逻辑推理和系统分析方法,可以应 用于更复杂的工程系统和科学问题。
VS
优化问题
在解决优化问题时,我们常常需要设定一 些条件并求解满足这些条件的解。鸡兔同 笼问题的解决方法可以提供一种有效的思 路和方法来解决这类优化问题。

鸡兔同笼说课稿及课件.doc

鸡兔同笼说课稿及课件.doc

鸡兔同笼说课稿及课件鸡兔同笼,是我国古代著名趣题之一,记载于《孙子算经》之中。

鸡兔同笼问题,是小学奥数的常见题型。

以下是的鸡兔同笼说课稿及课件,欢送阅读。

各位老师,大家好:有幸借这次时机和大家共同学习,相互交流。

今天我说课的内容是人教版义务教育课程标准实验教科书六年级数学上册第七单元数学广角第一课时112-115页。

数学课程标准指出:“综合与实践”是以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验的重要途径,从而实现人人都能获得必须的数学。

以此为理念,下面我从四个方面简要说说这节课。

1.对教材的理解:鸡兔同笼问题设置在数学广角中,其教学与常规课有所不同。

区别之处在于要把数学思想方法贯穿始终,巧用素材,有效提升,初步培养学生有顺序地、全面地思考问题的意识,并培养学生的逻辑推理能力,为学生的终身开展奠定根底。

教材借助我国古代趣题“鸡兔同笼”问题,通过应用和反思,加深对所用知识和方法的理解,了解所学知识之间的联系。

2.教学目标:基于以上对教材的分析和理解,我从知识与技能、过程与方法,情感、态度与价值观三个方面制订以下教学目标:(1)了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

尝试用不同的方法解决“鸡兔同笼”问题,并使学生体会假设法的逻辑推理性和代数方法的一般性。

(2)使学生在对自己解决实际问题过程的不断反思中,感受列表、假设、列方程等解题策略对于解决特定问题的价值,进一步开展学生的分析、综合和简单推理能力。

(3)使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心,进而让学生体会数学的价值。

根据教学目标和学生实际,我把尝试用不同的方法解决鸡兔同笼问题,并使学生体会各种方法解决此类问题的优劣作为本节课的教学重点。

同时把理解数学知识与实际生活问题的联系,掌握利用数学方法解决实际问题的策略作为本节课学习的难点。

在教学中我主要采用引导发现法和自主探究法,其次还采用小组讨论、合作交流等方法,以问题引领学生在知识探索的过程中体验学习的乐趣,感受数学的价值。

鸡兔同笼类问题中的各种解法分析小汇总

鸡兔同笼类问题中的各种解法分析小汇总

鸡兔同笼类问题中的各种解法分析小汇总1.典型鸡兔同笼问题详解例1鸡兔同笼是我国古代的着名趣题..大约在1500年前;孙子算经中就记载着“今有雉兔同笼;上有三十五头;下有九十四足;问雉兔各几何”翻译成通俗易懂的内容如下:鸡兔共有35个头;94只脚;问鸡兔各有多少只经梳理;对于这一类问题;总共有以下几种理解方法..1站队法让所有的鸡和兔子都列队站好;鸡和兔子都听哨子指挥..那么;吹一声哨子让所有动物抬起一只脚;笼中站立的脚:94-35=59只那么再吹一声哨子;然后再抬起一只脚;这时候鸡两只脚都抬起来就一屁股坐地上了;只剩下用两只脚站立的兔子;站立脚:59-35=24只兔:24÷2=12只;鸡:35-12=23只2松绑法由于兔子的脚比鸡的脚多出了2个;因此把兔子的两只前脚用绳子捆起来;看作是一只脚;两只后脚也用绳子捆起来;看作是一只脚..那么;兔子就成了2只脚..则捆绑后鸡脚和兔脚的总数:35×2=70只比题中所说的94只要少:94-70=24只..现在;我们松开一只兔子脚上的绳子;总的脚数就会增加2只;不断地一个一个地松开绳子;总的脚数则不断地增加2;2;2;2……;一直继续下去;直至增加24;因此兔子数:24÷2=12只从而鸡数:35-12=23只3假设替换法实际上替代法的做题步骤跟上述松绑法相似;只不过是换种方式进行理解..假设笼子里全是鸡;则应有脚70只..而实际上多出的部分就是兔子替换了鸡所形成..每一只兔子替代鸡;则增加每只兔脚减去每只鸡脚的数量..兔子数=实际脚数-每只鸡脚数*鸡兔总数/每只兔脚数-每只鸡脚数与前相似;假设笼子里全是兔;则应有脚120只..而实际上不足的部分就是鸡替换了兔子所形成..每一只鸡替代兔子;则减少每只兔脚减去每只鸡脚的数量;即2只..鸡数=每只兔脚数*鸡兔总数-实际脚数/每只兔脚数-每只鸡脚数将上述数值代入方法1可知;兔子数为12只;再求出鸡数为23只..将上述数值代入方法2可知;鸡数为23只;再求出兔子数为12只..由计算值可知;两种替代方法得出的答案完全一致;只是顺序不同..由替代法的顺序不同可知;求鸡设兔;求兔设鸡;可以根据题目问题进行假设以减少计算步骤..4方程法随着年级的增加;学生开始接触方程思想;这个时候鸡兔同笼问题运用方程思想则变得十分简单..第一种是一元一次方程法..解:设兔有x只;则鸡有35-x只4x+235-x=944x+70-2x=94x=12注:方程结果不带单位从而计算出鸡数为35-12=23只第二种是二元一次方程法..解:设鸡有x只;兔有y只..则存在着二元一次方程组的关系式x+y=352x+4y=94解方程式可知兔子数为y=12则可计算鸡数为x=23以述四种方法就是这一典型鸡兔同笼问题的四种不同理解和计算方法;在没有接触方程思想之前;用前三种方式进行理解..在接触方程思想之后;则可以用第四种方法进行学习..2.鸡兔同笼问题的衍生非方程思想例2现有100千克的水装了共60个的矿泉水瓶子中..大矿泉水瓶一瓶装3千克;小矿泉水瓶1瓶装1千克;问大、小矿泉水瓶各多少个对应关系理清之后;按照例1中的方法即可求出;大矿泉水瓶子有20个;小矿泉水瓶子有40个具体解题过程不详述..例3聪明昊参加数学竞赛;共做20道题;得70分;已知做对一道题得5分;做错一道题扣1分..问聪明昊做对了几道题这一题依然与上述问题思路一致;只是少量变成了扣一分..在此提示;按照替代法进行计算;先假设全部做对;则应得分100分..而实际上却少得了100-70=30分这30分的差距就是因为一道错题替换了一道正确的..每一道题进行替换就会带来5+1=6分的差值注意一对一错;差值是两者的和..因此做错了5道题;做对了15道题..在这种情况下;小量不是增加而是减少或扣时;一般先假设大量进行替换计算..例4现有100千克的水装了共60个的矿泉水瓶子中..大矿泉水瓶1瓶装4千克;小矿泉水瓶2瓶装1千克;问大、小矿泉水瓶各多少个这道题需要认真审题;小矿泉水瓶是2瓶装1千克..当瓶子的数目不全是单位1时;思路可以如下..假如能运用小数;则直接将2瓶装1千克转化为1瓶装0.5千克;则变成与例1中所述方式一样..假如对小数不熟悉;则可以将2瓶子视为一组..则全部瓶子有30组;大矿泉水瓶一组装8千克;小矿泉水瓶一组装1千克;按照例1中所述方式;可以求出大小矿泉水瓶各有的组数;用组数乘以2则可以求出瓶数..上述3个问题仍然是两个因素的比较;因而只要将问题中的因素与鸡兔同笼问题中的因素一一对应即可计算出来..例5聪明昊完成工作后领得工资240元;包括2元、5元、10元三种人民币共50张;其中2元与5元的张数一样多..那么2元、5元、10元各有多少张这一道问题相比前面的问题复杂一些;变成三个因素..但是通过审题我们发现;他给出了一个条件那就是2元与5元的张数一样多..因此;由于这两种人民币数量一样多;可以将其当作一个整体进行计算;与10元进行比较..因此先假设全部是10元的人民币;则应有工资:50*10=500元比实际多出:500-240=260元这多出的260元就是因为用2元与5元替换了10元..由于拿一张5元替换10元时;必定要拿一张2元替换10元;因此依然可以将2张人民币作为一组..每替换一组;工资减少10-5+10-2=13元则由此可知;共替换的人民币组数:260/13=20组则总共替换的人民币张数:20*2=40个因而计算得出10元人民币的张数:50-40=10张;2元和5元人民币的张数分别为:40/2=20张由此题可知;虽然变成了三个因素的关系;但是由于题中给出了其中两个因素的相互关系;因此可以将有相互关系的因素进行捆绑;从而转化为两个因素的计算;便与例1相同..注:如果对小数比较熟悉;也可以将2和5元看成一张3.5元进行假设替换;需要替换40张;2元和5元各20张..小朋友可以自己思考..例6蜘蛛有8条腿;蜻蜓有6条腿和2对翅膀;蝉有6条腿和1对翅膀..现在这三种小虫共21只;有140条腿和23对翅膀.每种小虫各几只由上述题目可知;总量分别包括了腿和翅膀两种;其中蜘蛛1只有8腿;而单个蜻蜓和单个蝉的腿数相同;都为6条..因此可以按照题4的方式利用腿的关系求出蜘蛛的个数以及蜻蜓与蝉的个数和..由于翅膀只有蜻蜓和蝉拥有;再次利用例1的思路;针对翅膀这一数量关系;可以分别计算出蜻蜓和蝉的个数..本题答案是蜘蛛7只;蜻蜓9只;蝉5只具体过程此处不详细列出..关于鸡兔同笼的第一大类型题就讲到这儿;接下来进入第二大类型题..3.前文中结出的条件之一都是鸡兔同笼中的总头数;即“两数之和”..如果把条件换成“两数之差”;又应该怎样去解呢例7鸡兔共有94只脚;其中鸡数比兔子数多11只;求问鸡兔各有多少只1去多法如果抓出11只鸡杀掉;则笼子里就剩下相同数量的鸡和兔子..此时;笼子中鸡和兔的脚总量为94-11×2=72只每一只鸡和每一只兔子共有脚4+2=6只这时候;将一只鸡和一只兔子看做一组;一组共有6只脚..则抓出鸡后;笼子里剩余的鸡与兔的组数分别为72/6=12组那么可知兔子有12只;再通过计算得出鸡的数量为12+11=23只2同增同减法假设笼子里有兔子1只;则有鸡12只;可以计算出1只兔子和12只鸡共有脚的数量为:1×4+12×2=28只比实际的94只少:94-28=66只因此还要增加兔子的数量..为了保持鸡比兔子多11只;每增加1只兔子;就要增加1只鸡8;因此需要同时增加的腿数为4+2=6只因此增加66只脚则需要增加的鸡和兔子的数量为66÷6=11只根据前文的假设条件可计算出兔子的数量为:1+11=12只;鸡的数量为:12+11=23只例8古诗中;五言绝句是四句诗;每句都是五个字;七言绝句是四句诗;每句都是七个字..一本诗选集中五言绝句比七言绝句多3首;诗集中共有数字300个..问两种类型的诗各多少首这道题与例7完全一致;只不过七言绝句对应兔;五言绝句对应鸡;多的13首诗对应多的11只..因此;可以按照上述两种思路进行计算..如果去掉3首五言绝句;两种类型的诗的数量就相等;此时去掉的字数为应注意一道诗4句:3×5×4=60个此时仍有字数为:300-60=240个1首五言和1首七言绝句的字数和为:5×4+7×4=48个则去掉3首五言绝句后;仍有五言和七言绝句的数量为:240/48=5首从而得出七言绝句有5首;而计算出五言绝句共有:5+3=8首此外还可以按照例7的方法2完成这道题;假设七言绝句有1道;则五言绝句有4首;如此类推..此处不再说述..例9在例8的基础上进行修改;假设在这一诗选集中五言绝句比七言绝句多13首;总字数却反而少了20个字..问两种诗各多少首1如果去掉13首五言绝句;两种类型的诗的首数就相等..在相同数量下;七言绝句比五言绝句多出的字数个数为五言绝句原本就差20;再减少了13首五言绝句:13×5×4+20=280个每首七言绝句比每首五言绝句多出的字数个数为:7×4-5×4=8个因此;七言绝句的数量为:280/8=35首;则五言绝句有:35+13=48首2假设七言绝句是1首;那么根据相差13首;五言绝句是14首..那么五言绝句的字数为:20×14=280个;七言绝句的字数为:28×1=28个假设情况下;五言绝句的字数反而多:280-28=252个为实现题目中“五言绝句比七言绝句少20字”;需要增加诗的数量;其中每增加一首;七言绝句比五言绝句多增加字数:252+20=272个为了保持相差13首;增加一首五言绝句;也要增一首七言绝句;即增加一首;七言比五言多增加字数数量为:7×4-5×4=8个因此七言绝句和五言绝句的首数要比假设增加:272÷8=34首五言绝句有:14+34=48首;七言绝句有:1+34=35首答:五言绝句有48首;七言绝句有35首..至此;鸡兔同笼问题的基本分析结束;其他类似的问题不外乎是在这个基本框架上的变化;都是可以通过简化、转变最终变成鸡兔同笼问题进行分析..当然在学习了方程思想后;鸡笼同笼问题将会变得十分简单..本文不在此对这一内容进行分析..除此之外;由于本文主要是思路讲解;因此所有例题中均没有写答句..在实际的考试中;每一道应用题得出答案都一定要写答句;如例9所示..。

鸡兔同

鸡兔同

1. 熟悉鸡兔同笼的“砍足法”和“假设法”.2. 利用鸡兔同笼的方法解决一些实际问题,需要把多个对象进行恰当组合以转化成两个对象.一、鸡兔同笼 这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?二、解鸡兔同笼的基本步骤解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即473512-=(只).显然,鸡的只数就是351223-=(只)了.这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,“鸡兔同笼”问题的经典思路“假设法”.假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到.解鸡兔同笼问题的基本关系式是:如果假设全是兔,那么则有:鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)鸡数=鸡兔总数-兔数当头数一样时,脚的关系:兔子是鸡的2倍当脚数一样时,头的关系:鸡是兔子的2倍在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程,行程,方程等专题中也都会接触到假设法模块一、两个量的“鸡兔同笼”问题——鸡兔同笼问题【例 1】 鸡兔同笼,头共46,足共128,鸡兔各几只?【考点】鸡兔同笼问题 【难度】1星 【题型】解答【关键词】假设思想方法【解析】 假设46只都是兔,一共应有446184⨯=只脚,这和已知的128只脚相比多了18412856-=只脚,这是因为我们把鸡当成了兔子,如果把1只鸡当成1只兔,就要比实际多422-=(只)脚,那么56只脚是我们把56228÷=只鸡当成了兔子,所以鸡的只数就是28,兔的只数是462818-=(只).当例题精讲 知识精讲教学目标6-1-9.鸡兔同笼问题(一)然,这里我们也可以假设46只全是鸡!鼓励学生从两个方面假设解题,更深一步理解假设法.【答案】鸡28只,兔18只【巩固】点点家养了一些鸡和兔子,同时养在一个笼子里,点点数了数,它们共有35个头,94只脚.问:点点家养的鸡和兔各有多少只?【考点】鸡兔同笼问题【难度】1星【题型】解答【关键词】假设思想方法【解析】方法一:我们假设,每只鸡都是“金鸡独立”,一只脚站着;而每只兔子都是两条后腿,像人一样用两只脚站着.现在,地面上出现的脚是总数的一半,也就是94247÷=(只).在47这个数中,鸡的头数算了一次,兔子的头数相当于算了两次,因此从47减去总头数35,剩下的就是兔子头数,-=(只)鸡.473512-=(只),所以有12只兔子,有351223方法二:假设35只都是兔子,那么就有354140⨯=(只)脚,比94只脚多了1409446-=(只).每只鸡比兔子少422÷=(只)-=(只)脚,那么共有鸡46223方法三:还可以假设35只都是鸡,那么共有脚23570-=(只)脚,⨯=(只),比94只脚少了947024每只鸡比兔子少422-=(只)脚,那么共有兔子24212÷=(只).方法一可以归结为:总脚数2÷-总头数=兔子数.能够这样算,主要是利用了兔和鸡的脚数分别为4和2,而且4是2的2倍.方法二说明假设的35只兔子中有23只不是兔子,而是鸡.由此可以列出公式:鸡数=(兔脚数⨯总头数-总脚数)÷(兔脚数-鸡脚数)方法三说明假设的35只鸡中有12只是兔.由此可以列出公式:兔数=(总脚数-鸡脚数⨯总头数)÷(兔脚数-鸡脚数)【答案】鸡23只,兔12只【巩固】鸡兔共有45只,关在同一个笼子中.每只鸡有两条腿,每只兔子有四条腿,笼中共有100条腿.试计算,笼中有鸡多少只?兔子多少只?【考点】鸡兔同笼问题【难度】1星【题型】解答【关键词】假设思想方法【解析】⑴假设法:若假设所有的45只动物都是兔子,那么一共应该有445180⨯=(条)腿,比实际多算÷=(只)鸡被当作了-=(条)腿.而每将一只鸡算做一只兔子会多算两条腿,所以有80240 18010080兔子,所以共有40只鸡,有45405-=(只)兔子.注意:假设为兔子时,按照“多算的腿数”计算出的是鸡的数目;假设为鸡时,按照“少算的腿数”计算出的是兔子的数目.同学们可以自己来做一下当假设为鸡时的算法.⑵“金鸡独立”法(砍足法):假设所有的动物都只用一半的腿站立,这样就出现了鸡都变成了“金鸡独立”,而兔子们都只用两条腿站立的“奇观”.这样就有一个好处:鸡的腿数和头数一样多了;而每只兔子的腿数则会比头数多1.因此,在腿的数目都变成原来的一半的时候,腿数比头数多多少,就有多少只兔子.原来有100只腿,让兔子都抬起两只腿,鸡抬起一只腿,则此时笼中有100250÷=(条)腿,比头数多-=,所以有5只兔子,另外40只是鸡.50455【答案】鸡40只,兔5只【巩固】老虎和鸡共l0只,脚共26只.鸡()只.【考点】鸡兔同笼问题【难度】1星【题型】填空【关键词】走美杯,3年级,初赛【解析】这属于鸡兔同笼问题,每只老虎有4只腿,每只鸡有2只腿。

《鸡兔同笼》教案【优秀6篇】

《鸡兔同笼》教案【优秀6篇】

《鸡兔同笼》教案【优秀6篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《鸡兔同笼》教案【优秀6篇】作为一名教职工,编写教案是必不可少的,借助教案可以更好地组织教学活动。

初中数学解题模型之二元一次方程组的应用(鸡兔同笼问题)

初中数学解题模型之二元一次方程组的应用(鸡兔同笼问题)一.选择题(共10小题)1.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”小明将这个实际问题转化为二元一次方程组问题,假设鸡有x只,兔有y只,已经列出一个方程x+y=35,则另一个方程正确的是()A.x+y=94B.2x+4y=94C.4x+2y=94D.2x+y=942.鸡兔同笼,头共有20个,脚有56只,笼中鸡、兔的数目分别为()A.8、12B.10、10C.11、9D.12、83.《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料,下卷收集了一些算术难题,“鸡兔同笼”便是其中一题.下卷中还有一题,记载为:“今有甲乙二人,持钱各不知数.甲得乙中半,可满四十八;乙得甲太半,亦满四十八.问甲、乙二人持钱各几何?”意思是:“甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文.如果乙得到甲所有钱的,那么乙也共有钱48文.问甲、乙二人原来各有多少钱?”设甲原有钱x文,乙原有钱y文,可得方程组()A.B.C.D.4.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有雉、兔同笼,上有三十五头,下有九十四足.问雉、兔各几何?”意思是:一个笼中装有鸡和兔子,上面数共有35个头,下面数共有94只脚,问鸡和兔各有几只?设有x只兔子,y只鸡,则可列方程组为()C.D.5.一只笼子装有鸡和兔共有10个头,34只脚,每只鸡有两只脚,每只兔有四只脚.设鸡有x只,兔有y只,则可列二元一次方程组()A.B.C.D.6.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”.设鸡有x只,兔有y只,则根据题意,下列方程组中正确的是()A.B.C.D.7.“鸡兔同笼”是我国古代著名的数学趣题之一.大约在1500年前成书的《孙子算经》中,就有关于“鸡兔同笼”的记载:“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”这四句话的意思是:有若干只鸡兔关在一个笼子里,从上面数,有35个头;从下面数,有94条腿,问笼中各有鸡和兔()只.A.笼中各有12只鸡,23只兔B.笼中各有23只鸡,12只兔C.笼中各有13只鸡,22只兔D.笼中各有22只鸡,13只兔8.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”.设兔有x只,鸡有y只,则根据题意,下列方程组中正确的是()A.B.C.D.9.我国古代数学著作《孙子算经》有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”其大意如下:鸡兔同笼,共有35个头,94条腿,问鸡与兔各多少只?设鸡有x只,兔有y只,则可列方程组为()C.D.10.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”.通过计算,鸡和兔的数量分别为()A.23和12B.12和23C.24和12D.12和24二.填空题(共10小题)11.鸡兔同笼,共有12个头,36只腿,则笼中有只鸡,只兔.12.“鸡兔同笼”是我国古代数学名著《孙子算经》上的一道题:今有鸡兔同笼,上有四十三头,下有一百零二足,问鸡兔各几何?若设笼中有鸡x只,兔y只,则可列出的二元一次方程组为.13.我国古代数学名著《孙子算经》上有这样一道题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何?”则题中兔有只.14.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿,问鸡兔各有多少只?”设鸡有x只,兔有y只,则可列方程组为.15.鸡兔同笼问题是我国古代著名的数学趣题,出自《孙子算经》.原文为:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?小雪自己解决完此题后,又饶有兴趣地为同学编制了四道题目:①今有雉兔同笼,上有三十头,下有五十二足,问雉兔各几何?②今有雉兔同笼,上有三十头,下有八十一足,问雉兔各几何?③今有雉兔同笼,上有三十四头,下有九十足,问雉兔各几何?④今有雉兔同笼,上有三十四头,下有九十二足,问雉兔各几何?根据小雪编制的四道题目的数据,可以求得鸡兔只数的题目是(填题目前的序号).16.中国的古代数学著作《孙子算经》中记载了有趣的“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”这句话的意思是:“有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚,求笼中各有几只鸡和兔?”设有鸡x只,兔y只,可列方程组为.17.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有20头,下有64足,问鸡兔各几何?”若设鸡兔分别有x只,y只.你列出的关于x,y的二元一次方程组为.18.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有八十足.问鸡兔各几何?”若设鸡有x只,兔有y只,请将题中数量关系用二元一次方程组列出得.19.《孙子算经》中有鸡兔同笼问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”,如果设鸡有x只,兔有y只,以题意可得二元一次方程组.20.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题,”今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”若设鸡有x只,兔有y只,则列出的方程组为(列出方程组即可,不求解).初中数学解题模型之二元一次方程组的应用(鸡兔同笼问题)参考答案与试题解析一.选择题(共10小题)1.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”小明将这个实际问题转化为二元一次方程组问题,假设鸡有x只,兔有y只,已经列出一个方程x+y=35,则另一个方程正确的是()A.x+y=94B.2x+4y=94C.4x+2y=94D.2x+y=94【考点】数学常识;由实际问题抽象出二元一次方程.【专题】一次方程(组)及应用;应用意识.【分析】设鸡有x只,兔有y只,由下有九十四足,即可得出2x+4y=94,此题得解.【解答】解:设鸡有x只,兔有y只.∵下有九十四足,∴2x+4y=94,∴另一个方程为2x+4y=94.故选:B.【点评】本题考查了由实际问题抽象出二元一次方程以及数学常识,找准等量关系,正确列出二元一次方程是解题的关键.2.鸡兔同笼,头共有20个,脚有56只,笼中鸡、兔的数目分别为()A.8、12B.10、10C.11、9D.12、8【考点】一元一次方程的应用;二元一次方程组的应用.【专题】一次方程(组)及应用;应用意识.【分析】设笼中有x只鸡,y只兔,根据“鸡兔同笼,头共有20个,脚有56只”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设笼中有x只鸡,y只兔,依题意,得:,解得:.故选:D.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.3.《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料,下卷收集了一些算术难题,“鸡兔同笼”便是其中一题.下卷中还有一题,记载为:“今有甲乙二人,持钱各不知数.甲得乙中半,可满四十八;乙得甲太半,亦满四十八.问甲、乙二人持钱各几何?”意思是:“甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文.如果乙得到甲所有钱的,那么乙也共有钱48文.问甲、乙二人原来各有多少钱?”设甲原有钱x文,乙原有钱y文,可得方程组()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【专题】一次方程(组)及应用;应用意识.【分析】设甲原有x文钱,乙原有y文钱,根据题意可得,甲的钱+乙的钱的一半=48文钱,乙的钱+甲所有钱的=48文钱,据此列方程组可得.【解答】解:设甲原有x文钱,乙原有y文钱,根据题意,得:,故选:D.【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.4.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有雉、兔同笼,上有三十五头,下有九十四足.问雉、兔各几何?”意思是:一个笼中装有鸡和兔子,上面数共有35个头,下面数共有94只脚,问鸡和兔各有几只?设有x只兔子,y只鸡,则可列方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组;数学常识.【专题】一次方程(组)及应用;应用意识.【分析】根据一个笼中装有鸡和兔子,上面数共有35个头,下面数共有94只脚,可以列出相应的方程组.【解答】解:设有x只兔子,y只鸡,由一个笼中装有鸡和兔子,上面数共有35个头,可得方程x+y=35,由下面数共有94只脚,可得方程4x+2y=94,故可列方程组,故选:A.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,找出等量关系,列出相应的方程组.5.一只笼子装有鸡和兔共有10个头,34只脚,每只鸡有两只脚,每只兔有四只脚.设鸡有x只,兔有y只,则可列二元一次方程组()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】设鸡有x只,兔有y只,等量关系:鸡+兔=10,鸡脚+兔脚=34.【解答】解:设鸡有x只,兔有y只,依题意得.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程.解题的关键是弄清题意,找准等量关系,列出方程组.6.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”.设鸡有x只,兔有y只,则根据题意,下列方程组中正确的是()A.B.C.D.【考点】数学常识;由实际问题抽象出二元一次方程组.【专题】一次方程(组)及应用;应用意识.【分析】根据“鸡的数量+兔的数量=35,鸡的脚的数量+兔子的脚的数量=94”可列方程组.【解答】解:设鸡有x只,兔有y只,根据题意,可列方程组为,故选:A.【点评】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.7.“鸡兔同笼”是我国古代著名的数学趣题之一.大约在1500年前成书的《孙子算经》中,就有关于“鸡兔同笼”的记载:“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”这四句话的意思是:有若干只鸡兔关在一个笼子里,从上面数,有35个头;从下面数,有94条腿,问笼中各有鸡和兔()只.A.笼中各有12只鸡,23只兔B.笼中各有23只鸡,12只兔C.笼中各有13只鸡,22只兔D.笼中各有22只鸡,13只兔【考点】一元一次方程的应用;二元一次方程组的应用.【专题】一次方程(组)及应用;应用意识.【分析】设笼中有x只鸡,y只兔,根据上有35个头、下有94只脚,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设笼中有x只鸡,y只兔,根据题意得:,解得:.答:笼中有23只鸡,12只兔故选:B.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.8.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”.设兔有x只,鸡有y只,则根据题意,下列方程组中正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组;数学常识.【专题】一次方程(组)及应用;应用意识.【分析】根据“鸡的数量+兔的数量=35,鸡的脚的数量+兔子的脚的数量=94”可列方程组.【解答】解:设兔有x只,鸡有y只,根据题意,可列方程组为,故选:A.【点评】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.9.我国古代数学著作《孙子算经》有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”其大意如下:鸡兔同笼,共有35个头,94条腿,问鸡与兔各多少只?设鸡有x只,兔有y只,则可列方程组为()A.B.C.D.【考点】数学常识;由实际问题抽象出二元一次方程组.【专题】一次方程(组)及应用;应用意识.【分析】根据实际可知,鸡有两条腿,兔子有四条腿,再根据有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿,即可列出相应的方程组.【解答】解:由题意可得,,故选:C.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,找出等量关系,列出相应的方程组.10.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”.通过计算,鸡和兔的数量分别为()A.23和12B.12和23C.24和12D.12和24【考点】二元一次方程组的应用;数学常识;一元一次方程的应用.【专题】一次方程(组)及应用;应用意识.【分析】设鸡有x只,兔有y只,根据“上有三十五头,下有九十四足”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设鸡有x只,兔有y只,依题意得:,解得:.故选:A.【点评】本题考查了二元一次方程组的应用以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.二.填空题(共10小题)11.鸡兔同笼,共有12个头,36只腿,则笼中有6只鸡,6只兔.【考点】二元一次方程组的应用.【专题】方程思想.【分析】设笼中有x只鸡,y只兔,根据共有12个头36只腿,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设笼中有x只鸡,y只兔,根据题意得:,解得:.答:笼中有6只鸡,6只兔.故答案为:6;6.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.12.“鸡兔同笼”是我国古代数学名著《孙子算经》上的一道题:今有鸡兔同笼,上有四十三头,下有一百零二足,问鸡兔各几何?若设笼中有鸡x只,兔y只,则可列出的二元一次方程组为.【考点】由实际问题抽象出二元一次方程组;数学常识.【专题】一次方程(组)及应用;应用意识.【分析】根据“笼中上有43个头,下有102个脚”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设笼中有鸡x只,兔y只,∵上有四十三头,∴鸡和兔共有43只,即x+y=43;∵每只鸡有2足,每只兔有4足,笼中共有一百零二足,∴2x+4y=102.联立两方程组成方程组.故答案为:.【点评】本题考查了由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.13.我国古代数学名著《孙子算经》上有这样一道题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何?”则题中兔有12只.【考点】二元一次方程组的应用;数学常识;一元一次方程的应用.【专题】一次方程(组)及应用;应用意识.【分析】设兔有x只,鸡有y只,根据“上有三十五头,下有九十四足”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设兔有x只,鸡有y只,依题意,得:,解得:.故答案为:12.【点评】本题考查了二元一次方程组的应用以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.14.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿,问鸡兔各有多少只?”设鸡有x只,兔有y只,则可列方程组为.【考点】数学常识;由实际问题抽象出二元一次方程组.【专题】一次方程(组)及应用;应用意识.【分析】根据实际可知,鸡有两条腿,兔子有四条腿,再根据有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿,即可列出相应的方程组.【解答】解:由题意可得,,故答案为:.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,找出等量关系,列出相应的方程组.15.鸡兔同笼问题是我国古代著名的数学趣题,出自《孙子算经》.原文为:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?小雪自己解决完此题后,又饶有兴趣地为同学编制了四道题目:①今有雉兔同笼,上有三十头,下有五十二足,问雉兔各几何?②今有雉兔同笼,上有三十头,下有八十一足,问雉兔各几何?③今有雉兔同笼,上有三十四头,下有九十足,问雉兔各几何?④今有雉兔同笼,上有三十四头,下有九十二足,问雉兔各几何?根据小雪编制的四道题目的数据,可以求得鸡兔只数的题目是③④(填题目前的序号).【考点】二元一次方程组的应用.【专题】一次方程(组)及应用.【分析】设笼中有x只雉,y只兔,根据各小题中头与足的数量,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设笼中有x只雉,y只兔,根据题意得,①,解得,不符合题意;②,此方程组无整数解,不符合题意;③,解得,符合题意;④,解得,符合题意;故答案为:③④.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.一般步骤:(1)审题:找出问题中的已知条件和未知量及它们之间的关系.(2)设元:找出题中的两个关键的未知量,并用字母表示出来.(3)列方程组:挖掘题目中的关系,找出两个等量关系,列出方程组.(4)求解.(5)检验作答:检验所求解是否符合实际意义,并作答.16.中国的古代数学著作《孙子算经》中记载了有趣的“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”这句话的意思是:“有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚,求笼中各有几只鸡和兔?”设有鸡x只,兔y只,可列方程组为.【考点】由实际问题抽象出二元一次方程组;数学常识.【专题】方程思想;一次方程(组)及应用.【分析】设有鸡x只,兔y只,根据鸡和兔共35只且鸡和兔共有94只脚,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设有鸡x只,兔y只,依题意,得:.故答案为:.【点评】本题考查了由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.17.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有20头,下有64足,问鸡兔各几何?”若设鸡兔分别有x只,y只.你列出的关于x,y的二元一次方程组为.【考点】由实际问题抽象出二元一次方程组.【专题】常规题型.【分析】设鸡兔分别有x只,y只,根据等量关系:今有鸡兔同笼,上有20头,下有64足,即可列出方程组.【解答】解:设鸡兔分别有x只,y只,由题意得:.故答案为.【点评】此题考查了由实际问题抽象出二元一次方程组,解答本题的关键是仔细审题,根据等量关系得出方程组,难度一般.18.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有八十足.问鸡兔各几何?”若设鸡有x只,兔有y只,请将题中数量关系用二元一次方程组列出得..【考点】由实际问题抽象出二元一次方程组.【专题】一次方程(组)及应用.【分析】若设鸡有x只,兔有y只,根据“今有鸡兔同笼,上有三十五头,下有八十足”,即可列出关于x和y的二元一次方程组.【解答】解:根据题意得:,故答案为:.【点评】本题考查由实际问题抽象出二元一次方程组,根据实际问题找出等量关系列出方程组是解决本题的关键.19.《孙子算经》中有鸡兔同笼问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”,如果设鸡有x只,兔有y只,以题意可得二元一次方程组.【考点】由实际问题抽象出二元一次方程组.【专题】一次方程(组)及应用;应用意识.【分析】根据“鸡的数量+兔的数量=35,鸡的脚的数量+兔子的脚的数量=94”可列方程组.【解答】解:设鸡有x只,兔有y只,根据题意,可列方程组为,故答案是:.【点评】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.20.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题,”今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”若设鸡有x只,兔有y只,则列出的方程组为(列出方程组即可,不求解).【考点】由实际问题抽象出二元一次方程组.【分析】根据等量关系:上有三十五头,下有九十四足,即可列出方程组.【解答】解:设鸡有x只,兔有y只,由题意得:.故答案为.【点评】此题考查了由实际问题抽象出二元一次方程组,解答本题的关键是仔细审题,根据等量关系得出方程组,难度一般.考点卡片1.数学常识数学常识此类问题要结合实际问题来解决,生活中的一些数学常识要了解.比如给出一个物体的高度要会选择它合适的单位长度等等.平时要注意多观察,留意身边的小知识.2.一元一次方程的应用(一)一元一次方程解应用题的类型有:(1)探索规律型问题;(2)数字问题;(3)销售问题(利润=售价﹣进价,利润率=×100%);(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).(二)利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.列一元一次方程解应用题的五个步骤1.审:仔细审题,确定已知量和未知量,找出它们之间的等量关系.2.设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数.3.列:根据等量关系列出方程.4.解:解方程,求得未知数的值.5.答:检验未知数的值是否正确,是否符合题意,完整地写出答句.3.由实际问题抽象出二元一次方程(1)由实际问题列方程是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系.(2)一般来说,有2个未知量就必须列出2个方程,所列方程必须满足:①方程两边表示的是同类量;②同类量的单位要统一;③方程两边的数值要相符.(3)找等量关系是列方程的关键和难点.常见的一些公式要牢记,如利润问题,路程问题,比例问题等中的有关公式.4.由实际问题抽象出二元一次方程组(1)由实际问题列方程组是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系.(2)一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量;②同类量的单位要统一;③方程两边的数值要相符.(3)找等量关系是列方程组的关键和难点,有如下规律和方法:①确定应用题的类型,按其一般规律方法找等量关系.②将问题中给出的条件按意思分割成两个方面,有“;”时一般“;”前后各一层,分别找出两个等量关系.③借助表格提供信息的,按横向或纵向去分别找等量关系.④图形问题,分析图形的长、宽,从中找等量关系.5.二元一次方程组的应用(一)列二元一次方程组解决实际问题的一般步骤:(1)审题:找出问题中的已知条件和未知量及它们之间的关系.(2)设元:找出题中的两个关键的未知量,并用字母表示出来.(3)列方程组:挖掘题目中的关系,找出两个等量关系,列出方程组.(4)求解.(5)检验作答:检验所求解是否符合实际意义,并作答.(二)设元的方法:直接设元与间接设元.当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设元.无论怎样设元,设几个未知数,就要列几个方程.。

《鸡兔同笼》教学设计优质课公开课一等奖

《鸡兔同笼》教学设计教材分析“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。

教材在本单元安排“鸡兔同笼”问题,一方面欲通过生动有趣的古代数学问题感受我国古代数学文化,另一方面在解决问题的过程中了解,解决问题的不同方法和策略。

“鸡兔同笼”问题的解法包括:列表法、假设法、方程法等。

由于本单元方程解法还没学,因此这里主要引导学生通过猜测、列表、假设等方法来解决问题,培养学生猜测、有序思考及罗辑推理的能力。

教学实录教学目标1.了解“鸡兔同笼”问题的结构特点,尝试用列表、画图、假设等策略解决“鸡免同笼”问题。

2.在解决问题的过程中,培养学生的思维能力,并向学生渗透化繁为简、假设、转化等数学思想和方法。

3.在学习过程中,感受古代数学问题的趣味性,体会“鸡兔同笼”问题在生活中的广泛应用,提高学生学习数学的兴趣。

教学重点尝试用不同的方法解决“鸡兔同笼”问题。

教学难点让学生认识、理解、运用假设法。

教学过程一、情景导入1.师:同学们,数学研究在我国历史悠久,古代民间的许多数学趣事,一直流传到今天。

今天的这节课老师就给大家带来了一道古代特别有趣的数学问题,请同学们看大屏幕。

2.(多媒体出示)“今有稚兔同笼,上有三十五头,下有九十四足,问稚兔各有几何?”师:孩子们,这道题是以文言文的方式表述,哪位同学看懂了他的意思?(学生表述基本正确都要给予肯定)3. 师:现在大家都看懂这道题是什么意思了,这就是著名的“鸡免同笼”问题。

板书:(数学广角——鸡兔同笼)4. 尝试解决,交流想法。

师:大家猜一猜,算一算鸡和兔各有多少只?生:我认为鸡应该是10只,兔应该是25只,因为这35个头都是鸡的话,就应该有70只脚,94比70多,所以我认为兔子应该多些。

生:我和她的想法相反,我认为兔子少些,鸡多些。

我是这样想的,如果35个头都是兔子,就应该有140只脚,140比94多得多,这说明兔子的只数多了,所以我认为兔子应该是13只,鸡应该是22只。

三年级奥数讲义应用题鸡兔同笼(含解析)

鸡兔同笼一、鸡兔同笼这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?二、解鸡兔同笼的基本步骤1.砍足法(金鸡独立):解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即473512-=(只)了.-=(只).显然,鸡的只数就是351223这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,还有“鸡兔同笼”问题的经典思路“假设法”.2.假设法:假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到.解鸡兔同笼问题的基本关系式是:如果假设全是兔,那么则有:鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)鸡数=鸡兔总数-兔数3.鸡兔关系当头数一样时,脚的关系:兔是鸡的2倍;当脚数一样时,头的关系:鸡是兔的2倍一鸡一兔1.鸡兔同笼,头共46,足共128,鸡兔各几只?【解析】(假设法或砍足法均可)假设46只都是兔,一共应有446184⨯=(只)脚,这和已知的128只脚相比多了18412856-=(只)脚,这是因为我们把鸡当成了兔子,如果把1只鸡当成1只兔,就要比实际多422-=(只)脚,那么56只脚是我们把56228-=÷=(只)鸡当成了兔子,所以鸡的只数就是28,兔的只数是462818(只).当然,这里我们也可以假设46只全是鸡!鼓励学生从两个方面假设解题,更深一步理解假设法.2.鸡兔共有45只,关在同一个笼子中.每只鸡有两条腿,每只兔子有四条腿,笼中共有100条腿.试计算,笼中有鸡多少只?兔子多少只?【解析】⑴假设法:若假设所有的45只动物都是兔子,那么一共应该有445180⨯=(条)腿,比实际多算18010080-=(条)腿.而每将一只鸡算做一只兔子会多算两条腿,所以有80240-=(只)兔子.÷=(只)鸡被当作了兔子,所以共有40只鸡,有45405注意:假设为兔子时,按照“多算的腿数”计算出的是鸡的数目;假设为鸡时,按照“少算的腿数”计算出的是兔子的数目.同学们可以自己来做一下当假设为鸡时的算法.⑴“金鸡独立”法(砍足法):假设所有的动物都只用一半的腿站立,这样就出现了鸡都变成了“金鸡独立”,而兔子们都只用两条腿站立的“奇观”.这样就有一个好处:鸡的腿数和头数一样多了;而每只兔子的腿数则会比头数多1.因此,在腿的数目都变成原来的一半的时候,腿数比头数多多少,就有多少只兔子.原来有100只腿,让兔子都抬起两只腿,鸡抬起一只腿,则此时笼中有100250-=,÷=(条)腿,比头数多50455所以有5只兔子,另外40只是鸡.3.动物园里有一群鸵鸟和大象,它们共有36只眼睛和52只脚,问:鸵鸟和大象各有多少?【解析】由于每只动物有两只眼睛,由题意知:动物园里鸵鸟和大象的总数为:36218÷=(只),假设鸵鸟和大象一样也有4只脚,则应该有41872⨯=(只)脚,多了725220-=(只)脚,由假设引起的差值:422÷=-=(只),则鸵鸟数为20210(只),大象数为18108-=(头).4.动物园里养了一些梅花鹿和鸵鸟,共有脚208只,鸵鸟比梅花鹿多20只,梅花鹿和鸵鸟各有多少只?【解析】假设梅花鹿和鸵鸟的只数相同,则从总脚数中减去鸵鸟多的20只的脚数得:-⨯=(只).这168只脚是梅花鹿的脚数和鸵鸟的脚数(注意此时梅花208202168鹿和鸵鸟的只数相同)脚数的和,一只梅花鹿和一只鸵鸟的脚数和是:246+=(只),所以梅花鹿的只数是:168628+=(只) (本÷=(只),从而鸵鸟的只数是:282048题也可给学生讲成“捆绑法”,一鸡一兔一组,这个怎么分组是由倍数关系得到的)5. 一个养殖园内,鸡比兔多36只,共有脚792只,鸡兔各几只?【解析】 已知鸡比兔多36只,如果把多的36只鸡拿走,剩下的鸡兔只数就相等了,拿走的36只鸡有23672⨯=(只)脚,可知现在剩下79272720-=(只)脚,一只鸡与一只兔有6只脚,那么兔有7206120÷=(只),鸡有12036156+=(只).6. 鸡兔同笼,鸡、兔共有107只,兔的脚数比鸡的脚数多56只,问鸡、兔各多少只?【解析】 这道例题和前面的例题有所不同,前面的题是已知头数之和和脚数之和求各有几只,而这道题是已知头数之和和脚数之差,这样就比前面的例题增加了一点难度.我们用两种方法来解这道题.(方法一)考虑如果补上鸡脚少的56只的话,那么就要增加56228÷=(只)鸡.这样一来,鸡、兔共有10728135+=(只),这时鸡脚、兔脚一样多.已知一只鸡的脚数是一只兔的一半,而现在鸡脚、兔脚相同,可知鸡的只数是兔的2倍,根据和倍问题有:兔有:135(21)45÷+=(只),鸡有:135452862--=(只)或者1074562-=(只)(方法二)不妨假设107只都是兔,没有鸡,那么就有兔脚:1074428⨯=(只),而鸡的脚数为零.这样兔脚比鸡脚多428只,而实际上只多56只,这说明假设的兔脚比鸡脚多的数比实际上多:42856372-=(只).现在以鸡换兔,每换一只,兔脚减少4只,鸡脚增加2只,即兔脚与鸡脚的总数差就会减少426+=(只).鸡的只数:372662÷=(只)兔的只数:1076245-=(只)7. 鸡、兔共100只,鸡脚比兔脚多20只.问:鸡、兔各多少只?【解析】 假设100只都是鸡,没有兔,那么就有鸡脚200只,而兔的脚数为零.这样鸡脚比兔脚多200只,而实际上只多20只,这说明假设的鸡脚比兔脚多的数比实际上多20020180-=(只).现在以兔换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少426+=(只),而(只)180630÷=,因此有兔子30只,鸡1003070-=(只).8. 每只完整的螃蟹有2只鳌、8只脚。

“鸡兔同笼”问题中的数学思想方法

“鸡兔同笼”问题中的数学思想方法义务教育教科书人教版四年级下册数学第9单元——数学广角安排了“鸡兔同笼”问题,“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在古代数学名著《孙子算经》中。

把这个问题引入小学教材中,一方面让学生感受我国古代的数学文化;另一方面引导学生在解决问题过程中,体验不同的数学方法和数学思想,培养学生发现问题、提出问题、分析问题和解决问题的能力。

我们一起来看看“鸡兔同笼”问题中隐含了哪些重要的数学思想方法,如何有效渗透这些数学思想方法?一、化繁为简的思想“鸡兔同笼”的原题数据比较大,不利于首次接触该类问题的学生进行探究。

因此教材先编排了例1,“我们可以从简单的问题入手:笼子里有若干只鸡和兔。

从上面数,有8个头,从下面数,有26只脚。

鸡和兔各有几只?”通过化繁为简的策略,引导学生探究解决问题,学会了解决该类问题的一般方法后,再解决数据较大的原题。

二、猜测和穷举的思想我们在解决某些问题时,一时找不出数据间明显的数量关系,可以进行猜测,再进行验证和调整。

在解决有关计数问题的过程中,当需要计算的次数不多时,可以把所有对象一一列举出来,这种方法叫做穷举法,或叫枚举法、列举法。

出示例1后,教师问:“我们可以猜一猜有几只鸡?几只兔?”学生猜“3只兔,5只鸡”“4只兔,4只鸡”……当然,猜测的结果需要进行验证。

教师再引导:按照顺序列表试一试:鸡8 7 6 5 4 3兔0 1 2 3 4 5脚16 18 20 22 24 26三、优化的思想优化思想是个一般化的思想方法,在教学过程中,让学生体验到在解决问题的过程中,可能出现多种方法和策略,通过学生的自主探索和合作交流,感受不同解题方法的优劣。

有的学生感觉一一列举很麻烦,希望可以精简次数、优化列表。

第一次猜测后,观察猜测脚的只数与实际脚的只数相差多少只?再一步调整到位。

如有学生先猜4只鸡、4只兔共有:4×2+4×4=24只脚,比实际脚的只数少了2只脚,只需要减少1只鸡增加1只兔就可以得到26只脚了:3×2+5×4=26。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档