2011年10月全国自考概率论与数理统计(经管类)试题(真题)和答案
历年自考概率论与数理统计(经管类)真题及参考答案(全套)

2007年4月份全国自考概率论与数理统计(经管类)真题参考答案一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.A. AB. BC. CD. D答案:B解析:A,B互为对立事件,且P(A)>0,P(B)>0,则P(AB)=0P(A∪B)=1,P(A)=1-P(B),P(AB)=1-P(AB)=1.2.设A,B为两个随机事件,且P(A)>0,则P(A∪B|A)=()A. P(AB)B. P(A)C. P(B)D. 1答案:D解析:A,B为两个随机事件,且P(A)>0,P(A∪B|A)表示在A发生的条件下,A或B发生的概率,因为A发生,则必有A∪B发生,故P(A∪B|A)=1.3.下列各函数可作为随机变量分布函数的是()A. AB. BC. CD. D答案:B解析:分布函数须满足如下性质:(1)F(+∞)=1,F(-∞)=0,(2)F(x)右连续,(3)F(x)是不减函数,(4)0≤F(x)≤1.而题中F1(+∞)=0;F3(-∞)=-1;F4(+∞)=2.因此选项A、C、D中F(x)都不是随机变量的分布函数,由排除法知B正确,事实上B满足随机变量分布函数的所有性质.4.设随机变量X的概率密度为A. AB. BC. CD. D答案:A5.设二维随机变量(X,Y)的分布律为(如下图)则P{X+Y=0}=()A. 0.2B. 0.3C. 0.5D. 0.7答案:C解析:因为X可取0,1,Y可取-1,0,1,故P{X+Y=0}=P{X=0,Y=0}+P{X=1,Y=-1}=0.3+0.2=0.5.6.设二维随机变量(X,Y)的概率密度为A. AB. BC. CD. D答案:A7.设随机变量X服从参数为2的泊松分布,则下列结论中正确的是()A. E(X)=0.5,D(X)=0.5B. E(X)=0.5,D(X)=0.25C. E(X)=2,D(X)=4D. E(X)=2,D(X)=2答案:D解析:X~P(2),故E(X)=2,D(X)=2.8.设随机变量X与Y相互独立,且X~N(1,4),Y~N(0,1),令Z=X-Y,则D(Z)=()A. 1B. 3C. 5D. 6答案:C解析:X~N(1,4),Y~N(0,1),X与Y相互独立,故D(Z)=D(X-Y)=D(X)+D(Y)=4+1=5.9.A. 0.004B. 0.04C. 0.4D. 4答案:C10.A. AB. BC. CD. D答案:B二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
历年自考概率论与数理统计(经管类)真题及参考答案(全套)

2007年4月份全国自考概率论与数理统计(经管类)真题参考答案一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.A. AB. BC. CD. D答案:B解析:A,B互为对立事件,且P(A)>0,P(B)>0,则P(AB)=0P(A∪B)=1,P(A)=1-P(B),P(AB)=1-P(AB)=1.2.设A,B为两个随机事件,且P(A)>0,则P(A∪B|A)=()A. P(AB)B. P(A)C. P(B)D. 1答案:D解析:A,B为两个随机事件,且P(A)>0,P(A∪B|A)表示在A发生的条件下,A或B发生的概率,因为A发生,则必有A∪B发生,故P(A∪B|A)=1.3.下列各函数可作为随机变量分布函数的是()A. AB. BC. CD. D答案:B解析:分布函数须满足如下性质:(1)F(+∞)=1,F(-∞)=0,(2)F(x)右连续,(3)F(x)是不减函数,(4)0≤F(x)≤1.而题中F1(+∞)=0;F3(-∞)=-1;F4(+∞)=2.因此选项A、C、D中F(x)都不是随机变量的分布函数,由排除法知B正确,事实上B满足随机变量分布函数的所有性质.4.设随机变量X的概率密度为A. AB. BC. CD. D答案:A5.设二维随机变量(X,Y)的分布律为(如下图)则P{X+Y=0}=()A. 0.2B. 0.3C. 0.5D. 0.7答案:C解析:因为X可取0,1,Y可取-1,0,1,故P{X+Y=0}=P{X=0,Y=0}+P{X=1,Y=-1}=0.3+0.2=0.5.6.设二维随机变量(X,Y)的概率密度为A. AB. BC. CD. D答案:A7.设随机变量X服从参数为2的泊松分布,则下列结论中正确的是()A. E(X)=0.5,D(X)=0.5B. E(X)=0.5,D(X)=0.25C. E(X)=2,D(X)=4D. E(X)=2,D(X)=2答案:D解析:X~P(2),故E(X)=2,D(X)=2.8.设随机变量X与Y相互独立,且X~N(1,4),Y~N(0,1),令Z=X-Y,则D(Z)=()A. 1B. 3C. 5D. 6答案:C解析:X~N(1,4),Y~N(0,1),X与Y相互独立,故D(Z)=D(X-Y)=D(X)+D(Y)=4+1=5.9.A. 0.004B. 0.04C. 0.4D. 4答案:C10.A. AB. BC. CD. D答案:B二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
历年自考概率论与数理统计(经管类)真题及参考答案(全套)

2007年4月份全国自考概率论与数理统计(经管类)真题参考答案一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.A. AB. BC. CD. D答案:B解析:A,B互为对立事件,且P(A)>0,P(B)>0,则P(AB)=0P(A∪B)=1,P(A)=1-P(B),P(AB)=1-P(AB)=1.2.设A,B为两个随机事件,且P(A)>0,则P(A∪B|A)=()A. P(AB)B. P(A)C. P(B)D. 1答案:D解析:A,B为两个随机事件,且P(A)>0,P(A∪B|A)表示在A发生的条件下,A或B发生的概率,因为A发生,则必有A∪B发生,故P(A∪B|A)=1.3.下列各函数可作为随机变量分布函数的是()A. AB. BC. CD. D答案:B解析:分布函数须满足如下性质:(1)F(+∞)=1,F(-∞)=0,(2)F(x)右连续,(3)F(x)是不减函数,(4)0≤F(x)≤1.而题中F1(+∞)=0;F3(-∞)=-1;F4(+∞)=2.因此选项A、C、D中F(x)都不是随机变量的分布函数,由排除法知B正确,事实上B满足随机变量分布函数的所有性质.4.设随机变量X的概率密度为A. AB. BC. CD. D答案:A5.设二维随机变量(X,Y)的分布律为(如下图)则P{X+Y=0}=()A. 0.2B. 0.3C. 0.5D. 0.7答案:C解析:因为X可取0,1,Y可取-1,0,1,故P{X+Y=0}=P{X=0,Y=0}+P{X=1,Y=-1}=0.3+0.2=0.5.6.设二维随机变量(X,Y)的概率密度为A. AB. BC. CD. D答案:A7.设随机变量X服从参数为2的泊松分布,则下列结论中正确的是()A. E(X)=0.5,D(X)=0.5B. E(X)=0.5,D(X)=0.25C. E(X)=2,D(X)=4D. E(X)=2,D(X)=2答案:D解析:X~P(2),故E(X)=2,D(X)=2.8.设随机变量X与Y相互独立,且X~N(1,4),Y~N(0,1),令Z=X-Y,则D(Z)=()A. 1B. 3C. 5D. 6答案:C解析:X~N(1,4),Y~N(0,1),X与Y相互独立,故D(Z)=D(X-Y)=D(X)+D(Y)=4+1=5.9.A. 0.004B. 0.04C. 0.4D. 4答案:C10.A. AB. BC. CD. D答案:B二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
全国自考概率论与数理统计(二)试题和答案

B)14.设随机变量X 的分布律为,F (x )是X 的分布函数,则F (1)=______.正确答案:(2分) 2/315.设随机变量X 的概率密度为f (x )=2010,x x ≤≤⎧⎨⎩,,其他,则12P X ⎧⎫>⎨⎬⎩⎭=______.正确答案:(2分)3/416.已知随机变量X ~N (4,9),P {X >c }=P {X ≤c },则常数c =______. 正确答案:(2分) 417.设二维随机变量(X ,Y )的分布律为则常数a =______. 正确答案:(2分) 0.218.设随机变量X 与Y 相互独立,且X ~N (0,l),Y ~N (-1,1),记Z =X -Y ,则Z ~______. 正确答案:(2分) N(1,2)19.设随机变量X 服从参数为2的泊松分布,则E (X 2)=______. 正确答案:(2分) 620.设X ,Y 为随机变量,且E (X )=E (Y )=1,D (X )=D (Y )=5,ρXY =0.8,则E (XY )=______. 正确答案:(2分) 521.设随机变量X 服从区间[-1,3]上的均匀分布,随机变量Y =0111X X <⎧⎨≥⎩,,,,则E (Y )=______. 正确答案:(2分) 1/222.设随机变量X ~B (100,0.2),()x Φ为标准正态分布函数,()2.5Φ=0.9938,应用中心极限定理,可得P {20≤x ≤30)≈______. 正确答案:(2分) 0.493823.设总体X ~N (0,l),x 1,x 2,x 3,x 4为来自总体X 的样本,则统计量22221234x x x x +++~______.正确答案:(2分)x2(4)24.设总体X~N(μ,1),μ未知,x1,x2,…,x n为来自该总体的样本,x为样本均值,则μ的置信度为1-α的置信区间是______.正确答案:(2分)]1,1[22nuxnuxaa+-25.某假设检验的拒绝域为W,当原假设H0成立时,样本值(x1,x2,…,x n)落入W的概率为0.1,则犯第一类错误的概率为______.正确答案:(2分)0.1三、计算题(本大题共2小题,每小题8分,共16分)26.设二维随机变量(X,Y)的概率密度为26,01,01,()0,x y x yf x⎧≤≤≤≤⎪=⎨⎪⎩ 其他.求:(1)(X,Y)关于X的边缘概率密度f X(x);(2)P{X>Y}.正确答案:27.设总体X的概率密度为1,0,()0,0,xe xf xxθθ-⎧>⎪=⎨⎪≤⎩其中未知参数θ>0,x1,x2,…,x n是来自该总体的样本,求θ的极大似然估计.四、综合题(本大题共2小题,每小题12分,共24分)正确答案:28.有甲、乙两盒,甲盒装有4个白球1个黑球,乙盒装有3个白球2个黑球,从甲盒中任取1个球,放入乙盒中,再从乙盒中任取2个球.(1)求从乙盒中取出的是2个黑球的概率;(2)已知从乙盒中取出的是2个黑球,问从甲盒中取出的是白球的概率.正确答案:29.设随机变量X~N(0,l),记Y=2X.求:(1)P{X<-1>;(2)P{|X|<1};(3)Y的概率密度.(附:Φ(1)=0.8413)正确答案:五、应用题(10分)30.某产品的次品率为0.l,检验员每天抽检10次,每次随机取3件产品进行检验,且不存在误检现象,设产品是否为次品相互独立,若在一次检验中检出次品多于1件,则调整设备,以X表示一天调整设备的次数,求E(X).正确答案:。
全国自考概率论与数理统计(经管类)模拟试卷28(题后含答案及解析)

全国自考概率论与数理统计(经管类)模拟试卷28(题后含答案及解析)题型有:1. 单项选择题 2. 填空题 3. 计算题 4. 综合题 5. 应用题单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A1、A2、A3为任意的三事件,以下结论中正确的是【】A.若A1、A2、A3相互独立,则A1、A2、A3两两独立B.若A1、A2、A3两两独立,则A1、A2、A3相互独立C.若P(A1A2A3)=P(A1)P(A2)P(A3),则A1、A2、A3相互独立D.若A1与A2独立,A2与A3独立,则A1、A3独立正确答案:A2.掷一颗骰子,观察出现的点数,则“出现偶数”的事件是【】A.基本事件B.必然事件C.不可能事件D.随机事件正确答案:D3.X服从正态分布N(2μ,σ2),其概率密度f(x)= 【】A.B.C.D.正确答案:D解析:由X服从正态分布N(2μ,σ2)及正态分布的定义知:f(x)=,-∞<x<+∞,其中σ2,μ为常数,σ>0.4.X~N(μ,σ2),则P{μ-kσ≤X≤μ+kσ)等于(k>0) 【】A.Ф(k)+Ф(-k)B.2Ф(k)C.2Ф(k-1)D.2Ф(k)-1正确答案:D5.随机变量X服从正态分布.N(0,4),则P{X<1}= 【】A.B.C.D.正确答案:C解析:由X~N(0,4)可知,X的概率密度为f(x)=,-∞<x<+∞.6.当随机变量X服从参数为3的泊松分布时,= 【】A.1B.C.3D.9正确答案:A解析:由X服从参数为λ(λ>0)的泊松分布,∴E(X)=λ=D(X),∴=1.7.若D(X)=16,D(Y)=25,ρXY=0.4,则D(2X-Y)= 【】A.57B.37C.48D.84正确答案:A解析:8.设x1,x2,…,xn是来自总体X的样本,X~N(0,1),则服从【】A.χ2(n-1)B.χ2(n)C.N(0,1)D.N(0,n)正确答案:B解析:由x1,x2,…,xn是来自X的样本且X~N(0,1),∴x1,x2,…,xn独立同分布于N(0,1),∴~χ2(n).9.下列关于置信区间与精度的关系说法不正确的是【】A.置信区间的长度可视为区间估计的精度B.当置信度1-α增大,又样本容量n固定时,置信区间长度增加,区间估计精度减低C.当置信度1-α减小,又样本容量n固定,置信区间长度减小,区间估计精度提高D.置信度1-α固定,当样本容量n增大时,置信区间长度增加,区间估计精度减低正确答案:D10.总体服从正态分布N(μ,σ2),其中σ2未知,随机抽取100个样本得到的样本方差为1,若要对其均值μ=10进行检验,则用【】A.u检验法B.χ2检验法C.t检验法D.F检验法正确答案:C解析:由已知可得,μ0=10,s2=1已知,σ2未知,H0:μ=μ0,故选择t 检验法,所用统计量为t=填空题请在每小题的空格中填上正确答案。
2011年1月概率论与数理统计(经管类)试题及答案

全国2011年1月高等教育自学考试概率论与数理统计(经管类)试题(课程代码:04183)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1. 袋中有5个红球,3个白球,2个黑球,现从中任取3个球,其恰为一红一白一黑的概率为( )A. 41B. 31C. 21D. 432. 设A 、B 为两件事件,已知3.0)(=A P ,则有( )A. 1)()(=+A B P A B PB. 1)()(=+A B P A B PC. 1)()(=+A B P A B PD. 7.0)(=B P 3. 设,0)(,0)(>>B P A P 则由事件A ,B 相互独立,可推出( ) A. )()()(B P A P B A P +=⋃ B. )()(A P B A P = C. )()(A P A B P = D. B A =4. 已知随机变量X 只能取值-1,0,1,2,其相应概率依次为,167,85,43,21cc c c 则}0|1{≠<X X P =( )A. 254B. 258C. 2512D. 25165. 下列各函数是随机变量X 的分布函数的是( ) A. +∞<<-∞+=x x x F ,11)(2B. +∞<<-∞=-x e x F x ,)(C. +∞<<-∞+=x x x F ,arctan 2143)(πD. ⎪⎩⎪⎨⎧>+≤=0,10,0)(x xxx x F 6. 设随机变量(X,Y )只取如下数组中的值:(0,0),(-1,1),(-1,31),(2,0)且相应的概率依次为,45,41,1,21cc c c 则c 的 值为( )A. 2B. 3C. 4D. 57. 设(X,Y )的联合概率密度为),(y x f ,则=>}1{X P ( ) A. ⎰⎰+∞∞-∞-dy y x f dx ,),(1B. ⎰+∞∞-dx y x f ),( C. ⎰∞-1,),(dx y x f D. ⎰⎰+∞∞-+∞dy y x f dx ),(18. 设随机变量X 服从参数为λ的泊松分布,即)(~λP X ,若已知),2()1(===X P X P 则X的期望)(X E 是( )A. 0B. 1C. 2D. 39. 设n X 为n 次独立重复试验中事件A 发生的次数,p 是事件A 在每次试验中发生的概率,则对任意的=⎭⎬⎫⎩⎨⎧≥->∞→εεp n X P n n lim,0( ) A. 0 B. ε C. p D. 110. 已知一元线性回归方程为x y 1ˆ6ˆβ+=,且4,2==y x ,则1ˆβ=( ) A. -1 B. 0 C. 1 D. 2 二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
10月概率论与数理统计(经管类)试题及答案
全国2010年10月高等教育自学考试 概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设随机事件A 与B 互不相容,且P (A )>0,P (B )>0,则( ) (事件的关系与运算) A.P (B |A )=0 B.P (A |B )>0 C.P (A |B )=P (A ) D.P (AB )=P (A )P (B )解:A 。
因为P (AB )=0.2.设随机变量X ~N (1,4),F (x )为X 的分布函数,Φ(x )为标准正态分布函数,则F (3)=( ) A.Φ(0.5) B.Φ(0.75) C.Φ(1) D.Φ(3)(正态分布) 解:C 。
因为F(3)=)1()213(Φ=-Φ 3.设随机变量X 的概率密度为f (x )=⎩⎨⎧≤≤,,0,10 ,2其他x x 则P {0≤X ≤}21=( )A.41 B.31C.21D.43 (连续型随机变量概率的计算)解:A。
因为P {0≤X ≤}21412210==⎰xdx4.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤≤-+, ,0 ,01,21其他x cx 则常数c =( ) A.-3 B.-1 C.-21D.1解:D.(求连续型随机变量密度函数中的未知数) 由于1)(=⎰+∞∞-dx x f112121212121)(01201=⇒=-=⎥⎦⎤⎢⎣⎡+=+=--∞+∞-⎰⎰c c x cx dx cx dx x f5.设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是( ) A. f (x )=-e -x B. f (x )=e -x C. f (x )=||-e 21xD. f (x )=||-e x解:选C。
(概率密度函数性质)A .0<--x e 不满足密度函数性质 由于1)(=⎰+∞∞-dx x f ,B 选项∞=-=+∞∞--+∞∞--⎰xx e dx eC选项12122100||||=-===+∞-+∞-+∞-+∞∞--⎰⎰⎰xx x x e dx e dx e dx eD选项2220||||=-===+∞-+∞-+∞-+∞∞--⎰⎰⎰x xx x edx e dx e dx e6.设二维随机变量(X ,Y )~N (μ1,μ2,ρσσ,,2221),则Y ~( )(二维正态分布)A.N (211,σμ) B.N (221,σμ) C.N (212,σμ)D.N (222,σμ)解:D 。
2011《概率论与数理统计》A卷答案
¹
s
2 0
=
7.52 ;
第4页共5页
c2
=
(n -1)s2
s
2 0
=
24´9.52 7.52
= 38.51
在a
=
0.05
时,
c
2 0.025
(24)
=
28.24
<
c2
=
38.51 <
40.646
=
c
2 0.975
(24)
,
故在a = 0.05 时,接受 H0 认为新产品的强力的标准差无显著变化。
7. 在 Mendel 的豌豆试验问题中,豌豆被分成了四类:黄而圆的,青而圆的,黄而有角的, 青而有角的.按照 Mendel 的理论,这四类豌豆个数之比为 9 : 3 : 3 :1。一次实验中观察者
观察 n = 556 颗豌豆中四类的实际频数分别为 315, 108, 101, 32 ,请通过此数据检验
Mendel 的理论是否正确。(α = 0.05 ) 解:假设 Mendel 的理论是正确的,
则在被观察的 n = 556 颗豌豆中,属于这四类的“理论频数”分别为
556× 9 = 312.75, 556× 3 = 104.25, 556× 3 = 104.25, 556× 1 = 34.75 .
;(2)E( X
)
;(3)D( X
)
.
⎩
4
∫ ∫ 解 (1)
+∞
π
π
−∞
f (x)d x =1,
即
4 −π
Acos xdx =
Asin |−4π =
4
4
2A =1, A = 2 2
自考《概率论与数理统计(经管类)》04183试题及答案
自考《概率论与数理统计(经管类)》04183试题及答案全国2008年10月高等教育自学考试概率论与数理统计(经管类)试题一、单项选择题(本大题共10小题,每小题2分,共20分)1.设A 为随机事件,则下列命题中错误..的是() A .A 与A 互为对立事件B .A 与A 互不相容C .Ω=?A AD .A A =2.设A 与B 相互独立,2.0)(=A P ,4.0)(=B P ,则=)(B A P ()A .0.2B .0.4C .0.6D .0.83.设随机变量X 服从参数为3的指数分布,其分布函数记为)(x F ,则=)31(F () A .e 31 B .3e C .11--eD .1311--e 4.设随机变量X 的概率密度为?≤≤=,,0,10,)(3其他x ax x f 则常数=a () A .41 B .31 C .3D .4 5.设随机变量X 与Y 独立同分布,它们取-1,1两个值的概率分别为41,43,则{}=-=1XY P ()A .161 B .163 C .41 D .83 6.设三维随机变量),(Y X 的分布函数为),(y x F ,则=∞+),(x F ()A .0B .)(x F XC .)(y F YD .17.设随机变量X 和Y 相互独立,且)4,3(~N X ,)9,2(~N Y ,则~3Y X Z -=()A .)21,7(NB .)27,7(NC .)45,7(ND .)45,11(N8.设总体X 的分布律为{}p X P ==1,{}p X P -==10,其中10< <p .设n="" x="" ,,,21="" 为<="" p="" bdsfid="97">。
自考概率论与数理统计(经管类)自学资料
自考概率论与数理统计(经管类)自学资料第一章随机事件与随机事件的概率1.1 随机事件例一,掷两次硬币,其可能结果有:{上上;上下;下上;下下}则出现两次面向相同的事件A与两次面向不同的事件B都是可能出现,也可能不出现的。
引例二,掷一次骰子,其可能结果的点数有:{1,2,3,4,5,6}则出现偶数点的事件A,点数≤4的事件B都是可能出现,也可能不出现的事件。
从引例一与引例二可见,有些事件在一次试验中,有可能出现,也可能不出现,即它没有确定性结果,这样的事件,我们叫随机事件。
(一)随机事件:在一次试验中,有可能出现,也可能不出现的事件,叫随机事件,习惯用A、B、C表示随机事件。
由于本课程只讨论随机事件,因此今后我们将随机事件简称事件。
虽然我们不研究在一次试验中,一定会出现的事件或者一定不出现的事件,但是有时在演示过程中要利用它,所以我们也介绍这两种事件。
必然事件:在一次试验中,一定出现的事件,叫必然事件,习惯用Ω表示必然事件。
例如,掷一次骰子,点数≤6的事件一定出现,它是必然事件。
不可能事件:在一次试验中,一定不出现的事件叫不可能事件,而习惯用φ表示不可能事件。
例如,掷一次骰子,点数>6的事件一定不出现,它是不可能事件。
(二)基本(随机)事件随机试验的每一个可能出现的结果,叫基本随机事件,简称基本事件,也叫样本点,习惯用ω表示基本事件。
例如,掷一次骰子,点数1,2,3,4,5,6分别是基本事件,或叫样本点。
全部基本事件叫基本事件组或叫样本空间,记作Ω,当然Ω是必然事件。
(三)随机事件的关系(1)事件的包含:若事件A发生则必然导致事件B发生,就说事件B包含事件A ,记作。
例如,掷一次骰子,A表示掷出的点数≤2,B表示掷出的点数≤3。
∴A={1,2},B={1,2,3}。
所以A发生则必然导致B 发生。
显然有(2)事件的相等:若,且就记A=B,即A与B相等,事件A等于事件B,表示A与B实际上是同一事件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 9 2011年10月全国自考概率论与数理统计(经管类)试题和答案 一、单项选择 1.设随机变量A与B相互独立,P(A)>0,P(B)>0,则一定有 P(A∪B)=()
A.P(A)+P(B) B.P(A)P(B)
C.1-P(A)P(B) D.1+P(A)P(B) 答案:C 解析:因为A和B相互独立,则A与B相互独立,即P(AB)= P(A)P(B).而P(A∪B)表示A和B至少有一个发生的概率,它等于1减去A和B都不发生的概率,即P(A∪B)=1- P(AB)=1- P(A)P(B).故选C. 2.设A、B为两个事件,P(A)≠P(B)>0,且AB,则一定有() A.P(A|B)=1 B.P(B|A)=1 C.P(B|A)=1 D.P(A|B)=0 答案:A 解析:A,B为两个事件,P(A)≠P(B)>0,且AB,可得B发生,A一定发生,
A不发生,B就一定不发生,即P(A|B)=1,P(B|A)=1.
则P{-1<X≤1}=() A.0.2 B.0.3 C.0.7 D.0.5 答案:D 4.下列函数中,可以作为连续型随机变量的概率密度的是()
A. 3sin,()20,xxfx其他 B.3sin,()20,xxfx其他
C.3cos,()20,xxfx其他 D.31cos,()20,xxfx其他 答案:B 解析:连续型随机变量的概率密度有两条性质:(1)()fx≥0;(2)
0 1 2 0.2 0.3 0.5 X
P 3.若随机变量X的分布为
了 , 2 / 9
()1fxdx. A选项中, 3[,]2x时,()fx=sinx≤0;B选项中,
3[,]2x时,()fx≥0,且()1fxdx;C选项中,()fx≤0;D选项中,()fx
≥0, ()fxdx2 +1.故只有B是正确的. 5.若()1,()3,EXDX则E(32X-4)=() A.4 B.8 C.3 D.6 答案:B 解析:E(2X)=2()[()]DXEX=4,E(32X-4)=3E(2X)-4=8.
6.设二维随机变量(X,Y)的密度函数,yxyxf其他,0;10,10,1),(则X与Y() A.独立且有相同分布 B.不独立但有相同分布 C.独立而分布不同 D.不独立也不同分布
答案:A 解析:分别求出X,Y的边缘分布得:()Xfx,x其他,0,10,1
()Yfy
,y其他,0,10,1
由于(,)fxy= ()Xfx·()Yfy,可以得到X与Y相互独立且
具有相同分布. 7.设随机变量X~B(16,12),Y~N(4,25),又E(XY)=24,则X与Y的相关系数XY=() A.0.16 B.-0.16 C.-0.8 D.0.8
答案:C 解析:因为X~B(16,12),Y~N(4,25),所以E(X)=16×12=8,E(Y)=4, D
(X)=16×12×12=4,D(Y)=25,所以Cov(X,Y)()()XYDXDY=()()()()()EXYEXEYDXDY24840.8425
. 3 / 9
8.设总体X~N(, 2),12,,,nxxx为其样本,则Y=2211()niix服从分布() A.2(1)n B.2()n C.(1)tn D.()tn 答案:B 解析:因为12,,,nxxx~N(,2),则ix~N(0,2),()ix~N(0,1),故Y=2211()niix=21()niix的分布称为自由度为n的2分布,记
为2()n. 9.设总体X~N(, 2),其中2已知,12,,,nxxx为其样本,x=11niixn,作为
的置信区间0.025xu·,n0.025xu·n,其置信水平为() A.0.95 B.0.05 C.0.975 D.0.025 答案:A 解析:本题属于2已知的单个正态总体参数的置信区间,故0.025=2,=0.05,置信水平为1-=0.95. 10.总体X~N(, 2),12,,,nxxx为其样本,x和2s分别为样本均值与样本方差,在2已知时,对假设检验0010::HH应选用的统计量是()
A.0xn B.0xsn C.01xn D.01xsn 答案:A 解析:对假设检验0010::HH,由于2已知,应选用统计量0xun,它是x的标准化随机变量,具有的特点是:(1)u中包含所要估计的未知参数;(2) u的分布为N(0,1),它与参数无关. 二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 11.10颗围棋子中有2粒黑子,8粒白子,将这10粒棋子随机地分成两堆,每堆5粒,则两堆中各有一粒黑子的概率为____. 4 / 9
答案:95 解析:将10粒棋子分成两堆,每堆5粒,共有510C种分法,每堆各有一粒黑子有12C种分法,再把每堆放4粒白子,有48C种分法,故所求概率为955104812CCC. 12.若P(A)=0.7,P(A-B)=0.3,则P(AB)=____. 答案:0.6 解析:P(AB)=P(A)-P(A-B)=0.7-0.3=0.4,P(AB)=1-P(AB) =0.6.
13.随机变量X的概率密度为,xkexfx其他,0,0,)(2则有k=____.
答案:21 解析:由概率密度函数性质可知,20()xfxdxkedx 202|xke.21,12kk故
22
0,0(),____.,0xxXFxaaex
14. 若随机变量的分布函数为则
答案: 1 解析:由分布函数的性质可知,()1,1.Faa故 15.袋中有16个球,其中有2个红色木质球,3个红色玻璃球,4个蓝色木质球,7个蓝色玻璃球,现从袋中任意摸取一个球,若已知是红色的,那么这个球是木质球的概率是____.
答案:25 解析:设A表示“摸到红球”,B表示“摸到木质球”,所要求的是A条件下B
发生的概率,即P(B|A).56(),(),1616PAPB 2(),16PAB
2()216(|)5()516PABPBAPA.
16.设离散型随机变量X的分布函数为0,1,(),11,1,1xFxaxx且 5 / 9
P{X=-1}=12,则a=____.
答案:12 解析:由():{}(),{1}FxPXbFbPX的基本性质知 {1}PX-1{1}{1}(1),2PXPXFaa所以.
17. 若二维随机变量(X,Y)服从D上的均匀分布,D={(,)|11,xyx 03y},则(,)fxy的概率密度为____.
答案:1,(,),(,)60,xyDfxy其他. 解析:SD=2×3=6,二维随机变量(X,Y)服从D上的均
匀分布,则1,(,),(,)60,xyDfxy其他.
则P{X<1,Y2}=____. 答案:0.2 解析:P{X<1,Y≤2}=P{X=0,Y=1}+P{X=0,Y=2}=0.1+0.1=0.2.
19.随机变量X与Y独立,X~B(100,0.2),Y服从参数为12的指数分布,则D(X-2Y)=____. 答案:32 解析:X~B(100,0.2),D(X)=npq=100×0.2×(1-0.2)=16,Y~E(12),D(Y)=21=4,X与Y独立,则D(X-2Y)=D(X)+4D(Y)=16+4×4=32.
Y X 1 2 3
0.1 0.1 0.3 0.25 0 0.25 0
1
,
18.设二维随机变量(X,Y)的分布律为 6 / 9
20. 如果1ˆ和2ˆ都是总体未知参数的估计量,称1ˆ比2ˆ有效,则1ˆ及2ˆ的期望与方差一定满足____. 答案:E(1ˆ)=E(2ˆ)=θ,且D(1ˆ)≤D(2ˆ)
21. 总体X~2(,)N,123,,xxx为样本,若1231132xxax是未知参数的无偏估计,则a=____. 答案:16 解析:X~2(,)N,123,,xxx为样本,则E(1x)=E(2x)=E(3x)
=,E()=123115(),326Exxaxa由于1231132xxax是未知参数的无偏估计,则E()=,即56a=,a=16. 22.设总体X~[-1,1]上的均匀分布,12,,,nxxx为样本,11niixxn,则E(x)=____. 答案:0 解析:随机变量X~U(-1,1),E(ix)=1102,E(x)=
E(11niixn)=11()niiExn=0.
23.设总体X~2(,)N,其中2未知,抽取样本12,,,nxxx,则未知参数的置信水平为1-的置信区间为____.
答案:22(1),(1)ssxtnxtnnn 24.设总体X~2(,)N,其中12,,,nxxx为其样本,则2的无偏估计为____. 答案:211()1niixxn 解析:令2211()1niisxxn,由于E(2s)=2,
所以2211()1niisxxn是2的无偏估计.