高三物理经典例题
高中物理 受力分析(动态平衡问题)典型例题(含答案)【经典】

知识点三:共点力平衡(动态平衡、矢量三角形法)1.(单选)如图所示,一小球在斜面上处于静止状态,不考虑一切摩擦,如果把竖直挡板由竖直位置缓慢绕O点转至水平位置,则此过程中球对挡板的压力F1和球对斜面的压力F2的变化情况是().答案B A.F1先增大后减小,F2一直减小B.F1先减小后增大,F2一直减小C.F1和F2都一直减小D.F1和F2都一直增大2、(单选)(天津卷,5)如图所示,小球用细绳系住,绳的另一端固定于O点.现用水平力F缓慢推动斜面体,小球在斜面上无摩擦地滑动,细绳始终处于直线状态,当小球升到接近斜面顶端时细绳接近水平,此过程中斜面对小球的支持力F N以及绳对小球的拉力F T的变化情况是().答案DA.F N保持不变,F T不断增大B.F N不断增大,F T不断减小C.F N保持不变,F T先增大后减小D.F N不断增大,F T先减小后增大3.(单选)如图所示,一光滑小球静止放置在光滑半球面的底端,用竖直放置的光滑挡板水平向右缓慢地推动小球,则在小球运动的过程中(该过程小球未脱离球面),木板对小球的推力F1、半球面对小球的支持力F2的变化情况正确的是().答案BA.F1增大,F2减小B.F1增大,F2增大C.F1减小,F2减小D.F1减小,F2增大4、(单选)如图所示,一物块受一恒力F作用,现要使该物块沿直线AB运动,应该再加上另一个力的作用,则加上去的这个力的最小值为().答案BA.F cos θB.F sin θC.F tan θD.F cot θ5.(单选)如图所示,一倾角为30°的光滑斜面固定在地面上,一质量为m的小木块在水平力F的作用下静止在斜面上.若只改变F的方向不改变F的大小,仍使木块静止,则此时力F与水平面的夹角为().答案AA.60°B.45°C.30°D.15°6.(多选)一铁架台放于水平地面上,其上有一轻质细线悬挂一小球,开始时细线竖直,现将水平力F作用于小球上,使其缓慢地由实线位置运动到虚线位置,铁架台始终保持静止,则在这一过程中().答案:ADA.细线拉力逐渐增大B.铁架台对地面的压力逐渐增大C.铁架台对地面的压力逐渐减小D.铁架台所受地面的摩擦力逐渐增大7、(多选)(苏州调研)如图所示,质量均为m的小球A、B用两根不可伸长的轻绳连接后悬挂于O点,在外力F的作用下,小球A、B处于静止状态.若要使两小球处于静止状态且悬线OA与竖直方向的夹角θ保持30°不变,则外力F的大小().答案BCDA.可能为33mg B.可能为52mgC.可能为2mg D.可能为mg8、(单选)如图所示,轻绳的一端系在质量为m的物体上,另一端系在一个轻质圆环上,圆环套在粗糙水平杆MN上.现用水平力F拉绳上一点,使物体处于图中实线位置,然后改变F的大小使其缓慢下降到图中虚线位置,圆环仍在原来的位置不动.在这一过程中,水平拉力F、环与杆的摩擦力F摩和环对杆的压力F N的变化情况是().答案DA.F逐渐增大,F摩保持不变,F N逐渐增大B.F逐渐增大,F摩逐渐增大,F N保持不变C.F逐渐减小,F摩逐渐增大,F N逐渐减小D.F逐渐减小,F摩逐渐减小,F N保持不变9.(单选)如图所示,在拉力F作用下,小球A沿光滑的斜面缓慢地向上移动,在此过程中,小球受到的拉力F和支持力F N的大小变化是().A.F增大,F N减小答案AB.F和F N均减小C.F和F N均增大D.F减小,F N不变10.(单选)半圆柱体P放在粗糙的水平地面上,其右端有固定放置的竖直挡板MN.在P和MN之间放有一个光滑均匀的小圆柱体Q,整个装置处于静止状态.如图所示是这个装置的纵截面图.若用外力使MN保持竖直,缓慢地向右移动,在Q落到地面以前,发现P始终保持静止.在此过程中,下列说法中正确的是().答案BA.MN对Q的弹力逐渐减小B.地面对P的摩擦力逐渐增大C.P、Q间的弹力先减小后增大D.Q所受的合力逐渐增大11.(多选)如图所示,在斜面上放两个光滑球A和B,两球的质量均为m,它们的半径分别是R和r,球A 左侧有一垂直于斜面的挡板P,两球沿斜面排列并处于静止状态,下列说法正确的是().答案BC A.斜面倾角θ一定,R>r时,R越大,r越小,则B对斜面的压力越小B.斜面倾角θ一定,R=r时,两球之间的弹力最小C.斜面倾角θ一定时,无论半径如何,A对挡板的压力一定D.半径一定时,随着斜面倾角θ逐渐增大,A受到挡板的作用力先增大后减小12.(单选)如图所示,用OA、OB两根轻绳将物体悬于两竖直墙之间,开始时OB绳水平.现保持O点位置不变,改变OB绳长使绳端由B点缓慢上移至B′点,此时绳OB′与绳OA之间的夹角θ<90°.设此过程中绳OA、OB的拉力分别为F OA、F OB,下列说法正确的是().答案BA.F OA逐渐增大B.F OA逐渐减小C.F OB逐渐增大D.F OB逐渐减小13、(多选)如图,不可伸长的轻绳跨过动滑轮,其两端分别系在固定支架上的A、B两点,支架的左边竖直,右边倾斜.滑轮下挂一物块,物块处于平衡状态,下列说法正确的是().答案BCA.若左端绳子下移到A1点,重新平衡后绳子上的拉力将变大B.若左端绳子下移到A1点,重新平衡后绳子上的拉力将不变C.若右端绳子下移到B1点,重新平衡后绳子上的拉力将变大D.若右端绳子下移到B1点,重新平衡后绳子上的拉力将不变14、(单选)如图所示,一小球放置在木板与竖直墙面之间.设墙面对球的压力大小为F N1,球对木板的压力大小为F N2.以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置.不计摩擦,在此过程中().答案BA.F N1始终减小,F N2始终增大B.F N1始终减小,F N2始终减小C.F N1先增大后减小,F N2始终减小D.F N1先增大后减小,F N2先减小后增大15.(单选)作用于O点的三力平衡,设其中一个力大小为F1,沿y轴正方向,力F2大小未知,与x轴负方向夹角为θ,如图所示.下列关于第三个力F3的判断中正确的是().A.力F3只能在第四象限答案CB.力F3与F2夹角越小,则F2和F3的合力越小C.F3的最小值为F1cos θD.力F3可能在第一象限的任意区域16.(多选)一个光滑的圆球搁在光滑的斜面和竖直的挡板之间,如图21所示.斜面和挡板对圆球的弹力随斜面倾角α变化而变化,故().答案ACA.斜面弹力F N1的变化范围是(mg,+∞)B.斜面弹力F N1的变化范围是(0,+∞)C.挡板的弹力F N2的变化范围是(0,+∞) D.挡板的弹力F N2的变化范围是(mg,+∞)。
完整版)高三物理电场经典习题

完整版)高三物理电场经典习题电场练题1.如下图所示,一个静止的点电荷+Q在其周围产生电场,有三个点A、B、C在与+Q共面的平面上,其中B、C在以+Q为圆心的同一圆周上。
设A、B、C三点的电场强度大小分别为EA、EB、EC,电势分别为φA、φB、φC,则正确的选项是:A。
EA<EB,φB=φCB。
EA>EB,φA>φBC。
EA>EB,φA<φBD。
EA>EC,φB=φC2.下图中,有一个水平匀强电场,在竖直平面内有一个带电微粒,其初速度为v,沿着虚线从点A运动到点B。
此时,能量的变化情况是:A。
动能减少,重力势能增加,电势能减少B。
动能减少,重力势能增加,电势能增加C。
动能不变,重力势能增加,电势能减少D。
动能增加,重力势能增加,电势能减少3.在匀强电场中,将一带电小球,其质量为m,带电量为q,由静止释放,其运动轨迹为一条与竖直方向夹角为θ的直线。
此时,匀强电场的场强大小为:A。
唯一值是mgtgθ/qB。
最大值是mgtgθ/qC。
最小值是mgsinθ/qD。
最小值是mgcosθ/q4.下图中,从灯丝发出的电子经过加速电场加速后,进入偏转电场。
若加速电压为U1,偏转电压为U2,为了使电子在电场中的偏转量y增大为原来的两倍,正确的方法是:A。
使U1减小到原来的1/2B。
使U2增大为原来的2倍C。
使偏转板的长度增大为原来的2倍D。
使偏转板的距离减小为原来的1/25.下图中,将乙图所示的交变电压加在甲图所示的平行板电A、B两极板上,开始时B板的电势比A板高,有一位于极板中间的电子,在t=0时刻由静止释放,它只在电场力作用下开始运动,设A、B两板间距足够大,则电子的运动情况是:A.电子一直向A板运动B.电子一直向B板运动C.电子先向A板运动,再向B板运动,再返回,如此做周期性运动D.电子先向B板运动,再向A板运动,再返回,如此做周期性运动6.一个动能为Ek的带电粒子垂直于电力线方向飞入平行板电,飞出电时动能为2Ek。
高三物理试题及答案详解

高三物理试题及答案详解一、选择题(每题4分,共40分)1. 关于质点的下列说法中正确的是()A. 质点是理想化的物理模型,实际不存在B. 质点是质量很小的物体C. 质点是体积很小的物体D. 质点是质量很大的物体答案:A解析:质点是物理学中一个理想化的模型,用于描述物体的运动状态时,忽略物体的大小和形状,只考虑其质量。
因此,质点并非实际存在的物体,也不是质量或体积很小或很大的物体。
2. 以下关于位移和路程的说法中,正确的是()A. 位移是矢量,路程是标量B. 位移是标量,路程是矢量C. 位移和路程都是矢量D. 位移和路程都是标量答案:A解析:位移是描述物体位置变化的物理量,具有大小和方向,是矢量;而路程是描述物体运动轨迹的总长度,只有大小,没有方向,是标量。
3. 一个物体做匀速直线运动,其速度大小为v,经过时间t后,物体的位移大小为()A. vtB. 0.5vtC. 2vtD. 0答案:A解析:匀速直线运动中,物体的速度是恒定的,位移等于速度乘以时间,即s = vt。
4. 以下关于牛顿第二定律的表述中,正确的是()A. F=maB. F=0C. F=ma^2D. F=m/a答案:A解析:牛顿第二定律表明,物体所受的合力等于物体质量与加速度的乘积,即F=ma。
5. 一个物体从静止开始做匀加速直线运动,经过时间t后,其速度大小为v,加速度大小为a,则()A. v=atB. v=2atC. v=0.5atD. v=at^2答案:A解析:根据匀加速直线运动的速度时间公式,v = at。
6. 以下关于动量守恒定律的表述中,正确的是()A. 动量守恒定律只适用于宏观物体B. 动量守恒定律只适用于微观物体C. 动量守恒定律只适用于物体间发生碰撞时D. 动量守恒定律适用于所有物体答案:D解析:动量守恒定律是描述物体系统总动量在没有外力作用时保持不变的物理定律,适用于所有物体。
7. 以下关于能量守恒定律的表述中,正确的是()A. 能量守恒定律只适用于封闭系统B. 能量守恒定律只适用于开放系统C. 能量守恒定律只适用于机械能守恒D. 能量守恒定律适用于所有物理过程答案:D解析:能量守恒定律表明,在任何物理过程中,能量的总量保持不变,适用于所有物理过程。
高中物理·共点力平衡·经典例题

经典例题1、(多选)如图所示,水平推力使物体静止于斜面上。
则()A 、物体一定受三个力作用B 、物体可能受三个力作用C 、物体可能受到沿斜面向上的静摩擦力D 、物体可能受到沿斜面向下的静摩擦力2 、如图所示,在倾角为θ的传送带上有质量均为m的三个木块1、2、3中间均用原长为L、劲度系数为k的轻弹簧连接起来,木块与传送带之间的动摩擦因数均为μ,其中木块1被与传送带平行的细线拉住。
传送带按图示方向匀速运行。
三个木块均处于平衡状态。
下列结论正确的是(A 、2,3两木块之间的距离等于L +B 、2,3两木块之间的距离等于( sinθ +μcosθ)mgK + LC 、1,2两木块之间的距离等于2,3两木块之间的距离D 、如果传送带突然加速,相邻两木块之间的距离都将增大3 、如图,物块质量为m ,与甲、乙两弹簧相连接,乙弹簧下端与地面连接。
甲乙两弹簧质量不计,其劲度系数分别为k1、k2起初甲弹簧处于自由长度,现用手将甲弹簧的A端缓慢上提,使乙弹簧产生的弹力大小变为原来的2/3 。
则A端上移距离可能是()A 、(k1 + k2)mgB 、2(k1 + k2)mg3k1k23k1k2C 、4(k1 + k2)mgD 、5(k1 + k2)mg3k1k23k1k24 、(多选)物块A、B的质量分别为m和2m ,用轻弹簧连接后放在光滑的水平面上,对B施加向右的水平拉力F,稳定后A、B 相对静止的在水平面上运动。
此时弹簧的长度为L1,若撤去拉力F,换成大小仍为F的水平推力向右推A,稳定后A、B相对静止的在水平面上运动,弹簧长度为L2 ,则下列判断正确的是()A 、弹簧的原长为2L1 + L23B 、两种情况下稳定时弹簧的形变量相等C 、两种情况下稳定时两物块的加速度相等D 、弹簧的劲度系数为 FL1 - L25 、如图所示,用完全相同的轻弹簧A、B、C将两个相同的小球连接并悬挂,小球处于静止状态。
弹簧A与竖直方向的夹角为30o。
(完整版)高考物理常考大题及答案

1(20分)如图12所示,PR 是一块长为L =4 m 的绝缘平板固定在水平地面上,整个空间有一个平行于PR 的匀强电场E ,在板的右半部分有一个垂直于纸面向外的匀强磁场B ,一个质量为m =0.1 kg ,带电量为q =0.5 C 的物体,从板的P 端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。
当物体碰到板R 端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC =L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s 2 ,求:(1)判断物体带电性质,正电荷还是负电荷?(2)物体与挡板碰撞前后的速度v 1和v 2(3)磁感应强度B 的大小(4)电场强度E 的大小和方向答案(1)由于物体返回后在磁场中无电场,且仍做匀速运动,故知摩擦力为0,所以物体带正电荷.且:mg =qBv 2…………………………………………………………①(2)离开电场后,按动能定理,有:-μmg=0-mv 2………………………………②4L 21由①式得:v 2=2 m/s 2(3)代入前式①求得:B =T 22(4)由于电荷由P 运动到C 点做匀加速运动,可知电场强度方向水平向右,且:(Eq -μmg )mv 12-0……………………………………………③212=L 进入电磁场后做匀速运动,故有:Eq =μ(qBv 1+mg )……………………………④由以上③④两式得:⎩⎨⎧==N/C2.4m/s 241E v 2(10分)如图2—14所示,光滑水平桌面上有长L=2m 的木板C ,质量m c =5kg ,在其正中央并排放着两个小滑块A 和B ,m A =1kg ,m B =4kg ,开始时三物都静止.在A 、B 间有少量塑胶炸药,爆炸后A 以速度6m /s 水平向左运动,A 、B 中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求:(1)当两滑块A 、B 都与挡板碰撞后,C 的速度是多大? (2)到A 、B 都与挡板碰撞为止,C 的位移为多少?图12答案(1)A 、B 、C 系统所受合外力为零,故系统动量守恒,且总动量为零,故两物块与挡板碰撞后,C 的速度为零,即0=C v (2)炸药爆炸时有BB A A v m v m = 解得s m v B /5.1= 又BB A A s m s m = 当s A =1 m 时s B =0.25m ,即当A 、C 相撞时B 与C 右板相距m s Ls B 75.02=-= A 、C 相撞时有: vm m v m C A A A )(+=解得=1m/s ,方向向左v 而=1.5m/s ,方向向右,两者相距0.75m ,故到A ,B 都与挡板碰撞为止,C 的位B v 移为m19.3.0=+=BC v v svs 3(10分)为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F ,放1手后,木板沿斜面下滑,稳定后弹簧示数为F ,测得斜面斜角为θ,则木板与斜面间动2摩擦因数为多少?(斜面体固定在地面上)答案 固定时示数为F ,对小球F =mgsinθ ①11整体下滑:(M+m )sinθ-μ(M+m)gcosθ=(M+m)a ② 下滑时,对小球:mgsinθ-F =ma ③2 由式①、式②、式③得μ=tan θ12F F 4有一倾角为θ的斜面,其底端固定一挡板M ,另有三个木块A 、B 和C ,它们的质量分别为m =m =m ,m =3 m ,它们与斜面间的动摩擦因数都相同.其中木块A 连接一轻弹A B C簧放于斜面上,并通过轻弹簧与挡板M 相连,如图所示.开始时,木块A 静止在P 处,弹簧处于自然伸长状态.木块B 在Q 点以初速度v 向下运动,P 、Q 间的距离为L.已知木块B 在0下滑过程中做匀速直线运动,与木块A 相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B 向上运动恰好能回到Q 点.若木块A 静止于P 点,木块C 从Q 点开始以初速度向下运动,经历同样过程,最后木块C 停在斜面上的R 点,求032v P 、R 间的距离L′的大小。
高三物理练习题精选

高三物理练习题精选近年来,高中物理课程的考试要求和难度逐渐提高。
为了帮助高三学生复习物理知识,我们精选了一些经典练习题,希望能够对同学们的备考有所帮助。
以下是其中的一些例题:1. 一辆汽车以60 km/h的速度行驶,途中突然以5 m/s²的加速度减速,经过10秒后停下来。
请问汽车在减速过程中所行驶的距离是多少?2. 一个物体以10 m/s的速度垂直向上抛出,重力加速度为10 m/s²。
求物体从抛出到最高点所用的时间。
3. 两个物体,质量分别为2 kg和5 kg,分别以2 m/s²和5 m/s²的加速度水平向右运动。
求两个物体所受的合力是多少?4. 一个球从斜面上方以10 m/s的速度斜向上滚下,滚动过程中没有空气阻力。
球从斜面顶端滚到底端所用的时间是多少?5. 一辆汽车以20 m/s的速度通过一个半径为50 m的圆周率。
求汽车通过圆周率所受的向心力。
这些例题覆盖了高三物理考试中的常见知识点,例如速度、加速度、力等。
通过解答这些问题,同学们可以加深对物理概念的理解,并提高解题能力。
当然,复习物理知识不仅仅是解题,还需要对物理公式和定律的记忆和理解。
建议同学们平时多做题目,注重对物理公式的运用,并配合阅读相关的物理概念解释,加深对知识点的理解。
另外,还要注意复习时的思维方式和答题技巧,例如抽象思维能力、分析问题的能力等。
高三学习阶段是备考阶段,时间紧迫,希望同学们能够善于利用时间,高效地进行物理复习。
相信通过不断的练习和总结,大家一定能够在物理考试中取得好成绩。
最后,祝愿同学们取得优异的成绩,实现自己的理想!。
(完整版)高中物理电磁感应经典例题总结

1. 如图,金属棒ab 置于水平放置的 U 形光滑导轨上,在ef 右侧存在有界匀强磁 场B ,磁场方向垂直导轨平面向下, 在ef 左侧的无磁场区域 cdef 内有一半径很小的金属圆环L ,圆环与导轨在同一平面内。
当金属棒ab 在水平恒力F 作用下从磁场左边界ef 处由静止开始向右运动后,圆环 L 有 _______________ (填收缩、扩 张)趋势,圆环内产生的感应电流 __________________ (填变大、变小、不变) 答案:收缩,变小解析:由于金属棒ab 在恒力F 的作用下向右运动,则 abcd 回路中产生逆时针方向的感应电流,则在圆环处产 生垂直于只面向外的磁场,随着金属棒向右加速运动,圆环的磁通量将增大,依据楞次定律可知,圆环将有收 缩的趋势以阻碍圆环的磁通量将增大; 又由于金属棒向右运动的加速度减小, 单位时间内磁通量的变化率减小,所以在圆环中产生的感应电流不断减小。
2.如图所示,固定位置在同一水平面内的两根平行长直金属导轨的间距为d ,其右端接有阻值为 R 的电阻,整个装置处在竖直向上磁感应强度大小为 B 的匀强磁场中。
一质量为 m (质量分布均匀)的导体杆 ab 垂直于导轨放 置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为u 。
现杆在水平向左、垂直于杆的恒力 F 作用下从静止开始沿导轨运动距离 L 时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直) 。
设杆接入电路的电阻为r ,导轨电阻不计,重力加速度大小为g 。
则此过程aF 1C.恒力F 做的功与摩擦力做的功之和等于杆动能的变化量 D •恒力F 做的功与安倍力做的功之和大于杆动能的变化量q-BdL ,B 对;在棒从开始到达到最大速度的过程中由动能定理有:R r R r R r W FW f W 安E K ,其中W f mg ,W 安 Q ,恒力F 做的功与摩擦力做的功之和等于杆动能的变化量与回路产生的焦耳热之和, C 错;恒力F 做的功与安倍力做的功之和等于于杆动能的变化量与克服摩擦力 做的功之和,D 对。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三物理经典例题【典型例题1】如图所示的电路中,当滑线变阻器的滑动触点向b端移动时:(A)电压表V的读数增大,电流表A的读数减小.(B)电压表V和电流表A的读数都增大.(C)电压表V和电流表A的读数都减小.(D)电压表V的读数减小,电流表A的读数增大.分析与解:这是一道比较典型的局部电路变化引起全电路中各物理量变化的问题,分析方法就是从局部电阻变化分析全电路(干路)电流变化,再讨论局部各物理量.变化,即从局部到整体,再从整体到局部的方法.此题中变阻器滑动端向b端移动,变阻器电阻增大,与并联部分电阻增大,再与串联后外电路总电阻增大,导致全电路电阻增大,电动势不变,因此干路总电流减小,路端电压 : ,总电流减小,端电压增大,故电压表所测路端电压的读数增大.电流表所测电流为通过变阻器电流,由于变阻器电阻变了,两端电压也变了,因此需通过与的电路连接关系进行讨论,由于不变,通过的是总电流,总电流变小,因此: 两端电压由可知变小,由此可判断出:与并联两端电压是增大的,不变,电流也将增大,因此通过的电流,由于I减小,增大可判断出将减小.在这个分析过程中,综合运用了全电路、串并联特点等知识,其中最关键的要善于从相互关系中讨论分析问题.此题正确答案应为A.【典型例题2】两个定值电阻串联后接在输出电压U稳定于12V的直流电源上,用一个内阻不是远大于的电压表接在两端(如图),电压表示数为8V,如果把此电压表改接在两端,则电压表的系数将:(A)小于4V(B)等于4V(C)大于4V小于8V(D)等于或大于8V分析与解:电压表可视为一特殊的电阻,第一,的阻值较大,一般在几千欧以上,第二,这一电阻的电压值可从表盘上示出.用电压表测量阻值较小电阻的电压时,其分流很小,一般可以不计.但是本题的电阻不比小很多.的分流作用就不容忽略.下面介绍解答本题的两种推理方法.方法一:当与并联后,电压表的示数8V,这是并联电阻的电压值,由于所以测量前电压的真实值大于8V.这表明的电压真实值小于4V.同理,当电压表()改接在两端,电压表的示数也应小于电压的真实值,当然小于4V.选项A正确.方法二:电压表接在两端时,示数为8V,此时两端电压为4V,可知:,又,可知:.如果把电压表改接在两端的并联电阻:,则.根据总电压为12V及串联电阻的分压原理,此时伏特表的示数小于U的1/3,即小于4V.【典型例题3】如图所示的电路中,三个电阻的阻值之比为R1:R2:R3=1:2:3,电流表A1、A2和A3的内电阻均可忽略,它们的读数分别为I1、I2和I3,则I1:I2:I3 =_______:______:_______.又,如果把图中的电流表A1和A2换成内阻非常大的电压表V1和V2,则它们的示数U1和U2及总电压U的比值U1:U2:U =_______:______:_______.分析与解:解答本题的关键是正确分析电路的结构.我们把原图中各结点分别标上字母,如图1所示.由于三个电流表的内阻都可以忽略,可以认为各电流表的两端的电势是相等的,即图中A 点与C点电势相等,B点与D点电势相等,为此我们确定三个电阻是并联的,不画电流表的等效电路图如图2所示,画出电流表的等效电路图如图3所示.从图2可以看出,三电阻是并联在电路中的,因此通过三电阻的电流之比I R1:I R2:I R3 ==6:3:2.从图3可以看出,电流表A1量的是通过R2和R3的电流,电流表A2量的是通过R1和R2的电流,而A3量的是通过干路的总电流,因此I1:I2:I3 =5:9:11.如果把原图中的电流表A1和A2换成内阻非常大的电压表V1和V2,则三个电阻是串联在电路中的,电压表V1量的是电阻R1和R2两端的电压,而电压表V2量的是电阻R2和R3两端的电压,因此U1:U2:U =3:5:6.【典型例题4】如图所示的电路中,已知电容F,电源电动势V,内电阻不计,.则电容器极板所带的电量为:(A)C(B)C(C)C(D)C分析与解:在电路中分析有关点间电势差是一个应掌握的基本方法,这个方法的基本出发点是要选定一个电势零点(公共点)以便找到一个基准,将各有关点与这点进行比较.此题中可选电源负极为电势零点.然后根据串联特点,可以判断出点与零点电势差,即两端电压:,故V,同理,点电势与零点电势差即两端电压:,故V,由此可知:点电势比点高4V,电容器极带正电,带电量C,答案应为D。
【典型例题5】如图所示的电路中,电源E的电动势为3.2V,电阻R的阻值为30Ω,小灯泡L的额定电压3.0V,额定功率4.5W,当开关S按位置1时,电压表的读数为3V,那么当开关S接到位置2时,小灯泡L的发光情况是A.很暗,甚至不亮B.正常发光C.比正常发光略亮D.有可能被烧坏分析与解:当开关接到1时,回路中电流(A)电源内阻当开关接2时,回路中,其中小灯泡的电阻A此时小灯泡实际消耗的功率W W∴此时小灯泡L很暗,甚至不亮.答案应选择A.【典型例题6】如图为一电路板的示意图,a b c d为接线柱,a,d与2交流电源连接,ab间bc间,cd间分别连接一个电阻,现发现电路中设有电流,为检查电路故障,用一交流电压表分别测得b,d间及a,c两点间电压均为2由此可知A.ab间电路通,cd间电路不通B.ab间电路不通,bc间电路通C.ab间电路通,bc间电路不通D.bc间电路不通,cd间电路通分析与解:首先应明确二个问题:1、电路中无电流即时,任何电阻两端均无电压.2、若电路中仅有一处断路,则哪里断,横跨断路处任两点间的电压均是电源电压,由题意,bd 间电压2说明断路必在bd之间;ac之间电压为2明断路点又必在ac间;两者共同区域是bc.答案是:C、D.【典型例题7】如图所示,已知电源的电动势E=10V,内电阻r=1Ω,定值电阻R0=4Ω,滑动变阻器的总阻值R=10Ω.求:电源的最大输出功率多大?定值电阻R0消耗的功率的最大值是多大?滑动变阻器上消耗的功率的最大值是多大?分析与解:(1)电源的输出功率应出现在外电路内电阻相等的时候,但现在有定值电阻在,这个条件已不可能满足,只有在滑动变阻器的电阻为0时,输出功率才最大,即P出max==5.76W.(2)定值电阻R0消耗的功率的最大值与上一问相等,即P0 max=5.76W.(3)滑动变阻器的阻值改变时,通过它的电流、两端电压及它的电阻都在改变,但我们有一个简易的方法解决这个问题:定值电阻合并到电源内阻中,即认为电源内r’=5Ω,则当个电阻R=r’=5Ω时,电源有最大输出功率,即为滑动变阻器上消耗的最大功率.P R max==1.8W.【典型例题8】如图所示,直流电动机和电炉并联后接在直流电源上,已知电源的内阻.电炉的电阻,电动机绕组的电阻,当开并断开时,电炉的功率是475W,当开关S闭合时电炉的功率是402.04W.求:(1)直流电路的电动势E;(2)开关S闭合时,电动机的机械功率多大?分析与解:S断开时,电炉的功率代入已知数据P、、r.解出V.S闭合时,有电动机的支路较复杂,且不能求欧姆定律求解,故先分析电炉所在支路.设该支路的电流强度,电炉的功率.代入数值求出 A 两端电压也就是端电压V,设干路电流I,由闭合电路欧姆定律∴A通过电动机的电流强度:A由已求出和(也是电机两端电压),可求出电机消耗功率(电功率):W电机消耗的热功率:W由能量守恒可知,通过电动机转化成机械功率的是:W注意:通过此题,可体会到对于非纯电阻的用电器,功率,但,热功率用计算,转化成其它形式能的部分用能量守恒来计算.【典型例题9】图1、图2所示的两种电路中,电源相同,各电阻器值相等,各电流表的内阻相等且不可忽略不计.电流表和读出的电流值分别为和.下列关系式中正确的是(A)(B)(C)(D)分析与解:设电源内阻为r,电流表电阻为.图1 电路的总电阻较图2电路的总电阻大,电路中的总电流因而较小,即,(D)正确.图1中流过的电流小于总电流的,图2中流过的电流等于总电流的一半,所以,,(B)正确.【典型例题10】来自质子源的质子(初速度为零),经一加速电压为800kV的直线加速器加速,形成电流为1mA的细柱质子流.已知质子电荷C.这束质子流每秒打到靶上的质子数为_________.假定分布在质子源到靶之间的加速电场是均匀的,在质子束中与质子源相距l和4l的两处,各取一段极短的相等长度的质子流,其中的质子数分别为和,则.分析与解:按照又,即从微观角度看,,q是粒子电量,是粒子速度,n是单位时间内通过电流截面的粒子数.细柱形质子流各处的电流相等,与质子源相距l和4l两处电流相等.∴加速质子的电场是匀强的,质子作初速为零的匀加速运动:∴∴【典型例题11】把一个“10V,2.0W”的用电器A(纯电阻)接到某一电动势和内阻都不变的电源上,用电器A 实际消耗的功率是2.0W;换上另一个“10V,5.0W”的用电器B(纯电阻)接到这一电源上,用电器B实际消耗的功率有没有可能反而小于2.0W?你如果认为不可能,试说明理由.可能则求出用电器B实际消耗的功率小于2.0W的条件.(设电阻不随温度改变)分析与解:给出了用电器额定电压与额定功率,就是给出了用电器(纯电阻)的电阻,用电器A电阻为,用电器B的电阻为.根据全电路规律,电流随R减小而增大,但路端电压却随电流增大而减小.用电器B接入电源,,电流,但端电压,功率有可能小于.由题意:W换上B后,联立以上两式可解出,V,。