教材例10-3改编

合集下载

2023最新-校本课程教案【优秀10篇】

2023最新-校本课程教案【优秀10篇】

校本课程教案【优秀10篇】写好教案是保证教学取得成功、提高教学质量的基本条件。

教学过程是由教师的教和学生的学所组成的双边活动过程。

为了大家学习方便,为您带来了10篇《校本课程教案》,希望能对您的写作有一定的参考作用。

校本课程教案篇一一、指导思想坚持“促进学生全面发展”的指导方针,满足学生运动技能,艺体素质,心理素质和社会适应能力发展的需要,促进学生个性的健康发展,塑造健全的人格,形成有利于促进学生健康成长的校园特色文化,为学生终身发展奠定基础。

二、基本形式“走班”就是学生打破原来常态下的年级和班级组织,依照自己的兴趣、爱好、特长,自主选择辅导老师和活动的内容、形式,教师与学生通过自由选择和双向选择,建立新的班集体后统一管理。

本学期校级共设置了越剧、车模、摄影、魔方、科幻画、石头画、足球、篮球、排球、乒乓球等十多个校级社团,进行拔尖型的'教学;年级层面按照班级数设置了书画、棋类、动手做等社团,进行兴趣培养式的教学。

校级节日活动进行整体安排:三月份是第四届“补天阅读节”,四月份是首届“补天戏曲节”,五月份是“补天科技节”,六月份是“补天体育节”。

这些节日活动的安排纳入“选课走班”的内容,将整体占用半天的时间搞活动。

三、时间设置每周利用两个半天实施:周三下午第二课全校实施具有区域地方特色的越剧课程,根据学生的已有层次选课;周三下午第三课全校实施年级和校级层面的兴趣活动走班。

周三下午第一课和周五下午三节课,分别实施阅读、思维、美文和主题活动社团,这些社团均能做到年级内同时(或部分同时),将在该学科的范畴内,根据学生的水平和兴趣,实施走班教学。

四、实施过程(一)全员参与走班课程的研发每一位教师要树立“我就是课程”意识。

根据自身的特点和专长,积极主动地辅导社团、研发课程。

每位教师要无限相信卓越课程成就卓越教师,卓越教师研发卓越课程,积极倡导“学科+特色+人生导师”的创新思维,拥有属于自己、影响学生生命成长课程。

北师版七年级下册数学 第1章 1.2.1 幂的乘方 习题课件

北师版七年级下册数学 第1章 1.2.1  幂的乘方 习题课件

精彩一题
【点拨】逆用幂的乘方法则比较大小有下面两个技巧. (1)底数比较法:逆用幂的乘方法则变形为指数相同,底 数不同的形式进行比较; (2)乘方比较法:将幂同时乘方化为同指数幂,计算幂的 结果,比较幂的大小,从而比较底数的大小.
精彩一题 解:因为255=(25)11=3211, 344=(34)11=8111, 433=(43)11=6411, 32<64<81, 所以255<433<344.
3.【教材P6习题T3变式】【2021·海南】下列计算正确的是 ( C) A.a3+a3=a6 B.2a3-a3=1 C.a2·a3=a5 D.(a2)3=a5
新知基本功
4.若(a3)2=64,则a等于( C )
A.2
B.-2
C.±2
D.以上都不对
新知基本功
5.【教材P6例1变式】计算: (1)(103)4=__1_0_1_2___; (2)[(-2)3]2=_6_4_(_或__2_6_) ; (3)[(a+b)2]5=_(_a_+__b_)_10_.
新知基本功
6.【教材P8随堂练习T2改编】在学校举办的手工制作大赛 中,李佳做了一个足球模型.若它的半径是102 mm,则 它的体积约为__4_×__1_0_6_mm3(π取3).
新知基本功
7.幂的乘方与同底数幂的乘法的混合运算:先算 __幂__的__乘__方____,再算_同__底__数__幂__的__乘__法___.
(C)
A.2
B.52
C.3
D.92
【点拨】因为10a×100b=10a×102b=10a+2b=20×50=1000
=103,所以a+2b=3,
所以原式=(a+2b+3)=×(3+3)=3.故选C.

人教版数学一下教案-十几减8、7、6 第三课时

人教版数学一下教案-十几减8、7、6 第三课时

教材第14页的例3及“做一做”的内容。

1.使学生掌握十几减7、6的退位减法的计算方法及算理。

2.培养学生提出问题的意识。

3.初步培养学生提出问题,解决问题的能力。

1.初步掌握十几减7、6的退位减法的思维过程。

2.掌握“破十法”“想加算减法”。

多媒体课件、3捆小棒、口算卡片。

1.口算。

12-8= 12-9= 3+8= 14-8=4+9= 15-8= 16-8= 17-9=2.导入新课。

课件动态显示(或挂图)例3。

图中有什么?(小朋友和金鱼)两个小朋友都给大家提出了什么问题?你们能解决吗?1. 教学例3。

(1)出示例3。

要解决小朋友们提出的问题,应该怎样列式呢?为什么这样列式?(用减法计算,已知总数和其中的一部分,求另一部分用减法计算)列式:13-7= 13-6=(2)如何计算呢?说一说你是怎么想的。

老师指名让学生回答。

学生边回答,老师边有序地把各种解法的思维过程排列出来。

学生在回答前也可以在小组里互相说一说,老师巡视,注意发现不同的方法。

①依靠摆学具(如小棒),算出答案。

②看图,用点数的方法算出答案。

③用“破十法”算出答案。

先用13中的10减去7,等于3,再把3和13中的另一部分3合起来就是6,所以13-7=6,红的有6条。

同理:先用13中的10减去6,等于4,再把4和13中的另一部分3合起来就7,所以13-6= 7,黑的有7条。

④想加算减,算出答案。

因为看到这两个减法算式,可以同时想到一个加法算式,即7+6=13,13-7=6,13-6=7,所以可以这样算出差。

学生在汇报过程中,老师重点对“破十法”和“想加算减法”做有针对性地指导。

让学生多说一说,多摆一摆。

2. 教材第14页的“做一做”第1题。

(学生独立完成,老师巡视,集体订正)3. 教材第14页的“做一做”第2题。

(学生独立完成后,集体订正这3组算式)老师追问:看到这组算式,你还能想到哪些算式呢?(还可以想到:8+5=13 13-5=8 13-8=5等)4. 教材第14页的“做一做”第3题。

2022秋沪科版九年级数学上册 典中点 第23章综合素质评价

2022秋沪科版九年级数学上册 典中点 第23章综合素质评价

第23章综合素质评价一、选择题(每题4分,共40分)1.【教材P115例2改编】如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,则cos A等于()A.35B.45C.34D.432.已知α为锐角,且cosα=12,则α等于()A.30°B.45°C.60°D.无法确定3.如图,在由边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则sin∠ABC的值为()A.35B.34C.105D.14.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表.如图是一个根据北京的地理位置设计的圭表,其中立柱AC高为a.冬至时北京的正午日光入射角∠ABC约为26.5°,则立柱根部与圭表的冬至线的距离(即BC的长)约为()A.a sin 26.5°B.atan 26.5°C.acos 26.5°D.a cos 26.5°5.【2021·威海】若用我们数学课本上采用的科学计算器计算sin 36°18′,按键顺序正确的是()A.sin36· 18=B.sin36D·M′S18=C.2ndF sin36D·M′S18=D.sin36D·M′S18D·M′S=6.如图,从热气球C处测得地面A,B两点的俯角分别为30°,45°,如果此时热气球的高度CD为100 m,点A,D,B在同一直线上,则A,B两点之间的距离是()A.200 mB.200 3 mC.220 3 mD.100(3+1)m7.如图,沿AE折叠矩形纸片ABCD,使点D落在BC边上的点F处.已知AB=4,BC=5,则cos∠EFC的值为()A.34B.43C.35D.458.【教材P123习题T6改编】如图,在△ABC中,AC⊥BC,∠ABC=30°,点D 是CB的延长线上的一点,且AB=BD,则tan D的值为()A.2 3 B.3 3C.2+ 3 D.2- 39.【教材P115例3变式】如图,过点C(-2,5)的直线AB分别交坐标轴于A(0,2),B两点,则tan∠OAB等于()A.25B.23C.52D.3210.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8 m,坡面上的影长为4 m.已知斜坡的坡角为30°,同一时刻,一根长为1 m、垂直于地面放置的标杆在地面上的影长为2 m,则树的高度为()A.(6+3)m B.12 mC.(4+23)m D.10 m二、填空题(每题5分,共20分)11.【2021·杭州】计算:sin 30°=________.12.如图,在山坡上种树,已知∠C=90°,∠A=α,相邻两棵树的坡面距离AB 为a m,则相邻两棵树的水平距离AC为________m.13.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=5,AC=6,则tan B的值为________.14.如图,一架长为6 m的梯子AB斜靠在一竖直的墙AO上,这时测得∠ABO =70°,若梯子的底端B外移到D处,则梯子顶端A下移到C处,这时又测得∠CDO=50°,那么AC的长度约为________m(参考数据:sin 70°≈0.94,sin 50°≈0.77,cos 70°≈0.34,cos 50°≈0.64).三、(每题8分,共16分)15.计算:(1)3sin 60°-2cos 45°+3 8;(2)⎝ ⎛⎭⎪⎫-120+4cos 60°·sin 45°-(tan 60°-2)2.16.在Rt △ABC 中,∠C =90°,AC =15,∠B =60°,解这个直角三角形.四、(每题8分,共16分)17.【教材P 128例6改编】如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝底BC 的长.18.【2021·杭州】如图,在△ABC中,∠ABC的平分线BD交AC边于点D,AE⊥BC于点E.已知∠ABC=60°,∠C=45°.(1)求证:AB=BD;(2)若AE=3,求△ABC的面积.五、(每题10分,共20分)19.如图,已知▱ABCD,E是BC边上的一点,将边AD延长至点F,使∠AFC=∠DEC.(1)求证:四边形DECF是平行四边形;(2)若AB=13,DF=14,tan A=125,求CF的长.20.如图,在Rt△ABC中,∠ACB=90°,sin A=23,点D,E分别在AB,AC上,DE⊥AC,垂足为E,DE=2,DB=9.求:(1)BC的长;(2)tan∠CDE的值.六、(12分)21.为了承办2022年亚运会,杭州市加强城市绿化建设.如图,工作人员正在对该市某河段进行区域性景观打造.某施工单位为测得该河段的宽度,测量员先在河对岸岸边取一点A,再在河这边沿河边取两点B和C,在B处测得点A在北偏东30°方向上,在点C处测得点A在西北方向上,量得BC长为200 m,求该河段的宽度(结果保留根号).七、(12分)22.【2020·宁波】图①是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图①的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图②是其示意图,经测量,钢条AB=AC=50 cm,∠ABC=47°.(1)求车位锁的底盒长BC.(2)若一辆汽车的底盘高度为30 cm,当车位锁上锁时,问这辆汽车能否进入该车位?(参考数据:sin 47°≈0.73,cos 47°≈0.68,tan 47°≈1.07)八、(14分)23.【2020·衡阳】小华同学将笔记本电脑水平放置在桌子上,当显示屏的边缘线OB与底板的边缘线OA所在水平线的夹角为120°时,感觉最舒适(如图①),侧面示意图为图②;使用时为了散热,他在底板下面垫入散热架,如图③,点B,O,C在同一直线上,OA=OB=24 cm,BC⊥AC,∠OAC=30°.(1)求OC的长;(2)如图④,垫入散热架后,要使显示屏的边缘线OB′与水平线的夹角仍保持120°,求点B′到AC的距离(结果保留根号).答案一、1.B 2.C 3.A 4.B 5.D 6.D 7.D 8.D 9.B 10.A 点拨:如图,延长AC 交BF 的延长线于点D ,过点C 作CE ⊥BD 于点E .由题意得BF =8 m ,CF =4 m ,∠CFD =30°. 在Rt △CFE 中,∠CFE =30°,CF =4 m , ∴CE =2 m ,EF =4cos 30°=2 3 m.∵同一时刻,一根长为1 m 、垂直于地面放置的标杆在地面上的影长为2 m , ∴tan D =CE DE =AB BD =12. ∴DE =2CE =4 m.∴BD =BF +EF +ED =(12+23)m. ∴AB =12BD =12×(12+23)=6+3(m). 二、11.12 12.a cos α 13.34 14.1.02三、15.解:(1)原式=3×32-2×22+2=32-1+2=52;(2)原式=1+4×12×22-(3-2)2=1+2-(2-3)=-1+2+ 3.16.解:∵∠C =90°,∠B =60°,∴∠A =90°-∠B =90°-60°=30°. ∴BC =AC ·tan A =15×33=53, AB =2BC =2×53=10 3.四、17.解:如图,过点A 作AE ⊥BC 于点E ,过点D 作DF ⊥BC 于点F .易知EF =AD =6 m ,AE =DF .在Rt △CDF 中,∵CD =14 m ,∠DCF =30°, ∴DF =12CD =7 m. ∴AE =7 m. ∵cos ∠DCF =FCCD ,∴FC =CD ·cos ∠DCF =14×32=73(m). 在Rt △ABE 中,∵∠B =45°, ∴BE =AE =7 m.∴BC =BE +EF +FC =7+6+73=13+73(m). 18.(1)证明:∵BD 平分∠ABC ,∠ABC =60°,∴∠DBC =12∠ABC =30°. ∵∠C =45°,∴∠ADB =∠DBC +∠C =75°, ∠BAC =180°-∠ABC -∠C =75°. ∴∠BAC =∠ADB . ∴AB =BD .(2)解:在Rt △ABE 中,∠ABC =60°,AE =3, ∴BE =AEtan ∠ABC= 3.在Rt △AEC 中,∠C =45°,AE =3, ∴EC =AEtan C =3. ∴BC =3+ 3.∴S △ABC =12BC ·AE =9+332.五、19.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC . ∴∠ADE =∠DEC . 又∵∠AFC =∠DEC ,∴∠AFC =∠ADE , ∴DE ∥FC .∴四边形DECF 是平行四边形.(2)解:过点D 作DH ⊥BC 于点H ,如图所示.∵四边形ABCD 是平行四边形, ∴∠BCD =∠A ,CD =AB =13. 又∵tan A =125=tan ∠DCH =DHCH , ∴DH =12,CH =5.∵四边形DECF 是平行四边形, ∴DF =EC ,DE =CF . ∵DF =14, ∴CE =14. ∴EH =9.∴DE =92+122=15. ∴CF =DE =15.20.解:(1)在Rt △DEA 中,∵DE =2,sin A =23,∴AD =DE sin A =223=3.∵DB =9,∴AB =BD +AD =12.在Rt △ABC 中,∵AB =12,sin A =23, ∴BC =AB ·sin A =12×23=8.(2)在Rt △ABC 中,∵AB =12,BC =8, ∴AC =AB 2-BC 2=122-82=4 5. 在Rt △DEA 中,∵DE =2,AD =3,∴AE=AD2-DE2=32-22= 5. ∴CE=AC-AE=3 5.∴tan∠CDE=CEDE=352.六、21.解:如图,过点A作AD⊥BC于点D.根据题意,知∠ABC=90°-30°=60°,∠ACD=45°,∴∠CAD=45°.∴∠ACD=∠CAD.∴AD=CD.∴在Rt△ABD中,tan ∠ABD=ADBD=ADBC-AD,即AD200-AD=3,解得AD=(300-1003) m.答:该河段的宽度为(300-1003)m.七、22.解:(1)如图,过点A作AH⊥BC于点H.∵AB=AC,∴BH=HC.在Rt△ABH中,∠B=47°,AB=50 cm,∴BH=AB·cos B=50×cos 47°≈50×0.68=34(cm).∴BC=2BH≈68 cm.答:车位锁的底盒长BC约为68 cm.(2)在Rt△ABH中,AH=AB·sin B=50×sin 47°≈50×0.73=36.5(cm).∵36.5>30,∴当车位锁上锁时,这辆汽车不能进入该车位.八、23.解:(1)在Rt△AOC中,OA=24 cm,∠OAC=30°,∴OC=12OA=12×24=12(cm).(2)如图,过点B′作B′D⊥AC,垂足为D,过点O作OE⊥B′D,垂足为E.由题意得OA=OB′=24 cm.当显示屏的边缘线OB′与水平线的夹角仍保持120°时,可得∠B′OE=60°,∴在Rt△B′OE中,B′E=OB′·sin 60°=12 3 cm.∵OE⊥B′D,B′D⊥AD,OC⊥AD,∴四边形OCDE是矩形.∴OC=DE=12 cm.∴B′D=B′E+DE=(123+12)cm.即点B′到AC的距离为(123+12)cm.。

高二英语选择性必修第一册(2020版)_Unit5_词汇-情景破

高二英语选择性必修第一册(2020版)_Unit5_词汇-情景破

Unit5 WORKING THE LAND词汇-情景破知识点1 |devote vt. 把……献(给);把……专用于;专心于Indeed,his slim but strong body is just like that of millions of Chinese farmers ,to whom he has devoted his life. (教材P50)事实上,他单薄但结实的身躯就像和他为之奉献了一生的数以百万计的中国农民一样。

情景导学The writer has recently devoted his time to detective stories. 这名作家最近把时间投入到了侦探故事上。

The famous star is devoted to charity. 这个著名的明星热衷于慈善。

His devotion to work left him with little free time. 他全身心投入工作,几乎没有闲暇。

归纳拓展①_____ 把……用于……;献身;致力;专心(其中to为介词,后跟名词、代词或动名词)①devotion n. _____①_____ 热衷于……….①devoted adj. 热衷于……的;挚爱的;忠诚的链接高考单句语法填空1-1 (2019课标全国①,阅读理解D改编,①①) These kids are so devoted _____ their studies that the NASA engineers just sit back.1-2 (2016 北京,阅读理解B,①)Neighbors devoted their spare time to_____ ( help ) others rebuild.完成句子1-3( 2016四川,阅读理解B改编,①①①)你不妨把你的一些时间和精力投入到比你自己更重要的事情上。

You_____ _____ _____ _____ some of your time and energy_____ something much larger than yourself.单句翻译1-4 (2015四川,阅读理解C,①①)母亲对孩子的关爱几乎不能被计算。

新教材北师大版高中数学必修第二册第五章复数 学案(知识点考点汇总及配套习题)

新教材北师大版高中数学必修第二册第五章复数 学案(知识点考点汇总及配套习题)

第五章复数1复数的概念及其几何意义........................................................................................ - 1 - 2复数的四则运算...................................................................................................... - 14 - 3复数的三角表示...................................................................................................... - 29 -1复数的概念及其几何意义1.1复数的概念学习任务核心素养1.了解引进虚数单位i的必要性,了解数集的扩充过程.(重点)2.理解在数系的扩充中由实数集扩展到复数集出现的一些基本概念.(重点、难点) 3.掌握复数代数形式的表示方法,理解复数相等的充要条件.(重点)1.通过对复数的相关概念的学习,培养学生数学抽象素养.2.借助复数的分类、复数的相等的相关运算,培养学生数学运算素养.五百年前意大利的卡尔丹遇到这样一个问题,将10分成两个部分,使它们的乘积等于40,则x(10-x)=40即(x-5)2=-15,该方程无实数解,那么他遇到了什么问题呢?他想:负数为什么不能开方?他是怎样解决的呢?形如a+b i(其中a,b∈R)的数叫作复数,通常用字母z表示,即z=a+b i(a,b∈R).其中a称为复数z的实部,记作Re z, b称为复数z的虚部,记作Im z.知识点2复数的分类根据复数中a,b的取值不同,复数可以有以下的分类:复数a +b i(a ,b ∈R )⎩⎨⎧实数(b =0);虚数(b ≠0)⎩⎨⎧纯虚数(a =0),非纯虚数(a ≠0).1.在2+7,27i, 8+5i ,(1-3)i, 0.68这几个数中,纯虚数的个数为( ) A .0 B .1 C .2 D .3C [27i, (1-3)i 是纯虚数,故选C.]知识点3 复数集全体复数构成的集合称为复数集,记作C .显然RC .知识点4 复数相等两个复数a +b i 与c +d i(a ,b ,c ,d ∈R )相等定义为:它们的实部相等且虚部相等,即a +b i =c +d i 当且仅当a =c 且b =d . 1.两个复数一定能比较大小吗?提示:当两个复数为实数时,能够比较大小;否则不能比较大小.2.若复数a +2i =3+b i(a ,b ∈R ),则a +b 的值是什么?提示:因为a +2i =3+b i ,所以a =3,b =2,所以a +b =5.2.思考辨析(正确的画“√”,错误的画“×”)(1)若a ,b 为实数,则z =a +b i 为虚数.( ) (2)复数z =b i 是纯虚数. ( ) (3)若两个复数的实部的差和虚部的差都等于0,那么这两个复数相等.( )[提示] (1)错误.若b =0,则复数z =a +b i 是实数.(2)错误.若b =0,则复数z =b i =0是实数.(3)正确.若两个复数的实部的差和虚部的差都等于0,则这两个复数的实部和虚部分别相等,所以两个复数相等.[答案] (1)× (2)× (3)√类型1 复数的概念【例1】 (1)给出下列三个命题:①若z ∈C ,则z 2≥0;②2i -1的虚部是2i ;③2i 的实部是0.其中真命题的个数为( )A .0B .1C .2D .3(2)已知复数z =a 2-(2-b )i 的实部和虚部分别是2和3,则实数a ,b 的值分别是________.(1)B (2)±2 5 [(1)对于①,当z ∈R 时,z 2≥0成立,否则不成立,如z =i ,z 2=-1<0,所以①为假命题;对于②,2i -1=-1+2i ,其虚部是2,不是2i ,②为假命题;对于③,2i =0+2i ,其实部是0,③为真命题.故选B.(2)由题意知⎩⎨⎧a 2=2,b -2=3,∴a =±2,b =5.](1)复数的代数形式:若z =a +b i ,只有当a ,b ∈R 时,a 才是z 的实部,b 才是z 的虚部,且注意虚部不是b i ,而是b .(2)不要将复数与虚数的概念混淆,实数也是复数,实数和虚数是复数的两大构成部分.(3)举反例:判断一个命题为假命题,只要举一个反例即可,所以解答这类题时,可按照“先特殊,后一般,先否定,后肯定”的方法进行解答.[跟进训练]1.下列命题:①若a ∈R ,则(a +1)i 是纯虚数;②若(x 2-4)+(x 2+3x +2)i 是纯虚数,则实数x =±2;③实数集是复数集的真子集.其中正确说法的个数是( )A .0B .1C .2D .3B [对于复数a +b i(a ,b ∈R ),当a =0且b ≠0时,为纯虚数.对于①,若a =-1,则(a +1)i 不是纯虚数,故①错误.对于②,若x =-2,则x 2-4=0,x 2+3x +2=0,此时(x 2-4)+(x 2+3x +2)i =0,不是纯虚数,故②错误.显然,③正确.故选B.]类型2 复数相等【例2】 (1)(教材北师版P 165例2改编)已知x 2-y 2+2xy i =2i ,求实数x ,y 的值;(2)关于x 的方程3x 2-a 2x -1=(10-x -2x 2)i 有实根,求实数a 的值.[解] (1)∵x 2-y 2+2xy i =2i ,∴⎩⎨⎧x 2-y 2=0,2xy =2, 解得⎩⎨⎧x =1,y =1或⎩⎨⎧x =-1,y =-1. (2)设方程的实数根为x =m ,则3m 2-a 2m -1=(10-m -2m 2)i ,∴⎩⎪⎨⎪⎧3m 2-a 2m -1=0,10-m -2m 2=0,解得a =11或a =-715.复数相等问题的解题技巧(1)必须是复数的代数形式才可以根据实部与实部相等,虚部与虚部相等列方程组求解.(2)根据复数相等的条件,将复数问题转化为实数问题,为应用方程思想提供了条件,同时这也是复数问题实数化思想的体现.(3)如果两个复数都是实数,可以比较大小,否则是不能比较大小的.[跟进训练]2.复数z 1=(2m +7)+(m 2-2)i ,z 2=(m 2-8)+(4m +3)i ,m ∈R ,若z 1=z 2,则m =________.5 [因为m ∈R ,z 1=z 2,所以(2m +7)+(m 2-2)i =(m 2-8)+(4m +3)i.由复数相等的充要条件得⎩⎨⎧2m +7=m 2-8,m 2-2=4m +3,解得m =5.] 类型3 复数的分类【例3】 当m 为何实数时,复数z =m 2-m -6m +3+(m 2-2m -15)i. (1)是虚数;(2)是纯虚数.1. 复数z =a +b i (a ,b ∈R )何时为虚数?[提示] b ≠0.2.复数z =a +b i (a ,b ∈R )何时为纯虚数?[提示] a =0,b ≠0. 3.(1)复数z 是虚数→令虚部不等于0→解方程组可得m 的值(2)复数z 是纯虚数→令虚部不等于0且实部等于0→解方程组可得m 的值[解] (1)当⎩⎨⎧m +3≠0,m 2-2m -15≠0,即m ≠5且m ≠-3时,z 是虚数. (2)当⎩⎨⎧m 2-m -6m +3=0,m 2-2m -15≠0,即m =3或m =-2时,z 是纯虚数.1.例3的条件不变,当m 为何值时,z 为实数?[解] 当⎩⎨⎧m +3≠0,m 2-2m -15=0,即m =5时,z 是实数. 2.例3的条件不变,当m 为何值时,z >0.[解] 因为z >0,所以z 为实数,需满足⎩⎨⎧m 2-m -6m +3>0,m 2-2m -15=0,解得m =5. 3.已知z =log 2(1+m )+ilog 12(3-m )(m ∈R ),若z 是虚数,求m 的取值范围. [解] ∵z 是虚数,∴log 12(3-m )≠0,且1+m >0, 即⎩⎨⎧3-m >0,3-m ≠1,1+m >0,∴-1<m <2或2<m <3.∴m 的取值范围为(-1,2)∪(2,3).复数分类的关键(1)利用复数的代数形式,对复数进行分类,关键是根据分类标准列出实部、虚部应满足的关系式.求解参数时,注意考虑问题要全面,当条件不满足代数形式z =a +b i(a ,b ∈R )时应先转化形式.(2)注意分清复数分类中的条件,设复数z =a +b i(a ,b ∈R ),则①z 为实数⇔b =0,②z 为虚数⇔b ≠0,③z 为纯虚数⇔a =0,b ≠0.④z =0⇔a =0且b =0.当堂达标1.若x i -i 2=y +2i ,x ,y ∈R ,则复数x +y i 等于( )A .-2+iB .2+iC .1-2iD .1+2iB [由i 2=-1,得x i -i 2=1+x i ,则由题意得1+x i =y +2i ,根据复数相等的充要条件得x =2,y =1,故x +y i =2+i.]2.以3i -2的虚部为实部,以3i 2+2i 的实部为虚部的复数是( )A .3-3iB .3+iC .-2+2iD .2+2iA [3i -2的虚部为3,3i 2+2i =-3+2i 的实部为-3,故选A.]3.已知复数z 1=a +2i ,z 2=3+(a 2-7)i ,a ∈R ,若z 1=z 2,则a =( )A .2B .3C .-3D .9 B [因为z 1=a +2i ,z 2=3+(a 2-7)i ,且z 1=z 2,所以有⎩⎨⎧a =3,a 2-7=2,解得a =3.故选B.]4.已知复数z =m 2-1+(m 2-m -2)i 为实数,则实数m 的值为________. -1或2 [因为复数z =m 2-1+(m 2-m -2)i 为实数,所以m 2-m -2=0,解得m =-1或m =2.]5.设m ∈R ,复数z =-1-m +(2m -3)i.(1)若z 为实数,则m =________;(2)若z 为纯虚数,则m =________.(1)32(2)-1[(1)若复数z=-1-m+(2m-3)i为实数,则2m-3=0,所以m=32;(2)若z为纯虚数,则-1-m=0,所以m=-1.]回顾本节内容,自我完成以下问题:1.如何正确理解复数的概念?[提示](1)对于复数z=a+b i(a,b∈R),可以限制a,b的值得到复数z的不同情况.(2)当两个复数不全是实数时,不能比较大小,只可判断相等或不相等,但两个复数都是实数时,可以比较大小.2.如何解决复数相等问题?[提示]两个复数相等,要先确定两个复数的实、虚部,再利用两个复数相等的充要条件进行判断.1.2复数的几何意义学习任务核心素养1.理解用复平面内的点或以原点为起点的向量来表示复数及它们之间的一一对应关系.(难点)2.掌握实轴、虚轴、模、共轭复数等概念.(重点、难点)3.掌握用向量的模来表示复数的模的方法.(重点)1.通过学习复数的几何意义,培养学生直观想象素养.2.借助于复数的模和共轭复数的计算,培养学生数学运算素养.18世纪,瑞士人阿甘达注意到负数是正数的一个扩充,它是将方向和大小结合得出来的,他给出了负数的一些几何解释.而在使人们接受复数方面,高斯的工作更为有效,他不仅将复数z=a+b i表示为复平面的一点Z(a,b),而且阐述了复数的几何加法和乘法,这也和向量运算是一致的,使人们对复数不再有种神秘的印象.阅读教材,结合上述情境回答下列问题.问题1:上述材料中,复平面是如何定义的?问题2:复数与复平面内的点及向量的关系如何?问题3:复数的模是实数还是虚数?问题4:复数z=a+b i的共轭复数是什么?知识点1复平面通过建立平面直角坐标系来表示复数的平面称为复平面,x轴称为实轴,y轴称为虚轴.实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.1.虚轴上的点都对应着唯一的纯虚数吗?提示:不是.除了原点外,虚轴上的点都表示纯虚数.知识点2复数的几何意义2.象限内的点与复数有何对应关系?提示:第一象限的复数特点:实部为正,且虚部为正;第二象限的复数特点:实部为负,且虚部为正;第三象限的复数特点:实部为负,且虚部为负;第四象限的复数特点:实部为正,且虚部为负.1.在复平面内,复数z=i+2i2对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限B [∵z =i +2i 2=-2+i ,∴实部小于0,虚部大于0,故复数z 对应的点位于第二象限.]知识点3 复数的模向量OZ →的模称为复数z =a +b i(a ,b ∈R )的模,记作|z |或|a +b i|. 由向量模的定义可知,|z |=|a +b i|=a 2+b 2.如果b =0,那么z =a +b i 是一个实数a ,它的模等于|z |=a 2+b 2=a 2=|a |(a 的绝对值).2.已知复数z 的实部为-1,虚部为2,则|z |=________.5 [|z |=(-1)2+22= 5.]知识点4 共轭复数(1)定义:若两个复数的实部相等,而虚部互为相反数,则称这两个复数互为共轭复数,复数z 的共轭复数用z 表示.当z =a +b i(a ,b ∈R )时,z =a -b i .(2)几何意义:在复平面内,表示两个共轭复数的点关于实轴对称,并且它们的模相等.另外,当复数z =a +b i 的虚部b =0时,有z =z .也就是说,任意一个实数的共轭复数仍是它本身,反之亦然.3.复数z =-1+i 的共轭复数对应的点位于第________象限.三 [z =-1+i 的共轭复数为z =-1-i ,位于第三象限.]类型1 复数与平面内的点的关系【例1】 (教材北师版P 167练习第2题改编)实数x 分别取什么值时,复数z =(x 2+x -6)+(x 2-2x -15)i 对应的点Z 在:(1)第三象限;(2)直线x -y -3=0上.[解] 因为x 是实数,所以x 2+x -6,x 2-2x -15也是实数.(1)当实数x 满足⎩⎨⎧x 2+x -6<0,x 2-2x -15<0,即当-3<x <2时,点Z 在第三象限. (2)z =x 2+x -6+(x 2-2x -15)i 对应点Z (x 2+x -6,x 2-2x -15),当实数x 满足(x 2+x -6)-(x 2-2x -15)-3=0,即当x =-2时,点Z 在直线x -y -3=0上.按照复数和复平面内所有点组成的集合之间的一一对应关系,每一个复数都对应着一个有序实数对,只要在复平面内找出这个有序实数对所表示的点,就可根据点的位置判断复数实部、虚部的取值. [跟进训练]1.在复平面内,若复数z =(m 2-m -2)+(m 2-3m +2)i(m ∈R )的对应点在虚轴上和实轴负半轴上,分别求复数z .[解] 若复数z 的对应点在虚轴上,则m 2-m -2=0,所以m =-1或m =2,所以z =6i 或z =0.若复数z 的对应点在实轴负半轴上,则⎩⎨⎧m 2-m -2<0,m 2-3m +2=0,所以m =1,所以z =-2.类型2 复数的模的几何意义【例2】 (教材北师版P 166例3改编)设z ∈C ,在复平面内对应点Z ,试说明满足下列条件的点Z 的集合是什么图形.(1)|z |=3; (2)1≤|z |≤2.[解] (1)|z |=3说明向量OZ →的长度等于3,即复数z 在复平面内对应的点Z 到原点的距离为3,这样的点Z 的集合是以原点O 为圆心,3为半径的圆.(2)不等式1≤|z |≤2可以转化为不等式组⎩⎨⎧|z |≤2|z |≥1.不等式|z |≤2的解集是圆|z |=2及该圆内部所有点的集合.不等式|z |≥1的解集是圆|z |=1及该圆外部所有点的集合.这两个集合的交集,就是满足条件1≤|z |≤2的点的集合.如图中的阴影部分,所求点的集合是以O 为圆心,以1和2为半径的两圆所夹的圆环,并且包括圆环的边界.解决复数的模的几何意义问题解决复数的模的几何意义的问题,应把握两个关键点:一是|z |表示点Z 到原点的距离,可依据|z |满足的条件判断点Z 的集合表示的图形;二是利用复数的模的概念,把模的问题转化为几何问题来解决. [跟进训练] 2.若复数z 满足|z |≤2,则z 在复平面所对应的图形的面积为________. 2π [满足|z |≤2的点Z 的集合是以原点O 为圆心,以2为半径的圆及其内部所有的点构成的集合,∴所求图形的面积为S =2π.故填2π.]类型3 复数、共轭复数与复平面内的向量的关系【例3】 (1)向量OZ 1对应的复数是5-4i ,向量OZ →2对应的复数是-5+4i ,则OZ →1+OZ →2对应的复数是( )A .-10+8iB .10-8iC .0D .10+8i(2)设O 是原点,向量OA →,OB →对应的复数分别为2-3i ,-3+2i ,那么向量BA→对应的复数是( )A .-5+5iB .-5-5iC .5+5iD .5-5i1.复数z =a +b i (a ,b ∈R )在复平面内对应的向量OZ →和点Z 分别是什么?[提示] 向量OZ →=(a ,b ),点Z 的坐标为(a ,b ).2.设复数z =a +b i (a ,b ∈R )的共轭复数为z ,z 和z 在复平面内对应的点分别为A ,B ,则点A ,B 有什么关系?[提示] 点A ,B 关于x 轴对称.(1)C (2)D [(1)由复数的几何意义,可得OZ →1=(5,-4),OZ →2=(-5,4),所以OZ →1+OZ →2=(5,-4)+(-5,4)=(0,0),所以OZ →1+OZ →2对应的复数为0.(2)由复数的几何意义,得OA →=(2,-3),OB →=(-3,2),BA →=OA →-OB →=(2,-3)-(-3,2)=(5,-5).所以BA →对应的复数是5-5i.] 1.在例3(2)中若BA →对应的复数是z ,求z .[解] 由例3(2)的解析可知BA →对应的复数是5-5i ,即z =5-5i ,所以z =5+5i.2.在例3(2)中,若点A 关于实轴的对称点为点C ,求向量OC →对应的复数.[解] 复数2-3i 表示的点A (2,-3)关于实轴对称的点为C (2,3),∴向量OC→对应的复数为2+3i.(1)根据复数与平面向量的对应关系,可知当平面向量的起点在原点时,向量的终点对应的复数即为向量对应的复数.反之复数对应的点确定后,从原点引出的指向该点的有向线段,即为复数对应的向量.(2)解决复数与平面向量一一对应的问题时,一般以复数与复平面内的点一一对应为工具,实现复数、复平面内的点、向量之间的转化.[跟进训练]3.已知O 为坐标原点,OZ 1对应的复数为-3+4i ,OZ 2对应的复数为2a +i(a ∈R ),若OZ 1与OZ 2共线,求a 的值.[解] ∵OZ 1对应的复数为-3+4i ,OZ 2对应的复数为2a +i ,∴OZ 1=(-3,4),OZ 2=(2a ,1).又∵OZ 1与OZ 2共线,∴(-3)×1-4×2a =0,解之得a =-38.当堂达标1.若OZ →=(0,-3),则OZ →对应的复数为( )A .0B .-3C .-3iD .3C [OZ →对应的复数为-3i.]2.已知复数z 1=m +2i ,z 2=1+i ,若z 1+z 2为纯虚数,则实数m 的值为( )A .-1B .1C .4D .-4A [z 1+z 2=m +1+3i 为纯虚数,故m +1=0,m =-1,故选A.]3.已知z =m -1+(m +2)i 在复平面内对应的点在第二象限,则实数m 的取值范围是( )A .(-1,2)B .(-2,1)C .(1,+∞)D .(-∞,-2)B [∵z =m -1+(m +2)i 在复平面内对应的点在第二象限,∴m -1<0,m +2>0,解得-2<m <1,则实数m 的取值范围是(-2,1).]4.复数z =(a 2-2a )+(a 2-a -2)i 对应的点在虚轴上,则( )A .a ≠2或a ≠1B .a ≠2或a ≠-1C .a =2或a =0D .a =0C [由题知a 2-2a =0解得a =0或a =2,故选C.]5.已知复数z =1+2i ,则|z |=________.5 [∵z =1+2i ,∴|z |= 5.]回顾本节内容,自我完成以下问题:复数的模的几何意义是什么?提示:(1)复数z在复平面内对应的点为Z,复数z0在复平面内对应的点为Z0,r表示一个大于0的常数,则:①满足条件|z|=r的点Z的轨迹为以原点为圆心,r为半径的圆,|z|<r表示圆的内部,|z|>r表示圆的外部;②满足条件|z-z0|=r的点Z的轨迹为以Z0为圆心,r为半径的圆,|z-z0|<r 表示圆的内部,|z-z0|>r表示圆的外部.(2)复数的几何意义有两种:复数和复平面内的点一一对应,复数和复平面内以原点为起点的向量一一对应.如图所示:2复数的四则运算2.1复数的加法与减法学习任务核心素养1.掌握复数代数形式的加法和减法运算.(重点、难点)2.理解复数加法和减法所满足的交换律和结合律.(重点、难点)1.通过学习复数的加法和减法运算,培养学生数学运算素养.2.通过学习复数加法和减法运算所满足的运算律,培养学生数学抽象素养.随着生产发展的需要,我们将数的范围扩展到了复数.运算是“数”的主要功能,复数不同于实数,它是由实部、虚部两部分复合构造而成的整体.阅读教材,回答下列问题问题1:复数如何进行加、减运算呢?问题2:类比多项式的加、减运算,想一想复数又如何进行加、减法运算?问题3:两个复数的和或差得到的结果是什么?问题4:复数的加法法则可以推广吗?知识点1复数的加法与减法(1)复数加法的运算法则两个复数的和仍是一个复数,两个复数的和的实部是它们的实部的和,两个复数的和的虚部是它们的虚部的和,也就是(a+b i)+(c+d i)=(a+c)+(b+d)i.(2)复数减法的运算法则两个复数的差仍是一个复数,两个复数的差的实部是它们的实部的差,两个复数的差的虚部是它们的虚部的差,也就是(a+b i)-(c+d i)=(a-c)+(b-d)i.(3)复数的加法运算的运算律:结合律:(z1+z2)+z3=z1+(z2+z3);交换律:z1+z2=z2+z1.1.两个复数的和是个什么数,它的值唯一确定吗?[提示]是复数,唯一确定.1.已知复数z1=3+4i,z2=3-4i,则z1+z2等于()A.8i B.6 C.6+8i D.6-8iB[z1+z2=3+4i+3-4i=(3+3)+(4-4)i=6.]知识点2复数加法的几何意义如图,z1=a+b i,z2=c+d i(a,b,c,d∈R)分别与向量OZ1=(a,b),OZ2=(c,d)对应,根据平面向量的坐标运算,得OZ1+OZ2=(a+c,b+d),这说明两个向量OZ1,OZ2的和就是与复数(a+c)+(b+d)i对应的向量.因此,复数的加法可以按照向量的加法来进行,这是复数加法的几何意义.2.若复数z 1,z 2满足z 1-z 2>0,能否认为z 1>z 2?提示:不能,例如可取z 1=3+2i ,z 2=2i.2.计算(3+i)-(2+i)的结果为________.1 [(3+i)-(2+i)=3+i -2-i =1.]类型1 复数的加法和减法【例1】 (教材北师版P 169例1改编)(1)计算:⎝ ⎛⎭⎪⎫13+12i +(2-i)-⎝ ⎛⎭⎪⎫43-32i . (2)已知复数z 满足z +1-3i =5-2i ,求z .(3)已知复数z 满足|z |+z =1+3i ,求z .[解] (1)⎝ ⎛⎭⎪⎫13+12i +(2-i)-⎝ ⎛⎭⎪⎫43-32i =⎝ ⎛⎭⎪⎫13+2-43+⎝ ⎛⎭⎪⎫12-1+32i =1+i. (2)法一:设z =x +y i(x ,y ∈R ),因为z +1-3i =5-2i ,所以x +y i +(1-3i)=5-2i ,即x +1=5且y -3=-2, 解得x =4,y =1,所以z =4+i.法二:因为z +1-3i =5-2i ,所以z =(5-2i)-(1-3i)=4+i.(3)设z =x +y i(x ,y ∈R ),|z |=x 2+y 2,∴|z |+z =(x 2+y 2+x )+y i =1+3i ,∴⎩⎨⎧x 2+y 2+x =1,y =3,解得⎩⎨⎧x =-4,y =3,∴z =-4+3i.复数代数形式的加、减法运算技巧(1)复数代数形式的加、减法运算实质就是将实部与实部相加减,虚部与虚部相加减之后分别作为结果的实部与虚部,因此要准确地提取复数的实部与虚部.(2)算式中若出现字母,首先确定其是否为实数,再确定复数的实部与虚部,最后把实部与实部、虚部与虚部分别相加减.(3)复数的运算可以类比多项式的运算:若有括号,括号优先;若无括号,可以从左到右依次进行计算. [跟进训练] 1.(1)若复数z 满足z +i -3=3-i ,则z =________.(2)(a +b i)-(2a -3b i)-3i =________(a ,b ∈R ).(1)6-2i (2)-a +(4b -3)i [(1)∵z +i -3=3-i ,∴z =6-2i.(2)(a +b i)-(2a -3b i)-3i =(a -2a )+(b +3b -3)i =-a +(4b -3)i.]类型2 复数加、减法的几何意义【例2】 (教材北师版P 170例4改编)如图所示,平行四边形OABC 的顶点O ,A ,C 分别表示0, 3+2i ,-2+4i.求:(1)AO →表示的复数;(2)对角线CA →表示的复数;(3)对角线OB →表示的复数.确定向量对应的复数→进行向量的运算→确定向量对应的复数[解] (1)因为AO →=-OA →,所以AO →表示的复数为-3-2i.(2)因为CA →=OA →-OC →,所以对角线CA →表示的复数为(3+2i)-(-2+4i)=5-2i.(3)因为对角线OB →=OA →+OC →,所以对角线OB →表示的复数为(3+2i)+(-2+4i)=1+6i.例2的条件不变,求向量AB →表示的复数.[解] 因为AB →=AO →+OB →,由例2的解析可知,AO →表示的复数为-3-2i ,OB→表示的复数为1+6i ,所以向量AB →表示的复数为(-3-2i)+(1+6i)=-2+4i.复数与向量的对应关系的两个关注点(1)复数z =a +b i(a ,b ∈R )是与以原点为起点,Z (a ,b )为终点的向量一一对应的.(2)一个向量可以平移,其对应的复数不变,但是其起点与终点所对应的复数可能改变.[跟进训练]2.△ABC 的三个顶点所对应的复数分别为z 1,z 2,z 3,复数z 满足|z -z 1|=|z -z 2|=|z -z 3|,则z 对应的点是△ABC 的( )A .外心B .内心C .重心D .垂心A [由复数模及复数减法运算的几何意义,结合条件可知复数z 的对应点P 到△ABC 的顶点A ,B ,C 距离相等,∴P 为△ABC 的外心.]当堂达标1.复数(1-i)-(2+i)+3i 等于( )A .-1+iB .1-iC .iD .-iA [原式=1-i -2-i +3i =-1+i.]2.若复数z 满足z +(3-4i)=1,则z 的虚部是( )A .-2B .4C .3D .-4B [z =1-(3-4i)=-2+4i ,故选B.]3.在复平面内,复数1+i 与1+3i 分别对应向量OA →和OB →,其中O 为坐标原点,则|AB →|等于( )A . 2B .2C .10D .4B [向量AB →对应的复数为(1+3i)-(1+i)=2i ,所以AB →=(0,2),故|AB →|=2.]4.(5-i)-(3-i)-5i =________.2-5i [(5-i)-(3-i)-5i =2-5i.]5.设z 1=x +2i ,z 2=3-y i(x ,y ∈R ),且z 1+z 2=5-6i ,则z 1-z 2=________. -1+10i [∵z 1=x +2i ,z 2=3-y i ,∴z 1+z 2=x +3+(2-y )i =5-6i , ∴⎩⎨⎧x +3=5,2-y =-6,解得⎩⎨⎧x =2,y =8,∴z 1=2+2i ,z 2=3-8i , ∴z 1-z 2=(2+2i)-(3-8i)=-1+10i.]回顾本节内容,自我完成以下问题:1.复数代数形式的加减运算之间有怎样的关系?[提示] 复数代数形式的加法满足交换律、结合律,复数的减法是加法的逆运算.2.复数加减法的几何意义是什么?[提示] 复数加法的几何意义就是向量加法的平行四边形法则.复数减法的几何意义就是向量减法的三角形法则.2.2 复数的乘法与除法*2.3 复数乘法几何意义初探学习任务核心素养1.掌握复数代数形式的乘法和除法运算.(重点、难点)2.理解复数乘法的交换律、结合律和乘法对加法的分配律.(难点)3.了解复数乘法的几何意义.1.通过学习复数的乘法和除法,培养学生数学运算素养.2.通过学习复数乘法运算所满足的运算律,培养学生数学抽象素养.在研究复数的加、减法运算时,我们注意到复数的形式就像一个二项式,类比二项式乘二项式的法则,我们可以得到复数乘法的法则,让第一项与第二项的各项分别相乘,再合并“同类项”,即得到乘法的结果.阅读教材,回答下列问题.问题1:复数的乘法和除法运算法则各是什么?问题2:复数乘法的运算律有哪些?问题3:如何在复数范围内求方程的解?(1)复数的乘法法则设z1=a+b i,z2=c+d i是任意两个复数,那么它们的积(a+b i)(c+d i)=(ac-bd)+(ad+bc)i.(2)复数乘法的运算律对于任意z1,z2,z3∈C,有交换律z1·z2=z2·z1结合律(z1·z2)·z3=z1·_(z2·z3)乘法对加法的分配律z1·(z2+z3)=z1·z2+z1·z3(3)对复数z,z1,z2和正整数m,n,有z m·z n=z m+n,(z m)n=z mn,(z1·z2)n=z n1·z n2.(4)虚数单位i乘方的周期性对于任意自然数n,有i4n+1=i,i4n+2=-1,i4n+3=-i,i4n+4=1.(5)共轭复数的性质:互为共轭复数的两个复数的乘积是实数,等于这个复数(或其共轭复数)模的平方.即若z =a +b i(a ,b ∈R ),则z ·z =|z |2=|z |2=a 2+b 2.(6)复数乘法的几何意义设复数z 1=a +b i(a ,b ∈R )所对应的向量为OZ 1.①z 2=(a +b i)·c (c >0)所对应的向量为OZ 2,则OZ 2是OZ 1与c 的数乘,即OZ 2是将OZ 1沿原方向拉伸或压缩c 倍得到的.②z 3=(a +b i)·i 所对应的向量为OZ 3,则OZ 3是由OZ 1逆时针旋转π2得到的.1.复数乘法的多项式运算与实数的多项式运算法则是否相似? [提示] 相似,但是运算的结果要把i 2写成-1.1.复数(1+i)(1-i)=________. 2 [(1+i)(1-i)=1-i 2=2.] 知识点2 复数的除法 (1)复数的除法:对任意的复数z 1=a +b i(a ,b ∈R )和非零复数z 2=c +d i(c ,d ∈R ),规定复数的除法:z 1z 2=z 1·1z 2.即除以一个复数等于乘这个复数的倒数.因此z 1z 2=a +b i c +d i =(a +b i)⎝ ⎛⎭⎪⎫cc 2+d 2-d c 2+d 2i =ac +bd c 2+d 2-ad -bc c 2+d 2i . (2)复数除法的运算: 在实际计算a +b ic +d i时,通常把分子和分母同乘分母c +d i 的共轭复数c -d i ,化简后就得到上面的结果:a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=ac +bd c 2+d 2-ad -bcc 2+d 2i .由此可见,在进行复数除法运算时,实际上是将分母“实数化”.2.类比根式除法的分母有理化,比如1+33-2=(1+3)(3+2)(3-2)(3+2),你能写出复数的除法法则吗?提示:设z 1=a +b i ,z 2=c +d i(c +d i ≠0),则z 1z 2=a +b i c +d i =ac +bd c 2+d 2+bc -adc 2+d 2i.2.设复数z 满足i z =1,其中i 为虚数单位,则z 等于( ) A .-i B .i C .-1 D .1A [z =1i =-i.]类型1 复数的乘法及其几何意义【例1】 (1)(教材北师版P 171例5改编)计算:①(2+i)(2-i);②(1+2i)2. (2)设O 是坐标原点,在矩形OABC (点O ,A ,B ,C 按逆时针排列)中,OA =3OC ,若A 对应的复数是3+4i ,求点B ,C 所对应的复数.[解] (1)①(2+i)(2-i)=4-i 2=4-(-1)=5; ②(1+2i)2=1+4i +(2i)2=1+4i +4i 2=-3+4i.(2)因为在矩形OABC 中,OA =3OC ,且A 对应的复数是3+4i , 所以点C 对应的复数为(3+4i)·13i =-43+i ,因为OA →=(3,4),OC →=⎝ ⎛⎭⎪⎫-43,1,所以OB →=OA →+OC →=⎝ ⎛⎭⎪⎫53,5,所以点B 对应的复数为53+5i.1.两个复数代数形式乘法的运算步骤 (1)首先按多项式的乘法展开; (2)再将i 2换成-1;(3)然后再进行复数的加、减运算,化简为复数的代数形式. 2.常用公式(1)(a +b i)2=a 2-b 2+2ab i(a ,b ∈R ); (2)(a +b i)(a -b i)=a 2+b 2(a ,b ∈R ); (3)(1±i)2=±2i.[跟进训练]1.(1)计算:(1-i)2-(2-3i)(2+3i)=( ) A .2-13i B .13+2i C .13-13iD .-13-2i(2)复数(1-i)2(2-3i)的值为( )A .6-4iB .-6-4iC .6+4iD .-6+4i(3)设复数2+i 对应的向量为OZ →,把OZ →沿原方向拉伸3倍所得到的向量对应的复数是( )A .-1+2iB .6+3iC .6+iD .-6-3i(1)D (2)B (3)B [(1)(1-i)2-(2-3i)(2+3i)=1-2i +i 2-(4-9i 2)=-13-2i.(2)(1-i)2(2-3i)=(-2i)(2-3i)=-6-4i.(3)把OZ →沿原方向拉伸3倍所得到的向量对应的复数是(2+i)·3=6+3i.] 类型2 复数的除法【例2】 (1)已知i 为虚数单位,图中复平面内的点A 表示复数z ,则表示复数z1+i的点是( )A .MB .NC .PD .Q(2)设复数z =1+2i ,则z 2+3z -1=( )A .2iB .-2iC .2D .-2(3)设复数z 满足1+z1-z=i ,则|z |等于( ) A .1 B . 2 C . 3D .2(1)D (2)C (3)A [(1)由图可知z =3+i ,所以复数z1+i =3+i 1+i=(3+i )(1-i )(1+i )(1-i )=4-2i2=2-i ,表示的点是Q (2,-1).故选D.(2)z 2+3z -1=(1+2i )2+31+2i -1=12+4i +4i 2+32i =4i 2i =2.故选C.(3)由1+z 1-z =i ,得z =-1+i 1+i=(-1+i )(1-i )2=2i2=i ,所以|z |=|i|=1.故选A.]两个复数代数形式的除法运算步骤(1)首先将除式写为分式;(2)再将分子、分母同乘以分母的共轭复数;(3)然后将分子、分母分别进行乘法运算,并将其化为复数的代数形式.[跟进训练] 2.(1)3+i1+i=( ) A .1+2i B .1-2i C .2+iD .2-i(2)已知i 为虚数单位,则1+i3-i =( )A .2-i5 B .2+i 5 C .1-2i5 D .1+2i 5(1)D (2)D [(1)3+i 1+i =(3+i )(1-i )(1+i )(1-i )=4-2i2=2-i. (2)1+i 3-i =(1+i )(3+i )(3-i )(3+i )=1+2i5.] 类型3 复数几何意义的综合应用【例3】 (1)已知i 是虚数单位,设复数z 1=1+i ,z 2=1+2i ,则z 1z 2在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限(2)若复数(1-i)(a +i)在复平面内对应的点在第二象限,则实数a 的取值范围是( )A .(-∞,1)B .(-∞,-1)C .(1,+∞)D .(-1,+∞)1. 复数z =-2+i 在复平面内对应的点在第几象限?[提示] 因为复数z =-2+i 在复平面内对应的点为(-2,1),它在第二象限. 2.若复数z =a +b i (a ,b ∈R )在复平面内对应的点在第四象限,则实数a ,b 应满足什么条件?[提示] a >0,b <0.3.(1)计算z 1z 2→求复数z 1z 2在复平面内对应的点→判断其所在的象限(2)计算(1-i )(a +i )→求复数(1-i )(a +i )在复平面内对应的点→构建方程组并求解(1)D (2)B [(1)由题可得,z 1z 2=1+i1+2i =(1+i )(1-2i )(1+2i )(1-2i )=35-15i ,对应在复平面上的点的坐标为⎝ ⎛⎭⎪⎫35,-15,在第四象限.(2)因为z =(1-i)(a +i)=a +1+(1-a )i ,所以它在复平面内对应的点为(a +1,1-a ),又此点在第二象限,所以⎩⎨⎧a +1<0,1-a >0,解得a <-1.]1.把例3(1)中的复数“z 1z 2”换为“11+i ”,答案是哪个?[解]11+i =1-i (1+i )(1-i )=12-12i ,对应的点为⎝ ⎛⎭⎪⎫12,-12,在第四象限,故选D.2.把例3(2)中的复数“(1-i)(a +i)”换为“1-2ia +i”,其余条件不变, 求实数a 的取值范围.[解] 因为1-2i a +i =(1-2i )(a -i )(a +i )(a -i )=a -2a 2+1-2a +1a 2+1i ,由题意可得⎩⎪⎨⎪⎧a -2a 2+1<0-2a +1a 2+1>0,解得a <-12.(1)复数z =a +b i(a ,b ∈R )Z (a ,b )OZ →=(a ,b ).(2)由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解法更加直观.[跟进训练]3.已知复数z 满足(1+2i)z =4+3i(i 为虚数单位),求z 及z z .[解] ∵(1+2i)z =4+3i , ∴z =4+3i 1+2i =(4+3i )(1-2i )(1+2i )(1-2i )=2-i , ∴z =2+i ,∴zz =2-i 2+i =(2-i )2(2+i )(2-i )=3-4i 5=35-45i. 当堂达标1.复数(1+i)2(2+3i)的值为( ) A .6-4i B .-6-4i C .6+4iD .-6+4iD [(1+i)2(2+3i)=2i(2+3i)=-6+4i.]2.已知i 是虚数单位,若复数z 满足z i =1+i ,则z 2=( ) A .-2iB .2iC .-2D .2A [∵z i =1+i ,∴z =1+i i =1i +1=1-i. ∴z 2=(1-i)2=1+i 2-2i =-2i.] 3. 在复平面内,复数11-i的共轭复数对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限D [11-i =1+i 2=12+12i ,其共轭复数为12-12i ,∴复数11-i的共轭复数对应的点的坐标为⎝ ⎛⎭⎪⎫12,-12,位于第四象限,故选D.]4.计算:(1-i)(1+i)+(-1+i)=________. 1+i [(1-i)(1+i)+(-1+i)=1-i 2-1+i =1+i.] 5.设复数z =1+2i ,则z 2-2z =________.-3 [ ∵z =1+2i ,∴z 2-2z =z (z -2)=(1+2i)(1+2i -2)=(1+2i)(-1+2i)=-3.]回顾本节内容,自我完成以下问题: 1.如何进行复数代数形式的乘除运算?[提示] (1)复数代数形式的乘法类似于多项式乘以多项式,复数的乘法满足交换律、结合律以及乘法对加法的分配律.(2)在进行复数代数形式的除法运算时,通常先将除法写成分式的形式,再把分子、分母都乘以分母的共轭复数,化简后可得,类似于以前学习的分母有理化.2.解决复数问题的基本思想是什么?[提示] 复数问题实数化是解决复数问题的基本思想方法,其桥梁是设复数z =a +b i(a ,b ∈R ),利用复数相等的充要条件转化.利用复数产生分形图以前我们学过的函数,定义域都是实数集的子集.但函数概念还可以推广:定义域是复数集的子集的函数称为复变函数.类似地,我们还可以得到多项式复变函数的概念.例如,f(z)=z2就是一个多项式复变函数,此时f(i)=i2=-1,f(1+i)=(1+i)2=2i.给定多项式复变函数f(z)之后,对任意一个复数z0,通过计算公式z n+1=f(z n),n∈N可以得到一列值z0,z1,z2,…,z n,….如果存在一个正数M,使得|z n|<M对任意n∈N都成立,则称z n为f(z)的收敛点;否则,称z n为f(z)的发散点.f(z)的所有收敛点组成的集合称为f(z)的充满茹利亚集.例如,当f(z)=z2时,如果z n=i,则得到的一列值是i,-1,1,1,…,1,…;如果z n=1+i,则算出的一列值是1+i,2i,-4,…,22n-1,….显然,对于f(z)=z2来说,i为收敛点,1+i为发散点.事实上,利用|z2|=|z|2可以证明,f(z)=z2的充满茹利亚集是一个单位圆盘(即由满足|z|≤1的所有z组成的集合).让人惊讶的是,当f(z)=z2+c时,对于某些复数c来说,f(z)的充满茹利亚集是非常复杂的.如果利用计算机对不同形态的收敛点和发散点进行不同的着色,就可以得到分形图.而且,如果按照一定的规则对c进行分类,并进行着色,可以得到如图所示的芒德布罗分形图.。

苏教版四年级下册《解决问题的策略》数学教案(10篇)

苏教版四年级下册《解决问题的策略》数学教案(10篇)苏教版四年级下册《解决问题的策略》数学教案(精选10篇)作为一名辛苦耕耘的教育工作者,编写教案是必不可少的,教案是实施教学的主要依据,有着至关重要的作用。

写教案需要注意哪些格式呢?下面是小编整理的苏教版四年级下册《解决问题的策略》数学教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

四年级下册《解决问题的策略》数学教案 1一、教学目标:1、运用画线段图的方法整理已知条件和问题,理解和差问题的解题思路,掌握和差问题的解题方法。

2、掌握画线段图分析问题的方法,感受画线段图的策略在分析问题中的好处,培养学生运用线段图进行分析问题的意识。

3、培养学生良好的逻辑思维能力,鼓励学生在合作交流中激发自主探究、创新的精神。

二、教学重点:理解和差问题的解题思路,掌握和差问题的解题方法。

三、教学难点:掌握画线段图分析问题的方法,培养学生运用线段图进行分析问题的意识。

四、教学准备:多媒体课件五、教学过程:(一)、谈话引入1、课件出示:小明买3本故事书用了27元,小军买了5本同样的故事书需要多少元?(1)将题目中的信息整理到下面的表格中。

小明3本27元小军5本元(2)分析表格中的信息,明确解题思路。

引导学生明确:可以先算出一本故事书多少元,再计算出5本故事书多少元。

(3)学生独立解答。

一本故事书:27÷3=9(元)五本故事书:9×5=45(元)2、谈话导入。

刚才我们采用了哪种解决问题的策略?(列表)师:通过列表的策略来分析数量关系,可以让一些复杂的问题变得浅显。

除了列表这种解决问题的策略外,还有许多其他的解决问题的策略,同学们想学吗?今天我们就一起来学习新的解决问题的策略。

(板书课题)(二)、交流共享1、课件出示教材第48页例题1。

让学生读题,说说题目中的已知条件和所求的问题。

已知条件:小宁和小春共有72枚邮票;小春比小宁多12枚。

所求问题:两人各有邮票多少枚?2、交流解题策略。

人教版七年级数学上册第一章培优测试卷含答案

人教版七年级数学上册第一章培优测试卷七年级数学·上(R 版) 时间:90分钟 满分:120分一、选择题(每题3分,共30分)1.【教材P 4练习T 3变式】【2020·孝感】如果温度上升3 ℃记作+3 ℃,那么温度下降2 ℃记作( ) A .-2 ℃B .+2 ℃C .+3 ℃D .-3 ℃2.【2020·温州】数1,0,-23,-2中,最大..的是( ) A .1B .0C .-23D .-23.【2021·玉林】计算-1+2的结果是( )A .1B .-1C .3D .-34. 随着科学技术的不断提高,5G 网络已经成为新时代的“宠儿”,预计到2025年,全球5G 用户将达到1 570 000 000人.将1 570 000 000用科学记数法表示为( ) A .1.57×109B .157×107C .1.57×108D .157×1095.【教材P 20练习T 2(2)改编】计算314+⎝ ⎛⎭⎪⎫-235+534+⎝ ⎛⎭⎪⎫-825时,用运算律最为恰当的是( )A.⎣⎢⎡⎦⎥⎤314+⎝ ⎛⎭⎪⎫-235+⎣⎢⎡⎦⎥⎤534+⎝ ⎛⎭⎪⎫-825 B.⎝ ⎛⎭⎪⎫314+534+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-235+⎝ ⎛⎭⎪⎫-825 C.⎣⎢⎡⎦⎥⎤314+⎝ ⎛⎭⎪⎫-825+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-235+534 D .以上都不对6.【2020·福建】如图,数轴上两点M ,N 所对应的有理数分别为m ,n ,则m -n 的结果可能是( )A .-1B .1C .2D .37.下列说法正确的是( )A .一个数的绝对值一定是正数B .如果两个数的绝对值相等,那么这两个数相等C .负数的绝对值一定是正数D .绝对值小于3的整数有3个 8.下列运算正确的是( )A.⎝ ⎛⎭⎪⎫-7289÷8=-919 B .15×23+(-12)×23=-18 C.⎝⎛⎭⎪⎫1-12-13×0=16 D .4÷⎝ ⎛⎭⎪⎫2-12=-6 9.【2020·枣庄】有理数a ,b 在数轴上对应点的位置如图所示,下列判断正确的是( )A .|a |<1B .ab >0C .a +b >0D .1-a >110.一根100 m 长的小棒,第一次截去一半,第二次截去剩下的13,第三次截去剩下的14……如此下去,直到截去剩下的1100,则剩下的小棒长为( ) A.12 mB .1 mC .2 mD .4 m二、填空题(每题3分,共24分)11.把(-1)-(-3)+(-5)-(+6)改写成省略括号和加号的形式为_________________________________.12.【教材P 51复习题T 3改编】2 022的相反数是________,绝对值是________,倒数是________.13.将数59 840精确到千位是__________.14.比较大小:-0.3________-13(填“>”“<”或“=”).15.如图,数轴的单位长度为1,如果点A 表示的数是-1,那么点B 表示的数是________.(第15题) (第17题)16.如果|a +2|+(b -3)2=0,那么a b =________.17.如图是一个简单的数值运算程序图,当输入x 的值为-1时,输出的数值为________.18.已知|m |=4,|n |=6,且|m +n |=m +n ,则m -n =__________.三、解答题(19,24题每题12分,20题16分,21题6分,其余每题10分,共66分)19.(1)【教材P 14习题T 1变式】将下列各数填在相应的大括号里:-(-2.5),(-1)2,-|-2|,-22,0,-12.整数:{ …}; 分数:{ …}; 正有理数:{ …}; 负有理数:{ …}.(2)【教材P 51复习题T 1改编】把表示上面各数的点画在数轴上,再按从小到大的顺序,用“<”号把这些数连接起来.20.计算(能简算的要简算): (1)-6+10-3+|-9|; (2)-49-⎝ ⎛⎭⎪⎫-118+⎝ ⎛⎭⎪⎫-18-59;(3)23×⎝ ⎛⎭⎪⎫1-14-16×1.5; (4)-42÷(-2)3-(-1)2 023-49÷23.21.现规定一种新运算“*”:a *b =a b -2,例如:2*3=23-2=6.试求⎝ ⎛⎭⎪⎫-32*2*2的值.22.【教材P 26习题T 9变式】某市质量技术监督局从某食品厂生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,把超过或不足的部分分别用正、负数来表示,记录如下表:(1)若标准质量为450 g ,则抽样检测的20袋食品的总质量为多少克? (2)若该食品的合格标准为450 g±5 g ,求该食品的抽样检测的合格率.23.某景区工作人员接到任务后,驾驶电瓶车从景区大门出发,向东走2 km 到达A 景区,继续向东走2.5 km 到达B 景区,然后又回头向西走8.5 km 到达C 景区,最后回到景区大门.(1)以景区大门为原点,向东为正方向,以1个单位长度表示1 km ,建立如图所示的数轴,请在数轴上表示出上述A ,B ,C 三个景区的位置.(2)若电瓶车充足一次电能行走15 km ,则该工作人员能否在电瓶车一开始充足电而途中不充电的情况下完成此次任务?请计算说明.24.如图,用线在数轴上表示了一个“范围”,这个“范围”包含所有大于1且小于2的数(数轴上表示1与2这两个数的点空心,表示这个范围不包含数1和2).请你在数轴上表示出一个范围,使得这个范围:(1)包含所有大于-4且小于0的数(画在数轴①上);(2)包含-1.5,π这两个数,且只含有5个整数(画在数轴②)上;(3)同时满足以下三个条件(画在数轴③上):①有很多对互为相反数;②有最小的正整数;③这个范围内最大的数与最小的数表示的点的距离大于5但小于6.答案一、1.A 2.A 3.A 4.A 5.B 6.C 7.C 8.A 9.D10.B 点拨:剩下的小棒长为100×⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-14×…×⎝ ⎛⎭⎪⎫1-1100=100×1100=1(m).二、11.-1+3-5-6 12.-2 022;2 022;12 022 13.6.0×104 14.> 15.3 16.-8 17.-2 18.-2或-10三、19.解:(1)整数:{(-1)2,-|-2|,-22,0,…};分数:{-(-2.5),-12,…}; 正有理数:{-(-2.5),(-1)2,…}; 负有理数:{-|-2|,-22,-12,…}. (2)图略.-22<-|-2|<-12<0<(-1)2<-(-2.5).20.解:(1)原式=-6+10-3+9=(-6-3+9)+10 =10;(2)原式=-49+118-18-59 =⎝ ⎛⎭⎪⎫-49-59+⎝ ⎛⎭⎪⎫118-18 =-1+1 =0;(3)原式=(23×1.5)×⎝ ⎛⎭⎪⎫1-14-16 =(8×1.5)×⎝ ⎛⎭⎪⎫1-14-16 =12×⎝ ⎛⎭⎪⎫1-14-16 =12-3-2=7;(4)原式=-16÷(-8)-(-1)-49×32 =2+1-23 =73.21. 点方法:观察新运算法则,找出新运算规律,把新运算转换成几种已学习过的基本运算,同时要注意运算顺序. 解:⎝ ⎛⎭⎪⎫-32*2*2=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-322-2*2 =14*2 =⎝ ⎛⎭⎪⎫142-2 =-3116.22.解:(1)450×20+(-6)+(-2)×4+1×4+3×5+4×3=9 000-6-8+4+15+12=9 017(g ).答:抽样检测的20袋食品的总质量为9 017 g . (2)1920×100%=95%.答:该食品的抽样检测的合格率为95%. 23.解:(1)如图所示.(2)电瓶车一共走的路程为|+2|+|+2.5|+|-8.5|+|+4|=17(km).因为17>15,所以该工作人员不能在电瓶车一开始充足电而途中不充电的情况下完成此次任务.24.解:(1)如图所示.(2)如图所示.(答案不唯一)(3)如图所示.(答案不唯一)。

小学生口算错误的原因分析

小学生口算错误的原因分析小学口算的教学内容,大致可以分为基本口算和简捷速算两大块。

作为笔算基础的基本口算,如20 以内加减法,表内乘法及相应的除法等,要求学生做到准确、熟练、脱口而出。

简捷速算的内容主要是应用运算定律、性质及一些特殊的法则方法所进行的简算速算。

一、小学生口算错误的原因分析1.教师的教学原因。

(1)对20 以内加减口算是否抓得过关;(2)学生对乘法口诀是否熟练;(3)是否掌握了混合运算的运算顺序;(4)教者是否对学生的错误加以分析,对症下药;(5)教法是否适合绝大多数学生的学习,引导是否得力。

(6)教师是否经常和学生、家长沟通,是否真正地关心到了每个学生的心身健康成长。

2.学生的学习原因。

(1)算理不熟练导致口算能力差。

(2)易错题干扰导致口算出错多。

(3)不良口算习惯导致口算能力差。

(4)有的学生比较马虎,虽然算得快,可是老是出错。

(5)有的学生看题不准,刚算的时候就错了,自己还不知道。

(6)有的学生对口算不感兴趣,不想学习口算,老想着动笔去算。

二、小学生口算错误的应对策略(一)讲清算理,注重算理教学,培养学生口算能力在教学中,我十分重视算理教学。

如在教学 20 以内的退位减法时,出示15-7,不要急于把现成的“破十减”灌输给学生,而要站在学生的角度审视问题,让学生用自己喜欢的方法探求解决问题的方法,有的学生会摆一摆学具,找出答案:“我是这样想的,先算10-7=3,再算3+5=8”;“我是这样想的,先算15-5=10,再算10-2=8”有的学生用扳手指数数,“我是这样想的,把15 记在脑子里,伸出7 个手指头,从15 开始,一边屈指一边数,14、13……结果是8”有的用“做减想加”来计算,“因为8+7=15,所以15-7=8”。

(二)帮助学生梳理易错题。

1.我尽量让学生选择适合自己的算法,灵活计算。

如计算8+7,我们可以用拆大数凑十或拆小数凑十计算;也可以将8 和7 都拆成5,5 加5 再加多出来的5 计算;又可以将8 看成10,10加7 再减2 或将7 看成10,10 加8 减3 计算;还可以从7+7=14 或8+8=16 推算出答案。

ICD-10教材解析


Ⅰ (a) 颅内损伤 (b) 颅骨骨折 (c) 行人在道路上行走 意外被卡车撞倒

1小时 1小时 1小时
规则A:衰老和其他不明确情况
当选择的是不明原因死亡而在证明书 上报告了,应在说明栏里写明原因。
不明原因
下面的情况可以看作是不明原因: I46.9(心脏停搏,未特指);I95.9(低血压, 未特指); I99 (循环系统其他和未特指的 疾患);J96.0(急性呼吸衰竭);J96.9(呼吸 衰竭,未特指); R00-R94或R96-R99(症状、体征和临床与 实验室异常所见,不可归类在他处者)。
死因顺序的填写问题_(2)
【例2-1】
Ⅰ(a) 高血压 (b) 冠心病 (c) 急性心肌梗死 (d) 贫血
【纠正】
Ⅰ(a) 急性心肌梗死 (b) 冠心病 (c) 高血压 Ⅱ 贫血
本例存在两个问题: 1. 把高血压、冠心病、急性心肌梗死的顺序写颠倒; 2. 把无关的贫血作为最早的原因填写在下面。 错误原因:对第一部分各行填写内容应自下而上形成顺 序的填写要求不了解。
死因诊断的填写问题_(3) 填写诊断不特异,可能影响编码的 精确性。 填写的诊断名称应尽量具有特异性, 即在诊断中尽量体现疾病的主要特征, 包括疾病的病因、分型、部位、程度、 主要并发症等。 心脏病、肺病 ……
呼吸衰竭 循环衰竭 中枢性呼吸循环衰竭 多器官功能衰竭 多脏器衰竭 全身衰竭
J96.9 R57.9 J96.9 R99 R99 R53
临死方式的填写问题_(3)
这些虽然是比较具体的诊断名称,但仍不是死因 统计中需要的确切死因。 报告的顺序不能停止在这些死因,应继续追溯到 导致死亡的最早的原因并填写在证明书上。
【例 【例1-2 1-2】 】
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【教材例10-3改编】甲公司于20×7年1月1日按每份面值1 000元发行了2 000份附
有赎回选择权的可转换债券,取得总收入2 000 000元。该债券期限为3年,票面年利率为
6%,利息按年支付;每份债券均可在债券发行1年后的任何时间转换为250股普通股。甲公
司发行该债券时,二级市场上与之类似但没有转股权的债券的市场利率为9%。同时,甲公
司在募集说明书中规定:债券持有人在达不到转换条件时,可以在债券期限届满前要求甲公
司赎回债券本金并按年利率3%支付债券利息补偿。20×8年12月31日,可转换债券持有人
A企业于当日将所持面值总额为1000000元的可转化公司债券转为甲公司股份;20×9年初
可转换债券持有人B企业要求甲公司赎回所持面值总额为500000元的可转换公司债券并支
付利息及补偿;20×10年1月1日,甲公司向该转换公司债券的其他持有人支付债券本金
和最后一年利息。假定不考虑其他相关因素,甲公司将发行的债券划分为以摊余成本计量的
金融负债。
已知:3年期复利现值系数为0.7721835,3年期年金现值系数为2.5312917。
要求:(1)编制甲公司发行可转换公司债券时的会计分录。
(2 编制甲公司20×7年12月31日与计提可转换公司债券利息相关的会计分录。
(3)编制20×8年12月31日可转换债券持有人A企业转股甲公司相关会计分录。
(4)编制20×9年12月31日可转换债券持有人B企业赎回可转换债券甲公司相
关会计分录。
(5)编制甲公司20×10年1月1日向该转换公司债券的其他持有人支付债券本
金和最后一年利息相关分录。

相关文档
最新文档