二次根式提升检测题(难度较大)

合集下载

八年级数学二次根式拓展提高之恒等变形(实数)拔高练习(含答案)

八年级数学二次根式拓展提高之恒等变形(实数)拔高练习(含答案)

八年级数学二次根式拓展提高之恒等变形(实数)拔高练习试卷简介:全卷共三个大题,第一题是填空(7道,每道5分);第二题是计算(3道,每道5分);第三题是解答(4道,每道10分),满分120分,测试时间30分钟。

本套试卷有一定的难度系数,包含了根式的意义及其与绝对值、完全平方式的综合运用,同学们可以在做题过程中回顾课本,加深对根式的理解。

学习建议:本讲内容是在课本基础上的拔高训练,深入地剖析了根式,需要同学们更加深入地理解根式的意义,也要熟悉其与绝对值、完全平方式的综合运用。

虽然题目有些难度,但万变不离其宗,大家可以在做这部分题的时候多回顾课本,真正做到理解最基本的知识点。

一、填空题(共7道,每道5分)1.化简:=______.答案:6解题思路:被开方数必须大于等于零,∴,即.又,∴a-1=0 ∴a=1 代入所求式子,答案为6.易错点:忽略了被开方数是大于等于零这一隐含条件试题难度:三颗星知识点:二次根式有意义的条件2.若有意义,则a-b=______.答案:0解题思路:若使有意义,需满足2ab-b-a2-b2&ge;0,即-(a-b)2&ge;0∴(a-b)2&le;0 又(a-b)2&ge;0 ∴(a-b)2=0 ∴a-b=0易错点:没有掌握被开方数必须大于等于零这一条件试题难度:二颗星知识点:二次根式有意义的条件3.已知,若axy-3x=y,则a=______.答案:解题思路:算术平方根和完全平方式都是大于等于零的,而二者之和等于零,所以二者分别等于零,故可得出x=,y=3.然后代入axy-3x=y,可得a=.易错点:求不出x、y的值试题难度:三颗星知识点:二次根式有意义的条件4.若,则3x+4y=______.答案:-7解题思路:若使式子式子有意义,须满足,可得x=-2,y=∴3x+4y=-7. 易错点:求不出x、y的值试题难度:三颗星知识点:分式有意义的条件5.若x<0,则=______,=______.答案:-x;x解题思路:一个数先平方再开方,等于它的绝对值;一个数先立方再开立方,等于它本身. 易错点:一个数先平方再开平方等于它的绝对值,而非它本身.试题难度:二颗星知识点:二次根式的性质与化简6.设m>n>0,m²+n²=4mn,则的值等于___.答案:解题思路:将m²+n²=4mn左边同时加减2mn,即可求得m+n、m-n的值,然后代入求解. 易错点:没有看出所求式子和已知式子的联系;符号正负判断错误.试题难度:四颗星知识点:二次根式的混合运算7.若,则x2+4x-5=______;若,则x2+2x-1=______.答案:2001;2010解题思路:先将所求式子变形为完全平方式的形式,然后代入求解.易错点:直接代入导致计算错误试题难度:三颗星知识点:二次根式的混合运算二、计算题(共3道,每道5分)1.已知b<0<a,化简:|a-b|答案:-b解题思路:一个数先平方再开方等于它的绝对值;正数的绝对值等于它本身,负数的绝对值等于它的相反数.易错点:一个数先平方再开方等于它的绝对值,而非它本身.试题难度:三颗星知识点:绝对值2.化简:答案:2解题思路:一个数先平方再开方等于它的绝对值;一个数先开方再平方等于它本身.易错点:混淆了先平方再开方和先开方再平方的结果.试题难度:三颗星知识点:二次根式的性质与化简3.当1<x<4时,化简:答案:3解题思路:观察得知,被开方数是完全平方式,利用一个数先平方再开方等于它的绝对值进行解题.易错点:一个数先平方再开方等于它的绝对值,而非它本身.试题难度:三颗星知识点:二次根式的性质与化简三、解答题(共7道,每道10分)1.如果式子化简的结果为2x-3,求x的取值范围.答案:=|x-1|+|x-2|=2x-3,∴x-1&ge;0且x-2&ge;0. 解得x&ge;2解题思路:由x的系数判断绝对值符号内数的正负易错点:由化简结果不知道怎么判断x的范围试题难度:四颗星知识点:绝对值2.已知|a|=5,且ab>0,求a+b的值.答案:∵,∴|b|=3 ∴b=±3 而|a|=5 ∴a=±5 又ab>0,∴ab同号,即当a=5时,b=3;当a=-5时,b=-3 ∴答案为8或-8解题思路:两数想乘,同号得正、异号得负易错点:漏掉了a、b同时为负的情况试题难度:三颗星知识点:绝对值3.已知a2+12ab+9b2的算术平方根.答案:=∵a<0,b<0 ∴原式=-2a-3b解题思路:4a2+12ab+9b2是一个完全平方式,利用一个数先平方再开方等于它的绝对值进行解题易错点:一个数先平方再开方等于它的绝对值,而非它本身.试题难度:三颗星知识点:绝对值4.已知,求的值.答案:∵,∴a>0 ∴-2=1 ∴=3∴解题思路:先判断出a>0,再利用完全平方和与完全平方差的转换进行解题易错点:没有判断出a与0的大小关系试题难度:四颗星知识点:完全平方公式5.一个数的平方根是a2+b2和4a-6b+13,求这个数.答案:由已知,可得a2+b2+4a-6b+13=0,即(a+2)2+(b-3)2=0 ∴a=-2、b=3 ∴a2+b2=13 ∴这个数为169.解题思路:一个数的两个平方根互为相反数易错点:答案错误:所求的是这个数而不是它的平方根试题难度:四颗星知识点:二次根式的应用6.设a是一个无理数,且a、b满足ab+a-b=1,求b.答案:∵ab+a-b=1 ∴b(a-1)=1-a 又∵a为无理数∴a-1也是无理数,即a-1≠0 ∴b=1 解题思路:将a看作已知数、b看作未知数,然后移项求解易错点:找不到突破口试题难度:三颗星知识点:解一元一次方程7.数轴上,表示1、的对应点分别为A、B,点B关于点A的对称点为点C,求点C所表示的数.答案:如图,∵AC=AB=,∴OC=OA-AC=1-()=.解题思路:点B、点C关于点A对称,那么AC=AB.易错点:找不到点C所代表的数试题难度:四颗星知识点:数轴。

八年级初二数学下学期二次根式单元 易错题难题提高题学能测试试题

八年级初二数学下学期二次根式单元 易错题难题提高题学能测试试题

一、选择题1.5﹣x ,则x 的取值范围是( )A .为任意实数B .0≤x≤5C .x≥5D .x≤52.( )A .1B .﹣1C .D -3.有意义,则x 的取值范围是( ) A .x≠2B .x >-2C .x <-2D .x≠-2 4.下列各式一定成立的是( )A 2a b =+B 21a =+C 21a =-D ab = 5.下列运算中,正确的是( )A =3B .=-1C D .36.x 的取值范围是( ) A .0x <B .0xC .2xD .2x7.若2x -有意义,则字母x 的取值范围是( ) A .x≥1B .x≠2C .x≥1且x =2D ..x≥-1且x ≠28.已知a 满足2018a -a ,则a -2 0182=( )A .0B .1C .2 018D .2 0199.已知0xy <,化简二次根式 )A B C .D .10.下面有四个命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.01)=5;④如果点P (3-2n ,1)到两坐标轴的距离相等,那么n =1,其中假命题的有( )A .1个B .2个C .3个D .4个二、填空题11.把根号外的因式移入根号内,得________ 12.若实数x ,y ,m 满足等式 ()223x y m +-=m+4的算术平方根为________.13.化简二次根式_____.14.已知a ,b 是正整数,若有序数对(a ,b )使得的值也是整数,则称(a ,b )是的一个“理想数对”,如(1,4)使得=3,所以(1,4)是的一个“理想数对”.请写出其他所有的“理想数对”: __________.15.已知实数m 、n 、p 满足等式,则p =__________.16.已知1<x <2,171x x +=-_____.17.===据上述各等式反映的规律,请写出第5个等式:___________________________.18.n 的最小值为___19.3y =,则2xy 的值为__________.20.函数y =2x -中,自变量x 的取值范围是____________. 三、解答题21.阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式a =,)111=11互为有理化因式.(1)1的有理化因式是 ;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:3==,24====进行分母有理化.(3)利用所需知识判断:若a=,2b=ab,的关系是.(4)直接写结果:)1=.【答案】(1)1;(2)7-;(3)互为相反数;(4)2019【分析】(1)根据互为有理化因式的定义利用平方差公式即可得出;(2)原式分子分母同时乘以分母的有理化因式(2,化简即可;(3)将a=(4)化简第一个括号内的式子,里面的每一项进行分母有理化,然后利用平方差公式计算即可.【详解】解:(1)∵()()1111=,∴1的有理化因式是1;(2227-==-(3)∵2a===,2b=-,∴a和b互为相反数;(4))1++⨯=)11⨯=)11=20201-=2019,故原式的值为2019.【点睛】本题考查了互为有理化因式的定义及分母有理化的方法,并考查了利用分母有理化进行计算及探究相关式子的规律,本题属于中档题.22.像2)=1=a(a≥0)、﹣1)=b﹣1(b≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因+1﹣1,﹣因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题:(1);(2)(3)的大小,并说明理由.【答案】(1(2)(3)<【解析】分析:(1=1,确定互为有理化因式,由此计算即可;(2)确定分母的有理化因式为2与2+然后分母有理化后计算即可;(3与,然后比较即可.,详解:(1) 原式;(2)原式=2+=2+(3)根据题意,-==,><,>点睛:此题是一个阅读题,认证读题,了解互为有理化因式的实际意义,以及特点,然后根据特点变形解题是关键.23.在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如:2224312111-=-=-+=).善于动脑的小明继续探究:当a b m n 、、、为正整数时,若2a n +=+),则有22(2a m n =+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若2a n =+),请用含有mn 、的式子分别表示a b 、,得:a = ,b = ;(2)填空:13-( - 2;(3)若2a m +=(),且a m n 、、为正整数,求a 的值.【答案】(1)223a m n =+,2b mn =;(2)213--;(3)14a =或46.【解析】试题分析:(1)把等式)2a n +=+右边展开,参考范例中的方法即可求得本题答案; (2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩,结合a b m n 、、、都为正整数可得:m=2,n=1,这样就可得到:213(1-=-;(3)将()2a m +=+右边展开,整理可得:225a m n =+,62mn =结合a m n 、、为正整数,即可先求得m n 、的值,再求a 的值即可.试题解析:(1)∵2a n =+),∴223a m n +=++,∴2232a m n b mn =+=,;(2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ , ∵a b m n 、、、都为正整数,∴12m n =⎧⎨=⎩ 或21m n =⎧⎨=⎩ , ∵当m=1,n=2时,223713a m n =+=≠,而当m=2,n=1时,22313a m n =+=, ∴m=2,n=1,∴(2131--;(3)∵222()52a m m n +=+=++∴225a m n =+,62mn = ,又∵a m n 、、为正整数,∴=1=3m n ,, 或者=3=1m n ,,∴当=1=3m n ,时,46a =;当=3=1m n ,,14a =,即a 的值为:46或14.24.计算下列各式:(1;(2【答案】(12 ;(2) 【分析】 先根据二次根式的性质化简,再合并同类二次根式即可.【详解】(1)原式2=-2=;(2)原式==. 【点睛】本题考查了二次根式的加减,熟练掌握性质是解答本题的关键(0)(0)a a a a a ≥⎧==⎨-<⎩,)0,0a b =≥≥=(a ≥0,b >0).25.在一个边长为(cm 的正方形的内部挖去一个长为()cm ,cm 的矩形,求剩余部分图形的面积.【答案】【解析】试题分析:用大正方形的面积减去长方形的面积即可求出剩余部分的面积.试题解析:剩余部分的面积为:(2﹣()=()﹣(﹣)=(cm 2).考点:二次根式的应用26.计算:0(3)|1|π-+.【答案】【分析】根据二次根式的意义和性质以及零次幂的定义可以得到解答.【详解】解:原式11=+=【点睛】本题考查实数的运算,熟练掌握二次根式的运算和零次幂的意义是解题关键.27.(1|5-+;(2)已知实数a 、b 、c 满足|3|a +=,求2(b a +的值.【答案】(1)5;(2)4【分析】(1)先利用二次根式的乘法法则和绝对值的意义计算,再进行回头运算即可;(2)先根据二次根式有意义的条件确定b 的值,再根据非负数的和的意义确定a ,c 的值,然后再计算代数式的值即可.【详解】解:(15-+5)=+5=+5=(2)由题意可知:5050b b -≥⎧⎨-≥⎩, 解得5b =由此可化简原式得,30a +=30a ∴+=,20c -=3a ∴=-,2c =22((534b a ∴+=--=【点睛】可不是考查了二次根式的混合运算以及二次根式的化简求值,熟练掌握运算法则和运算顺序是解答此题的关键.28.先阅读下面的解题过程,然后再解答.a ,b ,使a b m +=,ab n =,即22m +==0)a b ==±>.这里7m =,12n =,由于437+=,4312⨯=,所以22+==,2===..【答案】见解析【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【详解】根据题意,可知13m =,42n =,由于7613+=,7642⨯=,所以2213+=,====【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据二次根式的性质得出5-x≥0,求出即可.【详解】==-=-,|5|5x x∴5-x≥0,解得:x≤5,故选D.【点睛】本题考查了二次根式的性质的应用,注意:当a≥0,当a≤0.2.C解析:C【解析】解:原式=故选C.3.B解析:B【分析】根据二次根式的被开方数是非负数,且分母不能为零,可得答案.【详解】有意义,得:x+>,20x>-.解得:2故选:B.【点睛】本题考查了二次根式有意义的条件,利用被开方数是非负数,分母不能为零得出不等式是解题关键.4.B解析:B【分析】分别利用二次根式的性质化简求出即可.【详解】解;A2=|a+b|,故此选项错误;B2+1,正确;C,无法化简,故此选项错误;D,故此选项错误;故选:B.【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.5.D解析:D【分析】根据二次根式的加减乘除法则逐项判断即可得.【详解】=+=,此项错误A314==-,此项错误B、23===⨯=,此项错误C2428=,此项正确D、3故选:D.【点睛】本题考查了二次根式的加减乘除运算,熟记二次根式的运算法则是解题关键.6.D解析:D【分析】根据二次根式有意义的条件(被开方数≥0),列出不等式求解即可得到答案;【详解】x-≥,即:20x,解得:2故选:D;【点睛】本题主要考查了二次根式有意义的条件,掌握二次根式有意义即被开方数≥0是解题的关键. 7.D解析:D【分析】直接利用二次根式的有意义的条件分析得出答案.【详解】有意义,则x+1≥0且x-2≠0,解得:x≥-1且x≠2.故选:D .【点睛】本题考查了二次根式有意义的条件,正确把握相关性质是解题关键.8.D解析:D【解析】【分析】根据二次根式的被开数的非负性,求的a 的范围,然后再化简绝对值,最后,依据二次根式的定义进行变形即可.【详解】解:等式2018a -=a 成立,则a ≥2019,∴,,∴a-2019=20182,∴a-20182=2019.故选D .【点睛】本题主要考查的是二次根式有意义的条件,求得a 的取值范围是解题的关键.9.B解析:B【分析】先根据xy <0,考虑有两种情况,再根据所给二次根式可确定x 、y 的取值,最后再化简即可.【详解】解:0xy <,0x ∴>,0y <或0x <,0y >, 又2y x x -有意义, 0y ∴<,0x ∴>,0y <,当0x >,0y <时, 故选B .【点睛】本题考查了二次根式的性质与化简.解题的关键是能根据已知条件以及所跟二次根式来确定x 、y 的取值.10.D解析:D【分析】利用平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质分别判断后即可确定正确的选项.【详解】解:①两条平行线直线被第三条直线所截,同位角相等,故错误;②0.01的算术平方根是0.1,故错误;)=17322+=,故错误;④如果点P(3-2n,1)到两坐标轴的距离相等,则n=1或n=2,故错误,故选D.【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质,难度一般.二、填空题11.【分析】根据被开方数大于等于零,可得出,再根据二次根式的性质进行计算即可.【详解】解:∵,∴,∴.故答案为:.【点睛】本题考查的知识点是二次根式的性质与化简,掌握二次根式的基本性质【分析】根据被开方数大于等于零,可得出0a<,再根据二次根式的性质进行计算即可.【详解】解:∵31a-≥,∴0a<,∴a===.故答案为:a.【点睛】本题考查的知识点是二次根式的性质与化简,掌握二次根式的基本性质是解此题的关键.12.3【解析】【分析】先根据二次根式有意义的条件得出x+y的值,再根据非负数的性质列出关于x,y,m的方程组,求出m的值,进而可得出结论.【详解】依题意得:,解得:x=1,y=1,m=5,∴3解析:3【解析】【分析】先根据二次根式有意义的条件得出x+y的值,再根据非负数的性质列出关于x,y,m的方程组,求出m的值,进而可得出结论.【详解】依题意得:35302302x y mx y mx y+--=⎧⎪+-=⎨⎪+=⎩,解得:x=1,y=1,m=5,∴==3.故答案为3.【点睛】本题考查了二次根式有意义得条件及非负数的性质,熟知二次根式具有非负性是解答此题的关键.13.【解析】根据二次根式的性质,可知a≠0,-(a+1)≥0,因此可知a≤-1,因此可知a==.故答案为.解析:【解析】根据二次根式的性质,可知a≠0,-(a+1)≥0,因此可知a≤-1,因此可知=故答案为14.(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9)【解析】试题解析:当a=1,=1,要使为整数,=1或时,分别为4和3,得出(1,4)和(1,1)是的“理想数对”,解析:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9)【解析】试题解析:当a =1,要使或12时,分别为4和3,得出(1,4)和(1,1)是的“理想数对”,当a =412,要使+或12时,分别为3和2,得出(4,1)和(4,4)是的“理想数对”,当a =913,要使16时,=1,得出(9,36)是的“理想数对”,当a =1614,要使14时,=1,得出(16,16)是的“理想数对”,当a =3616,要使13时,=1,得出(36,9)是的“理想数对”, 即其他所有的“理想数对”:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9).故答案为:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9). 15.5【解析】试题解析:由题可知,∴,∴,∴,①②得,,解方程组得,∴.故答案为:5.解析:5【解析】试题解析:由题可知3030m n m n -+≥⎧⎨--≥⎩, ∴3m n +=,0=,∴35200m n p m n p +--=⎧⎨--=⎩①②, ①-②得2620m n +-=,31m n +=, 解方程组331m n m n +=⎧⎨+=⎩得41m n =⎧⎨=-⎩, ∴4(1)5p m n =-=--=.故答案为:5.16.-2【详解】∵x+=7,∴x-1+=6,∴(x-1)-2+=4,即 =4,又∵1<x <2,∴=-2,故答案为-2.【点睛】本题主要考查完全平方式的应用以及二次根式的运算,解题的关键是 解析:-2【详解】∵x+11x -=7,∴x-1+11x -=6,∴(x-1)-2+11x -=4,即2 =4, 又∵1<x <2,∴, 故答案为-2.【点睛】本题主要考查完全平方式的应用以及二次根式的运算,解题的关键是要根据所求的式子对已知的式子进行变形.17.【解析】上述各式反映的规律是(n⩾1的整数),得到第5个等式为: (n⩾1的整数).故答案是: (n⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;=【解析】上述各式反映的规律是=n⩾1的整数),得到第5==n⩾1的整数).=n⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;第二步,找规律,分别比较等式中各部分与序号之间的关系,把其蕴含的规律用含序数的代数式表示出来;第三步,根据找出的规律得出第n个等式.18.5【分析】因为是整数,且,则5n是完全平方数,满足条件的最小正整数n为5.【详解】∵,且是整数,∴是整数,即5n是完全平方数;∴n的最小正整数值为5.故答案为5.【点睛】主要考查了解析:5【分析】,则5n是完全平方数,满足条件的最小正整数n为5.【详解】∴是整数,即5n是完全平方数;∴n的最小正整数值为5.故答案为5.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.19.【解析】试题分析:根据二次根式的意义和等式的特点,可知2x-5=0,解得x=,y=-3,代入可得=-2××3=-15.解析:15-【解析】试题分析:根据二次根式的意义和等式的特点,可知2x-5=0,解得x=52,y=-3,代入可得2xy=-2×52×3=-15.20.x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案.【详解】解:由y=,得4-x≥0且x-2≠0.解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方解析:x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案.【详解】解:由y=2x-,得4-x≥0且x-2≠0.解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方数是非负数、分母不能为零得出4-x≥0且x-2≠0是解题关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

完整版二次根式经典提高练习习题含答案

完整版二次根式经典提高练习习题含答案

13. 化简:(7 — 5'、2)2000( — 7— 5・.2 ) 2001= _____________________.14. ______________________________________________________ 若 X 1 +、y3 = 0,则(x — 1)2+ (y + 3)2= __________________________________________________________ . 15.x , y 分别为8— . 11的整数部分和小数部分,贝U2xy — /= _____________ .(三)选择题:(每小题3分,共15分)16. .................................................................................... 已知 x 3 3x 2 = — x 、x 3,则 .................................................... ( )(A ) x w 0 ( B ) x w — 3 (C ) x >— 3 (D )— 3< x < 0 17. .................................................................................................................................若 x v y v 0,则 J x 2 2xy y 2 + /x 2 2xy y 2 = ......................................................................... ((A ) 2x ( B ) 2y (C )— 2x( D )— 2yx 1)24 — .. (x 1)2..... 4 等于 (x x22(A ) —( B )— —( C )— 2x( D ) 2xxx19. 化简(a v 0)得 ...............................................a《二次根式》(一)判断题:(每小题1分,共5 分) 1.( 2) ab = - 2 J ab ................ ( )2. . 3 — 2 的倒数是、3 + 2.( ) 3.上―1)2 = ( . x 1)2 .…( ) 4. ■- ab 、5. 、/8x , (二)填空题: 1 Ja 3b 、 2尼是同类二次根式.…( 3 x T b ,9 x 2都不是最简二次根式.( (每小题2分,共20分) 1 时,式子 --------有意乂. V x 36 .当 x __________ 8. a — .a 2 1的有理化因式是/ 29 .当 1 V X V 4 时,|x — 4|+、x 2x 1 =10. 方程V2 (x — 1)= x + 1的解是 ______ 11. 已知a 、b 、c 为正数,d 为负数,化简 ab c 2d 2.ab 、c 2d 212.比较大小:—12、. 7 14*3))( )( )“ b)218.若 0v x v 1,则、((A) a ( B) —、- a (C) —■■:/ a (D) 、.. a20. 当a v 0 ,b v 0 时,一a+ 2 ab —b 可变形为.............................(A )(、.a .. b)2( B) — (、a b)2(C) (•. a 一b)2( D)(•一a(四)计算题:(每小题6分,共24分)21. (■ 5 .3 2 )(..5 、/3.2 );22.23 . (a2V mab ——mn + m :) 亠姒m ;24 . (■■ a +b ab) + (... +a b 、ab bbab aV b)( a 工b)..ab(五)求值:(每小题7分,共14分)25.已知x= 3 、23 、2,y=3 2,求丁3 2 x yxy26 . 当x= 1 —、2时,求x2a23 22x y的值.2x x2a22 2 2x x x a(每小题8分,共16分)_1 1 1 1(2 5 + 1) ( ------------- + ----------- + -------------------------- +…+ ) •1 V2 寸 2 V3 73 V4 寸 99 V100若 x , y 为实数,且炸 1 4x + .4X 1+ 2 .求 y2 X - y 2X(一) 判断题:(每小题1分,共5 分) 1、【提示】.(2)2 = |-2|= 2 •【答案】X.-l^-2 =-( ,3 + 2).【答案】X.3 43、 【提示】...(X 1)2 = X — 1|,(打x 1)2 = X — 1 (x > 1).两式相等,必须 x > 1 .但等式左边 X 可取任何数.【答案】X.4、 【提示】1 , a 3b 、2..a化成最简二次根式后再判断.【答案】/3xF b25、 9 x 是最简二次根式.【答案】X. (二) 填空题:(每小题2分,共20分)6、 【提示】 x 何时有意义? x > 0 .分式何时有意义?分母不等于零. 【答案】x >0且X M 9.7、 【答案】—2a-. a .【点评】注意除法法则和积的算术平方根性质的运用. 8、 【提示】(a - Ja 21 ) ( _________ ) = a 2— (Ja 21)2.a+P a 21 .【答案】a + Ja 21 .9、 【提示】x 2— 2x + 1=() 2, x — 1•当1 v x v 4时,x — 4, x — 1是正数还是负数?x — 4是负数,x — 1是正数.【答案】3.10、 【提示】把方程整理成 ax = b 的形式后,a 、b 分别是多少? .2 1 , , 2 1 .【答案】x =3+ 2-..2 .11、 【提示】;c'd? = |cd| = — cd .f -- ---------------------------- C Q -【答案】Jab + cd .【点评】T ab = (Jab) (ab >0),二 ab — c 2d 2=( Jab cd ) (ab cd ). 12、 【提示】2 . 7 = ■-, 28 , 4= ^48 .—— —— 1 1【答案】v.【点评】先比较一 28 , ,48的大小,再比较1,1的大小,最后比丁28 V 481 1较一一^—与一一^—的大小.六、解答题: 27 •计算 28. 的值.2、【提示】*'28 V4813、【提示】(—7—5庞)2001= ( —7 —5 ^2 )2000.( ____________ ) [ —7 —5^2 .](7 —5 .2 ) •(—7 —5 ... 2 )=?[1.]【答案】—7— 5 .. 2 .【点评】注意在化简过程中运用幕的运算法则和平方差公式.14、【答案】40.【点评】.X 1 > 0, y 3》0.当.X 1 + .. y 3 = 0 时,x+ 1 = 0, y —3= 0.15、【提示】T 3V “后V4,二___________v8—v __________ . [4, 5].由于8 —<11介于4与5之间,则其整数部分x=?小数部分y=? [x= 4, y= 4 —. 11 ]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题3分,共15分)16、【答案】D.【点评】本题考查积的算术平方根性质成立的条件,(A)、( C)不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】T x v y v 0,「. x—y v 0, x+ y v 0.L2 2 2X 2xy y = . (x y) = |x—y|= y —x.X 2xy y 2 = (x y)2 = |x + y|=- x -y .【答案】C .【点评】本题考查二次根式的性质.a 2 = |a|.1 11 118、 【提示】(X - )2+ 4= (x + )2,(X + )2-4= (x - )2.又•••0V X V 1,x x x x11X + _ > 0, x - V 0.【答案】D .x x【点评】本题考查完全平方公式和二次根式的性质.(A )不正确是因为用性质时没有注1意当 O v x v 1 时,x - V 0.x19、 【提示】』a =、. a a = J a • a = |a| a =- a ::•: a .【答案】C . 20、 【提示】T a v 0, b v 0,—a > 0, — b >0.并且一a = (J a) , — b = G ; b) , -f ab = J ( a)( b).【答案】C .【点评】本题考查逆向运用公式 Ca)2 = a(a >0)和完全平方公式.注意(A )、 (B )不正确是因为 a v 0, b v 0时,..a 、、、b 都没有意义.【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.原式= aVab b Tab 亠 a*a(JaJb) b^b^fa Vb) (a b)(a b)V a 寸b【点评】本题如果先分母有理化,那么计算较烦琐.(五)求值:(每小题7分,共14分)25、【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值.【解】T x = _^2 =(站3 J2)2 = 5+ 2^/6 ,(四)计算题:(每小题6分,共24分) 【提示】将 5,3看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(-5,3)2- (、2)2= 5-2 . 15 + 3- 2= 6 — 2.15 .【提示】先分别分母有理化,再合并同类二次根式.【解】原式=5(411)-4(117)-2(37)= 4 + .11 - 11 -. 7 - 3 +16 1111 79 721、 22、 23、 11 7 .7 = 1.【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式. 1 i 解】原式=(rm -半a b •n __ j n m—b 2m n1 1=~2- +b 2ab1 mab 1~~2 2 =a bm mn + V n a 2ab 1^~2a bn m m ma 2b 2n n24、 Jab (la Jb )(Va 划b )a ,ab b ab b 2a 2b 2b2 亠a_"ab (Va Jb )(Va 血)「ab (恋a 恋b )(^a 恋b ) =_ 掐 V bab (a b )J3 V228、32 —— 2y = ----- -- = ( 3 、、2) = 5— 2、. 6 .3 ,2x + y = 10, x — y = 4 .. 6 , xy = 52 — (2、,6)2=1 . x 3 xy2 x 4y 2x 3y 2__X^y 3【点评】本题将x 、y 化简后, 而使求值的过程更简捷. =x(x y)(x y) = X y2 2X y(x y) xy(x y)根据解题的需要,先分别求出“出=〈6.5x - y 、 xy . 从1 10x + y ”、26、【提示】注意:x 2 + a 2= (qf x ? a?)?,a 2 = Vx 2 a 2 ( v x 2 + a 2-x . x 2 —X ) • x 2 a 2 — x ), x 2-x . x 2 a 2 =-x( /x 厂a 2 (:x 2— 匕2) xJx 2 a 2 (Jx 2 x 2 2x x 2 a 2 ( x 2 a 2)2 xjx 2 a 2(Jx 2 a 21•当x = 1- . 2时,原式= x 【解】原式=x'X .x 2 a 2 (2x 、x X ) x( .. X 2 2x 、x 2 a 2 2 a 2 a x(、x 2 a 2 x)a 2 x) x x 2 a 2 x 2 = ( x 2 a 2 )2 1x) 、 x 2 a 2 x x 2 a 2 a 2 x) 2 2 , 2 2x a ( x a x ,x 2 a 2 ( . x 2a 2 x) X ) x) x. x 2 a 2 ( x 2—1=- 1 - -.. 2 •【点评】本题如果将前两个“分式”分1 、2 拆成两个“分式” 之差,那么化简会更简便.即原式= x a 2bx 2X) / 2 x( X 2 2a a 2 X ) + 1x 2 a 2 =( ------ 1x 2 a 2 六、 解答题:(每小题8分,共16分) 27、 【提示】先将每个部分分母有理化后,再计算. 、2 1 .3 、2 - . 4 、•. 3 + 【解】原式=(2 _ 5 + 1)( 2 1 3 =(2+ 1)[ ( 2 1 ) + ( .3 =(2 .5 +1) ( .100 1) =9 (2 .5 + 1). 【点评】本题第二个括号内有 99个不同分母, 将分母化为整数,从而使每一项转化成两数之差, 相消法.99 + ' +…+ 2 4 3 ,2 ) + ( .. 4 ) + •••+ (、100 ..99 )] 100 99 不可能通分.这里采用的是先分母有理化, 然后逐项相消•这种方法也叫做裂项x1 4X 0【提示】要使y 有意义,必须满足什么条件?[ ]你能求出x,y 的值吗?[4x 1 0y1 ;] 2.【解】要使y有意义,必须[1 4x 0,即4x 1 0x=丄•当x=丄时,41y=—2X2y — x —1—2y = y x y x .=1 1x•—yy|—1xxyy「.・x又•••「7)'y x1x=4-(x y)y=丄,2x y- y x = 2 X 当x= 1y=-时,y■. x x y ' y42原式=原式=2求出y的值.1412=、2•【点评】解本题的关键是利用二次根式的意义求出x的值,进而。

八年级初二数学提高题专题复习二次根式练习题附解析

八年级初二数学提高题专题复习二次根式练习题附解析

一、选择题1.下列式子为最简二次根式的是( ) A .22a b +B .2aC .12aD .122.下列运算正确的是( ) A .732-= B .()255-=-C .1232÷=D .03812+=3.下列计算结果正确的是( ) A .2+5=7 B .3223-= C .2510⨯=D .25105= 4.下列计算正确的是( ) A .93=±B .8220-=C .532-=D .2(5)5-=-5.若ab <0,则代数式可化简为( ) A .aB .aC .﹣aD .﹣a6.已知2225152x x ---=,则222515x x -+-的值为( ) A .3B .4C .5D .6 7.实数a ,b 在数轴上的位置如图所示,则化简﹣+b 的结果是( )A .1B .b+1C .2aD .1﹣2a 8.751m +m 的值为( ) A .7B .11C .2D .19.下列运算一定正确的是( ) A 2a a =B ab a b =C .222()a b a b ⋅=⋅D ()0n mnaa m=≥ 10.已知,5x y +=-,3xy =则y x x y x y的结果是( ) A .3B .3-C .32D .32-二、填空题11.已知412x =-()21142221x x x x -⎛⎫+⋅= ⎪-+-⎝⎭_________12.若0a >,把4ab-化成最简二次根式为________. 13.已知()2117932x x x y ---+-=-,则2x ﹣18y 2=_____.14.实数a 、b 满足22a -4a 436-12a a 10-b 4-b-2+++=+,则22a b +的最大值为_________.15.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用“”表示算数平方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为: 22164?a x a x +=则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.16.把1m m-_____________. 17.下面是一个按某种规律排列的数阵:11第行325 62第行722310 11 233第行 13 1541732 19254第行根据数阵排列的规律,第 5 行从左向右数第 3 个数是 ,第 n (n 3≥ 且 n 是整数)行从左向右数第 n 2- 个数是 (用含 n 的代数式表示). 18.计算:652015·652016=________. 19.观察分析下列数据:0,36,-3,231532的规律得到第10个数据应是__________. 20.4x -x 的取值范围是_____三、解答题21.计算:(1(041--;(2⎛- ⎝【答案】(1;(2)【解析】试题分析:根据二次根式的性质及分母有理化,化简二次根式,然后合并同类二次根式即可解答.试题解析:(1(041--(2⎛- ⎝-0-=22.-10 【分析】先根据二次根式的性质和平方差公式化简,然后再进行计算即可 【详解】=(22⎡⎤--⎢⎥⎣⎦=()212--10+.10. 【点睛】本题主要考查了二次根式的性质、平方差公式,灵活运用二次根式的性质化简是解答本题的关键.23.计算:(1)+(2(33+-【答案】(1)2) -10 【分析】(1)原式二次根式的乘除法法则进行计算即可得到答案;(1)原式第一项运用二次根式的性质进行化简,第二项运用平方差公式进行化简即可. 【详解】解:(1)+===(2(33+-=5+9-24=14-24 =-10. 【点睛】此题主要考查了二次根式的化简,熟练掌握二次根式的性质是解答此题的关键.24.先化简,再求值:(()69x x x x --+,其中1x =.【答案】化简得6x+6,代入得 【分析】根据整式的运算公式进行化简即可求解. 【详解】(()69x x x x +--+=22369x x x --++ =6x+6把1x =代入原式=61)【点睛】此题主要考查实数的运算,解题的关键熟知整式的运算法则.25.计算(1(2)(()21-【答案】(1);(2)24+ 【分析】(1)先将各二次根式化为最简二次根式,再进行合并即可得到答案;(2)原式运用平方差公式和完全平方公式把括号展开后,再合并同类二次根式即可得到答案. 【详解】解:(1=2+=(2-+=2(2)(()21-=22(181)---=452181--+=24+. 【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则和运算顺序是解答此题的关键.26.计算:(1 (2)()()2221-【答案】2)1443 【分析】(1)先化成最简二次根式,然后再进行加减运算即可; (2)套用平方差公式和完全平方式进行运算即可. 【详解】解:(1)原式=23223323,(2)原式(34)(12431)1124311443,故答案为:1443.【点睛】本题考查二次根式的四则运算,熟练掌握二次根式的四则运算是解决本题的关键.27.已知长方形的长a =b =. (1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.【答案】(1)2)长方形的周长大. 【解析】试题分析:(1)代入周长计算公式解决问题;(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可. 试题解析:(1)()11222223a b ⎛+=⨯=⨯⨯⨯=⨯= ⎝∴长方形的周长为 .(2)114.23=⨯⨯=正方形的面积也为4. 2.= 周长为:428.⨯=8.>∴长方形的周长大于正方形的周长.28.化简求值:212(1)211x x x x -÷-+++,其中1x =.【解析】分析:先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可. 详解:原式2112,2111x x x x x x -+⎛⎫=÷- ⎪++++⎝⎭2112,211x x x x x -+-=÷+++ ()211,11x x x x -+=⋅-+ 1.1x =+当1x =时,11x ==+ 点睛:考查分式的混合运算,掌握运算顺序是解题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察. 【详解】AB |a |,可以化简,故不是最简二次根式;C =D 2=,可以化简,故不是最简二次根式; 故选:A . 【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.C解析:C 【分析】由二次根式的性质,二次根式的混合运算,分别进行计算,即可得到答案. 【详解】解:A A 错误;B 5=,故B 错误;C 2==,故C 正确;D 01213=+=,故D 错误; 故选:C .【点睛】本题考查了二次根式的性质,二次根式的混合运算,立方根,零指数幂,解题的关键是熟练掌握运算法则进行解题.3.C解析:C【分析】根据二次根式的加法、减法、乘法、分母有理化逐一进行计算判断即可.【详解】A.2与5不能合并,故A选项错误;B.32222-=,故B选项错误;C.2510⨯=,正确;D.225105555⨯==⨯,故D选项错误,故选C.【点睛】本题考查了二次根式的运算,分母有理化,熟练掌握各运算法则是解题的关键.4.B解析:B【分析】直接利用二次根式的性质化简得出答案.【详解】A. 93=,故此选项错误;B. 8220-=,正确;C. 53-,无法计算,故此选项错误;D. 2(5)5-=,故此选项错误;故选:B【点睛】此题主要考查了二次根式的加减,正确掌握二次根式的性质是解题关键.5.C解析:C【解析】【分析】二次根式有意义,就隐含条件b<0,由ab<0,先判断出a、b的符号,再进行化简即可.【详解】解:若ab<0,且代数式有意义;故由b>0,a<0;则代数式故选:C . 【点睛】本题主要考查二次根式的化简方法与运用:当a >0时,,当a <0时,,当a=0时,.6.C解析:C 【解析】∵2225152x x ---=,2222222222(2515)(2515)(25)(15)251510x x x x x x x x ----+-=---=--+=,∴2225155x x -+-=. 故选C.7.A解析:A 【解析】﹣+b=111a a b b a a b b ---+=-+-+= ,故选A.8.C解析:C 【分析】几个二次根式化为最简二次根式后,如果被开方数相同,则这几个二次根式即为同类二次根式. 【详解】解7553=m=7时1822m +==,故A 错误;当m=11时11223m +==1m +B 错误;当m=1时12m +=故D 错误;当m=2时13m +=故C 正确;故选择C. 【点睛】本题考查了同类二次根式的定义.9.C解析:C 【分析】直接利用二次根式的性质与化简以及积的乘方运算法则分别计算即可得出答案. 【详解】A 2a |a |,故此选项错误;B.,则a,b均为非负数,故此选项错误;C.a2•b2=(a•b)2,正确;D m n a(a≥0),故此选项错误.故选C.【点睛】本题主要考查了二次根式的性质与化简以及积的乘方运算,正确掌握相关运算法则是解题的关键.10.B解析:B【分析】由x+y=-5,xy=3可得到x<0,y<0,再利用二次根式的性质化简得到原式==-,然后把xy=3代入计算即可.【详解】∵x+y=−5,xy=3,∴x<0,y<0,∴原式===-(x<0,y<0),当xy=3时,原式=-故选B.【点睛】此题考查二次根式的化简求值,解题关键在于先化简.二、填空题11.【分析】利用完全平方公式化简,得到;化简分式,最后将代入化简后的分式,计算即可.【详解】将代入得:故答案为:【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在解析:1-利用完全平方公式化简x =1x =;化简分式,最后将1x =代入化简后的分式,计算即可.【详解】1x =====()211422(2)(2)2221(2)(2)2(1)x x x x x x x x x x x -++-+-⎛⎫+⋅= ⎪-+--+-⎝⎭ 1x x =-将1x =1=-故答案为:1-【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在于化简x =熟练掌握相关知识点是解题关键. 12.【分析】先判断b 的符号,再根据二次根式的性质进行化简即可.【详解】解:∵∴∴所以答案是:【点睛】本题考查了二次根式的性质.解析: 【分析】先判断b 的符号,再根据二次根式的性质进行化简即可. 【详解】 解:∵40,0a a b-≥> ∴0b <2a b b b b=--所以答案是:=.a13.【分析】直接利用二次根式的性质将已知化简,再将原式变形求出答案.【详解】解:∵一定有意义,∴x≥11,∴﹣|7﹣x|+=3y﹣2,﹣x+7+x﹣9=3y﹣2,整理得:=3y,∴x﹣解析:22【分析】直接利用二次根式的性质将已知化简,再将原式变形求出答案.【详解】一定有意义,∴x≥11,|7﹣x=3y﹣2,﹣x+7+x﹣9=3y﹣2,=3y,∴x﹣11=9y2,则2x﹣18y2=2x﹣2(x﹣11)=22.故答案为:22.【点睛】本题考查二次根式有意义的应用,以及二次根式的性质应用,属于提高题.14.【分析】首先化简,可得|a-2|+|a-6|+|b+4|+|b-2|=10,然后根据|a-2|+|a-6|≥4,|b+4|+|b-2|≥6,判断出a,b的取值范围,即可求出的最大值.【详解】解析:【分析】10-b4-b-2=+,可得|a-2|+|a-6|+|b+4|+|b-2|=10,然后根据|a-2|+|a-6|≥4,|b+4|+|b-2|≥6,判断出a,b的取值范围,即可求出22+的最大值.a b【详解】=+,10-b4-b-21042b b =-+--, ∴261042a a b b -+-=-+--, ∴264210a a b b -+-+++-=,∵264a a -+-≥,426b b ++-≥,∴ 264a a -+-=,42=6b b ++-,∴2≤a≤6,-4≤b≤2,∴22a b +的最大值为()226452+-=,故答案为52.【点睛】本题考查了二次根式的性质与化简,绝对值的意义,算术平方根的性质.解题的关键是要明确化简二次根式的步骤:①把被开方数分解因式;②利用算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2. 15.a+3【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2所示题目(字母代表正数)翻【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2∵a >0+3.a =a+3. 【点睛】本题考查阅读理解的能力,正确理解题意是关键. 16.-【解析】【分析】根据二次根式的性质,可得答案【详解】由题意可得:,即∴故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定解析:【解析】【分析】根据二次根式的性质,可得答案【详解】由题意可得:1m,即0m∴11mm m mm mm故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定m的取值范围.17.;.【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表格中的数据可得,第5行从左向右数第3=∵第(n-1,∴第n (n ≥3且n 是整数)行从左向右数第n-2个数是..【点睛】本题是对数字变化规律的考查,观察出被开方数是连续自然数并且每一行的最后一个数的被开方数是所在的行数乘比行数大1的数是解题的关键.18.【解析】原式=.故答案为.【解析】原式=20152015=19.6【分析】通过观察可知,根号外的符号以及根号下的被开方数依次是:,,…,可以得到第13个的答案.【详解】解:由题意知道:题目中的数据可以整理为:,,…,∴第13个答案为:.故答案为6.解析:6【分析】 通过观察可知,根号外的符号以及根号下的被开方数依次是:11(1)30,21(1)31,31(1)32…1(1)3(1)n n ,可以得到第13个的答案.【详解】 解:由题意知道:题目中的数据可以整理为:11(1)30,21(1)31,31(1)32…1(1)3(1)n n ,∴第13个答案为:131(1)3(131)6.故答案为6.【点睛】此题主要考查了二次根式的运算以及学生的分析、总结、归纳的能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.20.x≥4【解析】试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为x≥4.点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然解析:x≥4【解析】试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为x≥4.点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然后列不等式求解即可,是一个中考常考的简单题.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

二次根式单元 易错题难题综合模拟测评检测

二次根式单元 易错题难题综合模拟测评检测

二次根式单元 易错题难题综合模拟测评检测一、选择题1.下列计算正确的是( ) A .()25-=﹣5 B .4y =2y C .822aaa=D .235+=2.下列根式是最简二次根式的是( ) A .4B .21x +C .12D .40.53.已知52a =+,52b =-,则227a b ++的值为( ) A .4 B .5 C .6 D .7 4.下列各式是二次根式的是( )A .3B .1-C .35D .4π-5.式子13x -有意义,x 的取值范围是( ) A .13x ≥B .13x >C .13x ≤D .13x <6.若31m -有意义,则m 能取的最小整数值是( ) A .m = 0 B .m = 1C .m = 2D .m = 37.若a =3235++,b =2+610-,则a b 的值为( )A .12B .14C .321+D .610+8.已知实数x ,y 满足(x -22008x -)(y -2-2008y )=2008,则3x 2-2y 2+3x -3y -2007的值为( ) A .-2008B .2008C .-1D .19.下列各式中,不正确的是( ) A .233(3)(3)->- B .33648< C .2221a a +>+ D .2(5)5-=10.将1、、、按图2所示的方式排列,若规定(m ,n )表示第m 排从左到右第n 个数,则(4,2)与(21,2)表示的两数的积是( )A .1B .2C .D .611.若式子22(1)m m +-有意义,则实数m 的取值范围是( )A .m >﹣2B .m >﹣2且m ≠1C .m ≥﹣2D .m ≥﹣2且m ≠112.下列各式计算正确的是( )A .23= B 5=± C =D .3=二、填空题13.已知x =()21142221x x x x -⎛⎫+⋅= ⎪-+-⎝⎭_________14.若0a >化成最简二次根式为________.15.把根号外的因式移入根号内,得________ 16.已知实数m 、n 、p 满足等式,则p =__________.17..18.x 的取值范围是______.19.a ,小数部分是b b -=______.20.n 为________.三、解答题21.阅读下面问题: 阅读理解:==1;==2==-.应用计算:(1(21(n 为正整数)的值.归纳拓展:(398++【答案】应用计算:(12归纳拓展:(3)9.【分析】由阅读部分分析发现式子的分子、分母都乘以分母的有理化因式,为此(1分母利用平方差公式计算即可,(2(3)根据分母的特点各项分子分母乘以各分母的有理化因式,分母用公式计算化去分母,分子合并同类项二次根式即可.【详解】(1(2(3+98+,(+98+,++99-,=10-1,=9.【点睛】本题考查二次根式化简求值问题,关键找到各分母的有理化因式,用平方差公式化去分母.22.计算及解方程组:(1-1-)(2)2+(3)解方程组:251032x yx y x y-=⎧⎪+-⎨=⎪⎩【答案】(1)2)7;(3)102xy=⎧⎨=⎩.【分析】(1)首先化简绝对值,然后根据二次根式乘法、加减法法则运算即可; (2)首先根据完全平方公式化简,然后根据二次根式加减法法则运算即可; (3)首先将第二个方程化简,然后利用加减消元法即可求解. 【详解】(11-1+(11=1(22+)=34-=7-=7-(3)251032x y x y x y-=⎧⎪⎨+-=⎪⎩①②由②得:50x y -= ③ ②-③得: 10x = 把x=10代入①得:y=2 ∴原方程组的解是:102x y =⎧⎨=⎩【点睛】本题考查了二次根式的混合运算,加减消元法解二元一次方程,熟练掌握二次根式的运算法则是本题的关键.23.我国南宋时期有个著名的数学家秦九韶提出了一个利用三角形的三边求三角形的面积的公式,若三角形三边为a b c 、、,则此三角形的面积为:1S = 同样古希腊有个几何学家海伦也提出了一个三角形面积公式:2S =2a b cp ++=(1)在ABC 中,若4AB =,5BC =,6AC =,用其中一个公式求ABC 的面积. (2)请证明:12S S【答案】(1)4;(2) 证明见解析 【分析】(1)将4AB =,5BC =,6AC =代入1S = (2)对1S 和2S 分别平方,再进行整理化简得出2212S S =,即可得出12S S .【详解】解:(1)将4AB =,5BC =,6AC =代入1S =得:4S == (2)222222211[()]24a b a S c b +-=-=222222)1(22(4)a b c a b c ab ab +-+--+ =2222()2(21)4c a c a b b +⋅---⋅ =()(1()()16)c a b c a b a b c a b c +-++-++- 22()()()S p p a p b p c =---∵2a b cp ++=, ∴22()(2)(222)S a a b c a b c a b c a b cb c +++++++-+=-- =2222a b c b c a a c b a b c +++-+-+-⋅⋅⋅=1()()()()16a b c b c a a c b a b c +++-+-+- ∴2212S S =∵10S >,20S >, ∴12S S .【点睛】本题考查了二次根式的运算,解题的关键是理解题中给出的公式,灵活运用二次根式的运算性质进行运算.24.计算:10099+【答案】910【解析】 【分析】先对代数式的每一部分分母有理化,然后再进行运算 【详解】10099++=2100992-++++=991224-+-++-=1- =1110- =910【点睛】本题看似计算繁杂,但只要找到分母有理化这个突破口,就会化难为易。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
二次根式检测题
姓名_______________ 得分____________
一. 选择题(每小题5分)

1. 若424Aa,则A( )
A. 24a B. 22a C. 222a D. 224a
2.若21212xxxx成立,则( )
A. 12x B. 112x C. 1x D. 32x
3. 代数式13432xx的最小值是( )
A. 0 B. 3 C. 3.5 D. 1
4. 若1a,则31a化简后为( )
A. 11aa B. 11aa C. 11aa D. 11aa
5. 设a为5353的小数部分,b为336336的小数部分,
则ab12的值为( )

A. 126 B. 41 C. 12 D. 832
6. 设222x,222y,则( )
A. yx B. yx C. yx D. 不能确定
7. 与3ab不是同类二次根式的是( )
A. 2ab B. ba C. 1ab D. 3ba
二.填空题(每小题5分)
8. 若22mn和3223mn都是最简二次根式,则_____,______mn。
2

9.
实数ba,满足2221361210|3||2|aaaabb,则22ab的

最大值为 .

10.已知2215192xx,则221519xx的值
为 .
11.若20042005aaa,则22004a= .

12.化简22111(1)nn,所得的结果为 .
三.解答题
13.求

(8分)

14.
(12分)
3

15.化简: 。
(12分)

16.设m、x、y均为正整数,且yxm28,求myx的值。
(13分)

17.
若m适合关系式35223199199xymxymxyxy,

求m的值.(15分)

相关文档
最新文档