多元线性回归模型案例
多元线性回归实例分析

SPSS--回归-多元线性回归模型案例解析!(一)多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为:毫无疑问,多元线性回归方程应该为:上图中的 x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示:那么,多元线性回归方程矩阵形式为:其中:代表随机误差,其中随机误差分为:可解释的误差和不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样)1:服成正太分布,即指:随机误差必须是服成正太分别的随机变量。
2:无偏性假设,即指:期望值为03:同共方差性假设,即指,所有的随机误差变量方差都相等4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。
今天跟大家一起讨论一下,SPSS---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。
通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。
数据如下图所示:点击“分析”——回归——线性——进入如下图所示的界面:将“销售量”作为“因变量”拖入因变量框内,将“车长,车宽,耗油率,车净重等10个自变量拖入自变量框内,如上图所示,在“方法”旁边,选择“逐步”,当然,你也可以选择其它的方式,如果你选择“进入”默认的方式,在分析结果中,将会得到如下图所示的结果:(所有的自变量,都会强行进入)如果你选择“逐步”这个方法,将会得到如下图所示的结果:(将会根据预先设定的“F统计量的概率值进行筛选,最先进入回归方程的“自变量”应该是跟“因变量”关系最为密切,贡献最大的,如下图可以看出,车的价格和车轴跟因变量关系最为密切,符合判断条件的概率值必须小于0.05,当概率值大于等于0.1时将会被剔除)“选择变量(E)" 框内,我并没有输入数据,如果你需要对某个“自变量”进行条件筛选,可以将那个自变量,移入“选择变量框”内,有一个前提就是:该变量从未在另一个目标列表中出现!,再点击“规则”设定相应的“筛选条件”即可,如下图所示:点击“统计量”弹出如下所示的框,如下所示:在“回归系数”下面勾选“估计,在右侧勾选”模型拟合度“ 和”共线性诊断“ 两个选项,再勾选“个案诊断”再点击“离群值”一般默认值为“3”,(设定异常值的依据,只有当残差超过3倍标准差的观测才会被当做异常值)点击继续。
多元线性回归模型案例(DOC)

多元线性回归模型案例分析——中国人口自然增长分析一·研究目的要求中国从1971年开始全面开展了计划生育,使中国总和生育率很快从1970年的5.8降到1980年2.24,接近世代更替水平。
此后,人口自然增长率(即人口的生育率)很大程度上与经济的发展等各方面的因素相联系,与经济生活息息相关,为了研究此后影响中国人口自然增长的主要原因,分析全国人口增长规律,与猜测中国未来的增长趋势,需要建立计量经济学模型。
影响中国人口自然增长率的因素有很多,但据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的高低可能会间接影响人口增长率。
(3)文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。
二·模型设定为了全面反映中国“人口自然增长率”的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择“国名收入”及“人均GDP”作为经济整体增长的代表;选择“居民消费价格指数增长率”作为居民消费水平的代表。
暂不考虑文化程度及人口分布的影响。
从《中国统计年鉴》收集到以下数据(见表1):表1 中国人口增长率及相关数据设定的线性回归模型为:1222334t t t t t Y X X X u ββββ=++++三、估计参数利用EViews 估计模型的参数,方法是:1、建立工作文件:启动EViews ,点击File\New\Workfile ,在对话框“Workfile Range ”。
在“Workfile frequency ”中选择“Annual ” (年度),并在“Start date ”中输入开始时间“1988”,在“end date ”中输入最后时间“2005”,点击“ok ”,出现“Workfile UNTITLED ”工作框。
其中已有变量:“c ”—截距项 “resid ”—剩余项。
多元回归分析案例

多元回归分析案例下面以一个实际案例来说明多元回归分析的应用。
假设我们是一家电商公司,希望了解哪些因素会影响网站用户购买商品的金额。
为了回答这个问题,我们收集了以下数据:每位用户购买的商品金额(因变量),用户的年龄、性别和收入水平(自变量)。
首先,我们需要构建一个多元回归模型。
由于因变量是连续型变量,我们可以选择使用线性回归模型。
模型的形式可以表示为:购买金额=β0+β1×年龄+β2×性别+β3×收入水平+ε其中,β0是截距,β1、β2和β3是自变量的系数,ε是误差项。
接下来,我们需要对数据进行预处理。
首先,将性别变量转换为虚拟变量,比如用0表示男性,1表示女性。
然后,我们可以使用逐步回归方法,逐步选择自变量,以确定哪些变量对因变量的解释最显著。
在实际操作中,我们可以使用统计软件,比如SPSS或R来进行多元回归分析。
下面是一个用R进行多元回归分析的示例代码:```R#导入数据data <- read.csv("data.csv")#转换性别变量为虚拟变量data$gender <- as.factor(data$gender)#构建多元回归模型model <- lm(购买金额 ~ 年龄 + 性别 + 收入水平, data=data)#执行逐步回归step_model <- step(model)#显示结果summary(step_model)```通过运行这段代码,我们可以得到每个自变量的系数估计值、显著性水平、拟合优度等统计结果。
这些结果可以帮助我们理解各个自变量对于购买金额的影响程度以及它们之间的相对重要性。
在实际应用中,多元回归分析可以帮助我们识别哪些因素对于一些特定的因变量具有显著影响。
通过控制其他自变量,我们可以解释每个自变量对因变量的独立贡献,并用于预测因变量的值。
总之,多元回归分析是一种强大的统计工具,可以应用于各个领域,帮助我们理解和预测自变量对因变量的影响。
多元线性回归分析案例

多元线性回归分析案例1. 引言多元线性回归分析是一种用于探究多个自变量与一个连续型因变量之间关系的统计分析方法。
本文将以一个虚构的案例来介绍多元线性回归分析的应用。
2. 背景假设我们是一家电子产品制造公司,我们想了解哪些因素会对产品销售额产生影响。
为了解决这个问题,我们收集了一些数据,包括产品的价格、广告费用、竞争对手的产品价格和销售额。
3. 数据收集我们采集了100个不同产品的数据,其中包括以下变量:- 产品价格(自变量1)- 广告费用(自变量2)- 竞争对手的产品价格(自变量3)- 销售额(因变量)4. 数据分析为了进行多元线性回归分析,我们首先需要对数据进行预处理。
我们检查了数据的缺失情况和异常值,并进行了相应的处理。
接下来,我们使用多元线性回归模型来分析数据。
模型的方程可以表示为:销售额= β0 + β1 × 产品价格+ β2 × 广告费用+ β3 × 竞争对手的产品价格+ ε其中,β0、β1、β2、β3是回归系数,ε是误差项。
5. 结果解释我们使用统计软件进行回归分析,并得到了以下结果:- 回归系数的估计值:β0 = 1000, β1 = 10, β2 = 20, β3 = -5- 拟合优度:R² = 0.8根据回归系数的估计值,我们可以解释模型的结果:- β0表示当产品价格、广告费用和竞争对手的产品价格都为0时,销售额的估计值为1000。
- β1表示产品价格每增加1单位,销售额平均增加10单位。
- β2表示广告费用每增加1单位,销售额平均增加20单位。
- β3表示竞争对手的产品价格每增加1单位,销售额平均减少5单位。
拟合优度R²的值为0.8,说明模型可以解释销售额的80%变异程度。
这意味着模型对数据的拟合程度较好。
6. 结论根据我们的多元线性回归分析结果,我们可以得出以下结论:- 产品价格、广告费用和竞争对手的产品价格对销售额有显著影响。
多元线性回归spss案例

多元线性回归spss案例【篇一:多元线性回归spss案例】多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为:毫无疑问,多元线性回归方程应该为:上图中的x1, x2, xp分别代表自变量xp截止,代表有p个自变量,如果有 n组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示:那么,多元线性回归方程矩阵形式为:其中:代表随机误差,其中随机误差分为:可解释的误差和不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样)1:服成正太分布,即指:随机误差必须是服成正太分别的随机变量。
2:无偏性假设,即指:期望值为03:同共方差性假设,即指,所有的随机误差变量方差都相等4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。
今天跟大家一起讨论一下,spss---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。
通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。
数据如下图所示:点击分析回归线性进入如下图所示的界面:将销售量作为因变量拖入因变量框内,将车长,车宽,耗油率,车净重等10个自变量拖入自变量框内,如上图所示,在方法旁边,选择逐步,当然,你也可以选择其它的方式,如果你选择进入默认的方式,在分析结果中,将会得到如下图所示的结果:(所有的自变量,都会强行进入)如果你选择逐步这个方法,将会得到如下图所示的结果:(将会根据预先设定的 f统计量的概率值进行筛选,最先进入回归方程的自变量应该是跟因变量关系最为密切,贡献最大的,如下图可以看出,车的价格和车轴跟因变量关系最为密切,符合判断条件的概率值必须小于0.05,当概率值大于等于0.1时将会被剔除)选择变量(e) 框内,我并没有输入数据,如果你需要对某个自变量进行条件筛选,可以将那个自变量,移入选择变量框内,有一个前提就是:该变量从未在另一个目标列表中出现!,再点击规则设定相应的筛选条件即可,如下图所示:点击统计量弹出如下所示的框,如下所示:在回归系数下面勾选估计,在右侧勾选模型拟合度和共线性诊断两个选项,再勾选个案诊断再点击离群值一般默认值为 3 ,(设定异常值的依据,只有当残差超过3倍标准差的观测才会被当做异常值)点击继续。
课件:Ch2 经典线性回归模型回顾之案例分析2(多元线性回归模型)

102.8153
0.1750
三、估计参数
模型估计的结果为:
Yˆi 2416.49 0.0112X2 0.0395X3 0.1460X4 22.8162X5 866.4100X6
(935.8816) (0.0018) (0.0080) (0.0517) (9.0867) (470.3214) t= (-2.5820) (6.3167) (4.9643) (2.8267) (2.5109) (1.8422) R 2 0.9679 , F=181.7539, n=31
验证理论
2
第五节 案例分析
研究的目的要求
为了研究影响中国地方财政教育支出差异的主要原因,分析地
方财政教育支出增长的数量规律,预测中国地方财政教育支出
的增长趋势,需要建立计量经济模型。
研究范围:2011年31个省市区的数据为样本 理论分析:影响中国地方财政教育支出的主要的因素有:
(1)由地区经济规模决定的地方整体财力;
0.1519
19669.56
6595.6
626.86
102.5655
0.1536
53210.28 10504.85
929.03
101.2925
0.1829
ห้องสมุดไป่ตู้
11720.87
4645
561.81
102.8054
0.1795
2522.66
877.34
565.08
100.8938
0.1634
10011.37
3593
722.92
102.8131
0.1784
内蒙古
390.69
14359.88
2481.71
多元线性回归模型案例分析报告
多元线性回归模型案例分析——中国人口自然增长分析一·研究目的要求中国从1971年开始全面开展了计划生育,使中国总和生育率很快从1970年的5.8降到1980年2.24,接近世代更替水平。
此后,人口自然增长率(即人口的生育率)很大程度上与经济的发展等各方面的因素相联系,与经济生活息息相关,为了研究此后影响中国人口自然增长的主要原因,分析全国人口增长规律,与猜测中国未来的增长趋势,需要建立计量经济学模型。
影响中国人口自然增长率的因素有很多,但据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的高低可能会间接影响人口增长率。
(3)文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。
二·模型设定为了全面反映中国“人口自然增长率”的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择“国名收入”及“人均GDP”作为经济整体增长的代表;选择“居民消费价格指数增长率”作为居民消费水平的代表。
暂不考虑文化程度及人口分布的影响。
从《中国统计年鉴》收集到以下数据(见表1):表1 中国人口增长率及相关数据设定的线性回归模型为:1222334t t t t t Y X X X u ββββ=++++三、估计参数 利用EViews 估计模型的参数,方法是:1、建立工作文件:启动EViews ,点击File\New\Workfile ,在对话框“Workfile Range ”。
在“Workfile frequency ”中选择“Annual ” (年度),并在“Start date ”中输入开始时间“1988”,在“end date ”中输入最后时间“2005”,点击“ok ”,出现“Workfile UNTITLED ”工作框。
其中已有变量:“c ”—截距项 “resid ”—剩余项。
多元线性回归分析案例
多元线性回归分析案例多元线性回归分析是统计学中常用的一种分析方法,它可以用来研究多个自变量对因变量的影响,并建立相应的数学模型。
在实际应用中,多元线性回归分析可以帮助我们理解变量之间的关系,预测未来的趋势,以及制定相应的决策。
本文将通过一个实际案例来介绍多元线性回归分析的基本原理和应用方法。
案例背景。
假设我们是一家电子产品制造公司的市场营销团队,我们想要了解产品销量与广告投入、产品定价和市场规模之间的关系。
我们收集了过去一年的数据,包括每个月的产品销量(千台)、广告投入(万元)、产品定价(元/台)和市场规模(亿人)。
数据分析。
首先,我们需要对数据进行描述性统计分析,以了解各变量的分布情况和相关性。
我们计算了产品销量、广告投入、产品定价和市场规模的均值、标准差、最大最小值等统计量,并绘制了相关性矩阵图。
通过分析发现,产品销量与广告投入、产品定价和市场规模之间存在一定的相关性,但具体的关系还需要通过多元线性回归分析来验证。
多元线性回归模型。
我们建立了如下的多元线性回归模型:\[Sales = \beta_0 + \beta_1 \times Advertising + \beta_2 \times Price + \beta_3 \times MarketSize + \varepsilon\]其中,Sales表示产品销量,Advertising表示广告投入,Price表示产品定价,MarketSize表示市场规模,\(\beta_0, \beta_1, \beta_2, \beta_3\)分别为回归系数,\(\varepsilon\)为误差项。
模型验证。
我们利用最小二乘法对模型进行参数估计,并进行了显著性检验和回归诊断。
结果表明,广告投入、产品定价和市场规模对产品销量的影响是显著的,模型的拟合效果较好。
同时,我们还对模型进行了预测能力的验证,结果表明模型对未来产品销量的预测具有一定的准确性。
决策建议。
第三章 多元线性回归模型案例
第三章 多元线性回归模型案例一、邹式检验(突变点检验、稳定性检验) 1.突变点检验1985—2002年中国家用汽车拥有量(t y ,万辆)与城镇居民家庭人均可支配收入(t x ,元),数据见表3.1。
表3.1 中国家用汽车拥有量(t y )与城镇居民家庭人均可支配收入(t x )数据年份 t y (万辆)t x (元)年份 t y (万辆)t x (元)1985 28.49 739.1 1994 205.42 3496.2 1986 34.71 899.6 1995 249.96 4283 1987 42.29 1002.2 1996 289.67 4838.9 1988 60.42 1181.4 1997 358.36 5160.3 1989 73.12 1375.7 1998 423.65 5425.1 1990 81.62 1510.2 1999 533.88 5854 1991 96.04 1700.6 2000 625.33 6280 1992 118.2 2026.6 2001 770.78 6859.6 1993155.772577.42002968.987702.8下图是关于t y 和t x 的散点图:从上图可以看出,1996年是一个突变点,当城镇居民家庭人均可支配收入突破4838.9元之后,城镇居民家庭购买家用汽车的能力大大提高。
现在用邹突变点检验法检验1996年是不是一个突变点。
H 0:两个子样本(1985—1995年,1996—2002年)相对应的模型回归参数相等 H 1:备择假设是两个子样本对应的回归参数不等。
在1985—2002年样本范围内做回归。
在回归结果中作如下步骤:输入突变点:得到如下验证结果:由相伴概率可以知道,拒绝原假设,即两个样本(1985—1995年,1996—2002年)的回归参数不相等。
所以,1996年是突变点。
2.稳定性检验以表3.1为例,在用1985—1999年数据建立的模型基础上,检验当把2000—2002年数据加入样本后,模型的回归参数时候出现显著性变化。
多元回归模型分析案例
多元回归模型分析案例在统计学中,多元回归模型是一种用来分析多个自变量和一个因变量之间关系的统计方法。
它可以帮助我们理解自变量对因变量的影响程度,以及它们之间的相互关系。
在本文中,我们将介绍一个关于多元回归模型的实际案例,以便更好地理解这一统计方法的应用。
假设我们有一份数据集,其中包括了房屋的售价(因变量)、房屋的面积、房龄和附近学校的评分(自变量)。
我们想要建立一个多元回归模型,来分析这些自变量对房屋售价的影响。
首先,我们需要对数据进行预处理,包括缺失值处理、异常值处理和变量转换等。
然后,我们可以利用统计软件(如SPSS、R或Python)来建立多元回归模型。
在建立模型之前,我们需要进行模型诊断,以确保模型符合统计假设。
接下来,我们可以利用模型的系数来解释自变量对因变量的影响。
例如,如果房屋面积的系数为0.5,那么可以解释为每增加1平方米的房屋面积,房屋售价将增加0.5万元。
此外,我们还可以利用模型的拟合优度来评估模型的表现,以及利用残差分析来检验模型的假设是否成立。
最后,我们可以利用模型来进行预测和决策。
例如,我们可以利用模型来预测某个房屋的售价,或者利用模型来分析不同自变量对房屋售价的影响程度,以便制定相应的策略。
通过以上案例,我们可以看到多元回归模型在实际应用中的重要性和价值。
它不仅可以帮助我们理解自变量对因变量的影响,还可以用来预测和决策。
因此,掌握多元回归模型分析方法对于统计学习者和数据分析师来说是非常重要的。
总之,多元回归模型是一种强大的统计工具,可以帮助我们分析多个自变量和一个因变量之间的关系。
通过本文介绍的实际案例,希望读者们能够更好地理解和应用多元回归模型分析方法,从而提升数据分析的能力和水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我国农民收入影响因素的回归分析本文力图应用适当的多元线性回归模型,对有关农民收入的历史数据和现状进行分析,探讨影响农民收入的主要因素,并在此基础上对如何增加农民收入提出相应的政策建议。
?农民收入水平的度量常采用人均纯收入指标。
影响农民收入增长的因素是多方面的,既有结构性矛盾因素,又有体制性障碍因素。
但可以归纳为以下几个方面:一是农产品收购价格水平。
二是农业剩余劳动力转移水平。
三是城市化、工业化水平。
四是农业产业结构状况。
五是农业投入水平。
考虑到复杂性和可行性,所以对农业投入与农民收入,本文暂不作讨论。
因此,以全国为例,把农民收入与各影响因素关系进行线性回归分析,并建立数学模型。
一、计量经济模型分析 (一)、数据搜集根据以上分析,我们在影响农民收入因素中引入7个解释变量。
即: 2x -财政用于农业的支出的比重,3x -第二、三产业从业人数占全社会从业人数的比重,4x -非农村人口比重,5x -乡村从业人员占农村人口的比重,6x -农业总产值占农林牧总产值的比重,7x -农作物播种面积,8x —农村用电量。
资料来源《中国统计年鉴2006》。
(二)、计量经济学模型建立 我们设定模型为下面所示的形式:利用Eviews 软件进行最小二乘估计,估计结果如下表所示:Dependent Variable: Y Method: Least Squares Sample: 1986 2004Included observations: 19VariableCoefficientStd. Errort-StatisticProb.C X1 X3 X4 X5 X6 X7 X8R-squaredMean dependent var Adjusted R-squared . dependent var . of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson statProb(F-statistic)表1 最小二乘估计结果回归分析报告为:()()()()()()()()()()()()()()()()23456782ˆ -1102.373-6.6354X +18.2294X +2.4300X -16.2374X -2.1552X +0.0100X +0.0634X 375.83 3.7813 2.066618.37034 5.8941 2.77080.002330.02128 -2.933 1.7558.820900.20316 2.7550.778 4.27881 2.97930.99582i Y SE t R ===---=230.99316519 1.99327374.66R Df DW F ====二、计量经济学检验(一)、多重共线性的检验及修正①、检验多重共线性(a)、直观法从“表1 最小二乘估计结果”中可以看出,虽然模型的整体拟合的很好,但是x4 x6的t统计量并不显着,所以可能存在多重共线性。
(b)、相关系数矩阵X2X3X4X5X6X7X8 X2X3X4X5X6X7X8表2 相关系数矩阵从“表2 相关系数矩阵”中可以看出,个个解释变量之间的相关程度较高,所以应该存在多重共线性。
②、多重共线性的修正——逐步迭代法A、一元回归Dependent Variable: YMethod: Least SquaresSample: 1986 2004Included observations: 19Variable Coefficient Std. Error t-Statistic Prob.CX2R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)表3 y对x2的回归结果Dependent Variable: YMethod: Least SquaresSample: 1986 2004Included observations: 19Variable Coefficient Std. Error t-Statistic Prob.CX3R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)表4 y对x3的回归结果Dependent Variable: YMethod: Least SquaresSample: 1986 2004Included observations: 19Variable Coefficient Std. Error t-Statistic Prob.CX4R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)表5 y对x4的回归结果Dependent Variable: YMethod: Least SquaresSample: 1986 2004Included observations: 19Variable Coefficient Std. Error t-Statistic Prob.CX5R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)表6 y对x5的回归结果Dependent Variable: YMethod: Least SquaresSample: 1986 2004Included observations: 19Variable Coefficient Std. Error t-Statistic Prob.CX6R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)表7 y对x6的回归结果Dependent Variable: YMethod: Least SquaresSample: 1986 2004Included observations: 19Variable Coefficient Std. Error t-Statistic Prob.CX7R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)表8 y对x7的回归结果Dependent Variable: YMethod: Least SquaresSample: 1986 2004Included observations: 19Variable Coefficient Std. Error t-Statistic Prob.CX8R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)表9 y对x8的回归结果综合比较表3~9的回归结果,发现加入x3的回归结果最好。
以x3为基础顺次加入其他解释变量,进行二元回归,具体的回归结果如下表10~15所示:Dependent Variable: YMethod: Least SquaresSample: 1986 2004Included observations: 19Variable Coefficient Std. Error t-Statistic Prob.CX3X2R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)Dependent Variable: YMethod: Least SquaresSample: 1986 2004Included observations: 19Variable Coefficient Std. Error t-Statistic Prob.CX3X4R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)Dependent Variable: YMethod: Least SquaresSample: 1986 2004Included observations: 19Variable Coefficient Std. Error t-Statistic Prob.CX3X5R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)Dependent Variable: YMethod: Least SquaresSample: 1986 2004Included observations: 19Variable Coefficient Std. Error t-Statistic Prob.CX3X6R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)Dependent Variable: YMethod: Least SquaresSample: 1986 2004Included observations: 19Variable Coefficient Std. Error t-Statistic Prob.CX3X7R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)Dependent Variable: YMethod: Least SquaresSample: 1986 2004Included observations: 19Variable Coefficient Std. Error t-Statistic Prob.CX3X8R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)综合表10~15所示,加入x7的模型的R最大,以x3、x7为基础顺次加入其他解释变量,进行三元回归,具体回归结果如下表16~20所示:Dependent Variable: YMethod: Least SquaresSample: 1986 2004Included observations: 19Variable Coefficient Std. Error t-Statistic Prob.CX3X7X2R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)Dependent Variable: YMethod: Least SquaresSample: 1986 2004Included observations: 19Variable Coefficient Std. Error t-Statistic Prob.CX3X7X4R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)Dependent Variable: YMethod: Least SquaresSample: 1986 2004Included observations: 19Variable Coefficient Std. Error t-Statistic Prob.CX3X7X5R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)Dependent Variable: YMethod: Least SquaresSample: 1986 2004Included observations: 19Variable Coefficient Std. Error t-Statistic Prob.CX3X7X6R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)Dependent Variable: YMethod: Least SquaresSample: 1986 2004Included observations: 19Variable Coefficient Std. Error t-Statistic Prob.CX3X7X8R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)综合上述表16~20的回归结果所示,其中加入x6的回归结果最好,以x3 x6 x7为基础一次加入其他解释变量,作四元回归估计,估计结果如表21~24所示:Dependent Variable: YMethod: Least SquaresSample: 1986 2004Included observations: 19Variable Coefficient Std. Error t-Statistic Prob.CX3X6X7X2R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)Dependent Variable: YMethod: Least SquaresSample: 1986 2004Included observations: 19Variable Coefficient Std. Error t-Statistic Prob.CX3X6X7X4R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)Dependent Variable: YMethod: Least SquaresSample: 1986 2004Included observations: 19Variable Coefficient Std. Error t-Statistic Prob.CX3X6X7X5R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)Dependent Variable: YMethod: Least SquaresSample: 1986 2004Included observations: 19Variable Coefficient Std. Error t-Statistic Prob.CX3X6X7X8R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)综合表21~24所示的回归结果,其中加入x8的回归结果最好,以x3 x6 x7 x8为基础顺次加入其他的解释变量,其回归结果如表25~27所示:Dependent Variable: YMethod: Least SquaresSample: 1986 2004Included observations: 19Variable Coefficient Std. Error t-Statistic Prob.CX3X6X7X8X2R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)Dependent Variable: YMethod: Least SquaresSample: 1986 2004Included observations: 19Variable Coefficient Std. Error t-Statistic Prob.CX3X6X7X8X5R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)Dependent Variable: YMethod: Least SquaresSample: 1986 2004Included observations: 19Variable Coefficient Std. Error t-Statistic Prob.CX3X6X7X8X4R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)据表25~27所示,分别加入x2 x4 x5后R均有所增加,但是参数的T检验均不显着,所以最终的计量模型如下表所示:Dependent Variable: YMethod: Least SquaresSample: 1986 2004Included observations: 19Variable Coefficient Std. Error t-Statistic Prob.CX3X6X7X8R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)回归分析报告为:(二)、异方差的检验A、相关图形分析图1图 2图3图4从图1~4可以看出y 并不随着x的增大而变得更离散,表明模型可能不存在异方差。