八年级数学下册第五章特殊平行四边形5_3正方形第1课时正方形的判定作业课件新版浙教版
浙教版八年级数学下册第5章专题十一 与正方形有关的常见模型

专题
设 BG=DE=m,则 DG=m-2. 在 Rt△ BGD 中,BG2+DG2=BD2, 即 m2+(m-2)2=10. 解得 m1=3,m2=-1(不合题意,舍去), ∴BG=3. ∴BE= BG2+GE2= 32+22= 13.
专题
变式 正方形ABCD和正方形CEFG(其中BC>2CE)有公 共顶点C,BG的延长线与直线DE交于点H.如图,当点 G在CD上时,猜想BG和DE的关系,并说明理由.
专题
解:EF=BE+FD. 证明:延长EB到点G,使BG=DF,连结AG. ∵∠ABC+∠D=180°,∠ABG+∠ABC=180°, ∴∠ABG=∠D.
专题
在△ABG 与△ADF 中,A∠BA=BGAD=,∠D, BG=DF,
∴△ABG≌△ADF(SAS), ∴AG=AF,∠GAB=∠FAD. ∵∠EAF=12∠BAD,∴∠BAE+∠FAD=12∠BAD.
专题
解:BG=DE,BG⊥DE. 理由:∵四边形ABCD和四边形CEFG都是正方形, ∴BC=CD,CG=CE,∠BCG=∠DCE=90°. ∴△BCG≌△DCE(SAS),∠CDE+∠DEC=90°. ∴BG=DE,∠CBG=∠CDE. ∴∠HBE+∠BEH=90°, ∴∠BHE=90°,∴BG⊥DE.
线段 DE 上时,BE 的长为_____1_3____.
专题
【方法点拨】 正方形中的手拉手模型与等腰三角形中的手
拉手模型类似,可仿照等腰三角形中的手拉手 模型解题.
专题
连结 BG,BD, 易证△ BCG≌△DCE. ∴BG=DE,∠CBG=∠CDG.易得 BG⊥DE. ∵CE= 2,AB= 5, ∴GE=2,BD= 10.
专题
(1)△AOE≌△BOF; 证明:∵四边形ABCD和四边形A1B1C1O都是正方形, ∴OA=OB,∠AOB=∠A1OC1=90°, ∠OAB=∠OBC=45°. ∴∠AOE+∠EOB=90°,∠EOB+∠BOF=90°, ∴∠AOE=∠BOF.
中考数学总复习 第一部分 教材考点全解 第五章 四边形 第特殊的平行四边形课件

点,连接DO并延长,交AB延长线于点E,连接BD,EC.
(1)求证:四边形BECD是平行四边形;
(2)若∠A=50°,则当∠BOD=
°时,四边形BECD
是矩形.
12/9/2021
第二十九页,共六十四页。
(1)证明:∵四边形ABCD是平行四边形, ∴AB∥DC, ∴∠OEB=∠ODC. 又∵O为BC的中点, ∴=. 在△BOE和△COD中,
【答案】 (1)BO,CO,OE,OD(方法不唯一) (2)∠BCD,∠BDC,OD,∠ODB(方法不唯一)
12/9/2021
第三十二页,共六十四页。
证明一个四边形是矩形的常用方法有:(1)首先证明这个 四边形是平行四边形,再证明有一个角是直角或者证明其对 角线相等;(2)直接证明四边形有三个角都是直角.注意不能将 两个判定方法相混淆.
12/9/2021
第二十四页,共六十四页。
命题(mìng 正方形的性质(xìngzhì)与判定(8年4考) tí)点3 7.(2017·河南 9 题)我们知道:四边形具有不稳定性.如图,
在平面直角坐标系中,边长为 2 的正方形 ABCD 的边 AB
在 x 轴上,AB 的中点是坐标原点 O.固定点 A,B,把正方
12/9/2021
第三十八页,共六十四页。
(2)∵四边形 ABCD 是菱形, ∴AB= . ∵△ADE≌△CDF, ∴AE= , ∴BE= , ∴∠BEF=∠BFE.
【答案】 (1)CD,∠C,∠CFD,∠CFD,∠C,CD (2)CB,CF,BF
12/9/2021
第三十九页,共六十四页。
证明一个四边形是菱形的常用方法有:(1)首先证明这个 四边形是平行四边形,再证明有一组邻边相等或者对角线互 相垂直;(2)直接证明四边形的四条边都相等.注意不能将两个 判定方法混淆.
【最新】浙教版八年级数学下册第五章《5.3正方形(第二课时)》公开课课件.ppt

求证:四边形ABCD是正方形.
小结:
3.正方形是特殊的平行四边形,也是 特殊的矩形,也是特殊的菱形。
正方形的性质=
1. 正方形具有而矩形不一定具有的性质是( B ) A、四个角相等. B、对角线互相垂直平分. C、对角互补. D、对角线相等.
求证:四边形ABCD是正方形;
(2)连接BD分别交AE、AF于点M、N, 将△ABM绕点A逆时针旋转,使AB与AD 重合,得到△ADH.试判断线段MN、 ND、DH之间的数量关系,并说明理由;
小结:
正方形是特殊的平行四边形,也是特 殊的矩形,也是特殊的菱形。
1、正方形既是轴对称图形,又是中 心对称图形。
。2021年1月12日星期二2021/1/122021/1/122021/1/12
• 15、会当凌绝顶,一览众山小。2021年1月2021/1/122021/1/122021/1/121/12/2021
• 16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2021/1/122021/1/12January 12, 2021
2、分析方法和添加辅助线。
• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2021/1/122021/1/12Tuesday, January 12, 2021
• 10、人的志向通常和他们的能力成正比例。2021/1/122021/1/122021/1/121/12/2021 10:12:07 AM • 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2021/1/122021/1/122021/1/12Jan-2112-Jan-21 • 12、越是无能的人,越喜欢挑剔别人的错儿。2021/1/122021/1/122021/1/12Tuesday, January 12, 2021 • 13、志不立,天下无可成之事。2021/1/122021/1/122021/1/122021/1/121/12/2021
浙教版八年级下册数学第五章 特殊平行四边形含答案(完整版)

浙教版八年级下册数学第五章特殊平行四边形含答案一、单选题(共15题,共计45分)1、如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x 轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12B.-27C.-32D.-362、在如图所示的网格中,已知线段AB,现要在该网格内再确定格点C和格点D,某数学探究小组在探究时发现以下结论:以下结论错误的是()A.将线段平移得到线段,使四边形为正方形的有2种; B.将线段平移得到线段,使四边形为菱形的(正方形除外)有3种; C.将线段平移得到线段,使四边形为矩形的(正方形除外)有两种; D.不存在以为对角线的四边形是菱形.3、已知下列命题:①若a>b,则c﹣a<c﹣b;②若a>0,则;③对角线互相平分且相等的四边形是菱形;④如果两条弧相等,那么它们所对的圆心角相等.其中原命题与逆命题均为真命题的个数是( )A.4个B.3个C.2个D.1个4、如图,一次函数的图象与两坐标轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长是()A.5B.7.5C.10D.255、如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.17B.18C.19D.206、在▱ABCD中,AB=5,BC=7,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.5B.4或5C.3或4D.5或77、下列命题中,正确的是()A.菱形的对角线相等B.平行四边形既是轴对称图形,又是中心对称图形C.正方形的对角线相等且互相垂直D.矩形的对角线不能相等8、下列命题中,正确的是()A.对角线垂直的四边形是菱形B.矩形的对角线垂直且相等C.对角线相等的矩形是正方形D.位似图形一定是相似图形9、如图所示,E.F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点O,下列结论①AE=BF;②AE⊥B F;③AO=OE;④S△AOB =S四边形DEOF中,错误的有()A.1个B.2个C.3个D.4个10、如图1,正方形纸片ABCD边长为2,折叠∠B和∠D,使两个直角的顶点重合于对角线BD上的一点P,EF、GH分别是折痕(图2),设AE=x(0<x<2),给出下列判断:①x= 时,EF+AB>AC;②六边形AEFCHG周长的值为定值;③六边形AEFCHG面积为定值,其中正确的是()A.①②B.①③C.②D.②③11、如图,在中,,,,为边上一动点,于点,于点为的中点,则的最小值为()A. B. C. D.12、正方形具有而矩形不一定具有的性质是()A.对角线相等B.对角线互相平分C.对边平行且相等D.对角线互相垂直平分13、如图,在矩形ABCD 中,AB=4,AD=a,点P在AD上,且AP=2,点E是边AB上的动点,以PE为边作直角∠EPF,射线PF交BC于点F,连接EF,给出下列结论:①tan∠PFE= ;②a的最小值为10.则下列说法正确的是( )A.①②都对B.①②都错C.①对②错D.①错②对14、如图,在Rt△ABC中,∠ACB=90°,CD是∠ACB的平分线,交AB于点D,过点D分别作AC、BC的平行线DE、DF,则下列结论不正确是()A. B. C. D.四边形DECF是正方形15、如图,ABCD、AEFC都是矩形,而且点B在EF上,这两个矩形的面积分别是S1, S2,则S1, S2的关系是()A.S1>S2B.S1<S2C.S1=S2D.3S1=2S2二、填空题(共10题,共计30分)16、如图,已知∠MON=120°,点A,B分别在OM,ON上,且OA=OB= ,将射线OM绕点O逆时针旋转得到OM′,旋转角为α(且),作点A关于直线OM′的对称点C,画直线BC交于OM′与点D,连接AC,AD.有下列结论:有下列结论:①∠BDO + ∠ACD = 90°;②∠ACB 的大小不会随着的变化而变化;③当时,四边形OADC为正方形;④ 面积的最大值为.其中正确的是________.(把你认为正确结论的序号都填上)17、在菱形ABCD中,DE⊥AB,cosA= ,BE=2,则tan∠DBE的值是________.18、如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边的正方形EFGH的周长为________.19、已知菱形的两条对角线长分别是6和8,则这个菱形的面积为________.20、在平面直角坐标系中,四边形是菱形,,反比例函数的图象经过点C,若将菱形向下平移2个单位,点B恰好落在反比例函数的图象上,则反比例函数的表达式为________.21、如图,正方形AFCE中,D是边CE上一点,B是CF延长线上一点,且AB=AD,若四边形ABCD的面积是24cm2.则AC长是________cm.22、已知正方形ABCD的对角线AC= ,则正方形ABCD的周长为________.23、如图,正方形ABCD的面积为3cm2, E为BC边上一点,∠BAE=30°,F为AE的中点,过点F作直线分别与AB,DC相交于点M,N.若MN=AE,则AM的长等于________ cm.24、如图,两个长宽分别为7cm、3cm的矩形如图叠放在一起,则图中阴影部分的面积是________.25、如图,矩形中,,,点是边上一点,连接,把沿折叠,使点落在点处.当为直角三角形时,则的长为________.三、解答题(共5题,共计25分)26、四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.若BC=8,DE=3,求△AEF的面积.27、如图,在宽为20m,长为30m的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,请计算耕地的面积.28、如图,四边形ABCD中,AB//CD,AC平分∠BAD,CE//AD交AB于E.求证:四边形AECD是菱形.29、如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求证:四边形ABFE是菱形.30、如图,已知菱形ABCD,延长AD到点F,使,延长CD到点E,使DE=CD,顺次连接点A,C,F,E,A.求证:四边形ACFE是矩形.参考答案一、单选题(共15题,共计45分)2、C3、D4、C5、B6、C7、C8、D9、A10、C11、D12、D13、C14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、28、。
八年级第5讲:正方形的性质与判定

A BC D O 初二寒假数学讲义5: 正方形的性质与判定【要点梳理】:一、基本知识点1、定义:_________________________________________________.2、性质:(1)边:___________________________(2)角:___________________________(3)对角线:___________________________ (4)对称性:___________________________3、正方形的判定方法:(1)___________________________的平行四边形是正方形; (2)___________________________的矩形是正方形;(3)___________________________的菱形是正方形;(4)___________________________的四边形是正方形;4. 正方形具有而矩形不具有的性质是正方形具有而菱形不具有的性质是 .【问题探究】:知识点1. 正方形的性质:例1.如图,点G 是正方形ABCD 对角线CA 的延长线上任意一点,以线段AG 为边作一个正方形AEFG ,线段EB 和GD 相交于点H .(1)求证:EB=GD ;(2)判断EB 与GD 的位置关系,并说明理由;(3)若AB=2,AG=2,求EB 的长.知识点2. 正方形的判定例题2:如图,△ABC 是等腰直角三角形,∠A=90°,点P 、Q 分别是AB 、AC 上的一动点,且满足BP=AQ ,D 是BC 的中点.(1)求证:△PDQ 是等腰直角三角形;(2)当点P 运动到什么位置时,四边形APDQ 是正方形,并说明理由.:【基础过关】选择题:一、填空题:三、解答题:【正方形的判定】选择题:二、填空题:10、如图,E是矩形ABCD边BC中点,P是AD边一动点,PF⊥AE,PH⊥DE,垂足分别为F,H.(1)当矩形ABCD的长与宽满足什么条件时,四边形PHEF是矩形?请予以证明;(2)在(1)中,动点P运动到什么位置时,矩形PHEF变为正方形?为什么?11.如图,已知:在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE.(1)试探究,四边形BECF是什么特殊的四边形?(2)当∠A的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.(特别提醒:表示角最好用数字)12、如图、在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N。
浙教版八年级下册数学第五章 特殊平行四边形含答案(新一套)

浙教版八年级下册数学第五章特殊平行四边形含答案一、单选题(共15题,共计45分)1、如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2 .以上结论中,你认为正确的有()个.A.1B.2C.3D.42、下列说法中,正确的说法有()①对角线互相平分且相等的四边形是菱形;②一元二次方程的根是,;③两个相似三角形的周长的比为,则它们的面积的比为;④对角线互相垂直的平行四边形为正方形;⑤对角线垂直的四边形各边中点得到的四边形是矩形.A.1个B.2个C.3个D.4个3、如图,在边长为4的菱形中,,M是边的中点,连接,将菱形翻折,使点A落在线段上的点E处,折痕交于N,则线段的长为()A. B.4 C.5 D.4、如图,四边形OABC是正方形,已知O(0,0),A(,0),则OB的长为()A. B.2 C.2 D.45、在平行四边形、菱形、矩形、正方形中,能够找到一个点,使该点到各顶点距离相等的图形是()A.平行四边形和菱形B.菱形和矩形C.矩形和正方形D.菱形和正方形6、如图,在矩形ABCD中,F是BC中点,E是AD上一点,且∠ECD=30°,∠BEC=90°,EF=4cm,则矩形的面积为( )A.16cmB. cmC. cmD.32cm7、如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0).与y轴分别交于点B(0,4)与点C(0,16).则圆心M到坐标原点O的距离是()A.10;B.8 ;C.4 ;D.2 ;8、如图1,在菱形ABCD中,∠A=120°,点E是BC边的中点,点P是对角线BD上一动点,设PD的长度为x,PE与PC的长度和为y,图2是y关于x的函数图象,其中H是图象上最低点,则a+b的值为( )A.7B.4 +6C.14D.6 +99、下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等且互相平分的四边形是矩形10、矩形具有而菱形不一定具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相垂直D.对角线平分一组对角11、如图,已知四边形是平行四边形,下列结论中错误的是()A.当时,是菱形B.当时,是菱形C.当时,是矩形D.当时,是矩形12、在下列说法中不正确的是()A.两条对角线互相垂直的矩形是正方形B.两条对角线相等的菱形是正方形C.两条对角线垂直且相等的平行四边形是正方形D.两条对角线垂直且相等的四边形是正方形13、如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A. B. C. D.14、矩形具有而平行四边形不一定具有的性质是()A.对边相等B.对角相等C.对角线相等D.对角线互相平分15、如图,矩形ABCD的两条对角线相交于点O,∠AOB=120°,AD=4,点E 是BC的中点,连结OE,则OE的长是()A. B.2 C.2 D.4二、填空题(共10题,共计30分)16、如图,剪两张对边平行的纸条,随意交叉叠放在一起,转动其中的一张,重合的部分构成了一个四边形,这个四边形是________17、如图,在矩形ABCD中,,点E在AD边上,且,动点P从点A出发,沿AB运动到点B停止,过点E作,交射线BC于点F,设M是线段EF的中点,则在点P运动的整个过程中,点M运动路线的长为________.18、如图,已知平行四边形的两条边长分别为1,a(a>1),它能被平行于边的直线分割成4个菱形,则a的值可以是________.19、规定:如果一个四边形有一组对边平行,一组邻边相等,那么称此四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M、N的坐标分别为P是二次函数的图象上在第一象限内的任意一点,PQ垂直直线于点Q,则四边形PMNQ是广义菱形.其中正确的是________.(填序号)20、如图,矩形OABC中,AB=1,AO=2,将矩形OABC绕点O按顺时针转90°,得到矩形OA′B′C,则BB′=________21、如图,,,,,,,垂足分别为D,E,则的长为________.22、如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为则正方形ABCD的面积为________23、如图,在矩形ABCD中,AB=6,BC=8,点E是BC边上的一点,连结AE,把△ABE沿AE折叠,使点B落在点B'处,当△CEB'为直角三角形时,CE的长为________.24、如图,已知正方形ABCD的边长为4,点E.F分别在边AB.BC上,且AE=BF=1,CE.DF交于点O.下列结论:①∠DOC=90°,②OC=OE,③tan∠OCD=,④S△ODC =S四边形BEOF中,正确的有________.25、如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形中,,,则的长为________.三、解答题(共5题,共计25分)26、如图,在每个小正方形的边长为1的方格纸中有线段AB和CD,点A、B、C、D均在小正方形的顶点上。
浙教版八年级数学下册第5章专题十二 特殊四边形中的动点问题
专题
∴△ADE≌△CDG. ∴AE=CG. ∴AC=AE+CE=CG+CE. ∵AC= 2AB, ∴CE+CG= 2AB.
专题
∵EM⊥BC,EN⊥CD,∴∠EMC=∠ENC=90°, ∴∠NEC=45°,∴NE=NC, ∴四边形EMCN是正方形. ∴EM=EN,∠NEM=90°. ∴∠MEF+∠FEN=90°. ∵四边形DEFG是矩形,∴∠DEF=90°. ∴∠DEN+∠NEF=90°,∴∠DEN=∠MEF.
专题
在△DEN 和△FEM 中, ∠ END=NEEM=,∠FME, ∠DEN=∠FEM, ∴△DEN≌△FEM. ∴ED=EF, ∴矩形 DEFG 是正方形.
专题
又∵EF⊥AC, ∴四边形AFCE为菱形. ∴AF=CF. 设AF=CF=x cm,则BF=(8-x)cm. 在Rt△ABF中,由勾股定理,得AB2+BF2 =AF2,即42+(8-x)2=x2,解得x=5. ∴AF=5 cm.
专题
(2)动点P,Q分别从A,C两点同时出发 ,沿△AFB和 △CDE各边匀速运动一周,即点P自A→F→B→A停止, 点Q自C→D→E→C停止.在运动过程中,已知点P的 速度为5 cm/s,点Q的速度为4 cm/s,运动时间为t s, 当以A,C,P,Q四点为顶点的四边形是平行四边形 时,求t的值.
专题
若以A,C,P,Q四点为顶点的四边形是平行四边形, 则PC=QA. ∵四边形ABCD为矩形, ∴AB=CD=4 cm,AD=BC=8 cm. ∵AF=CF=5 cm,点P的速度为5 cm/s,点Q的速度 为4 cm/s,运动时间为t s,
专题
∴PC=PF+FC=PF+FA=5t cm,QA =(AD+CD)-(QD+CD)=(12-4t)cm. ∴5t=12-4t,解得 t=43. 故当以 A,C,P,Q 四点为顶点的四边 形是平行四边形时,t 的值为43.
新课标人教版初中数学八年级下册第十九章19.2特殊的平行四边形--正方形的判定-精品课件
练习1:判断 (1)四个角都相等的四边形是正方形 (2)四条边都相等的四边形是正方形 (3)对角线相等的菱形正方形 (4)对角线互相垂直的矩形是正方形 (5)对角线垂直且相等的四边形是正方形 (6)四边相等,有一角是直角的四边形是 正方形
例2 已知:在正方形ABCD中,A′、B ′、C ′、 D ′分别从顶点A、B、C、D沿AB、BC、CD、 DA方向同时以同样速度向B、C、D、A移动。
D
M
A
E
F
C
N
B
练习2(2019年山东省济南市中考试题)如图,是 一块在电脑屏幕上出现的矩形色块图,由5种颜色 不同的正方形组成。设中间最小的一个正方形边 长为1,则这个矩形的面积是
练习4 (2019年陕西省中考题)如图,在矩形 ABCD中,点E、F分别在AB、CD上,BF平行 于DE。若AD=12cm,AB=7cm,且AE:EB=5: 2,求阴影部分的面积。
例题3:已知正方形ABCD中,Q在CD上,且 DQ=QC,P在BC上,AP=CD+CP; 求证:AQ 平分∠DAP.
证明:延长AQ交BC延长线与E,
∵四边形ABCD是正方形, ∴AD=CD,AD∥CD;
A
D
∴∠D=∠QCE,∠DAQ=∠E, 又∵DQ=CQ,
Q
∴⊿ADQ≌⊿ECQ (AAS).
∴∴ACDD==CCEE,,又∴AADP==CCDD,+CP=CE+CP=EPB.
①AE与BF相等吗?为什么?
②AE与BF是否垂直?说明你的理由。
A
D
F G
BE
C
练习7:如图,已知正方形ABCD中,
E、F分别为BC和DC上的点,且
2023八年级数学下册第5章特殊平行四边形5.1矩形(2)教案(新版)浙教版
七、教学评价与反馈
1. 课堂表现:观察学生在课堂上的参与程度、提问回答、互动表现等,评价学生对矩形知识的理解和掌握程度。
2. 小组讨论成果展示:学生在小组讨论中的表现,包括合作精神、沟通交流、问题解决能力等,评价学生在团队中的贡献和合作效果。
3. 随堂测试:通过随堂练习题,评估学生对矩形性质和判定方法的掌握情况,检测学生的应用能力和解决实际问题的能力。
4. 矩形应用题型
例题:已知矩形ABCD,AB=6cm,BC=8cm,求矩形ABCD的直角三角形的面积。
答案:矩形ABCD的直角三角形ADH和BCH的面积可以通过矩形ABCD的面积减去三角形ABH和BCH的面积来计算。三角形ABH的面积为1/2×AB×BC=1/2×6cm×8cm=24cm²,三角形BCH的面积为1/2×BC×CH=1/2×8cm×6cm=24cm²。因此,矩形ABCD的直角三角形的面积为48cm²-24cm²=24cm²。
答案:四边形EFGH的EH和FG相等,且EF平行于GH,因此EFGH是矩形。
3. 矩形对称性题型
例题:已知矩形ABCD,AB=6cm,BC=8cm,求矩形ABCD的轴对称和中心对称。
答案:矩形ABCD的对角线AC和BD互相平分,且相等,因此AC和BD是矩形的两条对称轴。矩形ABCD的中心对称点是A和D,B和C。
3. 数学建模:培养学生运用矩形的性质解决实际问题的能力,如计算矩形的面积、周长等,感受数学与生活的紧密联系。
4. 直观想象:通过观察矩形的图形,让学生能够直观地理解矩形的性质,培养学生空间想象能力,感知几何图形的特征。
三、学习者分析
1. 学生已经掌握了哪些相关知识:在开始本节课之前,学生应该已经掌握了八年级数学上册中关于四边形的基础知识,如四边形的定义、分类及性质;同时,学生也应了解平行四边形的性质及其判定方法。此外,学生应具备一定的逻辑推理能力和空间想象能力,能够从具体实例中抽象出数学概念。