方位角问题

合集下载

方位角问题2

方位角问题2

方位角问题21、如图,在小岛上有一观察站A .据测,灯塔B 在观察站A 北偏西45°方向,灯塔 C 在灯塔B 正东方向,且灯塔 B 与观察站 A 相距102海里,灯塔 C 与观察站A 相距20 海里,请你测算灯塔C 在观察站A 的什么方向?2、在沿东西走向的河岸南岸,某人自西向东行走,在A 处测得河北岸建筑物P 在北偏东60°的方向上,继续向东走400 米到达 B 处时,在B 处测得河北岸建筑物P在北偏东45°的方向上,如果建筑物P 距河北岸100 米,求河宽(人与河南岸距离忽略不计,3= 1 . 7)3、游艇在湖面上以12 千米/小时的速度向正东方向航行,在O处看到灯塔A 在游艇北偏东60 °方向上,航行 1 小时到达 B 处,此时看到灯塔 A 在游艇北偏西30°方向上.求灯塔 A 到航线OB的最短距离(答案可以含根号).4、我市准备在相距 2 千米的 A 、B 两工厂间修一条笔直的公路,但在 B 地北偏东 60 °方向、 A 地北偏西 45°方向的 C 处,有一个半径为 0 . 6 千米的住宅小区(见下图),问修筑公路时,这个小区是否有居民需要搬迁? ( 参考数据:2= 1 . 41 。

3= 1 . 73 )5、如图,小明同学在东西方向的海岸线上的 A 处,测得海中灯塔P 在北偏东 60 °方向上,在 A 处东如图,甲船在港口 P 的北偏西 600方向,距港口 80 海里的 A 处,沿 AP 方向以 12 海里/时的速度驶向港口 P .乙船从港口 P 出发,沿北偏东 450方向匀速驶离港口 P ,现两船同时出发, 2 小时后甲船到 B 处,乙船在甲船的正东方向的C 处.求乙船的航行速度.(结果保留根号)6、如图,一艘轮船以每小时20海里的速度沿正北方向航行,在A 处测得灯塔C 在北偏西30°方向,轮船航行2小时后到达B 处,在B 处测得灯塔C 在北偏西60°方向.当轮船到达灯塔C 的正东方向的D 处时,求此时轮船与灯塔C 的距离.(结果保留根号)C D B 北 60° 30°7、为打击索马里海盗,保护各国商船的顺利通行,我海军某部奉命前往该海域执行护航任务.某天我护航舰正在某小岛A北偏西45︒并距该岛20海里的B处待命.位于该岛正西方向C处的某外国商船遭到海盗袭击,船长发现在其北偏东60︒的方向有我军护航舰(如图9所示),便发出紧急求救信号.我护航舰接警后,立即沿BC航线以每小时60海里的速度前去救援.问我护航舰需多少分钟可以到达该商船所在的位置C处?(结果1.4 1.7)8、如图,在航线l的两侧分别有观测点A和B,点A到航线l的距离为2km,点B位于点A北偏东60°方向且与A相距10km处.现有一艘轮船从位于点B南偏西76°方向的C 处,正沿该航线自西向东航行,5min后该轮船行至点A的正北方向的D处.(1)求观测点B到航线l的距离;(2)求该轮船航行的速度(结果精确到0.1km/h).1.73,sin760.97°≈,cos760.24°≈,tan76 4.01°≈)C AB60°45°北北图99、载着“点燃激情,传递梦想”的信念,奥运圣火于6月2日在古城荆州传递,途经A,B、C、D四地.如图,其中A,B、C三地在同一直线上,D地在A地北偏东45 方向,在B地正北方向,在C地北偏西60 方向.C地在A地北偏东75 方向.B,D两地相距2km.问奥运圣火从A地传到D地的路程大约是多少?(最后结果保留整数,参考数据:2≈1.4,3≈1.7)10、如图,AC是某市环城路的一段,AE、F B、CD都是南北方向的街道,其与环城路AC 的交叉路口分别是A、B、C,经测量花卉世界D位于点A的北偏东45 方向、点B的北偏东30 方向上,AB=2km,∠DAC=15 .(1)求B,D之间的距离;(2)求C,D之间的距离.(结果保留根号)。

方位角问题1

方位角问题1

方位角问题11.(哈尔滨市2008年中考题)如图,一艘轮船位于灯塔P的北偏东60方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45方向上的B处,求此时轮船所在B处与灯塔P的距离(结果保留根号).2、海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60方向上,航行l2海里到达B点,这时测得小岛P在北偏东45方向上,如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.3、如图,港口B位于港口O正西方向l20海里处,小岛C位于港口0北偏西60 的方向,一艘科学考察船从港口O出发,沿北偏西30的OA方向以20海里/小时的速度驶离港口0,同时一艘快艇从港口B出发,沿北偏东30 的方向以60海里/小时的速度驶向小岛C,在小岛C用l小时装补给物资后,立即按原来的速度给考察船送去.(1)快艇从港口B到小岛C需要多少时间?(2)快艇从小岛C出发后最少需要多少时间才能和考察船相遇?4、今年五、六月份,某省各地、市普遭暴雨袭击,水位猛涨.某市抗洪抢险救援队伍在B处接到报告:有受灾群众被困于一座遭水淹的楼顶A处,情况危急!救援队伍在B处测得A在B的北偏东60 的方向上(如图所示),队伍决定分成两组:第一组马上下水游向A 处救人,同时第二组从陆地往正东方向奔跑120米到达C处,再从c处下水游向A处救人,已知A在C的北偏东30 的方向上,且救援人员在水中游进的速度均为1米/秒.在陆地上奔跑的速度为4米/秒,试问哪组救援队先到A处?请说明理由(参考数据3=1.732).5、如图,甲船在港口P的北偏西60 方向,距港口80海里的A处,沿AP方向以12海里/时的速度驶向港口P,乙船从港口P出发,沿北偏东45 方向匀速驶离港口P,现两船同时出发,2小时后乙船在甲船的正东方向.求乙船的航行速度.(精确到0.1海里/时,参考数据2≈1.414,3≈1.732)6.如图,在航线l 的两侧分别有观测点A 和B ,点A 到航线l 的距离为2km ,点B 位于点A 北偏东60°方向且与A 相距10km 处.现有一艘轮船从位于点B 南偏西76°方向的C 处,正沿该航线自西向东航行,5min 后该轮船行至点A 的正北方向的D 处.(1)求观测点B 到航线l 的距离;(2)求该轮船航行的速度(结果精确到0.1km/h ).(参考数据:3 1.73≈,sin760.97°≈, cos760.24°≈,tan76 4.01°≈)7.如图,在气象站台A 的正西方向240km 的B 处有一台风中心,该台风中心以每小时20km 的速度沿北偏东60 的BD 方向移动,在距离台风中心130km 内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A 的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?A B C D8、某地震救援队探测出某建筑物废墟下方点C处有生命迹象,已知废墟一侧地面上两探测点A、B相距3米,探测线与地面的夹角分别是30 和60 (如图),试确定生命所在点C的深度.(结果精确到0.1米,参考数据2≈1.41,3≈1.73)9、如图,MN表示哈尔滨到大庆的一段高速公路设计路线图,在点M测得点N 在它的南偏东30 的方向,测得另一点A在它的南偏东60 的方向;取MN 上另一点召,在点B测得点A在它的南偏东75 的方向,以点A为圆心,500m 为半径的圆形区域为某居民区,已知MB=400m,通过计算回答:如果不改变方向,高速公路是否会穿过居民区?。

精品案例_方位角问题小区常见处理方法研究

精品案例_方位角问题小区常见处理方法研究

方位角问题小区常见处理方法汇总目录一、问题描述 (3)二、分析过程 (4)三、解决措施 (5)四、经验总结 (7)方位角问题小区常见处理方法汇总【摘要】方位角问题小区是网优工作中经常会碰到的问题之一,大部分是小区接反导致,因为安装施工队伍或者光缆割接队伍的工作疏忽而导致。

此类问题一般不会在网管中产生告警,显示状态也是正常,所以一般要工程网优实地通过路测数据的小区拉线图才能直观的看出来。

小区接反直接影响的是邻区和相关码字的规划。

当然,这个也会直接影响到网络的切换成功率。

而现在介绍的这种案例,是利用大数据平台中MR分析模块诊断发现方位角问题小区,可能存在的小区接反故障,然后通过总结的常见方法迅速针对性的进行处理,极大的提高了用户感知度。

【关键字】小区接反、大数据平台、MR分析【业务类别】基础维护一、问题描述2019年2月,安徽公司开发的网络运营分析平台中天馈智慧诊断模块,可以根据一周的MR覆盖图得知扇区偏差方位角,池州2月4号到2月10号的天馈智慧诊断如图1所示。

可以发现在2月初池州共有109个LTE小区存在方位角偏差,高达总小区数的2.86%。

图1.2月初大数据平台中天馈智慧诊断二、分析过程点开天馈智慧诊断中的详情界面如图2,可以将这些方位角问题小区清单导出,并在MR 分析中逐个核查MR覆盖方向,判断接反情况,如图3。

图2.天馈智慧诊断详情界面图3.天馈智慧诊断MR覆盖界面三、解决措施常见的方位角问题小区原因与调整方法以及MR覆盖界面呈现界面下表1。

扇区光纤调扇区光纤调表1.常见方位角问题小区原因与调整方法举例:调整解决方案1图4. 3个RRU和3个天线的接法例如殷汇二站为3个RRU基站,通过天馈智慧诊断中MR分析得知扇区顺时针接反,如下图5,只需要在BBU端将光纤接头调整一下即可,只需要将1小区纤调整到原2小区,2小区纤调整到原3小区,3小区纤调整到原1小区。

调整后过一周在网优平台的MR小区覆盖分析模块中找到殷汇二站的三扇区MR覆盖截图,发现已经呈现正常,如图6。

中考数学试卷分类汇编 解直角三角形(方位角问题)

中考数学试卷分类汇编 解直角三角形(方位角问题)

中考数学 方位角1、(2013年潍坊市)一渔船在海岛A 南偏东20°方向的B 处遇险,测得海岛A 与B 的距离为20海里,渔船将险情报告给位于A 处的救援船后,沿北偏西80°方向向海岛C 靠近.同时,从A 处出发的救援船沿南偏西10°方向匀速航行.20分钟后,救援船在海岛C 处恰好追上渔船,那么救援船航行的速度为( ).A.310海里/小时B. 30海里/小时C.320海里/小时D.330海里/小时答案:D .考点:方向角,直角三角形的判定和勾股定理.点评;理解方向角的含义,证明出三角形ABC 是直角三角形是解决本题的关键. 2、(2013•株洲)如图是株洲市的行政区域平面地图,下列关于方位的说法明显错误的是( )3、(2013年河北)如图1,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为A.40海里B.60海里C.70海里D.80海里答案:D解析:依题意,知MN=40×2=80,又∠M=70°,∠N=40°,所以,∠MPN=70°,从而NP=NM=80,选D4、(2013•荆门)A、B两市相距150千米,分别从A、B处测得国家级风景区中心C处的方位角如图所示,风景区区域是以C为圆心,45千米为半径的圆,tanα=1.627,tanβ=1.373.为了开发旅游,有关部门设计修建连接AB两市的高速公路.问连接AB高速公路是否穿过风景区,请说明理由.∴CD=5、(2013•湘西州)钓鱼岛自古以来就是中国的神圣领土,为宣誓主权,我海监船编队奉命在钓鱼岛附近海域进行维权活动,如图,一艘海监船以30海里/小时的速度向正北方向航行,海监船在A处时,测得钓鱼岛C在该船的北偏东30°方向上,航行半小时后,该船到达点B 处,发现此时钓鱼岛C与该船距离最短.(1)请在图中作出该船在点B处的位置;(2)求钓鱼岛C到B处距离(结果保留根号)=56、(2013年广州市)如图10,在东西方向的海岸线MN上有A、B两艘船,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东58°方向,船P在船B的北偏西35°方向,AP的距离为30海里.(1)求船P到海岸线MN的距离(精确到0.1海里);(2)若船A、船B分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.分析:(1)过点P作PE⊥AB于点E,在Rt△APE中解出PE即可;(2)在Rt△BPF中,求出BP,分别计算出两艘船需要的时间,即可作出判断解:(1)过点P作PE⊥AB于点E,由题意得,∠PAE=32°,AP=30海里,在Rt△APE中,PE=APsin∠PAE=APsin32°≈15.9海里;(2)在Rt△PBE中,PE=15.9海里,∠PBE=55°,则BP=≈19.4,A船需要的时间为:=1.5小时,B船需要的时间为:=1.3小时,故B船先到达.点评:本题考查了解直角三角形的应用,解答本题的关键是理解方位角的定义,能利用三角函数值计算有关线段,难度一般.7、(2013年广东湛江)如图,我国渔政船在钓鱼岛海域C处测得钓鱼岛A在渔政船的北偏西30ο的方向上,随后渔政船以80海里小时的速度向北偏东30ο的方向航行,半小时后到达B 处,此时又测得钓鱼岛A 在渔政船 的北偏西60ο的方向上,求此时渔政船距钓鱼岛A 的距离AB .1.732≈) 解:延长EB 至F ,则030CBF ∠=,00000180180603090ABC EBF CBF ∴∠=-∠-∠=--=,在Rt △ABC 中,060ACB ∠=,180402BC =⨯=,tan ,ABACB BC=∠tan 44 1.732 6.9AB BC ACB ∴=∠=≈⨯≈答:此时渔政船距钓鱼岛A 的距离AB 约为:6.9海里 8、(2013•荆门)A 、B 两市相距150千米,分别从A 、B 处测得国家级风景区中心C 处的方位角如图所示,风景区区域是以C 为圆心,45千米为半径的圆,tan α=1.627,tan β=1.373.为了开发旅游,有关部门设计修建连接AB 两市的高速公路.问连接AB 高速公路是否穿过风景区,请说明理由.∴CD=9、(2013•苏州)如图,在一笔直的海岸线l上有AB两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号)BF=AB=1kmBC=km∴AD=xkmx=2﹣﹣∴BF=∴BC=km之间的距离为10、(2013•莱芜)如图,有一艘渔船在捕鱼作业时出现故障,急需抢修,调度中心通知附近两个小岛A、B上的观测点进行观测,从A岛测得渔船在南偏东37°方向C处,B岛在南偏东66°方向,从B岛测得渔船在正西方向,已知两个小岛间的距离是72海里,A岛上维修船的速度为每小时20海里,B岛上维修船的速度为每小时28.8海里,为及时赶到维修,问调度中心应该派遣哪个岛上的维修船?(参考数据:cos37°≈0.8,sin37°≈0.6,sin66°≈0.9,cos66°≈0.4)中,(小时)(小时)11、(2013泰安)如图,某海监船向正西方向航行,在A处望见一艘正在作业渔船D在南偏西45°方向,海监船航行到B处时望见渔船D在南偏东45°方向,又航行了半小时到达C 处,望见渔船D在南偏东60°方向,若海监船的速度为50海里/小时,则A,B之间的距离为(取,结果精确到0.1海里).考点:解直角三角形的应用-方向角问题.专题:应用题.分析:过点D作DE⊥AB于点E,设DE=x,在Rt△CDE中表示出CE,在Rt△BDE中表示出BE,再由CB=25海里,可得出关于x的方程,解出后即可计算AB的长度.解答:解:∵∠DBA=∠DAB=45°,∴△DAB是等腰直角三角形,过点D作DE⊥AB于点E,则DE=AB,设DE=x,则AB=2x,在Rt△CDE中,∠DCE=30°,则CE=DE=x,在Rt△BDE中,∠DAE=45°,则DE=BE=x,由题意得,CB=CE﹣BE=x﹣x=25,解得:x=,故AB=25(+1)=67.5海里.故答案为:67.5.点评:本题考查了解直角三角形的知识,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度,难度一般.12、(2013•烟台)如图,一艘海上巡逻船在A地巡航,这时接到B地海上指挥中心紧急通知:在指挥中心北偏西60°方向的C地,有一艘渔船遇险,要求马上前去救援.此时C地位于北偏西30°方向上,A地位于B地北偏西75°方向上,A、B两地之间的距离为12海里.求A、C两地之间的距离(参考数据:≈1.41,≈1.73,≈2.45,结果精确到0.1),=6,∴AC=6613、(2013•遂宁)钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛海域实现了常态化巡航管理.如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一我国渔政执法船C,求此时船C与船B的距离是多少.(结果保留根号)中,BD=AB•sin∠BAD=20×=10==20海里.14、(2013•资阳)钓鱼岛历来是中国领土,以它为圆心在周围12海里范围内均属于禁区,不允许它国船只进入,如图,今有一中国海监船在位于钓鱼岛A正南方距岛60海里的B处海域巡逻,值班人员发现在钓鱼岛的正西方向52海里的C处有一艘日本渔船,正以9节的速度沿正东方向驶向钓鱼岛,中方立即向日本渔船发出警告,并沿北偏西30°的方向以12节的速度前往拦截,期间多次发出警告,2小时候海监船到达D处,与此同时日本渔船到达E处,此时海监船再次发出严重警告.(1)当日本渔船受到严重警告信号后,必须沿北偏东转向多少度航行,才能恰好避免进入钓鱼岛12海里禁区?(2)当日本渔船不听严重警告信号,仍按原速度,原方向继续前进,那么海监船必须尽快到达距岛12海里,且位于线段AC上的F处强制拦截渔船,问海监船能否比日本渔船先到达F处?(注:①中国海监船的最大航速为18节,1节=1海里/小时;②参考数据:sin26.3°≈0.44,sin20.5°≈0.35,sin18.1°≈0.31,≈1.4,≈1.7)=≈0.35,BD=12BH=12==的时间为:=15、(2013•自贡)在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M 的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A 相距km的C处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.AC=∴BC==×60=12(千米∵AC=8∴CS=8(∴AS=8×∴BR=40•sin60°=20(∴AR=40×cos60°=40×=,,16、(2013年黄石)高考英语听力测试期间,需要杜绝考点周围的噪音。

测量坐标方位角 180怎么看加还是减

测量坐标方位角 180怎么看加还是减

测量坐标方位角 180怎么看加还是减在测量坐标方位角时,经常会遇到一个问题,即当方位角为180度时,应当是加上180度还是减去180度。

这个问题在导航和地理测量中尤为重要,因为决定了物体的方向。

首先,我们需要明确什么是坐标方位角。

坐标方位角是以正北方向为基准,按顺时针方向测量的一个角度值,通常以度数表示,范围从0度到360度。

当物体位于北方时,其方位角为0度;当物体位于东方时,其方位角为90度;当物体位于南方时,其方位角为180度;当物体位于西方时,其方位角为270度。

针对题目中的问题,即当方位角为180度时,应当是加上还是减去180度,取决于具体的测量需求和定义的参考方向。

在一些测量领域,为了简化计算和减小误差,可以将180度看作两个相反的方向。

下面将介绍两种常见的处理方法。

方法一:加上180度在一些测量系统中,将180度看作是顺时针方向的一个角度,因此在测量物体的方位角时,可以将180度与原有的方位角相加。

这意味着,当原有方位角为0度时,加上180度后得到的方位角为180度;当原有方位角为90度时,加上180度后得到的方位角为270度;当原有方位角为270度时,加上180度后得到的方位角为90度。

这种处理方法通常适用于导航系统和地图绘制等领域。

方法二:减去180度在另一些测量系统中,将180度看作是逆时针方向的一个角度,因此在测量物体的方位角时,可以将原有的方位角减去180度。

这意味着,当原有方位角为0度时,减去180度后得到的方位角为-180度;当原有方位角为90度时,减去180度后得到的方位角为-90度;当原有方位角为270度时,减去180度后得到的方位角为90度。

这种处理方法通常适用于天文学和航海领域。

需要注意的是,无论选择哪种处理方法,对于具体问题的具体分析是必要的。

在不同领域和场景下,可能会有不同的定义和约定,因此在实际应用中应遵循相应的规范和要求。

总结起来,当测量坐标方位角为180度时,可以选择加上180度或减去180度,具体取决于测量系统的定义和约定。

浙教版七年级下册数学第1章 解直角三角形 用解直角三角形解方位角问题

浙教版七年级下册数学第1章 解直角三角形  用解直角三角形解方位角问题

(2) 渔船到达距离小岛 B 最近点后,按原航向继续航行 20 6n mile 到点 C 处时突然发生事故,渔船马上向小 岛 B 上的救援队求救,问救援队从 B 处出发沿着哪个 方向航行到达事故地点航行路程最短?最短航行路程 是多少?(结果保留根号)
解:在 Rt△BDC 中,tan∠C=BDDC=2200
解:如图,作点B关于MN的对称点G,则点B, D,E,G在一条直线上,连结AG交MN于点P, 连结PB,点P即为体育馆. 此时PA+PB=PA+PG=AG, 即A,B两所学校到体育馆的距离之和最短为 AG的长.
在 Rt△ADG 中,AD=3 km, DG=DE+EG=DE+BE=4+6=10(km), ∠ADG=90°, ∴AG= AD2+DG2= 32+102= 109(km). 答:最短距离为 109km.
(2)小船从点P处沿射线AP的方向以3千米/时的速度进行 沿途考察,航行一段时间后到达点C处,此时,从B测 得小船在北偏西15°方向,求小船沿途考察的时间.
解:如图,过点 B 作 BF⊥AC 于点 F.
根据题意得∠ABC=90°+15°=105°,
在 Rt△ABF 中,∠AFB=90°,∠BAF=30°,
10 如图,在一笔直的海岸线上有 A,B 两个观测站,A 观 测站在 B 观测站的正东方向,有一艘小船在点 P 处,从 A 处测得小船在北偏西 60°方向,从 B 处测得小船在北 偏东 45°方向,点 P 到点 B 的距离是 3 2千米.(注:结 果有根号的保留根号)
(1)求 A,B 两观测站之间的距离;
高限速 60 千米/时,此车__没__有__超__速____.(填“超速”或“没 有超速”)(参考数据: 3≈1.732)
3 【中考·绵阳】一艘在南北航线上的测量船,于 A 点处 测得海岛 B 在点 A 的南偏东 30°方向,继续向南航行

人教版九年级数学下册实际中的方位角、坡角问题同步练习

人教版九年级数学下册实际中的方位角﹨坡角问题同步练习基础训练知识点1 方位角问题1.如图,一艘海轮位于灯塔P的北偏东方向55°,距离灯塔为2海里的点A处.如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB长是( )A.2海里B.2sin 55°海里C.2cos 55°海里D.2tan 55°海里2.如图,一只船以每小时20千米的速度向正东航行,起初船在A 处看见一灯塔B在船的北偏东60°方向上,2小时后,船在C处看见这个灯塔在船的北偏东45°方向上,则灯塔B到船所在的航线AC的距离是( )A.(18+16)千米B.(19+18)千米C.(20+20)千米D.(21+22)千米3.如图,一船向正北方向匀速行驶,在C处看见正西方两座相距10海里的灯塔A和B恰好与该船在同一直线上,继续航行半小时后,在D处看见灯塔B在南偏西60°方向上,灯塔A在南偏西75°方向上,则该船航行的速度应该是( )A.10海里/小时B.5海里/小时C.10海里/小时D.5海里/小时4.如图,一艘海轮位于灯塔P的北偏东53°方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处.(1)在图中画出点B,并求出B处与灯塔P的距离(结果取整数);(2)用方向和距离描述灯塔P相对于B处的位置.(参考数据:sin 53°≈0.80,cos 53°≈0.60,tan53°≈1.33,≈1.41)知识点2 坡角问题5.小明沿着与地面成30°角的坡面向下走了2米,那么他下降了( )A.1米B.米C.2米D.米6.拦水坝横断面如图所示,迎水坡AB的坡比是1∶,坝高BC=10 m,则坡面AB的长度是( )A.15 mB.20 mC.10 mD.20 m7.如图,小明爬一土坡,他从A处爬到B处所走的直线距离AB=4米,此时,他离地面高度为h=2米,则这个土坡的坡角∠A=°.8.如图,一水库大坝的横断面为梯形ABCD,坝顶BC宽6米,坝高20米,斜坡AB的坡度i=1∶2.5,斜坡CD的坡角为30°,求坝底AD的长度.(精确到0.1米,参考数据:≈1.414,≈1.732.提示:坡度等于坡面的铅垂高度与水平长度之比)=9.如图,某人在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,已知该山坡的坡度i为1∶,点P,H,B,C,A在同一个平面上,点H,B,C 在同一条直线上,且PH⊥HC.则A,B两点间的距离是( )A.15米B.20米C.20米D.10米提升训练考查角度1 同一点的两个方位角问题10.如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处距离灯塔P有多远?(结果用非特殊角的三角函数表示即可)考查角度2 不同点的两个方位角问题11.如图,某市对位于笔直公路AC上两个小区A,B的供水路线进行优化改造,供水站M在笔直公路AD上,测得供水站M在小区A 的南偏东60°方向,在小区B的西南方向,小区A,B之间的距离为300(+1)米,求供水站M分别到小区A,B的距离.(结果可保留根号)考查角度3 已知坡角求坡长问题12.如图,某幼儿园为了加强安全管理,决定将园内的滑梯的倾斜度由45°降为30°,已知原滑梯AB的长为5米,点D,B,C在同一水平地面上且共线.求:改善后滑梯会加长多少米?(精确到0.01米)考查角度4 坡角与视角的综合问题13.如图,某大楼的顶部有一块广告牌CD,小李在山坡的坡脚A 处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1∶,AB=10米,AE=15米(i=1∶是指坡面的铅直高度BH 与水平长度AH的比).(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)14.如图,海中两个灯塔A,B,其中B位于A的正东方向上,渔船跟踪鱼群由西向东航行,在点C处测得灯塔A在西北方向上,灯塔B在北偏东30°方向上,渔船不改变航向继续向东航行30海里到达点D,这时测得灯塔A在北偏西60°方向上,求灯塔A,B 间的距离.(计算结果用根号表示,不取近似值)15.如图,一楼房AB后有一假山,其坡度为i=1∶,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高度.(注:坡度i是指坡面的铅直高度与水平宽度的比)探究培优拔尖角度1 利用方位角解决航海中的问题16.在东西方向的海岸线l上有一长为1 km的码头MN(如图),在码头西端M的正西19.5 km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°方向,且与A相距40 km的B处,经过80 min,又测得该轮船位于A的北偏东60°方向,且与A相距8 km的C处.(1)求该轮船航行的速度(结果保留根号);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.拔尖角度2 利用坡度解决工程改造问题17.我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位,如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角∠BAE=68°,新坝体的高为DE,背水坡坡角∠DCE=60°.求工程完工后背水坡底端水平方向增加的宽度AC.(结果精确到0.1米,参考数据:sin 68°≈0.93,cos 68°≈0.37,tan 68°≈2.5,≈1.73)参考答案1.【答案】C2.【答案】C3.【答案】A解:根据题意得AB=10海里,∠ADC=75°,∠BDC=60°,DC⊥AC,∴∠DBC=30°,∠BDA=∠A=15°,∴BD=AB=10海里.∵DC⊥AC,∴在Rt△BDC中,DC=BD·sin ∠DBC=10×=5(海里),∵从C 到D行驶了半小时,∴速度为5÷=10(海里/小时),故选A. 4.解:(1)点B的位置如图所示.根据题意,得∠A=53°,∠B=45°.在Rt△APC中,∵sin A=.∴PC=PA·sin 53°≈100×0.80=80.方法一:在Rt△BPC中,∵sin B=,∴PB=≈=80≈80×1.41≈113(海里).方法二:在Rt△BPC中,∵∠B=∠BPC=45°,∴PC=BC.∴PB==PC≈1.41×80≈113(海里).∴B处与灯塔P的距离大约是113海里.(2)灯塔P位于B处的西北(或北偏西45°)方向,距离B处大约113海里.5.【答案】A6.【答案】D7.【答案】308.解:作BE⊥AD,CF⊥AD,垂足分别为点E,F,则四边形BCFE是矩形,由题意得,EF=BC=6米,BE=CF=20米.∵斜坡AB的坡度i为1∶2.5,在Rt△ABE中,BE=20米,∴=,∴AE=50米.在Rt△CFD中,∠D=30°,∴DF==20(米),∴AD=AE+EF+FD=50+6+20≈90.6(米).故坝底AD的长度约为90.6米.9.【答案】B解:由题意可得:∠APB=60°-15°=45°,∠PBH=60°,则可由锐角三角函数求得PB的长,又由山坡的坡度i(即tan ∠ABC)为1∶,即可求得∠ABC的度数,从而得出△ABP是等腰直角三角形,则可求得答案.10.解:如图,过点P作PD⊥AB于点D.由题意知∠DPB=∠DBP=45°.在Rt△PBD中,sin 45°==,∴PB=PD.∵点A在点P的北偏东65°方向上,∴∠APD=90°-65°=25°.在Rt△PAD中,cos 25°=.∴PD=PAcos25°=80cos25°(海里),∴PB=80cos 25°海里.11.解:如图,过点M作MN⊥AB于N,设MN=x米.在Rt△AMN中,∵∠ANM=90°,∠MAN=30°,∴MA=2MN=2x,AN=MN=x.在Rt△BMN中,∵∠BNM=90°,∠MBN=45°,∴BN=MN=x,MB=MN=x.∵AN+BN=AB,∴x+x=300(+1),∴x=300,∴MA=2x=600,MB=x=300.故供水站M到小区A的距离是600米,到小区B的距离是300米.12.解:在Rt△ABC中,∵AB=5米,∠ABC=45°,∴AC=ABsin45°=5×=(米),在Rt△ADC中,∠ADC=30°,∴AD==5≈5×1.414=7.07(米),∴AD-AB≈7.07-5=2.07(米).答:改善后滑梯会加长约2.07米.13.解:(1)如图,过B作BG⊥DE于G,在Rt△ABH中,i=tan ∠BAH==,∴∠BAH=30°,∴BH=AB=5.0米.(2)由(1)得:BH=5.0米,AH=5米,∴BG=AH+AE=(5+15)米, 在Rt△BGC中,∠CBG=45°,∴CG=BG=(5+15)米.在Rt△ADE中,∠DAE=60°,AE=15米,∴DE=AE=15米. ∴CD=CG+GE-DE=5+15+5.0-15=20-10≈2.7(米). 答:广告牌CD的高度约为2.7米.14.解:作CE⊥AB于点E,AF⊥CD于点F,∴∠AFC=∠AEC=90°.∵∠FCE=90°,∠ACE=45°,∴四边形AFCE是正方形.设AF=FC=CE=AE=x海里,则FD=(x+30)海里,∵tan D=,∠D=30°,∴=,解得x=15+15,∴AE=CE=(15+15)海里.∵tan∠BCE=,∠BCE=30°,∴=,解得BE=(15+5)海里.∴AB=AE+BE=15+15+15+5=(20+30)(海里).答:灯塔A,B间的距离为(20+30)海里.15.解:如图,过点E作EF⊥BC,交BC的延长线于F,作EH⊥AB 于点H.在Rt△CEF中,∵i===tan ∠ECF,∴∠ECF=30°,∴EF=CE=10米,CF=10米,∴BH=EF=10米,HE=BF=BC+CF=(25+10)米,在Rt△AHE中,∵∠HAE=45°,∴AH=HE=(25+10)米,∴AB=AH+HB=(35+10)米.答:楼房AB的高度为(35+10)米.16.解:(1)如图,∵∠1=30°,∠2=60°,∴∠BAC=90°,∴△ABC 为直角三角形.∵AB=40 km,AC=8km,∴BC===16(km).∴航行速度为×60=12(km/h).(2)轮船能正好行至码头MN靠岸.理由如下:如图,作BR⊥l于R,作CS⊥l于S,延长BC交l于T.∵∠2=60°,∴∠4=90°-60°=30°.∵AC=8km,∴CS=8sin 30°=4(km).AS=8cos 30°=8×=12(km).∵∠1=30°,∴∠3=90°-30°=60°.∵AB=40km,∴BR=40·sin 60°=20(km).AR=40×cos60°=40×=20(km).易得,△STC∽△RTB,∴=,=,解得:ST=8 km.∴AT=12+8=20(km).又∵AM=19.5 km,MN=1 km,∴AN=20.5 km,∵19.5<AT<20.5,∴轮船能够正好行至码头MN靠岸.17.解:在Rt△BAE中,∠BAE=68°,BE=162米,∴AE=≈=64.8(米).在Rt△DEC中,∠DCE=60°,DE=176.6米,∴CE==≈102.08(米),∴AC=CE-AE≈102.08-64.8=37.28≈37.3(米),即工程完工后背水坡底端水平方向增加的宽度AC约为37.3米.。

方位角辅助线问题

解:沿一条小路前进,从A到B,方位角(从正北方向顺时针转到AB方向所成的角)是
50°,距离是470m,从B到C,方位角是80°,距离是860m,从C到D,方位角是150°,
距离是640m.试画出示意图,并计算出从A到D的方位角和距离.
【答案】连结AC.在△ABC中,∠ABC=50°+(180°-80°)=150°,AB=470m,BC=860m.
由余弦定理得

22
2cosACABBCABBCABC

224708602470860cos150
1289().m

由正弦定理得sin860sin150sin1289BCABCBACAC0.3336.
∴ ∠BAC≈19.5°,∠ACB=10.5°.
在△ACD中,∠ACD=80°-10.5°+30°=99.5°,CD=640m.

由余弦定理得222cos1531().ADACCDACCDACDm
由正弦定理得sinsinCDACDCADAD,∴ ∠CAD≈24.4°.
∴ AD的方位角为50°+19.5°+24.4°=93.9°
答:从A到D的方位角为93.9°,距离约为1531m.

【浙教版】2022年九年级(上)期末复习培优提分专项训练:解直角三角形的应用(方位角问题)(原卷)

【浙教版】2022年九年级(上)期末复习培优提分专项训练解直角三角形的应用(方位角问题)1.(2022·浙江宁波·一模)如图,某渔船沿正东方向以10海里/小时的速度航行,在A处测得岛C在北偏东60°方向,1小时后渔船航行到B处,测得岛C在北偏东30°方向,已知该岛周围9海里内有暗礁.参考数据:√3≈1.732,sin75°≈0.966,cos75°≈0.259.(1)B处离岛C有多远?如果渔船继续向东航行,有无触礁危险?(2)如果渔船在B处改为向东偏南15°方向航行,有无触礁危险?2.(2022·浙江宁波·九年级专题练习)我国海域辽阔,渔业资源丰富,如图,现有渔船以18√2km/ℎ的速度在海面上沿正东方向航行,当行至A处时,发现它的东南方向有一灯塔B,船续向东航行30min后达到C处,发现灯塔B在它的南偏东15°方向.(1)求此时渔船与灯塔B的距离.(2)若渔船继续向东行驶,还要行驶多少千米与B的距离达到最小值.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)3.(2022·浙江宁波·一模)如图,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向.(1)直接写出∠ACB的度数是;(2)测量发现∠BAC=20°,A岛与C岛之间的距离AC=20海里,求A岛与B岛之间的距离.(结果精确到0.1海里)(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)4.(2021·浙江丽水·一模)如图,某海岸边有B,C两个码头,C码头位于B码头的正东方向,距离B码头60海里.甲、乙两船同时从A岛出发,甲船向位于A岛正北方向的B码头航行,乙船向位于A岛北偏东30°方向的C码头航行,当甲船到达距离B码头45海里的E 处时,乙船位于甲船北偏东60°方向的D处,求此时乙船与C码头之间的距离.(结果保留根号)5.(2022·浙江·一模)小明在A点测得C点在A点的北偏西75°方向,并由A点向南偏西45°方向行走到达B点测得C点在B点的北偏西45°方向,继续向正西方向行走2km后到达D 点,测得C点在D点的北偏东22.5°方向,求A,C两点之间的距离.(结果保留0.1km.参数数据√3≈1.732)6.(2022·浙江金华·一模)某海域有A,B两个岛屿,B岛在A岛北偏西30°方向上,距A岛120海里.有一艘船从A岛出发,沿东北方向行驶一段距离后,到达位于B岛南偏东75°方向的C处.(1)求∠BCA的度数.(2)求BC的长.7.(2022·浙江宁波·九年级期末)如图,某渔船向正东方向以14海里/时的速度航行,在A处测得小岛C在北偏东70∘方向,2小时后渔船到达B处,测得小岛C在北偏东45∘方向,已知该岛周围20海里范围内有暗礁.(参考数据:sin70∘≈0.94,cos70∘≈0.34,tan70∘≈2.75,√2≈1.41)(1)求B处距离小岛C的距离(精确到0.1海里);(2)为安全起见,渔船在B处向东偏南转了25∘继续航行,通过计算说明船是否安全?8.(2021·浙江·杭州外国语学校九年级阶段练习)阅读下列材料,并解决问题.如图(1),在锐角△ABC中,∠A,∠B,∠C的对边分别是a,b,c,过点A作AD∠BC于点D,则sinB=ADc ,sinC=ADb,即AD=c sin B,AD=b sin C.于是c sin B=b sin C,即bsinB=csinC.同理有:csinC =asinA,asinA=bsinB,所以asinA=bsinB=csinC.即在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论就可以求出其余三个未知元素.(1)如图(2),一货轮在B处测得灯塔A在货轮的北偏东15°的方向上,随后货轮以80海里/时的速度向正东方向航行,半小时后到达C处,此时又测得灯塔A在货轮的北偏西30°的方向上,求此时货船距灯塔A的距离AC.(2)在(1)的条件下,试求75°的正弦值.(结果保留根号)9.(2020·浙江衢州·九年级期末)某社会实践活动小组实地测量河两岸互相平行的一段河的宽度,在河的南岸边点A处,测得河的北岸边点B在其北偏东45°方向,然后向西走50m 到达C点,测得点B在点C的北偏东60°方向,如图.(1)求∠CBA的度数;(2)求这段河的宽度.(结果精确到1m)10.(2022·重庆·四川外国语大学附属外国语学校九年级期中)期中测试临近学生都在紧张的复习中,小甘和小西相约周末去图书馆复习,如图,小甘从家A地沿着正东方向走900m 到小西家B地,经测量图书馆C地在B地的北偏东15°,C地在A地的东北方向.(1)求AC的距离:(2)两人准备从B地出发,实然接到疾控中心通知,一名确诊的新冠阳性患者昨天经过了C 地,并沿着C地南偏东22°走了1800m到达D地,根据相关要求,凡是确诊者途径之处800m 区域以内都会划为管控区,问:小西家会被划为管控区吗?请说明理由(参考数据:√3≈1.73,√2≈1.41,√6≈2.45,sin37°≈0.6,cos37°≈0.8,tan37°≈0.75).11.(2021·河南·辉县市太行中学九年级期中)如图,一位自行车爱好者沿宿鸭湖湖边正东方向笔直的公路BC骑行,在B地测得湖中小岛上某建筑物A在北偏东45°方向,行驶12min 后到达C地,测得建筑物A在北偏西60°方向,如果此自行车爱好者的速度为60km/h,求建筑物A到公路BC的距离.(结果保留根号)【分母有理化:√3+1=√3−1(√3+1))(√3-−1)=√3−12】12.(2022·上海市民办新复兴初级中学九年级期中)如图,一艘海岸巡逻快艇在基地A的正东方向,且距A地13海里的B处巡逻.突然接到基地A命令,要该快艇前往C岛,接送一名病人到基地A的医院救治.已知C岛在基地A的南偏东α的方向,且在B处南偏东β的方向,巡逻快艇从B处出发,平均每小时行驶30海里,需要多少时间才能把病人送到基地A的医院?(参考数据:tanα=158,sinβ=45)13.(2022·山东青岛·九年级期中)九年级二班学生到某劳动教育实践基地开展实践活动,当天,他们先从基地门口A处向正北方向走了220米,到达菜园B处锄草,再从B处沿正西方向走了200米,到达果园C处采摘水果,再向南偏东37°方向走了200米,到达手工坊D处进行手工制作,最后从D处回到门口A处.(1)求从手工坊D处回到门口A处的距离.(2)求从手工坊D处回到门口A处的方位角.[参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75]14.(2022·重庆一中九年级阶段练习)公园大门A的正东方向原本有一条通往湖心小岛B的景观步道AB,但为了让市民朋友多角度欣赏公园景色,市政府决定新修一条景观步道通往湖心小岛B,新步道从A出发通向C地,C位于A的北偏西45°方向,AC=800米,再从C 地到达湖心小岛B,其中C位于B的北偏西60°方向,甲工程队以每天60米的速度进行单独施工,2天后,为了加快工程进度,乙工程队以每天90米的速度加入项目建设,直到两队起完成景观步道的修建.(参考数据:√2≈1.4)(1)求A、B两地的距离(结果保留根号);(2)新的景观步道能否在15天内完成?请说明理由.15.(2022·山东·济南市大学城实验学校九年级阶段练习)如图,三角形花园ABC紧邻湖泊,四边形ABDE是沿湖泊修建的人行步道.经测量,点C在点A的正东方向,AC=200米.点E在点A的正北方向.点B,D在点C的正北方向,BD=100米.点B在点A的北偏东30°,点D在点E的北偏东45°.(1)求步道DE的长度(精确到个位);(2)点D处有直饮水,小红从A出发沿人行步道去取水,可以经过点B到达点D,也可以经过点E到达点D.请计算说明他走哪一条路较近?(参考数据:√2≈1.4,√3≈1.7)16.(2022·上海·九年级专题练习)如图,在东西方向的海岸线l上有长为300米的码头AB,在码头的最西端A处测得轮船M在它的北偏东45°方向上;同一时刻,在A点正东方向距离100米的C处测得轮船M在北偏东22°方向上.(参考数据:sin22°≈0.375,cos22°≈0.927,tan22°≈0.404,√3≈1.732.)(1)求轮船M到海岸线l的距离;(结果精确到0.01米)(2)如果轮船M沿着南偏东30°的方向航行,那么该轮船能否行至码头AB靠岸?请说明理由.17.(2022·上海·九年级专题练习)如图,在航线l的两侧分别有两个灯塔A和B,灯塔A到航线l的距离为AC=3千米,灯塔B到航线l的距离为BD=4千米,灯塔B位于灯塔A南偏东60°方向.现有一艘轮船从位于灯塔B北偏西53°方向的N(在航线l上)处,正沿该航线自东向西航行,10分钟后该轮船行至灯塔A正南方向的点C(在航线l上)处.(参考数据:√3≈1.73,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)(1)求两个灯塔A和B之间的距离;(2)求该轮船航行的速度(结果精确到0.1千米/小时).18.(2022·重庆八中九年级阶段练习)如图,在竖直的海岸线上有长为68米的码头AB,现有一艘货船在点P处,从码头A处测得货船在A的东南方向,若沿海岸线向南走30米后到达点C,在C处测得货船在C的南偏东75°方向.(参考数据:√2≈1.41,√3≈1.73,√6≈2.45)(1)求货船到A的距离(结果精确到1米);(2)若货船从点P出发,沿着南偏西60°的方向行驶,请问该货船能否行驶到码头所在的线段AB上?请说明理由.19.(2022·四川·仁寿县黑龙滩镇光相九年制学校九年级期末)小明周未与父母一起到眉山湿地公园进行数学实践活动,在A处看到B,C处各有一棵被湖水隔开的银杏树.他在A处测得B在西北方向,C在北偏东30°方向.他从A处走了20米到达B处,又在B处测得C在北偏东60°方向.(1)求∠C的度数;(2)求两棵银杏树B,C之间的距离.(结果保留根号)20.(2022·广东·广州市越秀区育才实验学校二模)如图,我国一艘海监执法船在南海海域进行常态化巡航,在A处测得北偏东30°方向距离为40海里的B处有一艘可疑船只正在向正东方向航行,我海监执法船便迅速沿北偏东75°方向前往监视巡查,经过一段时间在C处成功拦截可疑船只.求我海监执法船前往监视巡查的过程中行驶的路程(即AC长)?(结果精确到0.1海里,√3≈1.732,√2≈1.414,√6≈2.449)21.(2021·山东·泰安市泰山区大津口中学九年级阶段练习)如图,在一笔直的海岸线l上有AB两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号)22.(2022·湖南湘潭·八年级期末)如图,一艘渔船以30海里/h的速度由西向东追赶鱼群,在A处测得小岛C在船的北偏东60°方向;40min后,渔船行至B处,此时测得小岛C在船的北偏东30°方向.已知以小岛C为中心,周围10海里以内有暗礁,问这艘渔船继续向东追赶鱼群是否有触礁的危险?23.(2022·黑龙江·哈尔滨市风华中学校九年级阶段练习)如图,海中有一个小岛A,它周围8n mile 内有暗礁. 渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60∘方向上,航行12n mile 到达D点,这时测得小岛A在北偏东30∘方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?24.(2022·黑龙江·大庆市祥阁学校九年级期中)为了维护我国海域安全,某巡逻艇从码头A 出发向东航行40海里后到达B处,再从B处沿北偏东30°方向行驶40海里到达C处,然后沿北偏西60°方向航行到D处,发现码头A在正南方向.求此时巡逻艇与码头A的距离.(结果保留根号)25.(2022·四川资阳·中考真题)小明学了《解直角三角形》内容后,对一条东西走向的隧道AB进行实地测量.如图所示,他在地面上点C处测得隧道一端点A在他的北偏东15°方向上,他沿西北方向前进100√3米后到达点D,此时测得点A在他的东北方向上,端点B在他的北偏西60°方向上,(点A、B、C、D在同一平面内)(1)求点D与点A的距离;(2)求隧道AB的长度.(结果保留根号)26.(2022·重庆市江津中学校八年级阶段练习)某海域有一小岛P,在以P为圆心,半径r 为10(3+√3)海里的圆形海域内有暗礁.一海监船自西向东航行,它在A处测得小岛P位于北偏东60°的方向上,当海监船行驶20√5海里后到达B处,此时观测小岛P位于B处北偏东45°方向上.(1)求A、P之间的距离AP;(2)若海监船由B处继续向东航行是否有触礁危险?请说明理由.27.(2022·重庆市第三十七中学校九年级阶段练习)海洋安全预警系统为海洋安全管理起到了巨大作用,某天海洋监控中心收到信息,在A的北偏西60°方向的120海里的C处,疑似有海盗船在沿CB方向行驶,C在B的北偏西30°方向上,监控中心向A正西方向的B处海警船发出指令,海警船立即从B出发沿BC方向行驶,在距离A为60√2海里的D处拦截到该可疑船只.(1)求点A到直线CB的距离;(2)若海警船的速度是30海里/小时,那么海警船能否在1小时内拦截到可疑船只?请说明理由.(结果保留一位小数,参考数据:√3≈1.73)28.(2021·河南·油田十中九年级阶段练习)如图,是学生小金家附近的一块三角形绿化区的示意图;为增强体质,他每天早晨都沿着绿化区周边小路AB,BC,CA跑步(小路的宽度不计),观测得点B在点A的南偏东30°方向上,点C在点A的南偏东60°的方向上,点B 在点C的北偏西75°方向上,AC间距离为400米.小金沿三角形绿化区的周边小路跑一圈共跑了多少米?(结果精确到1米,参考数据:√2≈1.4,√3≈1.7)29.(2022·贵州安顺·中考真题)随着我国科学技术的不断发展,5G移动通信技术日趋完善.某市政府为了实现5G网络全覆盖,2021~2025年拟建设5G基站3000个,如图,在斜坡CB上有一建成的5G 基站塔AB ,小明在坡脚C 处测得塔顶A 的仰角为45°,然后他沿坡面CB 行走了50米到达D 处,D 处离地平面的距离为30米且在D 处测得塔顶A 的仰角53°.(点A 、B 、C 、D 、E 均在同一平面内,CE 为地平线)(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)(1)求坡面CB 的坡度;(2)求基站塔AB 的高.30.(2022·辽宁丹东·中考真题)如图,我国某海域有A ,B ,C 三个港口,B 港口在C 港口正西方向33.2nmile (nmile 是单位“海里”的符号)处,A 港口在B 港口北偏西50°方向且距离B 港口40nmile 处,在A 港口北偏东53°方向且位于C 港口正北方向的点D 处有一艘货船,求货船与A 港口之间的距离.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33.)。

已知俩坐标求方位角

已知两个坐标求方位角引言在地理和导航领域,方位角是指一个点相对于另一个点的角度或方向的表示。

在二维直角坐标系中,我们可以根据两个已知坐标的信息来计算它们之间的方位角。

本文将介绍一个简单的方法来计算已知两个坐标之间的方位角。

方法为了计算已知坐标之间的方位角,我们可以使用三角函数来解决问题。

具体来说,我们可以使用正切函数来求出方位角。

1.找到两个已知坐标的差值。

设两个坐标分别为坐标A(x1, y1)和坐标B(x2, y2),则坐标之差为Δx = x2 - x1 和Δy = y2 - y1。

2.计算方位角。

使用arctan函数(反正切函数)来计算方位角,其定义为tan(angle) = Δy / Δx。

解这个方程可以得到方位角angle。

示例假设我们有以下两个坐标:坐标A: (1, 2) 坐标B: (4, 6)我们可以按照以下步骤来计算方位角:1.计算Δx和Δy:Δx = 4 - 1 = 3 Δy = 6 - 2 = 42.使用arctan函数来计算方位角:angle = arctan(Δy / Δx) angle =arctan(4 / 3)3.计算arctan结果的弧度: angle ≈ 53.13°所以,坐标A相对于坐标B的方位角约为53.13°。

总结通过使用三角函数的反正切函数(arctan),我们可以计算已知的两个坐标之间的方位角。

这个简单的方法可以用于导航系统、地理学和其他需要确定方向的领域。

希望本文提供的方法能够帮助你解决方位角的计算问题。

注意:本文中的方位角计算是基于二维直角坐标系的情况。

在其他坐标系下的方位角计算可能会有所不同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档