柱体锥体台体的表面积和体积
柱、锥、台表面积体积公式

乌海市滨河中学 贾宽
学习目标: 1.知道棱柱、棱锥及棱台的表面积的求法。 2.了解圆柱、圆锥及圆台的表面积公式, 了解柱体、锥体及台体的体积公式。 3.能够利用上述几何体的表面积与体积公 式解决问题。
圆柱的表面积
r O
l
O
2r
圆柱的侧面展开图是矩形
圆柱、圆锥、圆台三者的表面积公式之间有什么关 系?
r O
r 'O’
l
O
l
l
r
O
r
O
S柱 2r (r l )
S台 (r2 r 2 rl rl ) S锥 r (r l )
柱体体积
一般柱体的体积是:
V Sh
其中S是什么?h是什么?
锥体体积
1 V Sh(其中S是什么?h是什么?) 3
台体体积
棱台(圆台)的体积公式
1 V ( S S S S )h 3 其中 S , S 分别是什么? h是什么?
台体体积
柱体、锥体、台体的体积公式之间有什么关系?
1 V ( S S S S )h V Sh 3 S为底面面积,S分别为上、下底面 h为锥体高 面积,h 为台体高
S圆柱表面积 2r 2rl 2r (r l )
2
圆锥的表面积
2r
l
r
O
2
圆锥的侧面展开图是扇形
S圆锥表面积 r rl r(r l )
圆台的表面积
2r '
r 'O’
2
圆台的侧面展开图是扇环
S圆台表面积 (r r rl rl )
1 V Sh 3 S为底面面积, h为柱体高
柱体、锥体、台体的表面积与体积 课件

故B1F= 82-22=2 15, 所以S梯形BB1C1C=12×(8+4)×2 15=12 15, 故四棱台的侧面积S侧=4×12 15=48 15, 所以S表=48 15+4×4+8×8=80+48 15.]
[规律方法] 空间几何体表面积的求法技巧 (1)多面体的表面积是各个面的面积之和. (2)组合体的表面积应注意重合部分的处理. (3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展 开为平面图形计算,而表面积是侧面积与底面圆的面积之和.
柱体、棱体、台体的表面积与侧面积
(1)已知圆柱的上、下底面的中心分别为 O1,O2,过直线 O1O2 的
平面截该圆柱所得的截面是面积为 8 的正方形,则该圆柱的表面积为( )
A.12 2π
B.12π
C.8 2π
D.10π
(2)已知某圆锥的底面半径为 8,高为 6,则该圆锥的表面积为________.
S 圆柱侧=2πrl
r′=r ←――――
S
圆台侧=π(r′+r)l
r′=0 ――――→
S 圆锥侧=πrl.
(2)柱体、锥体、台体的体积公式之间有什么关系? [提示] 柱体、锥体、台体的体积公式之间的关系: V=Sh←S′――=――S V=13(S′+ S′S+S)h―S′――=―→0 V=13Sh.
(3)已知四棱台的上、下底面分别是边长为4和8的正方形,侧面是腰长为8 的等腰梯形,则该四棱台的表面积为________cm2.
(1)B (2)144π (3)80+48 15 [(1)因为过直线O1O2的平面截该圆柱所得 的截面是面积为8的正方形,所以圆柱的高为2 2 ,底面圆的直径为2 2 ,所 以该圆柱的表面积为2×π×( 2)2+2π× 2×2 2=12π.
柱体、椎体、台体、球体的体积和球的表面积

二、球体的体积和表面积
探 究
一个充满空气的足球和一个充满空气的篮球, 球内的气压相同,若忽略球内部材料的厚度,则哪一 个球充入的气体较多?为什么?
如果用油漆去涂一个足球和一个篮球,且涂的油漆 厚度相同,问哪一个球所用的油漆多?为什么?
球的概念
球的截面 的形状
圆面
球面被经过球心的平面截得的圆叫做大圆
分析:正方体内接于球,则由球和正方 体都是中心对称图形可知,它们中心重 合,则正方体对角线与球的直径相等。
略 解 :RtB1 D1 D中 : ( 2 R ) a ( 2a ) , 得
2 2 2
D A D1 A1 B
C
O
C1 B1
3 R a 2 S 4R 2 3a 2
D
A D1 A1 B1 O B
R
O
第i层“小圆片”下底面的 半径:
ri R R [ ( i 1)]2 , i 1,2 , n. n
2
R ri R [ ( i 1)]2 , i 1,2, , n n 3 R R i 1 2 2 Vi ri [1 ( ) ], i 1,2 , n n n n
C
C1
例7、已知过球面上三点A、B、C的截面到球 心O的距离等于球半径的一半,且 AB=BC=CA=2cm,求球的体积,表面积.
解:如图,设球O半径为R,截面⊙O′的半径为r,
R O O , ABC是正三角形, 2
O A 2 3 2 3 AB r 3 2 3
解:在RtOO A中, OA 2 O O 2 O A 2 ,
柱体、锥体、台体、球体 的体积和球体的表面积
一、柱体、锥体、台体的体积
柱体 锥体 台体的表面积与体积第一课时

例1 已知棱长为a,各面均为等边三角形
的四面体S-ABC,求它的表面积.
S a A B D C
练习 1.粉碎机的上料斗是正四棱台形(上、下 底面是正方形,侧面为全等的等腰梯形), 它的上、下底面边长分别为 80mm、440mm,高是200mm, 计算制造这样一个下料斗所需铁板的面积.
圆柱的表面积
练习 2. 一个圆台,上、下底面半径分别为 10、20,母线与底面的夹角为60°, 求圆台的表面积.
练习 2. 一个圆台,上、下底面半径分别为 10、20,母线与底面的夹角为60°, 求圆台的表面积. 变式 求切割之前的圆锥的表面积.
练习 3. 已知底面为正方形,侧棱长均是边长 为5的正三角形的四棱锥S-ABCD,求 其表面积. 4. 若一个圆锥的轴截面是等边三角形, 其面积为 3 ,求这个圆锥的表面积. 5. 面积为2的菱形,绕其一边旋转一周 所得几何体的表面积是多少?
r O
O
2r
圆柱的侧面展开图是矩形
S圆柱表面积 2r 2rl 2r (r l )
2
圆锥的表面积
2r
l
r O
圆锥的侧面展开图是扇形
S圆锥表面积 r rl r (r l )
2
圆台的表面积
参照圆柱和圆锥的侧面展开图,试想 象圆台的侧面展开图是什么?
2r '
r ' O'
2r
l
r O
圆台的侧面展开图是扇环
圆台的表面积
参照圆柱和圆锥的侧面展开图,试想 象圆台的侧面展开图是什么?
2r '
r ' O'
2r
l
r O
圆台的侧面展开图是扇环
2 2 S圆台表面积 (r r r l rl )
131柱体、锥体、台体的表面积与体积(二)

A.2倍
B.4倍
2
练习
3.若正方体的全面积增为原来的2倍, 那么它的体积增为原来的 ( D )
A.2倍
B.4倍
D. 2 2倍
练习
4.圆柱的侧面展开图是边长为
6和4的矩形,则其圆柱的
体积为
.
练习
4.圆柱的侧面展开图是边长为 6和4的矩形,则其圆柱的 体积为 362或242 .
课堂小结
1 3
(S
'
S'S S)h
(S, S'分别上S、' 下底面积,h为高)
⑤讨论:台体的上底面积S',下底面积S,
高h,由此如何计算切割前的锥体的高?
→ 如何计算台体的体积?
V 13 (S SS S)h 台
V台
1 3
(S
'
S'S S)h
(S, S'分别上S、' 下底面积,h为高)
1.3.1 柱体、锥体、台体 的表面积与体积
复习引入
1. 提问:圆柱、圆锥、圆台的表面积 计算公式?
复习引入
1. 提问:圆柱、圆锥、圆台的表面积 计算公式?
r O'
l O
r' O' l
rO
l rO
r'=r r'=0
柱体、锥体、台体 的表面积
展开图
圆 柱
r=r'
圆 台 r'=0
圆 锥
各面面积之和
练习
1. 将若干毫升水倒入底面半径为2cm的 圆柱形容器中,量得水面高度为6cm; 若将这些水倒入轴截面是正三角形的 倒圆锥形容器中,求水面的高度.
二轮复习 柱体、锥体、台体的表面积与体积 教案(全国通用)

二轮复习柱体、锥体、台体的表面积与体积教案(全国通用)重点难点教学重点:了解柱体、锥体、台体的表面积和体积计算公式及其应用.教学难点:表面积和体积计算公式的应用.课时安排1课时教学过程导入新课思路1.在过去的学习中,我们已经接触过一些几何体的面积和体积的求法及公式,哪些几何体可以求出表面积和体积?(引导学生回忆,互相交流,教师归类)几何体的表面积等于它的展开图的面积,那么,柱体、锥体、台体的侧面展开图是怎样的?你能否计算?思路2.被誉为世界七大奇迹之首的胡夫大金字塔,在1889年巴黎埃菲尔铁塔落成前的四千多年的漫长岁月中,胡夫大金字塔一直是世界上最高的建筑物.在四千多年前生产工具很落后的中古时代,埃及人是怎样采集、搬运数量如此之多,每块又如此之重的巨石垒成如此宏伟的大金字塔,真是一个十分难解的谜.胡夫大金字塔是一个正四棱锥外形的建筑,塔底边长230米,塔高146.5米,你能计算建此金字塔用了多少石块吗?推进新课新知探究提出问题①在初中,我们已经学习了正方体和长方体的表面积,以及它们的展开图(图1),你知道上述几何体的展开图与其表面积的关系吗?正方体及其展开图(1) 长方体及其展开图(2)图1②棱柱、棱锥、棱台也是由多个平面图形围成的几何体,它们的展开图是什么?如何计算它们的表面积?③如何根据圆柱、圆锥的几何结构特征,求它们的表面积?④联系圆柱、圆锥的侧面展开图,你能想象圆台侧面展开图的形状,并且画出它吗?如果圆台的上、下底面半径分别是r′,r,母线长为l,你能计算出它的表面积吗?⑤圆柱、圆锥和圆台的表面积之间有什么关系?活动:①学生讨论和回顾长方体和正方体的表面积公式.②学生思考几何体的表面积的含义,教师提示就是求各个面的面积的和.③让学生思考圆柱和圆锥的侧面展开图的形状.④学生思考圆台的侧面展开图的形状.⑤提示学生用动态的观点看待这个问题.讨论结果:①正方体、长方体是由多个平面图形围成的几何体,它们的表面积就是各个面的面积的和.因此,我们可以把它们展成平面图形,利用平面图形求面积的方法,求立体图形的表面积.②棱柱的侧面展开图是平行四边形,其表面积等于围成棱柱的各个面的面积的和;棱锥的侧面展开图是由多个三角形拼接成的,其表面积等于围成棱锥的各个面的面积的和;棱台的侧面展开图是由多个梯形拼接成的,其表面积等于围成棱台的各个面的面积的和.③它们的表面积等于侧面积与底面积的和,利用它们的侧面展开图来求得它们的侧面积,由于底面是圆面,其底面积直接应用圆的面积公式即得.其中,圆柱的侧面展开图是矩形,圆锥的侧面展开图是扇形.我们知道,圆柱的侧面展开图是一个矩形(图2).如果圆柱的底面半径为r,母线长为l ,那么圆柱的底面面积为πr 2,侧面面积为2πrl.因此,圆柱的表面积S=2πr 2+2πrl=2πr(r+l).图2 图3圆锥的侧面展开图是一个扇形(图3).如果圆锥的底面半径为r,母线长为l ,那么它的表面积S=πr 2+πrl=πr(r+l).点评:将空间图形问题转化为平面图形问题,是解决立体几何问题基本的、常用的方法. ④圆台的侧面展开图是一个扇环(图4),它的表面积等于上、下两个底面的面积和加上侧面的面积,即S=π(r 2+r′2+rl+r′l).图4⑤圆柱、圆锥、圆台侧面积的关系:圆柱和圆锥都可以看作是圆台退化而成的几何体.圆柱可以看作是上下底面全等的圆台,圆锥可看作是上底面退化成一点的圆台,观察它们的侧面积,不难发现:S 圆柱表=2πr(r+l)−−−←==r r r 21S 圆台表=π(r 1l+r 2l+r 12+r 22)−−−→−==rr r 21,0S 圆锥表=πr(r+l). 从上面可以很清楚地看出圆柱和圆锥的侧面积公式都可以看作由圆台侧面积公式演变而来. 提出问题①回顾长方体、正方体和圆柱的体积公式,你能将它们统一成一种形式吗?并依次类比出柱体的体积公式?②比较柱体、锥体、台体的体积公式:V 柱体=Sh(S 为底面积,h 为柱体的高);V 锥体=Sh 31(S 为底面积,h 为锥体的高); V 台体=)''(31S SS S ++h(S′,S 分别为上、下底面积,h 为台体的高). 你能发现三者之间的关系吗?柱体、锥体是否可以看作“特殊”的台体?其体积公式是否可以看作台体体积公式的“特殊”形式?活动:①让学生思考和讨论交流长方体、正方体和圆柱的体积公式.②让学生类比圆柱、圆锥和圆台的表面积的关系?讨论结果:①棱长为a 的正方体的体积V=a 3=a 2a=Sh ;长方体的长、宽和高分别为a,b,c ,其体积为V=abc=(ab)c=Sh ;底面半径为r 高为h 的圆柱的体积是V=πr 2h=Sh ,可以类比,一般的柱体的体积也是V=Sh ,其中S 是底面面积,h 为柱体的高. 圆锥的体积公式是V=Sh 31(S 为底面面积,h 为高),它是同底等高的圆柱的体积的31. 棱锥的体积也是同底等高的棱柱体积的31,即棱锥的体积V=Sh 31 (S 为底面面积,h 为高). 由此可见,棱柱与圆柱的体积公式类似,都是底面面积乘高;棱锥与圆锥的体积公式类似,都是底面面积乘高的31. 由于圆台(棱台)是由圆锥(棱锥)截成的,因此可以利用两个锥体的体积差,得到圆台(棱台)的体积公式V=31(S′+S S '+S)h, 其中S′,S 分别为上、下底面面积,h 为圆台(棱台)高.注意:不要求推导公式,也不要求记忆.②柱体可以看作是上、下底面相同的台体,锥体可以看作是有一个底面是一个点的台体.因此柱体、锥体可以看作“特殊”的台体.当S′=0时,台体的体积公式变为锥体的体积公式;当S′=S 时,台体的体积公式变为柱体的体积公式,因此,柱体、锥体的体积公式可以看作台体体积公式的“特殊”形式.柱体和锥体可以看作由台体变化得到,柱体可以看作是上、下底面相同的台体,锥体可以看作是有一个底面是一个点的台体,因此很容易得出它们之间的体积关系,如图5:图5应用示例思路1例1 已知棱长为a ,各面均为等边三角形的四面体S —ABC (图6),求它的表面积.图6活动:回顾几何体的表面积含义和求法.分析:由于四面体S —ABC 的四个面是全等的等边三角形,所以四面体的表面积等于其中任何一个面面积的4倍.解:先求△SBC 的面积,过点S 作SD⊥BC,交BC 于点D.因为BC=a,SD=a a a BD SB 23)2(2222=-=-,所以S △SBC =21BC·SD=2432321a a a =⨯. 因此,四面体S —ABC 的表面积S=4×22343a a =. 点评:本题主要考查多面体的表面积的求法.变式训练1.已知圆柱和圆锥的高、底面半径均分别相等.若圆柱的底面半径为r ,圆柱侧面积为S ,求圆锥的侧面积.解:设圆锥的母线长为l ,因为圆柱的侧面积为S ,圆柱的底面半径为r ,即S 圆柱侧=S ,根据圆柱的侧面积公式可得:圆柱的母线(高)长为r S π2,由题意得圆锥的高为rS π2,又圆锥的底面半径为r ,根据勾股定理,圆锥的母线长l=22)2(rS r π+,根据圆锥的侧面积公式得 S 圆锥侧=πrl=π·r·24)2(24222S r r S r +=+ππ. 2.两个平行于圆锥底面的平面将圆锥的高分成相等的三段,那么圆锥被分成的三部分的体积的比是( )A.1∶2∶3B.1∶7∶19C.3∶4∶5D.1∶9∶27 分析:因为圆锥的高被分成的三部分相等,所以两个截面的半径与原圆锥底面半径之比为1∶2∶3,于是自上而下三个圆锥的体积之比为(h r 23π)∶[2)2(3r π·2h]∶[2)3(3r π·3h]=1∶8∶27,所以圆锥被分成的三部分的体积之比为1∶(8-1)∶(27-8)=1∶7∶19. 答案:B3.三棱锥V —ABC 的中截面是△A 1B 1C 1,则三棱锥V —A 1B 1C 1与三棱锥A —A 1BC 的体积之比是( )A.1∶2B.1∶4C.1∶6D.1∶8分析:中截面将三棱锥的高分成相等的两部分,所以截面与原底面的面积之比为1∶4,将三棱锥A —A 1BC 转化为三棱锥A 1—ABC ,这样三棱锥V —A 1B 1C 1与三棱锥A 1—ABC 的高相等,底面积之比为1∶4,于是其体积之比为1∶4.答案:B例2 如图7,一个圆台形花盆盆口直径为20 cm ,盆底直径为15 cm ,底部渗水圆孔直径为1.5 cm ,盆壁长为15 cm.为了美化花盆的外观,需要涂油漆.已知每平方米用100毫升油漆,涂100个这样的花盆需要多少毫升油漆?(π取3.14,结果精确到1毫升,可用计算器)图7活动:学生思考和讨论如何转化为数学问题.只要求出每个花盆外壁的表面积,就可以求出油漆的用量.而花盆外壁的表面积等于花盆的侧面积加上底面积,再减去底面圆孔的面积. 解:如图7,由圆台的表面积公式得一个花盆外壁的表面积S=π[1522015215)215(2⨯+⨯+]-π(25.1)2≈1 000(cm 2)=0.1(m 2). 涂100个这样的花盆需油漆:0.1×100×100=1 000(毫升).答:涂100个这样的花盆需要1 000毫升油漆.点评:本题主要考查几何体的表面积公式及其应用.变式训练1.有位油漆工用一把长度为50 cm ,横截面半径为10 cm 的圆柱形刷子给一块面积为10 m2的木板涂油漆,且圆柱形刷子以每秒5周的速度在木板上匀速滚动前进,则油漆工完成任务所需的时间是多少?(精确到0.01秒)解:圆柱形刷子滚动一周涂过的面积就等于圆柱的侧面积,∵圆柱的侧面积为S 侧=2πrl=2π·0.1·0.5=0.1π m 2,又∵圆柱形刷子以每秒5周匀速滚动,∴圆柱形刷子每秒滚过的面积为0.5π m 2,因此油漆工完成任务所需的时间t=ππ205.01022=mm ≈6.37秒. 点评:本题虽然是实际问题,但是通过仔细分析后,还是归为圆柱的侧面积问题.解决此题的关键是注意到圆柱形刷子滚动一周所经过的面积就相当于把圆柱的侧面展开的面积,即滚动一周所经过的面积等于圆柱的侧面积.从而使问题迎刃而解.2.(2007山东滨州一模,文14)已知三棱锥O —ABC 中,OA 、OB 、OC 两两垂直,OC=1,OA=x ,OB=y ,且x+y=4,则三棱锥体积的最大值是___________.分析:由题意得三棱锥的体积是61)4(612131-=-=⨯x x xy (x-2)2+32,由于x >0,则当x=2时,三棱锥的体积取最大值32. 答案:32 例3 有一堆规格相同的铁制(铁的密度是7.8 g/cm 3)六角螺帽(图8)共重5.8 kg,已知底面是正六边形,边长为12 mm,内孔直径为10 mm,高为10 mm ,问这堆螺帽大约有多少个?(π取3.14)图8活动:让学生讨论和交流如何转化为数学问题.六角帽表示的几何体是一个组合体,在一个六棱柱中间挖去一个圆柱,因此它的体积等于六棱柱的体积减去圆柱的体积.解:六角螺帽的体积是六棱柱体积与圆柱体积的差,即V=43×122×6×10-3.14×(210)2×10≈2 956(mm 3)=2.956(cm 3). 所以螺帽的个数为5.8×1 000÷(7.8×2.956)≈252(个).答:这堆螺帽大约有252个.点评:本题主要考查几何体的体积公式及其应用.变式训练如图9,有个水平放置圆台形容器,上、下底面半径分别为2分米,4分米,高为5分米,现以每秒3立方分米的速度往容器里面注水,当水面的高度为3分米时,求所用的时间.(精确到0.01秒)图9解:如图10,设水面的半径为r ,则EH=r-2分米,BG=2分米,图10在△ABG 中,∵EH∥BG,∴BGEH AG AH =.∵AH=2分米, ∴2252-=r .∴r=514分米. ∴当水面的高度为3分米时,容器中水的体积为V 水=π31·3[(514)2+514×4+42]=25876π立方分米, ∴所用的时间为25292325876ππ=≈36.69秒. 答:所用的时间为36.69秒.思路2例1 (2007山东烟台高三期末统考,理8)如图11所示,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为( )图11 A.1 B.21 C.31 D.61 活动:让学生将三视图还原为实物图,讨论和交流该几何体的结构特征.分析:根据三视图,可知该几何体是三棱锥,图12所示为该三棱锥的直观图,并且侧棱PA⊥AB,PA⊥AC,AB⊥AC.则该三棱锥的高是PA ,底面三角形是直角三角形,所以这个几何体的体积为V=611213131=⨯⨯=∆PA S ABC .图12答案:D点评:本题主要考查几何体的三视图和体积.给出几何体的三视图,求该几何体的体积或面积时,首先根据三视图确定该几何体的结构特征,再利用公式求得.此类题目成为新课标高考的热点,应引起重视.变式训练1.(2007山东泰安高三期末统考,理8)若一个正三棱柱的三视图如图13所示,则这个正三棱柱的表面积为( )图13A.318B.315C.3824+D.31624+ 分析:该正三棱柱的直观图如图14所示,且底面等边三角形的高为32,正三棱柱的高为2,则底面等边三角形的边长为4,所以该正三棱柱的表面积为 3×4×2+2×21×4×32=24+38.图14答案:C2.(2007山东潍坊高三期末统考,文3)如果一个空间几何体的正视图与侧视图均为全等的等边三角形,俯视图为一个半径为1的圆及其圆心,那么这个几何体的体积为( )A.33πB.332πC.π3D.3π 分析:由三视图知该几何体是圆锥,且轴截面是等边三角形,其边长等于底面直径2,则圆锥的高是轴截面等边三角形的高为3,所以这个几何体的体积为V=3331312ππ=⨯⨯⨯. 答案:A3.(2007广东高考,文17)已知某几何体的俯视图是如图15所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.图15(1)求该几何体的体积V ;(2)求该几何体的侧面积S.解:由三视图可知该几何体是一个底面边长分别为6、8的矩形,高为4的四棱锥.设底面矩形为ABCD.如图16所示,AB=8,BC=6,高VO=4.图16(1)V=31×(8×6)×4=64. (2)设四棱锥侧面VAD 、VBC 是全等的等腰三角形,侧面VAB 、VCD 也是全等的等腰三角形, 在△VBC 中,BC 边上的高为h 1=24)28(4)2(2222=+=+AB VO ,在△VAB 中,AB 边上的高为h 2=2222)26(4)2(+=+BC VO =5. 所以此几何体的侧面积S=)582124621(2⨯⨯+⨯⨯=40+224. 点评:高考试题中对面积和体积的考查有三种方式,一是给出三视图,求其面积或体积;二是与的组合体有关的面积和体积的计算;三是在解答题中,作为最后一问.例2 图17所示的几何体是一棱长为4 cm 的正方体,若在它的各个面的中心位置上,各打一个直径为2 cm 、深为1 cm 的圆柱形的孔,求打孔后几何体的表面积是多少?(π取3.14)图17活动:因为正方体的棱长为4 cm ,而孔深只有1 cm ,所以正方体没有被打透.这样一来打孔后所得几何体的表面积,等于原来正方体的表面积,再加上六个完全一样的圆柱的侧面积,这六个圆柱的高为1 cm ,底面圆的半径为1 cm.解:正方体的表面积为16×6=96(cm 2),一个圆柱的侧面积为2π×1×1=6.28(cm 2),则打孔后几何体的表面积为96+6.28×6=133.68(cm 2).答:几何体的表面积为133.68 cm 2.点评:本题主要考查正方体、圆柱的表面积.求几何体的表面积问题,通常将所给几何体分成基本的柱、锥、台,再通过这些基本柱、锥、台的表面积,进行求和或作差,从而获得几何体的表面积.本题中将几何体的表面积表达为正方体的表面积与六个圆柱侧面积的和是非常有创意的想法,如果忽略正方体没有被打透这一点,思考就会变得复杂,当然结果也会是错误的.变式训练图18所示是由18个边长为1 cm 的小正方体拼成的几何体,求此几何体的表面积.图18分析:从图18中可以看出,18个小正方体一共摆了三层,第一层2个,第二层7个,因为18-7-2=9,所以第三层摆了9个.另外,上、下两个面的表面积是相同的,同样,前、后,左、右两个面的表面积也是分别相同的.解:因为小正方体的棱长是1 cm ,所以上面的表面积为12×9=9( cm 2),前面的表面积为12×8=8( cm 2),左面的表面积为12×7=7( cm 2),则此几何体的表面积为9×2+8×2+7×2=48( cm 2).答:此几何体的表面积为48 cm 2.知能训练1.正方体的表面积是96,则正方体的体积是( )A.648B.64C.16D.96 分析:设正方体的棱长为a ,则6a 2=96,解得a=4,则正方体的体积是a 3=64. 答案:B2.(2007山东临沂高三期末统考,文2)如图19所示,圆锥的底面半径为1,高为3,则圆锥的表面积为( )A.πB.2πC.3πD.4π分析:设圆锥的母线长为l ,则l=13+=2,所以圆锥的表面积为S=π×1×(1+2)=3π. 答案:C3.正三棱锥的底面边长为3,侧棱长为32,则这个正三棱锥的体积是( )A.427B.49 C.4327 D.439 分析:可得正三棱锥的高h=22)3()32(-=3,于是V=4393343312=⨯⨯⨯. 答案:D4.若圆柱的高扩大为原来的4倍,底面半径不变,则圆柱的体积扩大为原来的_________倍;若圆柱的高不变,底面半径扩大为原来的4倍,则圆柱的体积扩大为原来的_________倍.分析:圆柱的体积公式为V 圆柱=πr 2h ,底面半径不变,高扩大为原来的4倍,其体积也变为原来的4倍;当圆柱的高不变,底面半径扩大为原来的4倍时,其体积变为原来的42=16倍.答案:4 165.图20是一个正方体,H 、G 、F 分别是棱AB 、AD 、AA 1的中点.现在沿△GFH 所在平面锯掉正方体的一个角,问锯掉部分的体积是原正方体体积的几分之几?图20分析:因为锯掉的是正方体的一个角,所以HA 与AG 、AF 都垂直,即HA 垂直于立方体的上底面,实际上锯掉的这个角,是以三角形AGF 为底面,H 为顶点的一个三棱锥.解:设正方体的棱长为a ,则正方体的体积为a 3.三棱锥的底面是Rt△AGF,即∠FAG 为90°,G 、F 又分别为AD 、AA 1的中点,所以AF=AG=a 21.所以△AGF的面积为281212121aaa=⨯⨯.又因AH是三棱锥的高,H又是AB的中点,所以AH=a21.所以锯掉的部分的体积为32481812131aaa=⨯⨯.又因48148133=÷aa,所以锯掉的那块的体积是原正方体体积的481.6.(2007山东临沂高三期末考试,理13)已知一圆锥的侧面展开图为半圆,且面积为S,则圆锥的底面面积是____________.分析:如图21,设圆锥底面半径为r,母线长为l,由题意得⎪⎩⎪⎨⎧==,2,22rlSlπππ解得r=π2S,所以圆锥的底面积为πr2=22SS=⨯ππ.图21答案:2S7.如图22,一个正三棱柱容器,底面边长为a,高为2a,内装水若干,将容器放倒,把一个侧面作为底面,如图23,这时水面恰好为中截面,则图22中容器内水面的高度是_________.图22 图23分析:图22中容器内水面的高度为h,水的体积为V,则V=S△ABC h.又图23中水组成了一个直四棱柱,其底面积为ABCS∆43,高度为2a,则V=ABCS∆43·2a,∴h=aSaSABCABC23243=•∆∆.答案:a238.圆台的两个底面半径分别为2、4,截得这个圆台的圆锥的高为6,则这个圆台的体积是_____________.分析:设这个圆台的高为h ,画出圆台的轴截面,可得6642h -=,解得h=3,所以这个圆台的体积是3π(22+2×4+42)×3=28π. 答案:28π9.已知某个几何体的三视图如图24,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( )图24A.34000 cm 3B.38000cm 3 C.2 000 cm 3 D.4 000 cm 3 分析:该几何体是四棱锥,并且长为20 cm 的一条侧棱垂直于底面,所以四棱锥的高为20 cm,底面是边长为20 cm 的正方形(如俯视图),所以底面积是20×20=400 cm 2,所以该几何体的体积是31×400×20=38000cm 3. 答案:B拓展提升问题:有两个相同的直三棱柱,高为a2,底面三角形的三边长分别为3a,4a,5a(a >0).用它们拼成一个三棱柱或四棱柱,在所有可能的情形中,表面积最小的是一个四棱柱,则a 的取值范围是___________.探究:两个相同的直三棱柱并排放拼成一个三棱柱或四棱柱,有三种情况:四棱柱有一种,就是边长为5a 的边重合在一起,表面积为24a 2+28,三棱柱有两种,边长为4a 的边重合在一起,表面积为24a 2+32,边长为3a 的边重合在一起,表面积为24a 2+36,两个相同的直三棱柱竖直放在一起,有一种情况,表面积为12a 2+48,最小的是一个四棱柱,这说明24a 2+28<12a 2+48⇒12a 2<20⇒0<a <315. 答案:0<a <315 课堂小结本节课学习了:1.柱体、锥体、台体的表面积和体积公式.2.应用体积公式解决有关问题.作业习题1.3 A组第1、2、3题.设计感想新课标对本节内容的要求是了解棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式),也就是说对体积和面积公式的推导、证明和记忆不作要求,按通常的理解是会求体积和面积,以及很简单的应用即可.因此本节教学设计中就体现了这一点,没有过多地在公式的推导上“纠缠不休”,把重点放在了对公式的简单应用上.由于本节图形较多,建议在使用时,尽量结合信息技术.。
柱体、锥体、台体的表面积与体积 精品课教案
柱体、锥体、台体的体积【教学目标】1.知识与技能(1)了解几何体体积的含义,以及柱体、锥体与台体的体积公式。
(不要求记忆公式)(2)熟悉台体与柱体和锥体之间体积的转换关系。
(3)培养学生空间想象能力和思维能力。
2.过程与方法(1)让学生通过对照比较,理顺柱体、锥体、台体之间的体积关系。
(2)通过相关几何体的联系,寻找已知条件的相互转化,解决一些特殊几何体体积的计算。
3.情感、态度与价值观通过柱体、锥体、台体体积公式之间的关系培养学生探索意识。
【教学重难点】重点:柱体、锥体、台体的体积计算。
难点:简单组合体的体积计算。
【教学方法】讲练结合教学环节教学内容师生互动设计意图新课导入1.复习柱体、锥体、台体表面积求法及相互关系。
教师设问,学生回忆师:今天我们共同学习柱体、锥体、台体的另一个重要的量:体积。
复习巩固点出主题探索新知柱体、锥体、台体的体积1.柱体、锥体、台体的体积公式:V柱体= Sh (S是底面积,h为柱体高)师:我们已经学习了正方体,长方体以及圆柱的体积公式,它们的体积公式是什么?生:V = Sh (S为底面柱体、锥体、台体的体积公式只要求了解,故其中S′、S分别为上、下底面面积,Q为台体的高(即两底面之间的距离)师:现在大家计论思考一下台体体积公式与柱体、锥体的体积公式有什么关系?生:令S′=0,得到锥体体积公式。
令S′=S,得到柱体体积公式。
培养探索意识,加深对空间几何体的了解和掌握。
典例分析例1 有一堆规格相同的铁制(铁的密度是7.8g/cm³)六角螺帽(如图)共重5.8kg,已知底面是正六边形,边长为12cm,内孔直径为10mm,高为10mm,问这堆螺帽大约有多少个(π取3.14,可用计算器)?解:六角螺帽的体积是六棱柱体积与圆柱体积的差,即2.956(cm³)所以螺帽的个数为5.8×1000÷(7.8×2.956)≈ 252(个)答:这堆螺帽大约有252个。
新人教版高中数学必修第二册 第8章 8.3 简单几何体的表面积和体积 第1课时 柱、锥、台的表面积和体积
8.3简单几何体的表面积与体积第1课时柱、锥、台的表面积和体积考点学习目标核心素养柱、锥、台的表面积了解柱体、锥体、台体的侧面展开图,掌握柱体、柱、锥、台的体积直观想象、数学运算锥体、台体的表面积的求法能利用柱体、锥体、台体的体积公式求体积,理解柱体、锥体、台体的体积之间的关系直观想象、数学运算问题导学预习教材P114-P117的内容,思考以下问题:1.棱柱、棱锥、棱台的表面积如何计算?2.圆柱、圆锥、圆台的侧面展开图分别是什么?3.圆柱、圆锥、圆台的侧面积公式是什么?4.柱体、锥体、台体的体积公式分别是什么?5.圆柱、圆锥、圆台的侧面积公式、体积公式之间分别有怎样的关系?1.棱柱、棱锥、棱台的表面积多面体的表面积就是围成多面体各个面的面积的和.棱柱、棱锥、棱台的表面积就是围成它们的各个面的面积的和.2.棱柱、棱锥、棱台的体积(1)V棱柱=Sh;(2)V棱锥=13Sh;V棱台=13h(S′+SS′+S),其中S′,S分别是棱台的上、下底面面积,h为棱台的高.3.圆柱、圆锥、圆台的表面积和体积名称图形公式圆柱底面积:S底=πr2侧面积:S侧=2πrl表面积:S=2πrl+2πr2体积:V=πr2l圆锥底面积:S 底=πr 2 侧面积:S 侧=πrl表面积:S =πrl +πr 2 体积:V =13πr 2h圆台上底面面积:S 上底=πr ′2 下底面面积:S 下底=πr 2 侧面积:S 侧=πl (r +r ′)表面积:S =π(r ′2+r 2+r ′l +rl ) 体积:V =13πh (r ′2+r ′r +r 2)1.柱体、锥体、台体的体积(1)柱体:柱体的底面面积为S ,高为h ,则V =Sh . (2)锥体:锥体的底面面积为S ,高为h ,则V =13Sh .(3)台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V =13()S ′+SS ′+S h .2.圆柱、圆锥、圆台的侧面积公式之间的关系 S 圆柱侧=2πrl ――→r ′=rS 圆台侧=π(r ′+r )l ――→r ′=0S 圆锥侧=πrl . 3.柱体、锥体、台体的体积公式之间的关系 V 柱体=Sh ――→S ′=S V 台体=13(S ′+S ′S +S )h ――→S ′=0V 锥体=13Sh .判断(正确的打“√”,错误的打“×”)(1)几何体的表面积就是其侧面面积与底面面积的和.( ) (2)几何体的侧面积是指各个侧面的面积之和.( ) (3)等底面面积且等高的两个同类几何体的体积相同.( ) (4)在三棱锥P -ABC 中,V P ABC =V A PBC =V B P AC =V C P AB .( ) 答案:(1)√ (2)√ (3)√ (4)√ 棱长都是 1 的三棱锥的表面积为( )A.3 B .23 C .33 D .43解析:选A.S表=4S正△=4×34= 3.若长方体的长、宽、高分别为3 cm,4 cm,5 cm,则长方体的体积为() A.27 cm3B.60 cm3C.64 cm3D.125 cm3解析:选B.长方体即为四棱柱,其体积为底面积×高,即为3×4×5=60(cm3).圆台的上、下底面半径分别为3 和4,母线长为6,则其表面积等于() A.72 B.42πC.67πD.72π解析:选C.S表=π(32+42+3×6+4×6)=67π.柱、锥、台的表面积(1)若圆锥的正视图是正三角形,则它的侧面积是底面积的()A.2倍B.3 倍C.2 倍D.5 倍(2)已知正方体的8 个顶点中,有4 个为侧面是等边三角形的三棱锥的顶点,则这个三棱锥与正方体的表面积之比为()A.1∶ 2 B.1∶ 3C.2∶ 2 D.3∶ 6(3)已知某圆台的一个底面周长是另一个底面周长的3 倍,母线长为3 ,圆台的侧面积为84π,则该圆台较小底面的半径为()A.7B.6C.5 D.3【解析】(1)设圆锥的底面半径为r,母线长为l,则由题意可知,l=2r,于是S侧=πr·2r=2πr2,S底=πr2,可知选C.(2)棱锥B′ACD′为适合条件的棱锥,四个面为全等的等边三角形,设正方体的棱长为1,则B′C=2,S△B′AC=32.三棱锥的表面积S锥=4×32=23,又正方体的表面积S正=6.因此S锥∶S正=23∶6=1∶ 3.(3)设圆台较小底面的半径为 r ,则另一底面的半径为 3r .由 S 侧=3π(r +3r )=84π,解得 r =7.【答案】 (1)C (2)B (3)A空间几何体表面积的求法技巧(1)多面体的表面积是各个面的面积之和. (2)组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展开为平面图形计算,而表面积是侧面积与底面圆的面积之和.已知正四棱台(正四棱锥被平行于底面的平面所截,截面与底面间的部分)上底面边长为4,侧棱和下底面边长都是8,求它的侧面面积.解:法一:设正四棱台为ABCDA 1B 1C 1D 1,如图①.设B 1F 为斜高.在Rt △B 1FB 中,BF =12×(8-4)=2,B 1B =8,所以B 1F =82-22=215,所以S 正棱台侧=4×12×(4+8)×215=4815.①法二:设正四棱台为ABCDA 1B 1C 1D 1,延长正四棱台的侧棱交于点P ,作面PBC 上的斜高PE ,交B 1C 1于E 1,如图②.设PB 1=x ,则x x +8=48,解得x =8.所以PB 1=B 1B =8, 所以E 1为PE 的中点,又PE 1=PB 21-B 1E 21=82-22=215, ②所以PE =2PE 1=415.所以S 正棱台侧=S 大正棱锥侧-S 小正棱锥侧 =4×12×8×PE -4×12×4×PE 1=4×12×8×415-4×12×4×215=4815.柱、锥、台的体积如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为a ,过顶点B ,D ,A 1截下一个三棱锥.(1)求剩余部分的体积;(2)求三棱锥A -A 1BD 的体积及高. 【解】 (1)V 三棱锥A 1ABD =13S △ABD ·A 1A=13×12·AB ·AD ·A 1A =16a 3. 故剩余部分的体积V =V 正方体-V 三棱锥A 1ABD =a 3-16a 3=56a 3.(2)V 三棱锥A -A 1BD =V 三棱锥A 1ABD =16a 3.设三棱锥A -A 1BD 的高为h , 则V 三棱锥A -A 1BD =13·S △A 1BD ·h=13×12×32(2a )2h =36a 2h , 故36a 2h =16a 3,解得h =33a .求几何体体积的常用方法(1)公式法:直接代入公式求解.(2)等积法:例如四面体的任何一个面都可以作为底面,只需选用底面积和高都易求的形式即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,棱台补成棱锥等. (4)分割法:将几何体分割成易求解的几部分,分别求体积.[提醒] 求几何体的体积时,要注意利用好几何体的轴截面(尤其为圆柱、圆锥时),准确求出几何体的高和底面积.1.圆锥的轴截面是等腰直角三角形,侧面积是 162π,则圆锥的体积是( ) A.64π3B.128π3C .64πD .1282π解析:选 A .作圆锥的轴截面,如图所示.由题设,在 △P AB 中,∠APB =90°,P A =PB .设圆锥的高为 h ,底面半径为 r , 则 h =r ,PB =2r . 由 S 侧=π·r ·PB =162π,得2πr 2=162π.所以 r =4.则 h =4. 故圆锥的体积 V 圆锥=13πr 2h =643π.2.圆柱的侧面展开图是长 12 cm ,宽 8 cm 的矩形,则这个圆柱的体积为( ) A.288πcm 3 B.192π cm 3 C.288π cm 3或192πcm 3 D .192π cm 3解析:选 C .当圆柱的高为 8 cm 时, V =π×⎝ ⎛⎭⎪⎫122π2×8=288π(cm 3),当圆柱的高为 12cm 时,V =π×⎝ ⎛⎭⎪⎫82π2×12=192π(cm 3).3.(2019·高考全国卷Ⅲ)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体ABCD -A 1B 1C 1D 1挖去四棱锥O -EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,AB =BC =6 cm ,AA 1=4 cm.3D 打印所用原料密度为0.9 g/cm 3.不考虑打印损耗,制作该模型所需原料的质量为________g.解析:由题易得长方体ABCD -A 1B 1C 1D 1的体积为6×6×4=144(cm 3),四边形EFGH 为平行四边形,如图所示,连接GE ,HF ,易知四边形EFGH 的面积为矩形BCC 1B 1面积的一半,即12×6×4=12(cm 2),所以V 四棱锥O -EFGH =13×3×12=12(cm 3),所以该模型的体积为144-12=132(cm 3),所以制作该模型所需原料的质量为132×0.9=118.8(g).答案:118.8组合体的表面积和体积如图在底面半径为 2,母线长为 4 的圆锥中内接一个高为3的圆柱,求圆柱的表面积.【解】 设圆锥的底面半径为 R ,圆柱的底面半径为 r ,表面积为 S . 则 R =OC =2,AC =4, AO =42-22=2 3.如图所示,易知△AEB ∽△AOC ,所以AE AO =EB OC ,即323=r 2,所以 r =1,S 底=2πr 2=2π,S 侧=2πr ·h =23π. 所以 S =S 底+S 侧=2π+23π =(2+23)π.1.[变问法]本例中的条件不变,求圆柱的体积与圆锥的体积之比.解:由例题解析可知:圆柱的底面半径为 r =1,高 h =3,所以圆柱的体积 V 1=πr 2h =π×12×3=3π.圆锥的体积 V 2=13π×22×23=833π.所以圆柱与圆锥的体积比为 3∶8.2.[变问法]本例中的条件不变,求图中圆台的表面积与体积.解:由例题解析可知:圆台的上底面半径 r =1,下底面半径 R =2,高 h =3,母线 l =2,所以圆台的表面积 S =π(r 2+R 2+r ·l +Rl )=π(12+22+1×2+2×2)=11π.圆台的体积 V =13π(r 2+rR +R 2)h =13π(12+2+22)×3=733π.3.[变条件、变问法]本例中的“高为3”改为“高为 h ”,试求圆柱侧面积的最大值. 解:设圆锥的底面半径为 R ,圆柱的底面半径为 r , 则 R =OC =2,AC =4, AO =42-22=2 3.如图所示易知△AEB ∽△AOC , 所以AE AO =EBOC ,即23-h 23=r 2, 所以 h =23-3r ,S圆柱侧=2πrh=2πr(23-3r)=-23πr2+43πr,所以当r=1,h=3时,圆柱的侧面积最大,其最大值为23π.求组合体的表面积与体积的步骤(1)分析结构特征:弄清组合体的组成形式,找准有关简单几何体的关键量.(2)设计计算方法:根据组成形式,设计计算方法,特别要注意“拼接面”面积的处理,利用“切割”“补形”的方法求体积.(3)计算求值:根据设计的计算方法求值.1.如图,在多面体ABCDEF中,已知面ABCD是边长为4 的正方形,EF∥AB,EF =2,EF上任意一点到平面ABCD的距离均为3,求该多面体的体积.解:如图,连接EB,EC.四棱锥E-ABCD的体积V四棱锥E-ABCD=13×42×3=16.因为AB=2EF,EF∥AB,所以S△EAB=2S△BEF.所以V三棱锥F-EBC=V三棱锥C-EFB=12V三棱锥C-ABE=12V三棱锥E-ABC =12×12V四棱锥E-ABCD=4.所以多面体的体积V=V四棱锥E-ABCD+V三棱锥F-EBC=16+4=20.2.如图,一个底面半径为2 的圆柱被一平面所截,截得的几何体的最短和最长母线长分别为2 和3,求该几何体的体积.解:用一个完全相同的几何体把题中几何体补成一个圆柱,如图,则圆柱的体积为π×22×5=20π,故所求几何体的体积为10π.1.已知某长方体同一顶点上的三条棱长分别为1,2,3,则该长方体的表面积为( ) A .22 B .20 C .10D .11解析:选A.所求长方体的表面积S =2×(1×2)+2×(1×3)+2×(2×3)=22. 2.正三棱锥的高为3,侧棱长为23,则这个正三棱锥的体积为( ) A.274 B.94 C.2734D.934解析:选D.由题意可得底面正三角形的边长为3,所以V =13×34×32×3=934.故选D.3.已知圆台的上、下底面的面积之比为9∶25,那么它的中截面截得的上、下两台体的侧面积之比是________.解析:圆台的上、下底面半径之比为3∶5,设上、下底面半径为3x ,5x ,则中截面半径为4x ,设上台体的母线长为l ,则下台体的母线长也为l ,上台体侧面积S 1=π(3x +4x )l =7πxl ,下台体侧面积S 2=π(4x +5x )l =9πxl ,所以S 1∶S 2=7∶9.答案:7∶9 4.如图,三棱台ABC A 1B 1C 1中,AB ∶A 1B 1=1∶2,求三棱锥A 1ABC ,三棱锥BA 1B 1C ,三棱锥CA 1B 1C 1的体积之比.解:设棱台的高为h ,S △ABC =S ,则S △A 1B 1C 1=4S . 所以VA 1ABC =13S △ABC ·h =13Sh ,VCA 1B 1C 1=13S △A 1B 1C 1·h =43Sh .又V 台=13h (S +4S +2S )=73Sh ,所以VBA 1B 1C =V 台-VA 1ABC -VCA 1B 1C 1=73Sh -Sh 3-4Sh 3=23Sh , 所以体积比为1∶2∶4.[A 基础达标]1.若某圆锥的高等于其底面直径,则它的底面积与侧面积之比为( ) A .1∶2 B .1∶ 3 C .1∶ 5D.3∶2解析:选C.设圆锥底面半径为r ,则高h =2r ,所以其母线长l =5r .所以S 侧=πrl =5πr 2,S 底=πr 2,S 底∶S 侧=1∶ 5.2.如图,ABC A ′B ′C ′是体积为1的棱柱,则四棱锥C -AA ′B ′B 的体积是( )A.13B.12 C.23D.34解析:选C.因为V C A ′B ′C ′ =13V ABC A ′B ′C ′=13, 所以V C AA ′B ′B =1-13=23.3.(2018·高考全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π 解析:选B.设所截正方形的边长为 a ,则 a 2=8,即 a =2 2.所以圆柱的母线长为 22,底面圆半径 r =2,所以圆柱的表面积为 22π×22+π(2)2×2=8π+4π=12π.4.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,点P 是面A 1B 1C 1D 1内任意一点,则四棱锥P -ABCD 的体积为( )A.16 B.13 C.12D.23解析:选B.因为正方体ABCD -A 1B 1C 1D 1的棱长为1,点P 是面A 1B 1C 1D 1内任意一点,所以点P 到平面ABCD 的距离d =AA 1=1, S 正方形ABCD =1×1=1, 所以四棱锥P -ABCD 的体积为:V P ABCD =13×AA 1×S 正方形ABCD =13×1×1=13.故选B.5.(2019·临川检测)一个封闭的正三棱柱容器,高为 3,内装水若干(如图甲,底面处于水平状态),将容器放倒(如图乙,一个侧面处于水平状态),这时水面与各棱交点 E ,F ,F 1,E 1 分别为所在棱的中点,则图甲中水面的高度为( )A.32B.74 C .2D.94解析:选 D .因为 E ,F ,F 1,E 1 分别为所在棱的中点,所以棱柱 EFCB -E 1F 1C 1B 1 的体积 V =S梯形EFCB ×3=34S △ABC ×3=94S △ABC .设甲中水面的高度为 h ,则 S △ABC ×h =94S △ABC ,解得h =94,故选 D.6.已知圆柱 OO ′的母线 l =4 cm ,表面积为 42π cm 2,则圆柱 OO ′的底面半径 r =______cm.解析:圆柱 OO ′的侧面积为 2πrl =8πr (cm 2),两底面面积为 2×πr 2=2πr 2(cm 2), 所以 2πr 2+8πr =42π, 解得 r =3 或 r =-7(舍去), 所以圆柱的底面半径为 3 cm. 答案:37.表面积为 3π的圆锥,它的侧面展开图是一个半圆面,则该圆锥的底面直径为________.解析:设圆锥的母线为 l ,圆锥底面半径为 r ,由题意可知,πrl +πr 2=3π,且 πl =2πr .解得 r =1,即直径为 2.答案:28.圆柱内有一个内接长方体 ABCD -A 1B 1C 1D 1,长方体的体对角线长是 10 2 cm ,圆柱的侧面展开图为矩形,此矩形的面积是 100π cm 2,则圆柱的底面半径为______cm ,高为______cm.解析:设圆柱底面半径为 r cm ,高为 h cm ,如图所示,则圆柱轴截面长方形的对角线长等于它的内接长方体的体对角线长,则:⎩⎪⎨⎪⎧(2r )2+h 2= (102)2,2πrh =100π,所以⎩⎪⎨⎪⎧r =5,h =10.即圆柱的底面半径为 5 cm ,高为 10 cm. 答案:5 109.如图,已知正三棱锥 S -ABC 的侧面积是底面积的 2 倍,正三棱锥的高 SO =3,求此正三棱锥的表面积.解:如图,设正三棱锥的底面边长为 a ,斜高为 h ′,过点 O 作 OE ⊥AB ,与 AB 交于点 E ,连接 SE ,则 SE ⊥AB ,SE =h ′.因为 S 侧=2S 底, 所以 3×12·a ·h ′=34a 2×2.所以 a =3h ′. 因为 SO ⊥OE , 所以 SO 2+OE 2=SE 2. 所以32+⎝⎛⎭⎫36×3h ′2=h ′2. 所以 h ′=23,所以 a =3h ′=6. 所以 S 底=34a 2=34×62=93, S 侧=2S 底=18 3.所以 S 表=S 侧+S 底=183+93=27 3.10.若 E ,F 是三棱柱 ABC -A 1B 1C 1 侧棱 BB 1和 CC 1 上的点,且 B 1E =CF ,三棱柱的体积为 m ,求四棱锥 A -BEFC 的体积.解:如图所示, 连接 AB 1,AC 1. 因为 B 1E =CF ,所以 梯形 BEFC 的面积等于梯形 B 1EFC 1 的面积. 又四棱锥 A -BEFC 的高与四棱锥 A -B 1EFC 1 的高相等, 所以 V A BEFC =VA B 1EFC 1 =12VA BB 1C 1C . 又 VA A 1B 1C 1=13S △A 1B 1C 1·h ,VABC A 1B 1C 1=S △A 1B 1C 1·h =m ,所以 VA A 1B 1C 1=m3,所以 VA BB 1C 1C =VABC A 1B 1C 1-VA A 1B 1C 1=23m .所以 V A BEFC =12×23m =m3,即四棱锥A-BEFC的体积是m3.[B能力提升]11.(2018·高考浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2 B.4C.6 D.8解析:选C.由三视图可知,该几何体是一个底面为直角梯形的直四棱柱,所以该几何体的体积V=12×(1+2)×2×2=6.故选C.12.(2019·高考全国卷Ⅱ)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1,则该半正多面体共有________个面,其棱长为________.解析:依题意知,题中的半正多面体的上、下、左、右、前、后6个面都在正方体的表面上,且该半正多面体的表面由18个正方形,8个正三角形组成,因此题中的半正多面体共有26个面.注意到该半正多面体的俯视图的轮廓是一个正八边形,设题中的半正多面体的棱长为x,则22x+x+22x=1,解得x=2-1,故题中的半正多面体的棱长为2-1.答案:26 2-113.用一张正方形的纸把一个棱长为 1 的正方体礼品盒完全包住,不将纸撕开,则所需纸的最小面积是________.解析:如图①为棱长为 1 的正方体礼品盒,先把正方体的表面按图所示方式展开成平面图形,再把平面图形尽可能拼成面积较小的正方形,如图②所示,由图知正方形的边长为 22,其面积为 8.答案:814.如图所示,已知三棱柱ABC -A ′B ′C ′,侧面B ′BCC ′的面积是S ,点A ′到侧面B ′BCC ′的距离是a ,求证:三棱柱ABC -A ′B ′C ′的体积V =12Sa .证明:法一:如图所示,连接A ′B ,A ′C ,这样就把三棱柱分割成了两个棱锥.显然三棱锥A ′ABC 的体积是13V ,而四棱锥A ′BCC ′B ′的体积为13Sa ,故有13V +13Sa =V ,所以三棱柱ABC -A ′B ′C ′的体积V =12Sa .法二:如图所示,将三棱柱ABC -A ′B ′C ′补成一个四棱柱ACBD -A ′C ′B ′D ′,其中AC ∥BD ,AD ∥BC ,即ACBD 为一个平行四边形,显然三棱柱ABD A ′B ′D ′的体积与原三棱柱ABC -A ′B ′C ′的体积相等.因为四棱柱ACBD -A ′C ′B ′D ′以BCC ′B ′为底面,高为点A ′到面BCC ′B ′的距离,所以补形后的四棱柱的体积为Sa ,于是三棱柱ABC -A ′B ′C ′的体积V =12Sa .[C 拓展探究]15.某养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪用).已建的仓库的底面直径为12 m ,高为4 m .养路处拟建一个更大的圆锥形仓库,以存放更多食盐.现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积; (2)分别计算按这两种方案所建的仓库的表面积; (3)哪种方案更经济些?解:(1)设两种方案所建的仓库的体积分别为V 1,V 2.方案一:仓库的底面直径变成16 m ,则其体积V 1=13×π×⎝⎛⎭⎫1622×4=2563π(m 3);方案二:仓库的高变成8 m ,则其体积V 2=13×π×⎝⎛⎭⎫1222×8=96π(m 3).(2)设两种方案所建的仓库的表面积分别为S 1,S 2. 方案一:仓库的底面直径变成16 m ,半径为8 m , 此时圆锥的母线长为l 1=82+42=45(m),则仓库的表面积S 1=π×8×(8+45) =(64+325)π(m 2);方案二:仓库的高变成8 m ,此时圆锥的母线长为l 2=82+62=10(m),则仓库的表面积S 2=π×6×(6+10) =96π(m 2).(3)因为V 2>V 1,S 2<S 1, 所以方案二比方案一更加经济.。
1.3 柱体、椎体、台体、球的表面积与体积
当堂自测
1.棱长都是 1 的三棱锥的表面积为( A )
A. 3 B.2 3 C.3 3 D.4 3
当堂自测
2.一个直棱柱被一个平面截去一部分后所剩
几何体的三视图如图所示,
则该几何体的体积为( C )
A.9
B.10
C.11
D.223
直
8
观
侧面展开图
图
1
12
直观图2
V柱
( 12 2
)2
8
36 8 288
V柱
( 8 2
)2
12
16 12 192
例 2 (1)某几何体的三视图如图所示,则该几何体的体积为( A )
A.
1+π 3
B.23+π
C.13+2π
D.23+2π
(2)如图所示,已知三棱柱 ABC -A1B1C1 的所有棱长均为 1,
1.3.1柱体、锥体、台体的表面积与体积 1.3.2球的体积和表面积
一、柱体、锥体、台体、球的表面积
h
侧面展开
h' h'
侧面展开
h' h'
1.棱柱、棱锥、棱台的表面积
h'
h'
棱柱、棱锥、棱台都是由多个平面图形围成的几何体,它们的侧 面展开图还是平面图形,计算它们的表面积就是计算它的各个侧面面 积和底面面积之和.
h
S
S
h
S
祖恒原理
夹在两个平行平面间的两个几何体,被平行于这两个平行平面的 任何平面所截,如果截得两个截面的面积总相等,那么这两个几 何体的体积相等。
1.3.1柱体、锥体、台体的表面积与体积
1.3.1柱体、锥体、台体的表面积与体积一、教学目标1、知识与技能(1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法。
(2)能运用公式求解,柱体、锥体和台全的全积,并且熟悉台体与术体和锥体之间的转换关系。
(3)培养学生空间想象能力和思维能力。
(1)让学生经历几何全的侧面展一过程,感知几何体的形状。
(2)让学生通对照比较,理顺柱体、锥体、台体三间的面积和体积的关系。
3、情感与价值通过学习,使学生感受到几何体面积和体积的求解过程,对自己空间思维能力影响。
从而增强学习的积极性。
二、教学重点、难点重点:柱体、锥体、台体的表面积和体积计算难点:台体体积公式的推导三、学法与教学用具1、学法:学生通过阅读教材,自主学习、思考、交流、讨论和概括,通过剖析实物几何体感受几何体的特征,从而更好地完成本节课的教学目标。
2、教学用具:实物几何体,投影仪四、教学设想1、创设情境(1)教师提出问题:在过去的学习中,我们已经接触过一些几何体的面积和体积的求法及公式,哪些几何体可以求出表面积和体积?引导学生回忆,互相交流,教师归类。
(2)教师设疑:几何体的表面积等于它的展开圈的面积,那么,柱体,锥体,台体的侧面展开图是怎样的?你能否计算?引入本节内容。
2、探究新知(1)利用多媒体设备向学生投放正棱柱、正三棱锥和正三棱台的侧面展开图(2)组织学生分组讨论:这三个图形的表面由哪些平面图形构成?表面积如何求?(3)教师对学生讨论归纳的结果进行点评。
3、质疑答辩、排难解惑、发展思维(1)教师引导学生探究圆柱、圆锥、圆台的侧面展开图的结构,并归纳出其表面积的计算公式:)''22rl l r r r S +++=(圆台表面积πr 1为上底半径 r 为下底半径 l 为母线长(2)组织学生思考圆台的表面积公式与圆柱及圆锥表面积公式之间的变化关系。
(3)教师引导学生探究:如何把一个三棱柱分割成三个等体积的棱锥?由此加深学生对等底、等高的锥体与柱体体积之间的关系的了解。