届高考数学第一轮复习精品教案:第二章 函数
苏教版版高考数学一轮复习第二章函数函数性质的综合问题教学案

考点1函数的单调性与奇偶性函数的单调性与奇偶性的综合问题解题思路(1)解决比较大小、最值问题应充分利用奇函数在关于原点对称的两个区间上具有相同的单调性,偶函数在关于原点对称的两个区间上具有相反的单调性.(2)解决不等式问题时一定要充分利用已知的条件,把已知不等式转化成f(x1)>f(x2)或f (x1)<f(x2)的形式,再根据函数的奇偶性与单调性,列出不等式(组),要注意函数定义域对参数的影响.(1)(2019·全国卷Ⅲ)设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则()(2)(2017·全国卷Ⅰ)函数f(x)在(—∞,+∞)上单调递减,且为奇函数.若f(1)=—1,则满足—1≤f(x—2)≤1的x的取值范围是()A.[—2,2] B.[—1,1]C.[0,4] D.[1,3](1)C(2)D[(1)∵f(x)是定义域为R的偶函数,∴f(—x)=f(x).∴f错误!=f(—log34)=f(log34).又∵log34>log33=1,且1>2错误!>2错误!>0,∴log34>2错误!>2错误!>0.∵f(x)在(0,+∞)上单调递减,∴f(2错误!)>f(2错误!)>f(log34)=f错误!.故选C.(2)∵f(x)为奇函数,∴f(—x)=—f(x).∵f(1)=—1,∴f(—1)=—f(1)=1.故由—1≤f(x—2)≤1,得f(1)≤f(x—2)≤f(—1).又f(x)在(—∞,+∞)上单调递减,∴—1≤x—2≤1,∴1≤x≤3.][逆向问题] 设f(x)是定义在[—2b,3+b]上的偶函数,且在[—2b,0]上为增函数,则f(x—1)≥f(3)的解集为()A.[—3,3] B.[—2,4]C.[—1,5] D.[0,6]B[因为f(x)是定义在[—2b,3+b]上的偶函数,所以有—2b+3+b=0,解得b=3,由函数f(x)在[—6,0]上为增函数,得f(x)在(0,6]上为减函数,故f(x—1)≥f(3)⇒f(|x—1|)≥f(3)⇒|x—1|≤3,故—2≤x≤4.](1)函数值的大小比较问题,可以利用奇偶性把不在同一单调区间上的两个或多个自变量的函数值转化到同一单调区间上,再利用其单调性比较大小.(2)对于抽象函数不等式的求解,应变形为f(x1)>f(x2)的形式,再结合单调性脱去法则“f”变成常规不等式,如x1<x2(或x1>x2)求解.1.已知函数f(x)满足以下两个条件:1任意x1,x2∈(0,+∞)且x1≠x2,(x1—x2)·[f(x1)—f(x2)]<0;2对定义域内任意x有f(x)+f(—x)=0,则符合条件的函数是()A.f(x)=2xB.f(x)=1—|x|C.f(x)=—x3D.f(x)=ln(x2+3)C[由条件1可知,f(x)在(0,+∞)上单调递减,则可排除A、D选项,由条件2可知,f(x)为奇函数,则可排除B选项,故选C.]2.函数y=f(x)在[0,2]上单调递增,且函数f(x+2)是偶函数,则下列结论成立的是()A.f(1)<f错误!<f错误!B.f错误!<f(1)<f错误!C.f错误!<f错误!<f(1)D.f错误!<f(1)<f错误!B[∵函数y=f(x)在[0,2]上单调递增,且函数f(x+2)是偶函数,∴函数y=f(x)在[2,4]上单调递减,且在[0,4]上函数y=f(x)满足f(2—x)=f(2+x),∴f(1)=f(3),f错误!<f(3)<f错误!,即f错误!<f(1)<f错误!.]3.(2019·滨州模拟)设奇函数f(x)定义在(—∞,0)∪(0,+∞)上,f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式错误!<0的解集为()A.(—1,0)∪(1,+∞)B.(—∞,—1)∪(0,1)C.(—∞,—1)∪(1,+∞)D.(—1,0)∪(0,1)D[∵奇函数f(x)定义在(—∞,0)∪(0,+∞)上,在(0,+∞)上为增函数,且f(1)=0,∴函数f(x)的图象关于原点对称,且过点(1,0)和(—1,0),且f(x)在(—∞,0)上也是增函数.∴函数f(x)的大致图象如图所示.∵f(—x)=—f(x),∴不等式错误!<0可化为错误!<0,即xf (x)<0.不等式的解集即为自变量与对应的函数值异号的x的范围,据图象可知x∈(—1,0)∪(0,1).]考点2函数的周期性与奇偶性已知f(x)是周期函数且为偶函数,求函数值,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内,把未知区间上的函数性质转化为已知区间上的函数性质求解.(2019·福州质量检测)已知函数f(x)对任意的x∈R都满足f(x)+f(—x)=0,f错误!为偶函数,当0<x≤错误!时,f(x)=—x,则f(2017)+f(2018)=________.—2[依题意,f(—x)=—f(x),f错误!=f错误!,所以f(x+3)=f(—x)=—f(x),所以f(x+6)=f(x),所以f(2017)=f(1)=—1,f(2018)=f(2)=f错误!=f错误!=f(1)=—1,所以f(2017)+f(2018)=—2.]解奇偶性、周期性的综合性问题的2个关键点(1)利用奇偶性和已知等式求周期.(2)将未知区间上的问题转化为已知区间上的问题求解.1.已知定义在R上的奇函数f(x)满足f(x)=—f错误!,且f(1)=2,则f(2018)=________.—2[因为f(x)=—f错误!,所以f(x+3)=f错误!=—f错误!=f(x).所以f(x)是以3为周期的周期函数.则f(2018)=f(672×3+2)=f(2)=f(—1)=—f(1)=—2.]2.已知f(x)是定义在R上以3为周期的偶函数,若f(1)<1,f(5)=2a—3,则实数a 的取值范围为________.(—∞,2)[∵f(x)是定义在R上的周期为3的偶函数,∴f(5)=f(5—6)=f(—1)=f (1),∵f(1)<1,∴f(5)=2a—3<1,即a<2.]考点3单调性、奇偶性、周期性、对称性等综合问题函数的奇偶性、周期性及单调性是函数的三大性质,在高考中常常将它们综合在一起命题,解题时,往往需要借助函数的奇偶性和周期性来确定另一区间上的单调性,即实现区间的转换,再利用单调性解决相关问题.[一题多解](2018·全国卷Ⅱ)已知f(x)是定义域为(—∞,+∞)的奇函数,满足f (1—x)=f(1+x).若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.—50 B.0 C.2D.50C[法一:(直接法)∵f(x)是奇函数,∴f(—x)=—f(x),∴f(1—x)=—f(x—1).由f(1—x)=f(1+x),得—f(x—1)=f(x+1),∴f(x+2)=—f(x),∴f(x+4)=—f(x+2)=f(x),∴函数f(x)是周期为4的周期函数.由f(x)为奇函数得f(0)=0.又∵f(1—x)=f(1+x),∴f(x)的图象关于直线x=1对称,∴f(2)=f(0)=0,∴f(—2)=0.又f(1)=2,∴f(—1)=—2,∴f(1)+f(2)+f(3)+f(4)=f(1)+f(2)+f(—1)+f(0)=2+0—2+0=0,∴f(1)+f(2)+f(3)+f(4)+…+f(49)+f(50)=0×12+f(49)+f(50)=f(1)+f(2)=2+0=2.法二:(特例法)由题意可设f(x)=2sin错误!,作出f(x)的部分图象如图所示.由图可知,f(x)的一个周期为4,所以f(1)+f(2)+f(3)+…+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(49)+f(50)=12×0+f(1)+f(2)=2.](1)函数的奇偶性与对称性的关系1若函数f(x)满足f(a+x)=f(a—x),则其函数图象关于直线x=a对称;当a=0时可以得出f(x)=f(—x),函数为偶函数,即偶函数为特殊的线对称函数.2若函数f(x)满足f(2a—x)=2b—f(x),则其函数图象关于点(a,b)对称;当a=0,b =0时得出f(—x)=—f(x),函数为奇函数,即奇函数为特殊的点对称函数.(2)函数的对称性与周期性的关系1若函数f(x)关于直线x=a与直线x=b对称,那么函数的周期是2|b—a|.2若函数f(x)关于点(a,0)对称,又关于点(b,0)对称,那么函数的周期是2|b—a|.3若函数f(x)关于直线x=a对称,又关于点(b,0)对称,那么函数的周期是4|b—a|.(3)函数的奇偶性、周期性、对称性的关系其中a≠0,上面每组三个结论中的任意两个能够推出第三个.[教师备选例题](1)已知f(x)是定义在R上的偶函数,且f(x+1)=—f(x),若f(x)在[—1,0]上单调递减,则f(x)在[1,3]上是()A.增函数B.减函数C.先增后减的函数D.先减后增的函数1函数f(x)的图象关于直线x=4k+2(k∈Z)对称;2函数f(x)的单调递增区间为[8k—6,8k—2](k∈Z);3函数f(x)在区间(—2018,2018)上恰有1008个极值点;4若关于x的方程f(x)—m=0在区间[—8,8]上有根,则所有根的和可能为0或±4或±8.其中真命题的个数为()A.1B.2C.3D.4(1)D(2)C[(1)根据题意,因为f(x+1)=—f(x),所以f(x+2)=—f(x+1)=f(x),所以函数f(x)的周期是2.又因为f(x)在定义域R上是偶函数,在[—1,0]上是减函数,所以函数f(x)在[0,1]上是增函数,所以函数f(x)在[1,2]上是减函数,在[2,3]上是增函数,所以f (x)在[1,3]上是先减后增的函数,故选D.(2)1正确,∵定义在R上的连续奇函数f(x)满足f(x—4)=—f(x),∴f[(x—4)—4]=—f(x—4)=f(x),即f(x—8)=f(x),∴f(x)是以8为周期的周期函数,8k(k∈Z且k≠0)也是其周期.又f(x)为R上的连续奇函数,由f(x—4)=—f(x),即f(x)=—f(x—4),得f (x)=f(4—x),∴函数f(x)的一条对称轴为x=错误!=2.又8k(k∈Z且k≠0)是f(x)的周期,∴f(x)=f(x+8k)=f(4—x),∴函数的对称轴为x=错误!=4k+2(k∈Z且k≠0).综上,函数f(x)的图象关于直线x=4k+2(k∈Z)对称,故1正确;2错误,作图如下:由图可知,函数f(x)的单调递减区间为[8k—6,8k—2](k∈Z),故2错误;3正确,由图可知,f(x)在一个周期内有两个极值点,在区间(—2016,2016)上有504个完整周期,有1008个极值点,在区间(—2018,—2016]和[2016,2018)上没有极值点,故在区间(—2018,2018)上有1008个极值点,3正确;4正确,由图中m1,m2,m3,m4,m5五条直线可知,关于x的方程f(x)—m=0在区间[—8,8]上有根,则所有根的和可能为0或±4或±8,故4正确.综上所述,134正确,故选C.]1.(2016·全国卷Ⅱ)已知函数f(x)(x∈R)满足f(—x)=2—f(x),若函数y=错误!与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(x m,y m),则错误!(x i+y i)=()A.0 B.mC.2mD.4mB[函数f(x)(x∈R)满足f(—x)=2—f(x),即f(x)+f(—x)=2,可得f(x)的图象关于点(0,1)对称,函数y=错误!,即y=1+错误!的图象关于点(0,1)对称,∴函数y=错误!与y=f(x)图象的交点也关于(0,1)对称,关于(0,1)对称的两个点的横坐标和为0,纵坐标和为2.当交点不在对称轴上时,m为偶数,∴错误!(x i+y i)=错误!x i+错误!y i=0×错误!+2×错误!=m;当有交点在对称轴上时,m为奇数,则错误!(x i+y i)=错误!x i+错误!y i=0×错误!+0+2×错误!+1=m.综上,错误!(x i+y i)=m.]2.已知定义在R上的奇函数f(x)满足f(x—4)=—f(x),且在区间[0,2]上是增函数,则()A.f(—25)<f(11)<f(80)B.f(80)<f(11)<f(—25)C.f(11)<f(80)<f(—25)D.f(—25)<f(80)<f(11)D[因为f(x)满足f(x—4)=—f(x),所以f(x—8)=f(x),所以函数f(x)是以8为周期的周期函数,则f(—25)=f(—1),f (80)=f(0),f(11)=f(3).由f(x)是定义在R上的奇函数,且满足f(x—4)=—f(x),得f(11)=f(3)=—f(—1)=f(1).因为f(x)在区间[0,2]上是增函数,f(x)在R上是奇函数,所以f(x)在区间[—2,2]上是增函数,所以f(—1)<f(0)<f(1),即f(—25)<f(80)<f(11).]课外素养提升2数学运算——用活函数性质中的三个结论论”解决数学问题,可优化数学运算的过程,使学生逐步形成规范化、程序化的思维品质,养成一丝不苟、严谨求实的科学精神.奇函数的最值性质已知函数f(x(x)+f(—x)=0.特别地,若奇函数f(x)在D上有最值,则f(x)max+f(x)min=0,且若0∈D,则f(0)=0.【例1】设函数f(x)=错误!的最大值为M,最小值为m,则M+m=________.2[显然函数f(x)的定义域为R,f(x)=错误!=1+错误!,设g(x)=错误!,则g(—x)=—g(x),∴g(x)为奇函数,由奇函数图象的对称性知g(x)max+g(x)min=0,∴M+m=[g(x)+1]max+[g(x)+1]min=2+g(x)max+g(x)min=2.]【素养提升练习】已知函数f(x)=ln(错误!—3x)+1,则f(lg 2)+f错误!=()A.—1B.0 C.1D.2D[设g(x)=ln(错误!—3x),易知函数的定义域为R,关于原点对称,∵g(x)+g(—x)=ln(错误!—3x)+ln(错误!+3x)=ln(错误!—3x)(错误!+3x)=ln 1=0,∴g(x)为奇函数,∴g(lg 2)+g错误!=g(lg 2)+g(—lg 2)=0,又∵f(x)=g(x)+1,∴f(lg 2)+f错误!=g(lg 2)+1+g错误!+1=2.]抽象函数的周期性(1)如果f(x+a)=—f(x)(a≠0),那么f(x)是周期函数,其中一个周期T=2a.(2)如果f(x+a)=错误!(a≠0),那么f(x)是周期函数,其中的一个周期T=2a.(3)如果f(x+a)+f(x)=c(a≠0),那么f(x)是周期函数,其中的一个周期T=2a.【例2】已知函数f(x)为定义在R上的奇函数,当x≥0时,有f(x+3)=—f(x),且当x∈(0,3)时,f(x)=x+1,则f(—2017)+f(2018)=()A.3B.2C.1D.0C[因为函数f(x)为定义在R上的奇函数,所以f(—2017)=—f(2017),因为当x≥0时,有f(x+3)=—f(x),所以f(x+6)=—f(x+3)=f(x),即当x≥0时,自变量的值每增加6,对应函数值重复出现一次.又当x∈(0,3)时,f(x)=x+1,∴f(2017)=f(336×6+1)=f(1)=2,f(2018)=f(336×6+2)=f(2)=3.故f(—2017)+f(2018)=—f(2017)+3=1.]【素养提升练习】(2019·山西八校联考)已知f(x)是定义在R上的函数,且满足f(x+2)=—错误!,当2≤x≤3时,f(x)=x,则f错误!=________.错误![∵f(x+2)=—错误!,∴f(x+4)=f(x),∴f错误!=f错误!,又2≤x≤3时,f(x)=x,∴f错误!=错误!,∴f错误!=错误!.]抽象函数的对称性已知函数f(x(1)若f(a+x)=f(b—x)恒成立,则y=f(x)的图象关于直线x=错误!对称,特别地,若f (a+x)=f(a—x)恒成立,则y=f(x)的图象关于直线x=a对称.(2)若函数y=f(x)满足f(a+x)+f(a—x)=0,即f(x)=—f(2a—x),则f(x)的图象关于点(a,0)对称.【例3】函数y=f(x)对任意x∈R都有f(x+2)=f(—x)成立,且函数y=f(x—1)的图象关于点(1,0)对称,f(1)=4,则f(2016)+f(2017)+f(2018)的值为________.4[因为函数y=f(x—1)的图象关于点(1,0)对称,所以函数y=f(x)的图象关于原点对称,所以f(x)是R上的奇函数,则f(x+2)=f(—x)=—f(x),所以f(x+4)=—f(x+2)=f(x),故f(x)的周期为4.所以f(2017)=f(504×4+1)=f(1)=4,所以f(2016)+f(2018)=—f(2014)+f(2014+4)=—f(2014)+f (2014)=0,所以f(2016)+f(2017)+f(2018)=4.]【素养提升练习】已知函数f(x)(x∈R)满足f(x)=f(2—x),若函数y=|x2—2x—3|与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(x m,y m),则错误!x i=()A.0 B.mC.2mD.4mB[∵函数f(x)(x∈R)满足f(x)=f(2—x),故函数f(x)的图象关于直线x=1对称,函数y=|x2—2x—3|的图象也关于直线x=1对称,故函数y=|x2—2x—3|与y=f(x)图象的交点也关于直线x=1对称,且相互对称的两点横坐标和为2.当f(x)不过点(1,4)时,错误!x i=错误!×2=m,当f(x)过点(1,4)时,错误!x i=错误!×2+1=m.综上,错误!x i=m.]。
高考数学第一轮复习教案-专题2函数概念与基本初等函数

反函数的定义
设函数 y f (x)(x A) 的值域是 C,根据这个函数中 x,y 的关系,用 y 把 x 表
高考数学第一轮复习教案汇总【精华】
专题二 函数概念与基本初等函数
一、考试内容: 映射、函数、函数的单调性、奇偶性. 反函数.互为反函数的函数图像间的关系. 指数概念的扩充.有理指数幂的运算性质.指数函数. 对数.对数的运算性质.对数函数. 函数的应用. 二、考试要求: (1)了解映射的概念,理解函数的概念. (2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法. (3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数. (4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像 和 性质. (5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质. (6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 三、命题热点
y f 1(x)
(二)函数的性质 函数的单调性
定义:对于函数 f(x)的定义域 I 内某个区间上的任意两个自变量的值 x1,x2, ⑴若当 x1<x2 时,都有 f(x1)<f(x2),则说 f(x)在这个区间上是增函数; ⑵若当 x1<x2 时,都有 f(x1)>f(x2),则说 f(x) 在这个区间上是减函数.
奇函 数的定 义:如果 对于函 数f(x)的定 义域内 任意一 个x,都有 f(-x)=-f(x),那么 函数f(x)就叫 做奇函 数.
高考数学复习 第10课时 第二章 函数-函数的值域名师精品教案 教案

第10课时:第二章 函数——函数的值域一.课题:函数的值域二.教学目标:理解函数值域的意义;掌握常见题型求值域的方法,了解函数值域的一些应用.三.教学重点:求函数的值域. 四.教学过程: (一)主要知识:1.函数的值域的定义;2.确定函数的值域的原则;3.求函数的值域的方法. (二)主要方法(范例分析以后由学生归纳):求函数的值域的方法常用的有:直接法,配方法,判别式法,基本不等式法,逆求法(反函数法),换元法,图像法,利用函数的单调性、奇偶性求函数的值域等. (三)例题分析: 例1.求下列函数的值域:(1)232y x x =-+; (2)y ; (3)312x y x +=-;(4)y x =+ (5)y x =+ (6)|1||4|y x x =-++;(7)22221x x y x x -+=++; (8)2211()212x x y x x -+=>-; (9)1sin 2cos xy x-=-解:(1)(一)公式法(略)(二)(配方法)2212323323()61212y x x x =-+=-+≥, ∴232y x x =-+的值域为23[,)12+∞.改题:求函数232y x x =-+,[1,3]x ∈的值域.解:(利用函数的单调性)函数232y x x =-+在[1,3]x ∈上单调增,∴当1x =时,原函数有最小值为4;当3x =时,原函数有最大值为26. ∴函数232y x x =-+,[1,3]x ∈的值域为[4,26].(2)求复合函数的值域:设265x x μ=---(0μ≥),则原函数可化为y .又∵2265(3)44x x x μ=---=-++≤,∴04μ≤≤[0,2],∴y =的值域为[0,2]. (3)(法一)反函数法:312x y x +=-的反函数为213x y x +=-,其定义域为{|3}x R x ∈≠, ∴原函数312x y x +=-的值域为{|3}y R y ∈≠. (法二)分离变量法:313(2)773222x x y x x x +-+===+---, ∵702x ≠-,∴7332x +≠-, ∴函数312x y x +=-的值域为{|3}y R y ∈≠. (4)换元法(代数换元法):设0t =,则21x t =-,∴原函数可化为2214(2)5(0)y t t t t =-+=--+≥,∴5y ≤, ∴原函数值域为(,5]-∞.说明:总结y ax b =++2y ax b =+2y ax b =++(5)三角换元法:∵21011x x -≥⇒-≤≤,∴设cos ,[0,]x ααπ=∈,则cos sin )4y πααα=+=+∵[0,]απ∈,∴5[,]444πππα+∈,∴sin()[4πα+∈,)[4πα+∈-,∴原函数的值域为[-.(6)数形结合法:23(4)|1||4|5(41)23(1)x x y x x x x x --≤-⎧⎪=-++=-<<⎨⎪+≥⎩,∴5y ≥, ∴函数值域为[5,)+∞.(7)判别式法:∵210x x ++>恒成立,∴函数的定义域为R .由22221x x y x x -+=++得:2(2)(1)20y x y x y -+++-= ①①当20y -=即2y =时,①即300x +=,∴0x R =∈②当20y -≠即2y ≠时,∵x R ∈时方程2(2)(1)20y x y x y -+++-=恒有实根, ∴22(1)4(2)0y y =+-⨯-≥,∴15y ≤≤且2y ≠, ∴原函数的值域为[1,5].(8)2121(21)111121212121222x x x x y x x x x x x -+-+===+=-++----,∵12x >,∴102x ->,∴112122x x -+≥-112122x x -=-时,即12x +=时等号成立.∴12y ≥,∴原函数的值域为1,)2+∞.(9)(法一)方程法:原函数可化为:sin cos 12x y x y -=-,)12x y ϕ-=-(其中cos ϕϕ==),∴sin()[1,1]x ϕ-=-,∴|12|y -≤2340y y -≤,∴403y ≤≤, ∴原函数的值域为4[0,]3.(法二)数形结合法:可看作求点(2,1)与圆221x y +=上的点的连线的斜率的范围,解略. 例2.若关于x 的方程|3|2(22)3x a ---=+有实数根,求实数a 的取值范围. 解:原方程可化为|3|2(22)3x a --=--,令|3|2x t --=,则01t <≤,2()(2)3a f t t ==--,又∵()a f t =在区间(0,1]上是减函数,∴(1)()(0)f f t f ≤<,即2()1f t -≤<, 故实数a 的取值范围为:21a -≤<.例3.(《高考A 计划》考点9,智能训练16)某化妆品生产企业为了占有更多的市场份额,拟在2003年度进行一系列的促销活动.经过市场调查和测算,化妆品的年销量x 万件与年促销费用t 万元(0)t ≥之间满足:3x -与1t +成反比例;如果不搞促销活动,化妆品的年销量只能是1万件.已知2003年,生产化妆品的固定投入为3万元,每生产1万件化妆品需再投入32万元.当将每件化妆品的售价定为“年平均每件成本的150%”与“年平均每件所占促销费的一半”之和,则当年产销量相等.(1)将2003年的年利润y 万元表示为年促销费t 万元的函数; (2)该企业2003年的促销费投入多少万元时,企业的年利润最大? (注:利润=收入-生产成本-促销费)解:(1)由题设知:31k x t -=+,且0t =时,1x =,∴2k =,即231x t =-+, ∴年生产成本为2[32(3)3]1t -++万元,年收入为21150%[32(3)3]12t t -+++.∴年利润212{150%[32(3)3]}[32(3)3](0)121y t t t t t =-++--+-≥++,∴29835(0)2(1)t t y t t -++=≥+. (2)由(1)得2(1)100(1)6413250()50422(1)21t t t y t t -+++-+==-+≤-=++,当且仅当13221t t +=+,即7t =时,y 有最大值42. ∴当促销费定为7万元时,2003年该化妆品企业获得最大利润.(四)巩固练习:1.函数221xx y =+的值域为(0,1).2.若函数()log a f x x =在[2,4]上的最大值与最小值之差为2,则a=。
高三数学第二章函数+导数高考一轮复习教案2.1函数及其表示

2.1函数及其表示一、学习目标:考纲点击:理解函数的有关概念热点提示:1.函数是高考数学的核心内容,在历年高考中,函数知识覆盖面广、综合性强,在难中易各类考题中都会出现。
而在江苏高考中,函数题的难度一般偏大,同其他省比有其独特性。
2、本节是函数的起始部分,以考查函数的概念、三要素及表示法为主,同时函数的图像,分段函数的考查是热点,另外,实际问题中的建模能力也经常考查。
本节复习重点:函数的定义域和表达式二、知识要点:1.函数的概念定义:设A,B 是___________,如果按照某种对应法则f,对于集合A 中的______,在集合B 中都有______元素y 和它对应,这样的对应叫做从A 到B 的一个函数记作____________. 其中,x 叫做______,x 的取值范围A 叫做函数的_______;与x 的值相对应的y 的值叫做______,函数值的集合{ f(x) |x ∈A}叫做函数的_______.2.函数的三要素:①_________;②__________________;③_________ 。
注:两个函数当且仅当_______和________,都相同时,才称作相同的函数.3.常用的函数表示法(1)解析法:;(2)列表法:;(3)图象法:。
4.分段函数5.复合函数若y =f (u),u=g(x ),x ∈ (a ,b ),u∈ (m,n),那么y =f [g(x )]称为复合函数,u 称为中间变量,它的取值范围是g(x )的值域。
三、课前检测:1. (09山东理)定义在R 上的函数f(x )满足f(x)= ⎩⎨⎧>---≤-0),2()1(0),1(log 2x x f x f x x ,则f (2009)的值为________2.(09福建文)下列函数中,与函数y= 有相同定义域的是( ) A .()ln f x x = B.1()f x x =C. ()||f x x =D.()x f x e = 3. (09江西理)函数y =的定义域为________4. (09北京文)已知函数3,1,(),1,x x f x x x ⎧≤=⎨->⎩若()2f x =,则x = .5. .(09安徽理)已知函数()f x 在R 上满足2()2(2)88f x f x x x =--+-,则曲线()y f x =在点(1,(1))f 处的切线方程是 .四.经典例题:热点考向一:求函数定义域例1:(1)求函数02)4(1||21)(-+-+-=x x x x f 的定义域。
苏教版版高考数学一轮复习第二章函数函数与方程教学案

1.函数的零点(1)函数零点的定义对于函数y=f(x)(x∈D),把使f(x)=0的实数x叫做函数y=f(x)(x∈D)的零点.(2)三个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.(3)函数零点的判定(零点存在性定理)如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系Δ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象与x轴的交点(x1,0),(x2,0)(x1,0)无交点零点个数210有关函数零点的3个结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.一、思考辨析(正确的打“√”,错误的打“×”)(1)函数的零点就是函数的图象与x轴的交点.()(2)函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)·f(b)<0.()(3)若函数f(x)在(a,b)上单调且f(a)·f(b)<0,则函数f(x)在[a,b]上有且只有一个零点.()(4)二次函数y=ax2+bx+c在b2—4ac<0时没有零点.()[答案](1)×(2)×(3)×(4)√二、教材改编1.已知函数y=f(x)的图象是连续不断的曲线,且有如下的对应值表:则函数yA.2个B.3个C.4个D.5个B[∵f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,故函数f(x)在区间[1,6]内至少有3个零点.]2.函数f(x)=ln x+2x—6的零点所在的区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)C[由题意得f(1)=ln 1+2—6=—4<0,f(2)=ln 2+4—6=ln 2—2<0,f(3)=ln 3+6—6=ln 3>0,f(4)=ln 4+8—6=ln 4+2>0,∴f(x)的零点所在的区间为(2,3).]3.函数f(x)=e x+3x的零点个数是________.1[由已知得f′(x)=e x+3>0,所以f(x)在R上单调递增,又f(—1)=错误!—3<0,f (0)=1>0,因此函数f(x)有且只有一个零点.]4.函数f(x)=x错误!—错误!错误!的零点个数为________.1[作函数y1=x错误!和y2=错误!错误!的图象如图所示.由图象知函数f(x)有1个零点.]考点1函数零点所在区间的判定判断函数零点所在区间的方法(1)解方程法,当对应方程易解时,可直接解方程.(2)零点存在性定理.(3)数形结合法,画出相应函数图象,观察与x轴交点来判断,或转化为两个函数的图象在所给区间上是否有交点来判断.1.函数f(x)=ln x—错误!的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)B[由题意知函数f(x)是增函数,因为f(1)<0,f(2)=ln 2—错误!=ln 2—ln 错误!>0,所以函数f(x)的零点所在的区间是(1,2).故选B.]2.若a<b<c,则函数f(x)=(x—a)(x—b)+(x—b)(x—c)+(x—c)(x—a)的两个零点分别位于区间()A.(a,b)和(b,c)内B.(—∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(—∞,a)和(c,+∞)内A[∵a<b<c,∴f(a)=(a—b)(a—c)>0,f(b)=(b—c)(b—a)<0,f(c)=(c—a)(c—b)>0,由函数零点存在性判定定理可知:在区间(a,b)(b,c)内分别存在一个零点;又函数f(x)是二次函数,最多有两个零点,因此函数f(x)的两个零点分别位于区间(a,b),(b,c)内,故选A.]3.已知函数f(x)=ln x+2x—6的零点在错误!(k∈Z)内,那么k=________.5[∵f′(x)=错误!+2>0,x∈(0,+∞),∴f(x)在x∈(0,+∞)上单调递增,且f错误!=ln 错误!—1<0,f(3)=ln 3>0,∴f(x)的零点在错误!内,则整数k=5.](1)f(a)·f(b)<0是连续函数y=f(x)在闭区间[a,b]上有零点的充分不必要条件.(2)若函数f(x)在[a,b]上是单调函数,且f(x)的图象连续不断,则f(a)·f(b)<0⇒函数f(x)在区间[a,b]上只有一个零点.考点2函数零点个数的判断函数零点个数的讨论,基本解法有(1)直接法,令f(x)=0,在定义域范围内有多少个解则有多少个零点.(2)定理法,利用定理时往往还要结合函数的单调性、奇偶性等.(3)图象法,一般是把函数分拆为两个简单函数,依据两函数图象的交点个数得出函数的零点个数.(1)(2019·全国卷Ⅲ)函数f(x)=2sin x—sin 2x在[0,2π]的零点个数为()A.2B.3C.4D.5(2)函数f(x)=错误!的零点个数为()A.0 B.1C.2D.3(3)设函数f(x)是定义在R上的奇函数,当x>0时,f(x)=e x+x—3,则f(x)的零点个数为()A.1B.2C.3D.4(1)B(2)D(3)C[(1)由f(x)=2sin x—sin 2x=2sin x—2sin x cos x=2sin x·(1—cos x)=0得sin x=0或cos x=1,∴x=kπ,k∈Z,又∵x∈[0,2π],∴x=0,π,2π,即零点有3个,故选B.(2)依题意,在考虑x>0时可以画出函数y=ln x与y=x2—2x的图象(如图),可知两个函数的图象有两个交点,当x≤0时,函数f(x)=2x+1与x轴只有一个交点,综上,函数f(x)有3个零点.故选D.(3)因为函数f(x)是定义域为R的奇函数,所以f(0)=0,即x=0是函数f(x)的1个零点.当x>0时,令f(x)=e x+x—3=0,则e x=—x+3,分别画出函数y=e x和y=—x+3的图象,如图所示,两函数图象有1个交点,所以函数f(x)有1个零点.根据对称性知,当x<0时,函数f(x)也有1个零点.综上所述,f(x)的零点个数为3.](1)利用函数的零点存在性定理时,不仅要求函数的图象在区间[a,b]上是连续不断的曲线,且f(a)f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(2)图象法求函数零点个数的关键是正确画出函数的图象.在画函数的图象时,常利用函数的性质,如周期性、对称性等,同时还要注意函数定义域的限制.1.函数f(x)=2x|log0.5x|—1的零点个数为()A.1B.2C.3D.4B[令f(x)=2x|log0.5x|—1=0,可得|log0.5x|=错误!错误!.设g(x)=|log0.5x|,h(x)=错误!错误!.在同一坐标系下分别画出函数g(x),h(x)的图象,可以发现两个函数图象一定有2个交点,因此函数f(x)有2个零点.故选B.]2.已知函数f(x)=错误!若f(0)=—2,f(—1)=1,则函数g(x)=f(x)+x的零点个数为________.3[依题意得错误!由此解得错误!由g(x)=0得f(x)+x=0,该方程等价于错误!1或错误!2解1得x=2,解2得x=—1或x=—2.因此,函数g(x)=f(x)+x的零点个数为3.]考点3函数零点的应用根据函数零点的情况求参数的3种常用方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.根据函数零点个数求参数已知函数f(x)=|x2+3x|,x∈R,若方程f(x)—a|x—1|=0恰有4个互异的实数根,则实数a的取值范围是________.(0,1)∪(9,+∞)[设y1=f(x)=|x2+3x|,y2=a|x—1|,在同一直角坐标系中作出y1=|x2+3x|,y2=a|x—1|的图象如图所示.由图可知f(x)—a|x—1|=0有4个互异的实数根等价于y1=|x2+3x|与y2=a|x—1|的图象有4个不同的交点且4个交点的横坐标都小于1,所以错误!有两组不同解,消去y得x2+(3—a)x+a=0有两个不等实根,所以Δ=(3—a)2—4a>0,即a2—10a+9>0,解得a<1或a>9.又由图象得a>0,∴0<a<1或a>9.]由函数的零点个数求参数的值或范围的策略已知函数的零点个数,一般利用数形结合思想转化为两个函数图象的交点个数,这时图形一定要准确,这种数形结合的方法能够帮助我们直观解题.根据函数有无零点求参数已知函数f(x)=错误!则使函数g(x)=f(x)+x—m有零点的实数m的取值范围是________.(—∞,0]∪(1,+∞)[函数g(x)=f(x)+x—m的零点就是方程f(x)+x=m的根,画出h(x)=f(x)+x=错误!的大致图象(图略).观察它与直线y=m的交点,得知当m≤0或m>1时,有交点,即函数g(x)=f(x)+x—m有零点.]函数有无零点问题⇔函数图象与x轴有无公共点问题.根据零点的范围求参数若函数f(x)=(m—2)x2+mx+(2m+1)的两个零点分别在区间(—1,0)和区间(1,2)内,则m的取值范围是________.错误![依题意,结合函数f(x)的图象分析可知m需满足错误!即错误!解得错误!<m<错误!.]此类问题多转化为讨论区间端点处函数值的符号求解.1.函数f(x)=2x—错误!—a的一个零点在区间(1,2)内,则实数a的取值范围是()A.(1,3)B.(1,2)C.(0,3)D.(0,2)C[因为f(x)在(0,+∞)上是增函数,则由题意得f(1)·f(2)=(0—a)(3—a)<0,解得0<a<3,故选C.]2.方程log错误!(a—2x)=2+x有解,则a的最小值为________.1[若方程log错误!(a—2x)=2+x有解,则错误!错误!=a—2x有解,即错误!错误!错误!+2x=a有解,因为错误!错误!错误!+2x≥1,故a的最小值为1.]3.已知函数f(x)=若关于x的方程f(x)=k有三个不同的实根,则实数k的取值范围是________.(—1,0)[关于x的方程f(x)=k有三个不同的实根,等价于函数y1=f(x)与函数y2=k的图象有三个不同的交点,作出函数的图象如图所示,由图可知实数k的取值范围是(—1,0).]。
《课堂新坐标》高考数学一轮总复习课件:第二章 第八节 函数与方程(共33张PPT)

2+4 确度 ε=0.01,取区间(2,4)的中点 x1= 2 =3,计算
得 f(2)·f(x1)<0,则此时零点 x0 所在的区间为( )
A.(2,4)
B.(3,4)
探究·提知能
C.(2,3)
D.(2.5,3)
课后作
【解析】 由零点存在性定理知x0∈(2,3),故选C.
【答案】 C
菜单
新课标 ·文科数学(广东专用)
菜单
新课标 ·文科数学(广东专用)
Δ=b2-4ac
落实·固基础
Δ>0
二次函数 y=ax2+bx+c
(a>0)的图象
Δ=0
Δ<0
高考体验·明
探究·提知能与x轴的交点 零点个数
_(_x_1,___0_),___(x_2_,__0__) __(_x_1,___0_)_
2
1
无交点 课后作 0
菜单
新课标 ·文科数学(广东专用)
菜单
新课标 ·文科数学(广东专用)
落实·固基础
1.解答本题一要从图表中寻找数量信息,二要注 高考体验·明 意“精确度”的含义,切不可与“精确到”混淆.
2.(1)用二分法求函数零点的近似解必须满足①y
=f(x)的图象在[a,b]内连续不间断,②f(a)·f(b)<0.(2)
在第一步中,尽量使区间长度缩短,以减少计算量及计
落实·固基础
新课标 ·文科数学(广东专用)
第八节 函数与方程
高考体验·明
探究·提知能 菜单
课后作
新课标 ·文科数学(广东专用)
落实·固基础 1.函数零点
高考体验·明
(1)定义:对于函数y=f(x)(x∈D),把使____f_(x_)_=_0___成
高考数学一轮复习 第二章 函数、导数及其应用 2.1 函数及其表示课件
12/11/2021
第二十九页,共四十六页。
考点三 分段函数
命题方向 1 分段函数求值问题
x+1,x≥0,
【例 5】 (1)设函数 f(x)=21x,x<0,
则 f(f(-1))=( D )
A.32
B. 2+1
C.1
D.3
(2)已知函数 f(x)=2fxx,-x1<2,,x≥2,
7 则 f(log27)=____2____.
12/11/2021
第三十页,共四十六页。
【解析】 (1)由题意可得 f(-1)=21-1=2,∴f(f(-1))=f(2) =3,故选 D.
(2)因为 2<log27<3,所以 1<log27-1<2, 所以 f(log27)=f(log27-1)=2log27-1 =2log27 ÷2=72.
12/11/2021
第九页,共四十六页。
解析:(1)错误.函数 y=1 的定义域为 R,而 y=x0 的定义 域为{x|x≠0},其定义域不同,故不是同一函数.
(2)错误.值域 C⊆B,不一定有 C=B.
(3)错误.f(x)= x-3+ 2-x中 x 不存在. (4)错误.当两个函数的定义域、对应法则均对应相同时, 才是相等函数.
函数的性质有很重要的作用.
12/11/2021
第三页,共四十六页。
01知识梳理(shūlǐ)·诊断自测 03微突破·提升素养
02考点(kǎo diǎn)探究·明晰 规律
课时(kèshí)作业
12/11/2021
第四页,共四十六页。
01 知识梳理 诊断自测
课前热身 稳固根基
12/11/2021
第五页,共四十六页。
2021版高考数学一轮复习 第二章 函数 2.4 函数性质的综合问题教学案 苏教版
第四节函数性质的综合问题考点1 函数的单调性与奇偶性函数的单调性与奇偶性的综合问题解题思路(1)解决比较大小、最值问题应充分利用奇函数在关于原点对称的两个区间上具有相同的单调性,偶函数在关于原点对称的两个区间上具有相反的单调性.(2)解决不等式问题时一定要充分利用已知的条件,把已知不等式转化成f(x)>f(x2)或f(x1)<f(x2)的形式,再根据函数的奇偶性与单调性,列1出不等式(组),要注意函数定义域对参数的影响.(1)(2019·全国卷Ⅲ)设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则( )(2)(2017·全国卷Ⅰ)函数f(x)在(-∞,+∞)上单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是()A.[-2,2] B.[-1,1]C.[0,4] D.[1,3](1)C(2)D[(1)∵f(x)是定义域为R的偶函数,∴f(-x)=f(x).∴f错误!=f(-log34)=f(log34).又∵log34>log33=1,且1>2错误!>2错误!>0,∴log34>2错误!>2错误!>0.∵f(x)在(0,+∞)上单调递减,∴f(2错误!)>f(2错误!)>f(log34)=f错误!。
故选C。
(2)∵f(x)为奇函数,∴f(-x)=-f(x).∵f(1)=-1,∴f(-1)=-f(1)=1.故由-1≤f(x-2)≤1,得f(1)≤f(x-2)≤f(-1).又f(x)在(-∞,+∞)上单调递减,∴-1≤x-2≤1,∴1≤x≤3。
][逆向问题]设f(x)是定义在[-2b,3+b]上的偶函数,且在[-2b,0]上为增函数,则f(x-1)≥f(3)的解集为( )A.[-3,3] B.[-2,4]C.[-1,5] D.[0,6]B[因为f(x)是定义在[-2b,3+b]上的偶函数,所以有-2b+3+b=0,解得b=3,由函数f(x)在[-6,0]上为增函数,得f(x)在(0,6]上为减函数,故f(x-1)≥f(3)⇒f(|x-1|)≥f(3)⇒|x-1|≤3,故-2≤x≤4.](1)函数值的大小比较问题,可以利用奇偶性把不在同一单调区间上的两个或多个自变量的函数值转化到同一单调区间上,再利用其单调性比较大小.(2)对于抽象函数不等式的求解,应变形为f(x1)>f(x2)的形式,再结合单调性脱去法则“f"变成常规不等式,如x1<x2(或x1>x2)求解.1。
高考数学一轮复习教案(含答案):第2章 第12节 导数与函数的极值、最值
第十二节导数与函数的极值、最值[考纲传真] 1.了解函数在某点取得极值的必要条件和充分条件.2.会用导数求函数的极大值、极小值(其中多项式函数不超过三次).3.会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次).1.函数的极值与导数的关系(1)函数的极小值与极小值点若函数f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数的极小值点,f(a)叫做函数的极小值.(2)函数的极大值与极大值点若函数f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数的极大值点,f(b)叫做函数的极大值.2.函数的最值与导数的关系(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.[常用结论]对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数的极大值一定比极小值大.()(2)对可导函数f(x),f′(x0)=0是x0为极值点的充要条件.()(3)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.()(4)x=0是函数f(x)=x3的极值点. ()[答案](1)×(2)×(3)√(4)×2.(教材改编)函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内极小值点的个数为()A.1B.2C.3D.4A[导函数f′(x)的图象与x轴的交点中,左侧图象在x轴下方,右侧图象在x轴上方的只有一个,所以f(x)在区间(a,b)内有一个极小值点.]3.设函数f(x)=2x+ln x,则()A.x=12为f(x)的极大值点B.x=12为f(x)的极小值点C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点D[函数f(x)的定义域为(0,+∞),f′(x)=1x-2x2=x-2x2,令f′(x)=0得x=2,又0<x<2时,f′(x)<0,x>2时,f′(x)>0.因此x=2为f(x)的极小值点,故选D.]4.已知a为函数f(x)=x3-12x的极小值点,则a=()A.-4 B.-2 C.4 D.2D[由题意得f′(x)=3x2-12,令f′(x)=0得x=±2,∴当x<-2或x>2时,f ′(x )>0;当-2<x <2时,f ′(x )<0,∴f (x )在(-∞,-2)上为增函数,在(-2,2)上为减函数,在(2,+∞)上为增函数.∴f (x )在x =2处取得极小值,∴a =2.]5.函数y =2x 3-2x 2在区间[-1,2]上的最大值是________.8 [y ′=6x 2-4x ,令y ′=0,得x =0或x =23.∵f (-1)=-4,f (0)=0,f ⎝ ⎛⎭⎪⎫23=-827, f (2)=8,∴最大值为8.]【例1】 设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)D [由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值.]►考法2 根据函数的解析式求极值【例2】 已知函数f (x )=ln x -ax (a ∈R ).(1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.[解] (1)当a =12时,f (x )=ln x -12x ,函数的定义域为(0,+∞)且f ′(x )=1x -12=2-x2x ,令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表.故f (x )极大值(2)由(1)知,函数的定义域为(0,+∞),f ′(x )=1x -a =1-ax x (x >0),当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数在(0,+∞)上单调递增,此时函数在定义域上无极值点;当a >0时,当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0, 当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0, 故函数在x =1a 处有极大值.综上所述,当a ≤0时,函数在定义域上无极值点,当a >0时,函数有一个极大值点.►考法3 已知函数的极值求参数【例3】 (1)(2020·成都模拟)若函数f (x )=(x 2+ax +3)e x 在(0,+∞)上有且仅有一个极值点,则实数a 的取值范围是( )A .(-∞,-22]B .(-∞,-22)C .(-∞,-3]D .(-∞,-3)(2)若函数f (x )=x (x -a )2在x =2处取得极小值,则a =________.(1)C (2)2 [(1)f ′(x )=(2x +a )e x +(x 2+ax +3)e x =[x 2+(a +2)x +a +3]e x . 令g (x )=x 2+(a +2)x +a +3,由题意知⎩⎪⎨⎪⎧ -a +22>0,g (0)≤0或⎩⎪⎨⎪⎧ -a +22≤0,g (0)<0, 即⎩⎪⎨⎪⎧ -a +22>0,a +3≤0或⎩⎪⎨⎪⎧ -a +22≤0,a +3<0,解得a ≤-3,故选C.(2)f (x )=x (x -a )2=x 3-2ax 2+a 2x ,∴f ′(x )=3x 2-4ax +a 2.由f ′(2)=12-8a +a 2=0,解得a =2或a =6.当a =2时,f ′(x )=3x 2-8x +4=(x -2)(3x -2),函数在x =2处取得极小值,符合题意;当a =6时,f ′(x )=3x 2-24x +36=3(x -2)(x -6),函数在x =2处取得极大值,不符合题意,∴a =2.](1)当a =1,且函数图象过点(0,1)时,求f (x )的极小值.(2)若f (x )在(-∞,+∞)上无极值点,求a 的取值范围.[解] f ′(x )=3ax 2-4x +1.(1)函数图象过点(0,1)时,有f (0)=c =1.当a =1时,f ′(x )=3x 2-4x +1,令f ′(x )>0,解得x <13或x >1;令f ′(x )<0,解得13<x <1.所以函数f (x )在⎝ ⎛⎭⎪⎫-∞,13和(1,+∞)上单调递增; 在 ⎝ ⎛⎭⎪⎫13,1上单调递减,极小值是f (1)=13-2×12+1+1=1.(2)若f (x )在(-∞,+∞)上无极值点,则f (x )在(-∞,+∞)上是单调函数,即f ′(x )≥0或f ′(x )≤0恒成立.①当a =0时,f ′(x )=-4x +1,显然不满足条件;②当a ≠0时,f ′(x )≥0或f ′(x )≤0恒成立的充要条件是Δ=(-4)2-4×3a ×1≤0,即16-12a ≤0,解得a ≥43.综上,a 的取值范围为⎣⎢⎡⎭⎪⎫43,+∞.【例4】 (1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值.[解] (1)由f (x )=(x -k )e x ,得f ′(x )=(x -k +1)e x ,令f ′(x )=0,得x =k -1.f (x )与f ′(x )的变化情况如下:所以,f (x )(k -1,+∞).(2)当k -1≤0,即k ≤1时,函数f (x )在[0,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (0)=-k ,当0<k -1<1,即1<k <2时,由(1)知f (x )在[0,k -1)上单调递减,在(k -1,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (k -1)=-e k -1.当k -1≥1,即k ≥2时,函数f (x )在[0,1]上单调递减,所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e.综上可知,当k ≤1时,f (x )min =-k ;当1<k <2时,f (x )min =-e k -1;当k ≥2时,f (x )min =(1-k )e.已知函数f (x )=1-x x +k ln x ,k <1e ,求函数f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最大值和最小值.[解] 因为f (x )=1-x x +k ln x ,所以f ′(x )=-x -(1-x )x 2+k x =kx -1x 2. (1)若k =0,则f ′(x )=-1x 2在⎣⎢⎡⎦⎥⎤1e ,e 上恒有f ′(x )<0,所以f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上单调递减.所以f (x )min =f (e)=1-e e ,f (x )ma x =f ⎝ ⎛⎭⎪⎫1e =e -1. (2)若k ≠0,f ′(x )=kx -1x 2=k ⎝ ⎛⎭⎪⎫x -1k x 2.①若k <0,则在⎣⎢⎡⎦⎥⎤1e ,e 上恒有k ⎝ ⎛⎭⎪⎫x -1k x 2<0, 所以f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上单调递减, 所以f (x )min =f (e)=1-e e +k ln e =1e +k -1,f (x )ma x =f ⎝ ⎛⎭⎪⎫1e =e -k -1. ②若k >0,由k <1e ,得1k >e ,则x -1k <0,所以k ⎝ ⎛⎭⎪⎫x -1k x 2<0,所以f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上单调递减. 所以f (x )min =f (e)=1-e e +k ln e =1e +k -1,f (x )ma x =f ⎝ ⎛⎭⎪⎫1e =e -k -1. 综上,k <1e 时,f (x )min =1e +k -1,f (x )ma x =e -k -1.【例5】 已知函数f (x )=e x(a >0)的导函数y =f ′(x )的两个零点为-3和0.(1)求f (x )的单调区间;(2)若f (x )的极小值为-e 3,求f (x )在区间[-5,+∞)上的最大值.[解] (1)f ′(x )=(2ax +b )e x -(ax 2+bx +c )e x(e x )2=-ax 2+(2a -b )x +b -c e x, 令g (x )=-ax 2+(2a -b )x +b -c ,因为e x >0,所以y =f ′(x )的零点就是g (x )=-ax 2+(2a -b )x +b -c 的零点, 且f ′(x )与g (x )符号相同.又因为a >0,所以当-3<x <0时,g (x )>0,即f ′(x )>0,当x <-3或x >0时,g (x )<0,即f ′(x )<0,所以f (x )的单调递增区间是(-3,0),单调递减区间是(-∞,-3),(0,+∞).(2)由(1)知,x =-3是f (x )的极小值点,所以有⎩⎪⎨⎪⎧ 9a -3b +c e -3=-e 3,g (0)=b -c =0,g (-3)=-9a -3(2a -b )+b -c =0,解得a =1,b =5,c =5,所以f (x )=x 2+5x +5e x. 因为f (x )的单调递增区间是(-3,0),单调递减区间是(-∞,-3),(0,+∞), 所以f (0)=5为函数f (x )的极大值,故f (x )在区间[-5,+∞)上的最大值取f (-5)和f (0)中的最大者,而f (-5)=5e-5=5e 5>5=f (0), 所以函数f (x )在区间[-5,+∞)上的最大值是5e 5.若函数f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范围是________.[-3,0) [由题意,得f ′(x )=x 2+2x =x (x +2),故f (x )在(-∞,-2),(0,+∞)上是增函数,在(-2,0)上是减函数,作出其图象如图所示,令13x 3+x 2-23=-23得,x =0或x =-3,则结合图象可知,⎩⎨⎧-3≤a <0,a +5>0,解得a ∈[-3,0).]1.(2020·全国卷Ⅱ)若x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,则f (x )的极小值为( )A .-1B .-2e -3C .5e -3D .1A [函数f (x )=(x 2+ax -1)e x -1,则f ′(x )=(2x +a )e x -1+(x 2+ax -1)·e x -1=e x -1·[x 2+(a +2)x +a -1]. 由x =-2是函数f (x )的极值点得f ′(-2)=e -3·(4-2a -4+a -1)=(-a -1)·e -3=0,所以a =-1.所以f (x )=(x 2-x -1)e x -1,f ′(x )=e x -1·(x 2+x -2).由e x -1>0恒成立,得x =-2或x =1时,f ′(x )=0,且x <-2时,f ′(x )>0; -2<x <1时,f ′(x )<0;x >1时,f ′(x )>0.所以x =1是函数f (x )的极小值点.所以函数f (x )的极小值为f (1)=-1.故选A.]2.(2020·全国卷Ⅱ)已知函数f (x )=ln x +a (1-x ).(1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.[解] (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a .若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0; 当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0. 所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;第11页 共11页 当a >0时,f (x )在x =1a 处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln ⎝ ⎛⎭⎪⎫1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1. 因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增,g (1)=0. 于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0.因此,a 的取值范围是(0,1).。
高考数学(文)大一轮复习课件:第2章 第5节 指数函数
[ 变式训练 2] (1)函数 f(x)=ax b 的图象如图 251,其中 a,b 为常数,则下
-
列结论正确的是(
) 【导学号:31222045】
A.a>1,b<0 B.a>1,b>0 C.0<a<1,b>0 D.0<a<1,b<0 (2)方程 2x=2-x 的解的个数是________.
图 251
(1)D (2)1 [(1)由 f(x)=ax b 的图象可以观察出, 函数 f(x)=ax b 在定义域上
1.根式的性质
a (1)( a)n=__.
n
a (2)当 n 为奇数时, an=__.
n n
(3)当 n 为偶数时,
aa≥0, n a =|a|= -aa<0.
无意义 . (4)负数的偶次方根________ 都等于零 . (5)零的任何次方根__________
2.有理指数幂 (1)分数指数幂
4.(教材改编)已知 0.2m<0.2n,则 m________n(填“>”或“<”).
> [设 f(x)=0.2x,f(x)为减函数, 由已知 f(m)<f(n),∴m>n.]
5.指数函数 y=(2-a)x 在定义域内是减函数,则 a 的取值范围是________. (1,2) [由题意知 0<2-a<1,解得 1<a<2.]
x2+1
(a>1)的值域是(0,+∞).(
[ 答案] (1)× (2)× (3)× (4)×
2.化简[(-2)6] -(-1)0 的结果为( A.-9 C.-10
)
B.7 D.9
B [原式=(26) -1=8-1=7.]
3.函数 y=ax-a(a>0,且 a≠1)的图象可能是(
) 【导学号:31222044】
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010届高三数学一轮复习精品教案――函数(附高考预测) 一、本章知识结构:
二、考点回顾 1.理解函数的概念,了解映射的概念. 2. 了解函数的单调性和奇偶性的概念,掌握判断一些简单函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图像的绘制过程. 3.了解反函数的概念及互为反函数的函数图象间的关系.
4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 7、掌握函数零点的概念,用二分法求函数的近似解,会应用函数知识解决一些实际问题。 三、经典例题剖析 考点一:函数的性质与图象
函数的三要素 函数的表示法 函数的性质 反函数
函数的应用 初等函数
基本初等函数: 幂函数 ; 二次函数 指数函数; 对数函数
对数函数 指数函数
映射 函数 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫.
复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是:
1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性.
2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法.
3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力.
函数的图象是函数性质的直观载体,函数的性质可以通过函数的图像直观地表现出来。 因此,掌握函数的图像是学好函数性质的关键,这也正是“数形结合思想”的体现。复习函数图像要注意以下方面。
1.掌握描绘函数图象的两种基本方法——描点法和图象变换法. 2.会利用函数图象,进一步研究函数的性质,解决方程、不等式中的问题. 3.用数形结合的思想、分类讨论的思想和转化变换的思想分析解决数学问题. 4.掌握知识之间的联系,进一步培养观察、分析、归纳、概括和综合分析能力. 例1、(2008广东汕头二模)设集合A={x|x<-1或x>1},B={x|log2x>0},则A∩B=( ) A.{x| x>1} B.{x|x>0} C.{x|x<-1} D.{x|x<-1或x>1} 【解析】:由集合B得x>1 , A∩B={x| x>1},故选(A) 。 [点评]本题主要考查对数函数图象的性质,是函数与集合结合的试题,难度不大,属基础题。 例2、(2008广东惠州一模) “龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢 爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S1、S2分别表示乌龟和兔子所行的路程,t为时间,则下图与故事情节相吻合的是 ( )
【解析】:选(B),在(B)中,乌龟到达终点时,兔子在同一时间的路程比乌龟短。
[点评]函数图象是近年高考的热点的试题,考查函数图象的实际应用,考查学生解决问题、分析问题的能力,在复习时应引起重视。
例3、(2008年广东惠州一模)设 11xfxx,又记 11,,1,2,,kkfxfxfxffxk则2008fx ( )
A.11xx; B.11xx; C.x; D.1x; 【解析】:本题考查周期函数的运算。1121111,11fxfxfxxfx, 32
34
23
111,111ffxfxfxxfxf
,据此,414211,1nnxfxfxxx,
4341,1nnxfxfxxx
,因2008为4n型,故选C.
[点评]本题考查复合函数的求法,以及是函数周期性,考查学生观察问题的能力,通过观察,关于总结、归纳,要有从特殊到一般的思想。
例4、(2008福建文科高考试题)函数3()sin1()fxxxxR,若()2fa,则()fa的值为 ( ) A.3 B.0 C.-1 D.-2
【解析】:3()1sinfxxx为奇函数,又()2fa()11fa
故()11fa即()0fa.
A B C D [点评]本题考查函数的奇偶性,考查学生观察问题的能力,通过观察能够发现如何通过变换式子与学过的知识相联系,使问题迎刃而解。
例5、(2008广东高考试题)设kR,函数111()11xxfxxx,,≥, ()()Fxfxkx,xR,试讨论函数()Fx的单调性.
【解析】1,1,1()()1,1,kxxxFxfxkxxkxx 21,1,(1)'()1,1,21kxxFxkxx 对于1()(1)1Fxkxxx, 当0k时,函数()Fx在(,1)上是增函数;
当0k时,函数()Fx在1(,1)k上是减函数,在1(1,1)k上是增函数;
对于1()(1)21Fxkxx, 当0k时,函数()Fx在1,上是减函数; 当0k时,函数()Fx在211,14k上是减函数,在211,4k上是增函数。
[点评]在处理函数单调性的证明时,可以充分利用基本函数的性质直接处理,但学习了
导数后,函数的单调性就经常与函数的导数联系在一起,利用导数的性质来处理函数的单调进性,显得更加简单、方便。
考点二:二次函数 二次函数是中学代数的基本内容之一,它既简单又具有丰富的内涵和外延. 作为最基本的初等函数,可以以它为素材来研究函数的单调性、奇偶性、最值等性质,还可建立起函数、方程、不等式之间的有机联系;作为抛物线,可以联系其它平面曲线讨论相互之间关系. 这些纵横联系,使得围绕二次函数可以编制出层出不穷、灵活多变的数学问题. 同时,有关 二次函数的内容又与近、现代数学发展紧密联系,是学生进入高校继续深造的重要知识基础. 因此,从这个意义上说,有关二次函数的问题在高考中频繁出现,也就不足为奇了. 学习二次函数,可以从两个方面入手:一是解析式,二是图像特征. 从解析式出发,可以进行纯粹的代数推理,这种代数推理、论证的能力反映出一个人的基本数学素养;从图像特征出发,可以实现数与形的自然结合,这正是中学数学中一种非常重要的思想方法. 例6、设二次函数fxaxbxca20,方程fxx0的两个根xx12,满足0112xxa. 当xx01,时,证明.
【解析】:在已知方程fxx0两根的情况下,根据函数与方程根的关系,可以写出函数xxf的表达式,从而得到函数)(xf的表达式. 证明:由题意可知))(()(21xxxxaxxf.
axxx1021,
∴ 0))((21xxxxa, ∴ 当xx01,时,xxf)(. 又)1)(())(()(211211axaxxxxxxxxxaxxf, ,011,0221axaxaxxx且 ∴ 1)(xxf, 综上可知,所给问题获证. [点评]:本题主要利用函数与方程根的关系,写出二次函数的零点式.21xxxxay。
例7、(2007湖北文科高考试题)设二次函数2()fxxaxa,方程()0fxx的两根1x和2x满足1201xx. (I)求实数a的取值范围; (II)试比较(0)(1)(0)fff与116的大小.并说明理由.
【解析】法1:(Ⅰ)令2()()(1)gxfxxxaxa, 则由题意可得01012(1)0(0)0agg,,,,011322322aaaa,,,或,0322a. 故所求实数a的取值范围是(0322),. (II)2(0)(1)(0)(0)(1)2fffgga,令2()2haa. 当0a时,()ha单调增加, 当0322a时,20()(322)2(322)2(17122)hah
1121617122
,即1(0)(1)(0)16fff.
法2:(I)同解法1. (II)2(0)(1)(0)(0)(1)2fffgga,由(I)知0322a,
41122170a∴2.又4210a,于是
221112(321)(421)(421)0161616aaaa,
即212016a,故1(0)(1)(0)16fff. 法3:(I)方程()0fxx2(1)0xaxa,由韦达定理得
121xxa,12xxa,于是121212121200010(1)(1)0(1)(1)0xxxxxxxxxx,,,,
01322322aaaa,,或0322a
.
故所求实数a的取值范围是(0322),. (II)依题意可设12()()()gxxxxx,则由1201xx,得
12121122(0)(1)(0)(0)(1)(1)(1)[(1)][(1)]fffggxxxxxxxx