北林区第三高级中学2018-2019学年上学期高二数学12月月考试题含解析

合集下载

通州区第三高级中学2018-2019学年上学期高二数学12月月考试题含解析(1)

通州区第三高级中学2018-2019学年上学期高二数学12月月考试题含解析(1)

通州区第三高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是( ) A .B .y=x 2C .y=﹣x|x|D .y=x ﹣22. 若函数y=x 2+(2a ﹣1)x+1在区间(﹣∞,2]上是减函数,则实数a 的取值范围是( ) A .[﹣,+∞) B .(﹣∞,﹣] C .[,+∞)D .(﹣∞,]3. 已知函数(5)2()e22()2xf x x f x x f x x +>⎧⎪=-≤≤⎨⎪-<-⎩,则(2016)f -=( ) A .2e B .e C .1 D .1e【命题意图】本题考查分段函数的求值,意在考查分类讨论思想与计算能力.4. 已知圆C :x 2+y 2﹣2x=1,直线l :y=k (x ﹣1)+1,则l 与C 的位置关系是( ) A .一定相离 B .一定相切C .相交且一定不过圆心D .相交且可能过圆心 5. 已知函数f (x )=Asin (ωx﹣)(A >0,ω>0)的部分图象如图所示,△EFG 是边长为2 的等边三角形,为了得到g (x )=Asin ωx 的图象,只需将f (x )的图象( )A.向左平移个长度单位 B.向右平移个长度单位 C.向左平移个长度单位 D.向右平移个长度单位6. 若直线:1l y kx =-与曲线C :1()1ex f x x =-+没有公共点,则实数k 的最大值为( ) A .-1 B .12C .1 D【命题意图】考查直线与函数图象的位置关系、函数存在定理,意在考查逻辑思维能力、等价转化能力、运算求解能力.7.已知平面向量=(1,2),=(﹣2,m),且∥,则=( )A .(﹣5,﹣10)B .(﹣4,﹣8)C .(﹣3,﹣6)D .(﹣2,﹣4)8. 将函数()sin 2y x ϕ=+(0ϕ>)的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的最小值为( ) (A )43π ( B ) 83π (C ) 4π (D ) 8π 9. 已知全集R U =,集合{|||1,}A x x x R =≤∈,集合{|21,}x B x x R =≤∈,则集合U A C B 为( ) A.]1,1[- B.]1,0[ C.]1,0( D.)0,1[-【命题意图】本题考查集合的运算等基础知识,意在考查运算求解能力.10.若,,且,则λ与μ的值分别为( )A .B .5,2C .D .﹣5,﹣211.PM 2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,如图是据某地某日早7点至晚8点甲、乙两个PM 2.5监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是( )A .甲B .乙C .甲乙相等D .无法确定12.函数y=(x 2﹣5x+6)的单调减区间为( )A .(,+∞)B .(3,+∞)C .(﹣∞,)D .(﹣∞,2)二、填空题13.函数f (x )=a x +4的图象恒过定点P ,则P 点坐标是 .14在这段时间内,该车每100千米平均耗油量为 升.15x 和所支出的维修费用y (万元)的统计资料如表:根据上表数据可得y 与x 之间的线性回归方程=0.7x+,据此模型估计,该机器使用年限为14年时的维修费用约为 万元.16.设,y x 满足约束条件2110y x xy y ≤⎧⎪+≤⎨⎪+≥⎩,则3z x y =+的最大值是____________.17.设a 抛掷一枚骰子得到的点数,则方程x 2+ax+a=0有两个不等实数根的概率为 .18.已知点M (x ,y )满足,当a >0,b >0时,若ax+by 的最大值为12,则+的最小值是 .三、解答题19.(本小题满分12分)已知数列{n a }的前n 项和为n S ,且满足*)(2N n a n S n n ∈=+. (1)证明:数列}1{+n a 为等比数列,并求数列{n a }的通项公式;(2)数列{n b }满足*))(1(log 2N n a a b nn n ∈+⋅=,其前n 项和为n T ,试求满足201522>++nn T n 的最小正整数n .【命题意图】本题是综合考察等比数列及其前n 项和性质的问题,其中对逻辑推理的要求很高.20.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,计算得x i =80,y i =20,x i y i =184,x i 2=720.(1)求家庭的月储蓄对月收入的回归方程; (2)判断月收入与月储蓄之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.21.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知tanA=,c=.(Ⅰ)求;(Ⅱ)若三角形△ABC的面积为,求角C.22.已知命题p:x2﹣2x+a≥0在R上恒成立,命题q:若p或q为真,p且q为假,求实数a的取值范围.23.从5名女同学和4名男同学中选出4人参加演讲比赛,(1)男、女同学各2名,有多少种不同选法?(2)男、女同学分别至少有1名,且男同学甲与女同学乙不能同时选出,有多少种不同选法?24.已知函数f(x)=ax2﹣2lnx.(Ⅰ)若f(x)在x=e处取得极值,求a的值;(Ⅱ)若x∈(0,e],求f(x)的单调区间;(Ⅲ)设a>,g(x)=﹣5+ln,∃x1,x2∈(0,e],使得|f(x1)﹣g(x2)|<9成立,求a的取值范围.通州区第三高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】D 【解析】解:函数为非奇非偶函数,不满足条件;函数y=x 2为偶函数,但在区间(0,+∞)上单调递增,不满足条件; 函数y=﹣x|x|为奇函数,不满足条件;函数y=x ﹣2为偶函数,在区间(0,+∞)上单调递减,满足条件; 故选:D【点评】本题考查的知识点是函数的单调性与函数的奇偶性,是函数图象和性质的综合应用,难度不大,属于基础题.2. 【答案】B【解析】解:∵函数y=x 2+(2a ﹣1)x+1的图象是方向朝上,以直线x=为对称轴的抛物线又∵函数在区间(﹣∞,2]上是减函数,故2≤解得a ≤﹣ 故选B .3. 【答案】B【解析】(2016)(2016)(54031)(1)f f f f e -==⨯+==,故选B . 4. 【答案】C【解析】【分析】将圆C 方程化为标准方程,找出圆心C 坐标与半径r ,利用点到直线的距离公式表示出圆心到直线的距离d ,与r 比较大小即可得到结果.【解答】解:圆C 方程化为标准方程得:(x ﹣1)2+y 2=2, ∴圆心C (1,0),半径r=,∵≥>1, ∴圆心到直线l 的距离d=<=r ,且圆心(1,0)不在直线l 上,∴直线l 与圆相交且一定不过圆心. 故选C5. 【答案】 A【解析】解:∵△EFG 是边长为2的正三角形,∴三角形的高为,即A=, 函数的周期T=2FG=4,即T==4,解得ω==,即f (x )=Asin ωx=sin(x﹣),g (x )=sin x ,由于f (x )=sin(x﹣)=sin[(x﹣)],故为了得到g (x )=Asin ωx 的图象,只需将f (x)的图象向左平移个长度单位. 故选:A .【点评】本题主要考查三角函数的图象和性质,利用函数的图象确定函数的解析式是解决本题的关键,属于中档题.6. 【答案】C【解析】令()()()()111e xg x f x kx k x =--=-+,则直线l :1y kx =-与曲线C :()y f x =没有公共点,等价于方程()0g x =在R 上没有实数解.假设1k >,此时()010g =>,1111101e k g k -⎛⎫=-+< ⎪-⎝⎭.又函数()g x 的图象连续不断,由零点存在定理,可知()0g x =在R 上至少有一解,与“方程()0g x =在R 上没有实数解”矛盾,故1k ≤.又1k =时,()10e xg x =>,知方程()0g x =在R 上没有实数解,所以k 的最大值为1,故选C .7. 【答案】B【解析】解:排除法:横坐标为2+(﹣6)=﹣4, 故选B .8. 【答案】B【解析】将函数()()sin 20y x ϕϕ=+>的图象沿x 轴向左平移8π个单位后,得到一个偶函数sin 2sin 284[()]()y x x ππϕϕ=++=++的图象,可得42ππϕ+=,求得ϕ的最小值为 4π,故选B .9. 【答案】C.【解析】由题意得,[11]A =-,,(,0]B =-∞,∴(0,1]U AC B =,故选C.10.【答案】A【解析】解:由,得.又,,∴,解得.故选:A.【点评】本题考查了平行向量与共线向量,考查向量的性质,大小和方向是向量的两个要素,分别是向量的代数特征和几何特征,借助于向量可以实现某些代数问题与几何问题的相互转化,该题是基础题.11.【答案】A【解析】解:根据茎叶图中的数据可知,甲地的数据都集中在0.06和0.07之间,数据分别比较稳定,而乙地的数据分布比较分散,不如甲地数据集中,∴甲地的方差较小.故选:A.【点评】本题考查茎叶图的识别和判断,根据茎叶图中数据分布情况,即可确定方差的大小,比较基础.12.【答案】B【解析】解:令t=x2﹣5x+6=(x﹣2)(x﹣3)>0,可得x<2,或x>3,故函数y=(x2﹣5x+6)的定义域为(﹣∞,2)∪(3,+∞).本题即求函数t在定义域(﹣∞,2)∪(3,+∞)上的增区间.结合二次函数的性质可得,函数t在(﹣∞,2)∪(3,+∞)上的增区间为(3,+∞),故选B.二、填空题13.【答案】(0,5).【解析】解:∵y=a x的图象恒过定点(0,1),而f(x)=a x+4的图象是把y=a x的图象向上平移4个单位得到的,∴函数f(x)=a x+4的图象恒过定点P(0,5),故答案为:(0,5).【点评】本题考查指数函数的性质,考查了函数图象的平移变换,是基础题.14.【答案】 8 升.【解析】解:由表格信息,得到该车加了48升的汽油,跑了600千米,所以该车每100千米平均耗油量48÷6=8. 故答案是:8.15.【答案】 7.5【解析】解:∵由表格可知=9, =4,∴这组数据的样本中心点是(9,4),根据样本中心点在线性回归直线=0.7x+上,∴4=0.7×9+,∴=﹣2.3,∴这组数据对应的线性回归方程是=0.7x ﹣2.3,∵x=14,∴=7.5,故答案为:7.5【点评】本题考查线性回归方程,考查样本中心点,做本题时要注意本题把利用最小二乘法来求线性回归方程的系数的过程省掉,只要求a 的值,这样使得题目简化,注意运算不要出错.16.【答案】73【解析】试题分析:画出可行域如下图所示,由图可知目标函数在点12,33A ⎛⎫⎪⎝⎭处取得最大值为73.考点:线性规划.17.【答案】.【解析】解:∵a是甲抛掷一枚骰子得到的点数,∴试验发生包含的事件数6,∵方程x2+ax+a=0 有两个不等实根,∴a2﹣4a>0,解得a>4,∵a是正整数,∴a=5,6,即满足条件的事件有2种结果,∴所求的概率是=,故答案为:【点评】本题考查等可能事件的概率,在解题过程中应用列举法来列举出所有的满足条件的事件数,是解题的关键.18.【答案】4.【解析】解:画出满足条件的平面区域,如图示:,由,解得:A (3,4),显然直线z=ax+by 过A (3,4)时z 取到最大值12,此时:3a+4b=12,即+=1,∴+=(+)(+)=2++≥2+2=4,当且仅当3a=4b 时“=”成立, 故答案为:4.【点评】本题考查了简单的线性规划,考查了利用基本不等式求最值,解答此题的关键是对“1”的灵活运用,是基础题.三、解答题19.【答案】【解析】(1)当111,12n a a =+=时,解得11a =. (1分)当2n ≥时,2n n S n a +=,① 11(1)2n n S n a --+-=,②①-②得,1122n n n a a a -+=-即121n n a a -=+, (3分) 即112(1)(2)n n a a n -+=+≥,又112a +=. 所以{}1n a +是以2为首项,2为公比的等比数列.即12n n a +=故21n n a =-(*n N ∈).(5分)20.【答案】【解析】解:(1)由题意,n=10,=x=8,=y i=2,i∴b==0.3,a=2﹣0.3×8=﹣0.4,∴y=0.3x﹣0.4;(2)∵b=0.3>0,∴y与x之间是正相关;(3)x=7时,y=0.3×7﹣0.4=1.7(千元).21.【答案】【解析】解:(Ⅰ)由题意知,tanA=,则=,即有sinA﹣sinAcosC=cosAsinC,所以sinA=sinAcosC+cosAsinC=sin(A+C)=sinB,由正弦定理,a=b,则=1;…(Ⅱ)因为三角形△ABC的面积为,a=b、c=,所以S=absinC=a2sinC=,则,①由余弦定理得,=,②由①②得,cosC+sinC=1,则2sin(C+)=1,sin(C+)=,又0<C<π,则C+<,即C+=,解得C=….【点评】本题考查正弦定理,三角形的面积公式,以及商的关系、两角和的正弦公式等,注意内角的范围,属于中档题.22.【答案】【解析】解:若P是真命题.则△=4﹣4a≤0∴a≥1;…(3分)若q为真命题,则方程x2+2ax+2﹣a=0有实根,∴△=4a2﹣4(2﹣a)≥0,即,a≥1或a≤﹣2,…(6分)依题意得,当p真q假时,得a∈ϕ;…(8分)当p假q真时,得a≤﹣2.…(10分)综上所述:a的取值范围为a≤﹣2.…(12分)【点评】本题考查复合函数的真假与构成其简单命题的真假的关系,解决此类问题应该先求出简单命题为真时参数的范围,属于基础题.23.【答案】【解析】解:(1)男、女同学各2名的选法有C42×C52=6×10=60种;(2)“男、女同学分别至少有1名”包括有“一男三女”,“二男二女”,“三男一女”,故选人种数为C41×C53+C42×C52+C43×C51=40+60+20=120.男同学甲与女同学乙同时选出的种数,由于已有两人,故再选两人即可,此两人可能是两男,一男一女,两女,故总的选法有C32+C41×C31+C42=21,故有120﹣21=99.24.【答案】【解析】解:(Ⅰ)f′(x)=2ax﹣=由已知f′(e)=2ae﹣=0,解得a=.经检验,a=符合题意.(Ⅱ)1)当a≤0时,f′(x)<0,∴f(x)在(0,e]上是减函数.2)当a>0时,①若<e,即,则f(x)在(0,)上是减函数,在(,e]上是增函数;②若≥e,即0<a≤,则f(x)在[0,e]上是减函数.综上所述,当a≤时,f(x)的减区间是(0,e],当a>时,f(x)的减区间是,增区间是.(Ⅲ)当时,由(Ⅱ)知f(x)的最小值是f()=1+lna;易知g(x)在(0,e]上的最大值是g(e)=﹣4﹣lna;注意到(1+lna)﹣(﹣4﹣lna)=5+2lna>0,故由题设知,解得<a<e2.故a的取值范围是(,e2)。

北辰区第三中学校2018-2019学年上学期高二数学12月月考试题含解析(1)

北辰区第三中学校2018-2019学年上学期高二数学12月月考试题含解析(1)

北辰区第三中学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知函数211,[0,)22()13,[,1]2x x f x x x ⎧+∈⎪⎪=⎨⎪∈⎪⎩,若存在常数使得方程()f x t =有两个不等的实根12,x x(12x x <),那么12()x f x ∙的取值范围为( )A .3[,1)4B.1[8 C .31[,)162 D .3[,3)82. 执行如图所示的程序,若输入的3x =,则输出的所有x 的值的和为( )A .243B .363C .729D .1092【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力.3. 已知函数f (x )=a x ﹣1+log a x 在区间[1,2]上的最大值和最小值之和为a ,则实数a 为( )A .B .C .2D .44. 设m 是实数,若函数f (x )=|x ﹣m|﹣|x ﹣1|是定义在R 上的奇函数,但不是偶函数,则下列关于函数f (x )的性质叙述正确的是( )A .只有减区间没有增区间B .是f (x )的增区间C .m=±1D .最小值为﹣35. 1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆ )C.1D. 1 【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.6. 已知x >1,则函数的最小值为( )A .4B .3C .2D .17. PM 2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,如图是据某地某日早7点至晚8点甲、乙两个PM 2.5监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是( )A .甲B .乙C .甲乙相等D .无法确定8. 函数f (x )=()x2﹣9的单调递减区间为( ) A .(﹣∞,0) B .(0,+∞)C .(﹣9,+∞)D .(﹣∞,﹣9)9. 已知命题:()(0x p f x a a =>且1)a ≠是单调增函数;命题5:(,)44q x ππ∀∈,sin cos x x >.则下列命题为真命题的是( )A .p q ∧B .p q ∨⌝ C. p q ⌝∧⌝ D .p q ⌝∧ 10.一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( )A. B .(4+π) C. D.11.已知函数()2sin()f x x ωϕ=+(0)2πϕ<<与y 轴的交点为(0,1),且图像上两对称轴之间的最小距离为2π,则使()()0f x t f x t +--+=成立的t 的最小值为( )1111] A .6π B .3π C .2πD .23π12.将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为( )A .1372B .2024C .3136D .4495二、填空题13.如图,正方形''''O A B C 的边长为1cm ,它是水平放置的一个平面图形的直观图,则原图的 周长为 .1111]14.设变量y x ,满足约束条件22022010x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩,则22(1)3(1)z a x a y =+-+的最小值是20-,则实数a =______.【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力. 15.若直线x ﹣y=1与直线(m+3)x+my ﹣8=0平行,则m= .16.设数列{a n }的前n 项和为S n ,已知数列{S n }是首项和公比都是3的等比数列,则{a n }的通项公式a n = .17.在平面直角坐标系中,(1,1)=-a ,(1,2)=b ,记{}(,)|M O M λμλμΩ==+a b ,其中O 为坐标原点,给出结论如下:①若(1,4)(,)λμ-∈Ω,则1λμ==;②对平面任意一点M ,都存在,λμ使得(,)M λμ∈Ω; ③若1λ=,则(,)λμΩ表示一条直线; ④{}(1,)(,2)(1,5)μλΩΩ=;⑤若0λ≥,0μ≥,且2λμ+=,则(,)λμΩ表示的一条线段且长度为 其中所有正确结论的序号是 .18.已知三棱锥ABC D -的四个顶点均在球O 的球面上,ABC ∆和DBC ∆所在的平面互相垂直,3=AB ,3=AC ,32===BD CD BC ,则球O 的表面积为 . 三、解答题19.已知函数f (x )=log 2(x ﹣3), (1)求f (51)﹣f (6)的值; (2)若f (x )≤0,求x 的取值范围.20.设{a n }是公比小于4的等比数列,S n 为数列{a n }的前n 项和.已知a 1=1,且a 1+3,3a 2,a 3+4构成等差数列.(1)求数列{a n }的通项公式;(2)令b n =lna 3n+1,n=12…求数列{b n }的前n 项和T n .21.设定义在(0,+∞)上的函数f (x )=ax++b (a >0)(Ⅰ)求f (x )的最小值;(Ⅱ)若曲线y=f (x )在点(1,f (1))处的切线方程为y=,求a ,b 的值.22.已知三棱柱ABC﹣A1B1C1,底面三角形ABC为正三角形,侧棱AA1⊥底面ABC,AB=2,AA1=4,E为AA1的中点,F为BC的中点(1)求证:直线AF∥平面BEC1(2)求A到平面BEC1的距离.23.(本小题满分12分)某校为了解高一新生对文理科的选择,对1 000名高一新生发放文理科选择调查表,统计知,有600名学生选择理科,400名学生选择文科.分别从选择理科和文科的学生随机各抽取20名学生的数学成绩得如下累计表:(1率分布直方图.24.【徐州市2018届高三上学期期中】已知函数(,是自然对数的底数). (1)若函数在区间上是单调减函数,求实数的取值范围;(2)求函数的极值;(3)设函数图象上任意一点处的切线为,求在轴上的截距的取值范围.北辰区第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】C 【解析】试题分析:由图可知存在常数,使得方程()f x t =有两上不等的实根,则314t <<,由1324x +=,可得14x =,由213x =,可得x =12111,422x x ≤<≤≤,即221143x ≤≤,则()212123133,162x f x x x ⎡⎫=⋅∈⎪⎢⎣⎭.故本题答案选C.考点:数形结合.【规律点睛】本题主要考查函数的图象与性质,及数形结合的数学思想方法.方程解的个数问题一般转化为两个常见的函数图象的交点个数问题来解决.要能熟练掌握几种基本函数图象,如二次函数,反比例函数,指数函数,对数函数,幂函数等.掌握平移变换,伸缩变换,对称变换,翻折变换,周期变换等常用的方法技巧来快速处理图象.2. 【答案】D【解析】当3x =时,y 是整数;当23x =时,y 是整数;依次类推可知当3(*)n x n N =∈时,y 是整数,则由31000nx =≥,得7n ≥,所以输出的所有x 的值为3,9,27,81,243,729,其和为1092,故选D .3. 【答案】A【解析】解:分两类讨论,过程如下:①当a >1时,函数y=a x ﹣1 和y=log a x 在[1,2]上都是增函数, ∴f (x )=ax ﹣1+log a x在[1,2]上递增,∴f (x )max +f (x )min =f (2)+f (1)=a+log a 2+1=a ,∴log a 2=﹣1,得a=,舍去;②当0<a <1时,函数y=a x ﹣1 和y=log a x 在[1,2]上都是减函数, ∴f (x )=ax ﹣1+log a x在[1,2]上递减,∴f (x )max +f (x )min =f (2)+f (1)=a+log a 2+1=a ,∴log a 2=﹣1,得a=,符合题意; 故选A .4. 【答案】B【解析】解:若f (x )=|x ﹣m|﹣|x ﹣1|是定义在R 上的奇函数, 则f (0)=|m|﹣1=0,则m=1或m=﹣1,当m=1时,f (x )=|x ﹣1|﹣|x ﹣1|=0,此时为偶函数,不满足条件, 当m=﹣1时,f (x )=|x+1|﹣|x ﹣1|,此时为奇函数,满足条件, 作出函数f (x )的图象如图: 则函数在上为增函数,最小值为﹣2, 故正确的是B , 故选:B【点评】本题主要考查函数的奇偶性的应用,根据条件求出m 的值是解决本题的关键.注意使用数形结合进行求解.5. 【答案】D【解析】∵120PF PF ⋅=,∴12PFPF ⊥,即12PF F ∆为直角三角形,∴222212124PF PF F F c +==,12||2PF PF a -=,则222221212122()4()PF PF PF PF PF PF c a ⋅=+--=-, 2222121212()()484PF PF PF PF PF PF c a +=-+⋅=-.所以12PF F ∆内切圆半径12122PF PF F F r c +-==,外接圆半径R c =.c =,整理,得2()423ca=+,∴双曲线的离心率31e =+,故选D. 6. 【答案】B【解析】解:∵x >1∴x ﹣1>0由基本不等式可得,当且仅当即x ﹣1=1时,x=2时取等号“=”故选B7. 【答案】A【解析】解:根据茎叶图中的数据可知,甲地的数据都集中在0.06和0.07之间,数据分别比较稳定, 而乙地的数据分布比较分散,不如甲地数据集中, ∴甲地的方差较小. 故选:A .【点评】本题 考查茎叶图的识别和判断,根据茎叶图中数据分布情况,即可确定方差的大小,比较基础.8. 【答案】B【解析】解:原函数是由t=x 2与y=()t﹣9复合而成,∵t=x 2在(﹣∞,0)上是减函数,在(0,+∞)为增函数; 又y=()t﹣9其定义域上为减函数,∴f (x )=()x2﹣9在(﹣∞,0)上是增函数,在(0,+∞)为减函数, ∴函数ff (x )=()x2﹣9的单调递减区间是(0,+∞).故选:B .【点评】本题考查复合函数的单调性,讨论内层函数和外层函数的单调性,根据“同増异减”再来判断是关键.9. 【答案】D 【解析】考点:1、指数函数与三角函数的性质;2、真值表的应用.10.【答案】D【解析】解:由三视图知,几何体是一个组合体,是由半个圆锥和一个四棱锥组合成的几何体,圆柱的底面直径和母线长都是2,四棱锥的底面是一个边长是2的正方形,四棱锥的高与圆锥的高相同,高是=,∴几何体的体积是=,故选D.【点评】本题考查由三视图求组合体的体积,考查由三视图还原直观图,本题的三视图比较特殊,不容易看出直观图,需要仔细观察.11.【答案】A【解析】考点:三角函数的图象性质.12.【答案】C【解析】【专题】排列组合.【分析】分两类,第一类,三点分别在三条边上,第二类,三角形的两个顶点在正方形的一条边上,第三个顶点在另一条边,根据分类计数原理可得.【解答】解:首先注意到三角形的三个顶点不在正方形的同一边上.任选正方形的三边,使三个顶点分别在其上,有4种方法,再在选出的三条边上各选一点,有73种方法.这类三角形共有4×73=1372个.另外,若三角形有两个顶点在正方形的一条边上,第三个顶点在另一条边上,则先取一边使其上有三角形的两个顶点,有4种方法,再在这条边上任取两点有21种方法,然后在其余的21个分点中任取一点作为第三个顶点.这类三角形共有4×21×21=1764个.综上可知,可得不同三角形的个数为1372+1764=3136.故选:C.【点评】本题考查了分类计数原理,关键是分类,还要结合几何图形,属于中档题.二、填空题13.【答案】8cm【解析】考点:平面图形的直观图.14.【答案】2【解析】15.【答案】.【解析】解:直线x﹣y=1的斜率为1,(m+3)x+my﹣8=0斜率为两直线平行,则=1解得m=﹣.故应填﹣.16.【答案】.【解析】解:∵数列{S n }是首项和公比都是3的等比数列,∴S n =3n.故a 1=s 1=3,n ≥2时,a n =S n ﹣s n ﹣1=3n ﹣3n ﹣1=2•3n ﹣1,故a n=.【点评】本题主要考查等比数列的通项公式,等比数列的前n 项和公式,数列的前n 项的和Sn 与第n 项an 的关系,属于中档题.17.【答案】②③④【解析】解析:本题考查平面向量基本定理、坐标运算以及综合应用知识解决问题的能力. 由(1,4)λμ+=-a b 得124λμλμ-+=-⎧⎨+=⎩,∴21λμ=⎧⎨=⎩,①错误;a 与b 不共线,由平面向量基本定理可得,②正确;记OA =a ,由OM μ=+a b 得AM μ=b ,∴点M 在过A 点与b 平行的直线上,③正确;由2μλ+=+a b a b 得,(1)(2)λμ-+-=0a b ,∵a 与b 不共线,∴12λμ=⎧⎨=⎩,∴2(1,5)μλ+=+=a b a b ,∴④正确;设(,)M x y ,则有2x y λμλμ=-+⎧⎨=+⎩,∴21331133x y x y λμ⎧=-+⎪⎪⎨⎪=+⎪⎩,∴200x y x y -≤⎧⎨+≥⎩且260x y -+=,∴(,)λμΩ表示的一条线段且线段的两个端点分别为(2,4)、(2,2)-,其长度为 18.【答案】16π【解析】如图所示,∵222AB AC BC +=,∴CAB ∠为直角,即过△ABC 的小圆面的圆心为BC 的中点O ',ABC △和DBC △所在的平面互相垂直,则球心O 在过DBC △的圆面上,即DBC △的外接圆为球大圆,由等边三角形的重心和外心重合易得球半径为2R =,球的表面积为24π16πS R ==三、解答题19.【答案】【解析】解:(1)∵函数f(x)=log2(x﹣3),∴f(51)﹣f(6)=log248﹣log23=log216=4;(2)若f(x)≤0,则0<x﹣3≤1,解得:x∈(3,4]【点评】本题考查的知识点是对数函数的图象和性质,对数的运算性质,解答时要时时注意真数大于0,以免出错.20.【答案】【解析】解:(1)设等比数列{a n}的公比为q<4,∵a1+3,3a2,a3+4构成等差数列.∴2×3a2=a1+3+a3+4,∴6q=1+7+q2,解得q=2.(2)由(1)可得:a n=2n﹣1.b n=lna3n+1=ln23n=3nln2.∴数列{b n}的前n项和T n=3ln2×(1+2+…+n)=ln2.21.【答案】【解析】解:(Ⅰ)f(x)=ax++b≥2+b=b+2当且仅当ax=1(x=)时,f(x)的最小值为b+2(Ⅱ)由题意,曲线y=f(x)在点(1,f(1))处的切线方程为y=,可得:f(1)=,∴a++b=①f'(x)=a﹣,∴f′(1)=a﹣=②由①②得:a=2,b=﹣122.【答案】【解析】解:(1)取BC1的中点H,连接HE、HF,则△BCC1中,HF∥CC1且HF=CC1又∵平行四边形AA1C1C中,AE∥CC1且AE=CC1∴AE∥HF且AE=HF,可得四边形AFHE为平行四边形,∴AF∥HE,∵AF⊄平面REC1,HE⊂平面REC1∴AF∥平面REC1.…(2)等边△ABC中,高AF==,所以EH=AF=由三棱柱ABC﹣AB1C1是正三棱柱,得C1到平面AA1B1B的距离等于1∵Rt△A1C1E≌Rt△ABE,∴EC1=EB,得EH⊥BC1可得S△=BC1•EH=××=,而S△ABE=AB×BE=2由等体积法得V A﹣BEC1=V C1﹣BEC,∴S△×d=S△ABE×,(d为点A到平面BEC1的距离)即××d=×2×,解之得d=∴点A到平面BEC1的距离等于.…【点评】本题在正三棱柱中求证线面平行,并求点到平面的距离.着重考查了正三棱柱的性质、线面平行判定定理和等体积法求点到平面的距离等知识,属于中档题.23.【答案】【解析】解:(1)从统计表看出选择理科的学生的数学平均成绩高于选择文科的学生的数学平均成绩,反映了数学成绩对学生选择文理科有一定的影响,频率分布直方图如下.(2)从频率分布直方图知,数学成绩有50%小于或等于80分,50%大于或等于80分,所以中位数为80分.平均分为(55×0.005+65×0.015+75×0.030+85×0.030+95×0.020)×10=79.5,即估计选择理科的学生的平均分为79.5分.24.【答案】(1)(2)见解析(3)【解析】试题分析:(1)由题意转化为在区间上恒成立,化简可得一次函数恒成立,根据一次函数性质得不等式,解不等式得实数的取值范围;(2)导函数有一个零点,再根据a的正负讨论导函数符号变化规律,确定极值取法(3)先根据导数得切线斜率再根据点斜式得切线方程,即得切线在x轴上的截距,最后根据a的正负以及基本不等式求截距的取值范围.试题解析:(1)函数的导函数,则在区间上恒成立,且等号不恒成立,又,所以在区间上恒成立,记,只需,即,解得.(2)由,得,①当时,有;,所以函数在单调递增,单调递减,所以函数在取得极大值,没有极小值.②当时,有;,所以函数在单调递减,单调递增,所以函数在取得极小值,没有极大值.综上可知: 当时,函数在取得极大值,没有极小值;当时,函数在取得极小值,没有极大值.(3)设切点为,则曲线在点处的切线方程为,当时,切线的方程为,其在轴上的截距不存在.当时,令,得切线在轴上的截距为,当时,,当且仅当,即或时取等号;当时,,当且仅当,即或时取等号.所以切线在轴上的截距范围是.点睛:函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求→求方程的根→列表检验在的根的附近两侧的符号→下结论.(3)已知极值求参数.若函数在点处取得极值,则,且在该点左、右两侧的导数值符号相反.。

矿区第三高级中学2018-2019学年上学期高二数学12月月考试题含解析(1)

矿区第三高级中学2018-2019学年上学期高二数学12月月考试题含解析(1)

精选高中模拟试卷 第 1 页,共 18 页 矿区第三高级中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 姓名__________ 分数__________ 一、选择题 1. 等比数列{an}中,a3,a9是方程3x2﹣11x+9=0的两个根,则a6=( ) A.3 B. C.± D.以上皆非 2. 定义在R上的偶函数()fx满足(3)()fxfx,对12,[0,3]xx且12xx,都有 1212

()()0fxfxxx

,则有( )

A.(49)(64)(81)fff B.(49)(81)(64)fff C. (64)(49)(81)fff D.(64)(81)(49)fff

3. 若变量x,y满足:,且满足(t+1)x+(t+2)y+t=0,则参数t的取值范围为( ) A.﹣2<t<﹣ B.﹣2<t≤﹣ C.﹣2≤t≤﹣ D.﹣2≤t<﹣ 4. 某几何体的三视图如图所示,且该几何体的体积是,则正视图中的x的值是( )

A.2 B. C. D.3 5. 设x,y满足线性约束条件,若z=ax﹣y(a>0)取得最大值的最优解有数多个,则实数a的值为( ) A.2 B. C. D.3 6. 已知函数f(x)=x4cosx+mx2+x(m∈R),若导函数f′(x)在区间[﹣2,2]上有最大值10,则导函数f′

(x)在区间[﹣2,2]上的最小值为( ) A.﹣12 B.﹣10 C.﹣8 D.﹣6 精选高中模拟试卷 第 2 页,共 18 页 7. 如图F1、F2是椭圆C1: +y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共

点,若四边形AF1BF2为矩形,则C2的离心率是( )

A. B. C. D. 8. 若函数1,0,()(2),0,xxfxfxx





则(3)f的值为( )

A.5 B.1 C.7 D.2 9. 已知函数,函数,其中b∈R,若函数y=f(x)

北流市第三中学2018-2019学年上学期高二数学12月月考试题含解析

北流市第三中学2018-2019学年上学期高二数学12月月考试题含解析

北流市第三中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 在△ABC 中,b=,c=3,B=30°,则a=( )A .B .2C .或2D .22. 设a ,b 为正实数,11a b+≤23()4()a b ab -=,则log a b =( )A.0B.1-C.1 D .1-或0【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力. 3. 天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 据此估计,这三天中恰有两天下雨的概率近似为( ) A .0.35 B .0.25 C .0.20 D .0.154. 数列1,﹣4,7,﹣10,13,…,的通项公式a n 为( ) A .2n ﹣1B .﹣3n+2C .(﹣1)n+1(3n ﹣2)D .(﹣1)n+13n ﹣25. 若点O 和点F (﹣2,0)分别是双曲线的中心和左焦点,点P 为双曲线右支上的任意一点,则的取值范围为( )A .B .C .D .6. 设x ,y ∈R ,且满足,则x+y=( )A .1B .2C .3D .47. 有一学校高中部有学生2000人,其中高一学生800人,高二学生600人,高三学生600人,现采用分层抽样的方法抽取容量为50的样本,那么高一、高二、高三年级抽取的人数分别为( )A .15,10,25B .20,15,15C .10,10,30D .10,20,208. 已知命题p :对任意()0x ∈+∞,,48log log x x <,命题:存在x ∈R ,使得tan 13x x =-,则下列命题为真命题的是( )A .p q ∧B .()()p q ⌝∧⌝C .()p q ∧⌝D .()p q ⌝∧9. 定义在(0,+∞)上的函数f (x )满足:<0,且f (2)=4,则不等式f (x )﹣>0的解集为( ) A .(2,+∞)B .(0,2)C .(0,4)D .(4,+∞)10.以下四个命题中,真命题的是( ) A .2,2x R x x ∃∈≤-B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .已知m ,n 表示两条不同的直线,α,β表示不同的平面,并且m α⊥,n β⊂,则“αβ⊥”是 “//m n ”的必要不充分条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.11.已知在平面直角坐标系xOy 中,点),0(n A -,),0(n B (0>n ).命题p :若存在点P 在圆1)1()3(22=-++y x 上,使得2π=∠APB ,则31≤≤n ;命题:函数x xx f 3log 4)(-=在区间 )4,3(内没有零点.下列命题为真命题的是( )A .)(q p ⌝∧B .q p ∧C .q p ∧⌝)(D .q p ∨⌝)( 12.冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示.杂质高 杂质低 旧设备 37 121 新设备22202根据以上数据,则( ) A .含杂质的高低与设备改造有关 B .含杂质的高低与设备改造无关 C .设备是否改造决定含杂质的高低D .以上答案都不对二、填空题13.等比数列{a n }的前n 项和S n =k 1+k 2·2n (k 1,k 2为常数),且a 2,a 3,a 4-2成等差数列,则a n =________. 14.等差数列{}n a 的前项和为n S ,若37116a a a ++=,则13S 等于_________.15.81()x x-的展开式中,常数项为___________.(用数字作答)【命题意图】本题考查用二项式定理求指定项,基础题.16.正方体ABCD ﹣A 1B 1C 1D 1中,平面AB 1D 1和平面BC 1D 的位置关系为 .17.【启东中学2018届高三上学期第一次月考(10月)】在平面直角坐标系xOy 中,P 是曲线xC y e :=上一点,直线20l x y c :++=经过点P ,且与曲线C 在P 点处的切线垂直,则实数c 的值为________. 18.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=5,BC=4,AA 1=3,沿该长方体对角面ABC 1D 1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为 .三、解答题19.已知=(sinx ,cosx ),=(sinx ,sinx ),设函数f (x )=﹣.(1)写出函数f (x )的周期,并求函数f (x )的单调递增区间;(2)求f (x )在区间[π,]上的最大值和最小值.20.在某班级举行的“元旦联欢会”有奖答题活动中,主持人准备了两个问题,规定:被抽签抽到的答题同学,答对问题可获得分,答对问题可获得200分,答题结果相互独立互不影响,先回答哪个问题由答题同学自主决定;但只有第一个问题答对才能答第二个问题,否则终止答题.答题终止后,获得的总分决定获奖的等次.若甲是被抽到的答题同学,且假设甲答对问题的概率分别为.(Ⅰ)记甲先回答问题再回答问题得分为随机变量,求的分布列和数学期望; (Ⅱ)你觉得应先回答哪个问题才能使甲的得分期望更高?请说明理由.21.(本小题满分12分)已知圆()()22:1225C x y -+-=,直线()()():211740L m x m y m m R +++--=∈.(1)证明: 无论m 取什么实数,L 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时L 的方程.22.设椭圆C :+=1(a >b >0)过点(0,4),离心率为.(1)求椭圆C 的方程;(2)求过点(3,0)且斜率为的直线被椭圆所截得线段的中点坐标.23.若已知,求sinx 的值.24.(本小题满分12分)已知两点)0,1(1-F 及)0,1(2F ,点P 在以1F 、2F 为焦点的椭圆C 上,且1PF 、21F F 、2PF 构成等差数列. (I )求椭圆C 的方程;(II )设经过2F 的直线m 与曲线C 交于P Q 、两点,若22211PQ F P F Q =+,求直线m 的方程.北流市第三中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】C 【解析】解:∵b=,c=3,B=30°,∴由余弦定理b 2=a 2+c 2﹣2accosB ,可得:3=9+a 2﹣3,整理可得:a 2﹣3a+6=0,∴解得:a=或2.故选:C .2. 【答案】B.【解析】2323()4()()44()a b ab a b ab ab -=⇒+=+,故11a b a b ab++≤⇒≤2322()44()1184()82()()a b ab ab ab ab ab ab ab ab++⇒≤⇒=+≤⇒+≤,而事实上12ab ab +≥=, ∴1ab =,∴log 1a b =-,故选B.3. 【答案】B【解析】解:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数, 在20组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共5组随机数,∴所求概率为.故选B .4. 【答案】C【解析】解:通过观察前几项可以发现:数列中符号是正负交替,每一项的符号为(﹣1)n+1,绝对值为3n﹣2,故通项公式a n =(﹣1)n+1(3n ﹣2).故选:C .5. 【答案】B【解析】解:因为F (﹣2,0)是已知双曲线的左焦点,所以a 2+1=4,即a 2=3,所以双曲线方程为,设点P (x 0,y 0),则有,解得,因为,,所以=x0(x0+2)+=,此二次函数对应的抛物线的对称轴为,因为,所以当时,取得最小值=,故的取值范围是,故选B.【点评】本题考查待定系数法求双曲线方程,考查平面向量的数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程度以及知识的综合应用能力、运算能力.6.【答案】D【解析】解:∵(x﹣2)3+2x+sin(x﹣2)=2,∴(x﹣2)3+2(x﹣2)+sin(x﹣2)=2﹣4=﹣2,∵(y﹣2)3+2y+sin(y﹣2)=6,∴(y﹣2)3+2(y﹣2)+sin(y﹣2)=6﹣4=2,设f(t)=t3+2t+sint,则f(t)为奇函数,且f'(t)=3t2+2+cost>0,即函数f(t)单调递增.由题意可知f(x﹣2)=﹣2,f(y﹣2)=2,即f(x﹣2)+f(y﹣2)=2﹣2=0,即f(x﹣2)=﹣f(y﹣2)=f(2﹣y),∵函数f(t)单调递增∴x﹣2=2﹣y,即x+y=4,故选:D.【点评】本题主要考查函数奇偶性的应用,利用条件构造函数f(t)是解决本题的关键,综合考查了函数的性质.7.【答案】B【解析】解:每个个体被抽到的概率等于=,则高一、高二、高三年级抽取的人数分别为800×=20,600×=15,600×=15,故选B.【点评】本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题.8.【答案】D【解析】考点:命题的真假.9.【答案】B【解析】解:定义在(0,+∞)上的函数f(x)满足:<0.∵f(2)=4,则2f(2)=8,f(x)﹣>0化简得,当x<2时,⇒成立.故得x<2,∵定义在(0,+∞)上.∴不等式f(x)﹣>0的解集为(0,2).故选B.【点评】本题考查了构造已知条件求解不等式,从已知条件入手,找个关系求解.属于中档题.10.【答案】D11.【答案】A【解析】试题分析:命题p :2π=∠APB ,则以AB 为直径的圆必与圆()()11322=-++y x 有公共点,所以121+≤≤-n n ,解得31≤≤n ,因此,命题p 是真命题.命题:函数()xxx f 3log 4-=,()0log 1443<-=f ,()0log 34333>-=f ,且()x f 在[]4,3上是连续不断的曲线,所以函数()x f 在区间()4,3内有零点,因此,命题是假命题.因此只有)(q p ⌝∧为真命题.故选A .考点:复合命题的真假.【方法点晴】本题考查命题的真假判断,命题的“或”、“且”及“非”的运算性质,同时也考查两圆的位置关系和函数零点存在定理,属于综合题.由于点P 满足2π=∠APB ,因此在以AB 为直径的圆上,又点P 在圆1)1()3(22=-++y x 上,因此P 为两圆的交点,利用圆心距介于两圆半径差与和之间,求出的范围.函数x xx f 3log 4)(-=是单调函数,利用零点存在性定理判断出两端点异号,因此存在零点.12.【答案】A【解析】独立性检验的应用. 【专题】计算题;概率与统计.【分析】根据所给的数据写出列联表,把列联表的数据代入观测值的公式,求出两个变量之间的观测值,把观测值同临界值表中的数据进行比较,得到有99%的把握认为含杂质的高低与设备是否改造是有关的.【解答】解:由已知数据得到如下2×2列联表 杂质高 杂质低 合计 旧设备 37 121 158 新设备 22 202 224 合计59323382由公式κ2=≈13.11,由于13.11>6.635,故有99%的把握认为含杂质的高低与设备是否改造是有关的.【点评】本题考查独立性检验,考查写出列联表,这是一个基础题.二、填空题13.【答案】【解析】当n =1时,a 1=S 1=k 1+2k 2,当n ≥2时,a n =S n -S n -1=(k 1+k 2·2n )-(k 1+k 2·2n -1)=k 2·2n -1,∴k 1+2k 2=k 2·20,即k 1+k 2=0,① 又a 2,a 3,a 4-2成等差数列. ∴2a 3=a 2+a 4-2, 即8k 2=2k 2+8k 2-2.② 由①②联立得k 1=-1,k 2=1, ∴a n =2n -1. 答案:2n -1 14.【答案】26 【解析】试题分析:由题意得,根据等差数列的性质,可得371177362a a a a a ++==⇒=,由等差数列的求和11313713()13262a a S a +===.考点:等差数列的性质和等差数列的和. 15.【答案】70【解析】81()x x -的展开式通项为8821881()(1)r r r r r rr T C x C x x--+=-=-,所以当4r =时,常数项为448(1)70C -=.16.【答案】 平行 .【解析】解:∵AB 1∥C 1D ,AD 1∥BC 1,AB 1⊂平面AB 1D 1,AD 1⊂平面AB 1D 1,AB 1∩AD 1=A C 1D ⊂平面BC 1D ,BC 1⊂平面BC 1D ,C 1D ∩BC 1=C 1 由面面平行的判定理我们易得平面AB 1D 1∥平面BC 1D故答案为:平行.【点评】本题考查的知识点是平面与平面之间的位置关系,在判断线与面的平行与垂直关系时,正方体是最常用的空间模型,大家一定要熟练掌握这种方法.17.【答案】-4-ln2【解析】点睛:曲线的切线问题就是考察导数应用,导数的含义就是该点切线的斜率,利用这个我们可以求出点的坐标,再根据点在线上(或点在曲线上),就可以求出对应的参数值。

北安市第三中学校2018-2019学年上学期高二数学12月月考试题含解析

北安市第三中学校2018-2019学年上学期高二数学12月月考试题含解析

精选高中模拟试卷 第 1 页,共 17 页 北安市第三中学校2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 姓名__________ 分数__________ 一、选择题 1. 如果命题p∨q是真命题,命题¬p是假命题,那么( ) A.命题p一定是假命题 B.命题q一定是假命题 C.命题q一定是真命题 D.命题q是真命题或假命题 2. 已知直线34110mxy:与圆22(2)4Cxy:交于AB、两点,P为直线3440nxy:上任意一点,则PAB的面积为( )

A.23 B. 332 C. 33 D. 43 3. 已知三棱锥A﹣BCO,OA、OB、OC两两垂直且长度均为6,长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),则MN的中点P的轨迹与三棱锥的面所围成的几何体的体积为( )

A. B.或36+ C.36﹣ D.或36﹣ 4. 数列{}na中,11a,对所有的2n,都有2123naaaan,则35aa等于( ) A.259 B.2516 C.6116 D.3115

5. 已知椭圆C: +=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为( )

A. +=1 B. +y2=1 C. +=1 D. +=1

6. 如右图,在长方体中,=11,=7,=12,一质点从顶点A射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线段记为,,将线段竖直放置在同一水平线上,则大致的图形是( ) 精选高中模拟试卷 第 2 页,共 17 页 A B 精选高中模拟试卷

第 3 页,共 17 页 C D 7. 已知定义在R上的奇函数)(xf,满足(4)()fxfx,且在区间[0,2]上是增函数,则 A、(25)(11)(80)fff B、(80)(11)(25)fff C、(11)(80)(25)fff D、(25)(80)(11)fff 8. 已知集合M={1,4,7},M∪N=M,则集合N不可能是( ) A.∅ B.{1,4} C.M D.{2,7}

新华区第三高级中学2018-2019学年上学期高二数学12月月考试题含解析(1)

新华区第三高级中学2018-2019学年上学期高二数学12月月考试题含解析(1)

新华区第三高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 在曲线y=x 2上切线倾斜角为的点是( )A .(0,0)B .(2,4)C .(,)D .(,)2. 设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (﹣2)=0,当x >0时,xf ′(x )﹣f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(﹣∞,﹣2)∪(0,2)B .(﹣∞,﹣2)∪(2,+∞)C .(﹣2,0)∪(2,+∞)D .(﹣2,0)∪(0,2)3. 等比数列的前n 项,前2n 项,前3n 项的和分别为A ,B ,C ,则( )A .B 2=ACB .A+C=2BC .B (B ﹣A )=A (C ﹣A )D .B (B ﹣A )=C (C ﹣A )4. 若()f x 是定义在(),-∞+∞上的偶函数,[)()1212,0,x x x x ∀∈+∞≠,有()()21210f x f x x x -<-,则( )A .()()()213f f f -<<B .()()()123f f f <-<C .()()()312f f f <<D .()()()321f f f <-< 5. 特称命题“∃x ∈R ,使x 2+1<0”的否定可以写成( ) A .若x ∉R ,则x 2+1≥0B .∃x ∉R ,x 2+1≥0C .∀x ∈R ,x 2+1<0D .∀x ∈R ,x 2+1≥06. 设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式<0的解集为( )A .(﹣1,0)∪(1,+∞)B .(﹣∞,﹣1)∪(0,1)C .(﹣∞,﹣1)∪(1,+∞)D .(﹣1,0)∪(0,1)7. 在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,a=5,b=4,cosC=,则△ABC 的面积是( ) A .16B .6C .4D .88. 如果点P (sin θcos θ,2cos θ)位于第二象限,那么角θ所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9. 已知集合A={x|x 是平行四边形},B={x|x 是矩形},C={x|x 是正方形},D={x|x 是菱形},则( ) A .A ⊆B B .C ⊆B C .D ⊆C D .A ⊆D10.底面为矩形的四棱锥P -ABCD 的顶点都在球O 的表面上,且O 在底面ABCD 内,PO ⊥平面ABCD ,当四棱锥P -ABCD 的体积的最大值为18时,球O 的表面积为( ) A .36π B .48π C .60πD .72π11.若f (x )=﹣x 2+2ax 与g (x )=在区间[1,2]上都是减函数,则a 的取值范围是( )A .(﹣∞,1]B .[0,1]C .(﹣2,﹣1)∪(﹣1,1]D .(﹣∞,﹣2)∪(﹣1,1]12.已知2,0()2, 0ax x x f x x x ⎧+>=⎨-≤⎩,若不等式(2)()f x f x -≥对一切x R ∈恒成立,则a 的最大值为( )A .716-B .916-C .12-D .14-二、填空题13.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()1e exx f x =-,其中e 为自然对数的底数,则不等式()()2240f x f x -+-<的解集为________.14.已知角α终边上一点为P (﹣1,2),则值等于 .15.已知函数f (x )=cosxsinx ,给出下列四个结论: ①若f (x 1)=﹣f (x 2),则x 1=﹣x 2; ②f (x )的最小正周期是2π;③f (x )在区间[﹣,]上是增函数;④f (x )的图象关于直线x=对称.其中正确的结论是 .16.在平面直角坐标系中,(1,1)=-a ,(1,2)=b ,记{}(,)|M O M λμλμΩ==+a b ,其中O 为坐标原点,给出结论如下:①若(1,4)(,)λμ-∈Ω,则1λμ==;②对平面任意一点M ,都存在,λμ使得(,)M λμ∈Ω; ③若1λ=,则(,)λμΩ表示一条直线; ④{}(1,)(,2)(1,5)μλΩΩ=;⑤若0λ≥,0μ≥,且2λμ+=,则(,)λμΩ表示的一条线段且长度为 其中所有正确结论的序号是 .17.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,asinA=bsinB+(c ﹣b )sinC ,且bc=4,则△ABC 的面积为 .18.数列{a n }是等差数列,a 4=7,S 7= .三、解答题19.(本小题满分12分)如图ABC ∆中,已知点D 在BC 边上,且0AD AC ⋅=,sin 3BAC ∠=,AB =BD . (Ⅰ)求AD 的长; (Ⅱ)求cos C .20.如图,在四棱锥O ﹣ABCD 中,底面ABCD 四边长为1的菱形,∠ABC=,OA ⊥底面ABCD ,OA=2,M 为OA 的中点,N 为BC 的中点. (Ⅰ)证明:直线MN ∥平面OCD ; (Ⅱ)求异面直线AB 与MD 所成角的大小;(Ⅲ)求点B到平面OCD的距离.21.已知函数f(x)=|x﹣5|+|x﹣3|.(Ⅰ)求函数f(x)的最小值m;(Ⅱ)若正实数a,b足+=,求证:+≥m.22.已知函数f(x)=lnx﹣a(1﹣),a∈R.(Ⅰ)求f(x)的单调区间;(Ⅱ)若f(x)的最小值为0.(i)求实数a的值;(ii)已知数列{a n}满足:a1=1,a n+1=f(a n)+2,记[x]表示不大于x的最大整数,求证:n>1时[a n]=2.23.在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E为BB1中点.(Ⅰ)证明:AC⊥D1E;(Ⅱ)求DE与平面AD1E所成角的正弦值;(Ⅲ)在棱AD上是否存在一点P,使得BP∥平面AD1E?若存在,求DP的长;若不存在,说明理由.24.设函数f(x)=lg(a x﹣b x),且f(1)=lg2,f(2)=lg12(1)求a,b的值.(2)当x∈[1,2]时,求f(x)的最大值.(3)m为何值时,函数g(x)=a x的图象与h(x)=b x﹣m的图象恒有两个交点.新华区第三高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:y'=2x,设切点为(a,a2)∴y'=2a,得切线的斜率为2a,所以2a=tan45°=1,∴a=,在曲线y=x2上切线倾斜角为的点是(,).故选D.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.2.【答案】A【解析】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)﹣f(x)<0成立,即当x>0时,g′(x)<0,∴当x>0时,函数g(x)为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数,∴x<0时,函数g(x)是增函数,又∵g(﹣2)==0=g(2),∴x>0时,由f(x)>0,得:g(x)<g(2),解得:0<x<2,x<0时,由f(x)>0,得:g(x)>g(﹣2),解得:x<﹣2,∴f(x)>0成立的x的取值范围是:(﹣∞,﹣2)∪(0,2).故选:A.3.【答案】C【解析】解:若公比q=1,则B,C成立;故排除A,D;若公比q≠1,则A=S n =,B=S 2n =,C=S 3n =,B (B ﹣A )=(﹣)=(1﹣q n)(1﹣q n)(1+q n)A (C ﹣A )=(﹣)=(1﹣q n )(1﹣q n )(1+q n);故B (B ﹣A )=A (C ﹣A );故选:C .【点评】本题考查了等比数列的性质的判断与应用,同时考查了分类讨论及学生的化简运算能力.4. 【答案】D5. 【答案】D【解析】解:∵命题“∃x ∈R ,使x 2+1<0”是特称命题∴否定命题为:∀x ∈R ,都有x 2+1≥0.故选D .6. 【答案】D【解析】解:由奇函数f (x )可知,即x 与f (x )异号,而f (1)=0,则f (﹣1)=﹣f (1)=0,又f (x )在(0,+∞)上为增函数,则奇函数f (x )在(﹣∞,0)上也为增函数,当0<x <1时,f (x )<f (1)=0,得<0,满足;当x >1时,f (x )>f (1)=0,得>0,不满足,舍去;当﹣1<x <0时,f (x )>f (﹣1)=0,得<0,满足;当x <﹣1时,f (x )<f (﹣1)=0,得>0,不满足,舍去;所以x 的取值范围是﹣1<x <0或0<x <1. 故选D .【点评】本题综合考查奇函数定义与它的单调性.7. 【答案】D【解析】解:∵a=5,b=4,cosC=,可得:sinC==,∴S △ABC =absinC==8.故选:D .8. 【答案】D【解析】解:∵P (sin θcos θ,2cos θ)位于第二象限,∴sin θcos θ<0,cos θ>0,∴sin θ<0, ∴θ是第四象限角. 故选:D .【点评】本题考查了象限角的三角函数符号,属于基础题.9. 【答案】B【解析】解:因为菱形是平行四边形的特殊情形,所以D ⊂A , 矩形与正方形是平行四边形的特殊情形,所以B ⊂A ,C ⊂A , 正方形是矩形,所以C ⊆B . 故选B .10.【答案】【解析】选A.设球O 的半径为R ,矩形ABCD 的长,宽分别为a ,b , 则有a 2+b 2=4R 2≥2ab ,∴ab ≤2R 2,又V 四棱锥P -ABCD =13S 矩形ABCD ·PO=13abR ≤23R 3. ∴23R 3=18,则R =3, ∴球O 的表面积为S =4πR 2=36π,选A.11.【答案】D【解析】解:∵函数f (x )=﹣x 2+2ax 的对称轴为x=a ,开口向下,∴单调间区间为[a ,+∞)又∵f (x )在区间[1,2]上是减函数,∴a ≤1∵函数g (x )=在区间(﹣∞,﹣a )和(﹣a ,+∞)上均为减函数,∵g (x )=在区间[1,2]上是减函数,∴﹣a >2,或﹣a <1, 即a <﹣2,或a >﹣1,综上得a ∈(﹣∞,﹣2)∪(﹣1,1], 故选:D【点评】本题主要考查二次函数与反比例函数的单调性的判断,以及根据所给函数单调区间,求参数的范围.12.【答案】C【解析】解析:本题考查用图象法解决与函数有关的不等式恒成立问题.当0a >(如图1)、0a =(如图2)时,不等式不可能恒成立;当0a <时,如图3,直线2(2)y x =--与函数2y ax x =+图象相切时,916a =-,切点横坐标为83,函数2y ax x =+图象经过点(2,0)时,12a =-,观察图象可得12a ≤-,选C . 二、填空题13.【答案】()32-,【解析】∵()1e ,e x x f x x R =-∈,∴()()11xx x x f x e e f x e e --⎛⎫-=-=--=- ⎪⎝⎭,即函数()f x 为奇函数,又∵()0x xf x e e-=+>'恒成立,故函数()f x 在R 上单调递增,不等式()()2240f x f x -+-<可转化为()()224f x f x -<-,即224x x -<-,解得:32x -<<,即不等式()()2240f x f x -+-<的解集为()32-,,故答案为()32-,.14.【答案】.【解析】解:角α终边上一点为P (﹣1,2), 所以tan α=﹣2.===﹣.故答案为:﹣.【点评】本题考查二倍角的正切函数,三角函数的定义的应用,考查计算能力.15.【答案】 ③④ .【解析】解:函数f (x )=cosxsinx=sin2x ,对于①,当f (x 1)=﹣f (x 2)时,sin2x 1=﹣sin2x 2=sin (﹣2x 2) ∴2x 1=﹣2x 2+2k π,即x 1+x 2=k π,k ∈Z ,故①错误;对于②,由函数f (x )=sin2x 知最小正周期T=π,故②错误; 对于③,令﹣+2π≤2x≤+2k π,k ∈Z得﹣+k π≤x≤+k π,k ∈Z当k=0时,x ∈[﹣,],f (x )是增函数,故③正确;对于④,将x=代入函数f (x )得,f()=﹣为最小值,故f (x )的图象关于直线x=对称,④正确.综上,正确的命题是③④. 故答案为:③④.16.【答案】②③④【解析】解析:本题考查平面向量基本定理、坐标运算以及综合应用知识解决问题的能力. 由(1,4)λμ+=-a b 得124λμλμ-+=-⎧⎨+=⎩,∴21λμ=⎧⎨=⎩,①错误;a 与b 不共线,由平面向量基本定理可得,②正确;记OA =a ,由OM μ=+a b 得AM μ=b ,∴点M 在过A 点与b 平行的直线上,③正确;由2μλ+=+a b a b 得,(1)(2)λμ-+-=0a b ,∵a 与b 不共线,∴12λμ=⎧⎨=⎩,∴2(1,5)μλ+=+=a b a b ,∴④正确;设(,)M x y ,则有2x y λμλμ=-+⎧⎨=+⎩,∴21331133x y x y λμ⎧=-+⎪⎪⎨⎪=+⎪⎩,∴200x y x y -≤⎧⎨+≥⎩且260x y -+=,∴(,)λμΩ表示的一条线段且线段的两个端点分别为(2,4)、(2,2)-,其长度为17.【答案】.【解析】解:∵asinA=bsinB+(c ﹣b )sinC ,∴由正弦定理得a 2=b 2+c 2﹣bc ,即:b 2+c 2﹣a 2=bc , ∴由余弦定理可得b 2=a 2+c 2﹣2accosB ,∴cosA===,A=60°.可得:sinA=,∵bc=4,∴S △ABC =bcsinA==.故答案为:【点评】本题主要考查了解三角形问题.考查了对正弦定理和余弦定理的灵活运用,考查了三角形面积公式的应用,属于中档题.18.【答案】49【解析】解:==7a 4 =49. 故答案:49.【点评】本题考查等差数列的性质和应用,解题时要认真审题,仔细求解.三、解答题19.【答案】【解析】(Ⅰ)因为AD AC ⊥,所以sin sin cos 2BAC BAD BAD π⎛⎫∠=+∠=∠ ⎪⎝⎭,所以cos BAD ∠=.…… 3分 在ABD ∆中,由余弦定理可知,2222cos BD AB AD AB AD BAD =+-⋅⋅∠ 即28150AD AD -+=,解之得5AD =或3AD =, 由于AB AD >,所以3AD =.…… 6分(Ⅱ)在ABD ∆中,由cos BAD ∠=可知1sin 3BAD ∠= …… 7分由正弦定理可知,sin sin BD ABBAD ADB =∠∠,所以sin sin AB BAD ADB BD ∠∠==…… 9分因为2ADB DAC C C π∠=∠+∠=+∠,即cos C = 12分20.【答案】【解析】解:方法一(综合法)(1)取OB中点E,连接ME,NE∵ME∥AB,AB∥CD,∴ME∥CD又∵NE∥OC,∴平面MNE∥平面OCD∴MN∥平面OCD(2)∵CD∥AB,∴∠MDC为异面直线AB与MD所成的角(或其补角)作AP⊥CD于P,连接MP∵OA⊥平面ABCD,∴CD⊥MP∵,∴,,∴所以AB与MD所成角的大小为.(3)∵AB∥平面OCD,∴点A和点B到平面OCD的距离相等,连接OP,过点A作AQ⊥OP于点Q,∵AP⊥CD,OA⊥CD,∴CD⊥平面OAP,∴AQ⊥CD.又∵AQ⊥OP,∴AQ⊥平面OCD,线段AQ的长就是点A到平面OCD的距离,∵,,∴,所以点B到平面OCD的距离为.方法二(向量法)作AP⊥CD于点P,如图,分别以AB,AP,AO所在直线为x,y,z轴建立坐标系:A(0,0,0),B(1,0,0),,,O(0,0,2),M(0,0,1),(1),,设平面OCD的法向量为n=(x,y,z),则•=0,•=0即取,解得∵•=(,,﹣1)•(0,4,)=0,∴MN∥平面OCD.(2)设AB与MD所成的角为θ,∵∴,∴,AB与MD所成角的大小为.(3)设点B到平面OCD的距离为d,则d为在向量=(0,4,)上的投影的绝对值,由,得d==所以点B到平面OCD的距离为.【点评】培养学生利用多种方法解决数学问题的能力,考查学生利用空间向量求直线间的夹角和距离的能力.21.【答案】【解析】(Ⅰ)解:∵f(x)=|x﹣5|+|x﹣3|≥|x﹣5+3﹣x|=2,…(2分)当且仅当x∈[3,5]时取最小值2,…(3分)∴m=2.…(4分)(Ⅱ)证明:∵(+)[]≥()2=3,∴(+)×≥()2,∴+≥2.…(7分)【点评】本题主要考查绝对值不等式和均值不等式等基础知识,考查运算求解能力,考查化归与转化思想.22.【答案】【解析】解:(Ⅰ)函数f(x)的定义域为(0,+∞),且f′(x)=﹣=.当a≤0时,f′(x)>0,所以f(x)在区间(0,+∞)内单调递增;当a>0时,由f′(x)>0,解得x>a;由f′(x)<0,解得0<x<a.所以f(x)的单调递增区间为(a,+∞),单调递减区间为(0,a).综上述:a≤0时,f(x)的单调递增区间是(0,+∞);a>0时,f(x)的单调递减区间是(0,a),单调递增区间是(a,+∞).(Ⅱ)(ⅰ)由(Ⅰ)知,当a≤0时,f(x)无最小值,不合题意;当a>0时,[f(x)]min=f(a)=1﹣a+lna=0,令g(x)=1﹣x+lnx(x>0),则g′(x)=﹣1+=,由g′(x)>0,解得0<x<1;由g′(x)<0,解得x>1.所以g(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).故[g(x)]max=g(1)=0,即当且仅当x=1时,g(x)=0.因此,a=1.(ⅱ)因为f(x)=lnx﹣1+,所以a n+1=f(a n)+2=1++lna n.由a1=1得a2=2于是a3=+ln2.因为<ln2<1,所以2<a3<.猜想当n≥3,n∈N时,2<a n<.下面用数学归纳法进行证明.①当n=3时,a3=+ln2,故2<a3<.成立.②假设当n=k(k≥3,k∈N)时,不等式2<a k<成立.则当n=k+1时,a k+1=1++lna k,由(Ⅰ)知函数h(x)=f(x)+2=1++lnx在区间(2,)单调递增,所以h(2)<h(a k)<h(),又因为h(2)=1++ln2>2,h()=1++ln<1++1<.故2<a k+1<成立,即当n=k+1时,不等式成立.根据①②可知,当n≥3,n∈N时,不等式2<a n<成立.综上可得,n>1时[a n]=2.【点评】本题主要考查函数的导数、导数的应用等基础知识,考查推理论证能力、运算求解能力、创新意识等,考查函数与方程思想、化归与转化思想、分类与整合思想、有限与无限思想等,属难题.23.【答案】【解析】(Ⅰ)证明:连接BD∵ABCD﹣A1B1C1D1是长方体,∴D1D⊥平面ABCD,又AC⊂平面ABCD,∴D1D⊥AC…1分在长方形ABCD中,AB=BC,∴BD⊥AC…2分又BD∩D1D=D,∴AC⊥平面BB1D1D,…3分而D1E⊂平面BB1D1D,∴AC⊥D1E…4分(Ⅱ)解:如图建立空间直角坐标系Dxyz,则A(1,0,0),D1(0,0,2),E(1,1,1),B(1,1,0),∴…5分设平面AD1E的法向量为,则,即令z=1,则…7分∴…8分∴DE与平面AD1E所成角的正弦值为…9分(Ⅲ)解:假设在棱AD上存在一点P,使得BP∥平面AD1E.设P的坐标为(t,0,0)(0≤t≤1),则∵BP∥平面AD1E∴,即,∴2(t﹣1)+1=0,解得,…12分∴在棱AD上存在一点P,使得BP∥平面AD1E,此时DP的长.…13分.24.【答案】【解析】解:(1)∵f(x)=lg(a x﹣b x),且f(1)=lg2,f(2)=lg12,∴a﹣b=2,a2﹣b2=12,解得:a=4,b=2;(2)由(1)得:函数f(x)=lg(4x﹣2x),当x∈[1,2]时,4x﹣2x∈[2,12],故当x=2时,函数f(x)取最大值lg12,(3)若函数g(x)=a x的图象与h(x)=b x﹣m的图象恒有两个交点.则4x﹣2x=m有两个解,令t=2x,则t>0,则t2﹣t=m有两个正解;则,解得:m∈(﹣,0)【点评】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键.。

北塔区第三中学2018-2019学年上学期高二数学12月月考试题含解析

北塔区第三中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 抛物线y=﹣8x 2的准线方程是( )A .y=B .y=2C .x=D .y=﹣22. 在数列{}n a 中,115a =,*1332()n n a a n N +=-∈,则该数列中相邻两项的乘积为负数的项是 ( )A .21a 和22aB .22a 和23aC .23a 和24aD .24a 和25a 3. 如图是某工厂对一批新产品长度(单位:mm )检测结果的频率分布直方图.估计这批产品的中位数为( )A .20B .25C .22.5D .22.754. 随机变量x 1~N (2,1),x 2~N (4,1),若P (x 1<3)=P (x 2≥a ),则a=( ) A .1 B .2 C .3 D .45. 在数列{a n }中,a 1=3,a n+1a n +2=2a n+1+2a n (n ∈N +),则该数列的前2015项的和是( ) A .7049 B .7052 C .14098 D .141016. 已知函数22()32f x x ax a =+-,其中(0,3]a ∈,()0f x ≤对任意的[]1,1x ∈-都成立,在1 和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为T ,则T =( ) A .20152B .20153C .201523D .2015227. 高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛.由于爱好者众多,高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.首发要求每个班至少1人,至多2人,则首发方案数为( ) A .720 B .270 C .390 D .300 8. sin570°的值是( )A. B.﹣ C. D.﹣9. 已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )﹣g (x )=x 3﹣2x 2,则f (2)+g (2)=( ) A .16B .﹣16C .8D .﹣810.由直线与曲线所围成的封闭图形的面积为( )A B1C D11.设公差不为零的等差数列{}n a 的前n 项和为n S ,若4232()a a a =+,则74S a =( ) A .74 B .145C .7D .14 【命题意图】本题考查等差数列的通项公式及其前n 项和,意在考查运算求解能力.12.已知全集U=R ,集合A={1,2,3,4,5},B={x ∈R|x ≥3},图中阴影部分所表示的集合为( )A .{1}B .{1,2}C .{1,2,3}D .{0,1,2}二、填空题13.设全集______.14.下列命题:①函数y=sinx 和y=tanx 在第一象限都是增函数;②若函数f (x )在[a ,b]上满足f (a )f (b )<0,函数f (x )在(a ,b )上至少有一个零点; ③数列{a n }为等差数列,设数列{a n }的前n 项和为S n ,S 10>0,S 11<0,S n 最大值为S 5; ④在△ABC 中,A >B 的充要条件是cos2A <cos2B ;⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强. 其中正确命题的序号是 (把所有正确命题的序号都写上).15.一个总体分为A,B,C三层,用分层抽样的方法从中抽取一个容量为15的样本,若B层中每个个体被抽到的概率都为,则总体的个数为.16.对于集合M,定义函数对于两个集合A,B,定义集合A△B={x|f A(x)f B(x)=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A△B的结果为.17.已知A(1,0),P,Q是单位圆上的两动点且满足,则+的最大值为.18.如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100m,则山高MN=m.三、解答题19.在锐角△ABC中,角A、B、C的对边分别为a、b、c,且.(Ⅰ)求角B的大小;(Ⅱ)若b=6,a+c=8,求△ABC的面积.20.已知一个几何体的三视图如图所示.(Ⅰ)求此几何体的表面积;(Ⅱ)在如图的正视图中,如果点A为所在线段中点,点B为顶点,求在几何体侧面上从点A到点B的最短路径的长.21.设点P的坐标为(x﹣3,y﹣2).(1)在一个盒子中,放有标号为1,2,3的三张卡片,现在从盒子中随机取出一张卡片,记下标号后把卡片放回盒中,再从盒子中随机取出一张卡片记下标号,记先后两次抽取卡片的标号分别为x、y,求点P在第二象限的概率;(2)若利用计算机随机在区间上先后取两个数分别记为x、y,求点P在第三象限的概率.22.如图,椭圆C:+=1(a>b>0)的离心率e=,且椭圆C的短轴长为2.(Ⅰ)求椭圆C的方程;(Ⅱ)设P,M,N椭圆C上的三个动点.(i)若直线MN过点D(0,﹣),且P点是椭圆C的上顶点,求△PMN面积的最大值;(ii)试探究:是否存在△PMN是以O为中心的等边三角形,若存在,请给出证明;若不存在,请说明理由.23.求下列曲线的标准方程:(1)与椭圆+=1有相同的焦点,直线y=x为一条渐近线.求双曲线C的方程.(2)焦点在直线3x﹣4y﹣12=0 的抛物线的标准方程.24.在四棱锥E﹣ABCD中,底面ABCD是边长为1的正方形,AC与BD交于点O,EC⊥底面ABCD,F为BE的中点.(Ⅰ)求证:DE∥平面ACF;(Ⅱ)求证:BD⊥AE.北塔区第三中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:整理抛物线方程得x2=﹣y,∴p=∵抛物线方程开口向下,∴准线方程是y=,故选:A.【点评】本题主要考查抛物线的基本性质.解决抛物线的题目时,一定要先判断焦点所在位置.2.【答案】C【解析】考点:等差数列的通项公式.3.【答案】C【解析】解:根据频率分布直方图,得;∵0.02×5+0.04×5=0.3<0.5,0.3+0.08×5=0.7>0.5;∴中位数应在20~25内,设中位数为x,则0.3+(x﹣20)×0.08=0.5,解得x=22.5;∴这批产品的中位数是22.5.故选:C.【点评】本题考查了利用频率分布直方图求数据的中位数的应用问题,是基础题目.4.【答案】C【解析】解:随机变量x1~N(2,1),图象关于x=2对称,x2~N(4,1),图象关于x=4对称,因为P(x1<3)=P(x2≥a),所以3﹣2=4﹣a,所以a=3, 故选:C .【点评】本题主要考查正态分布的图象,结合正态曲线,加深对正态密度函数的理解.5. 【答案】B【解析】解:∵a n+1a n +2=2a n+1+2a n (n ∈N +),∴(a n+1﹣2)(a n ﹣2)=2,当n ≥2时,(a n ﹣2)(a n ﹣1﹣2)=2,∴,可得a n+1=a n ﹣1,因此数列{a n }是周期为2的周期数列. a 1=3,∴3a 2+2=2a 2+2×3,解得a 2=4, ∴S 2015=1007(3+4)+3=7052.【点评】本题考查了数列的周期性,考查了计算能力,属于中档题.6. 【答案】C 【解析】试题分析:因为函数22()32f x x ax a =+-,()0f x ≤对任意的[]1,1x ∈-都成立,所以()()1010f f -≤⎧⎪⎨≤⎪⎩,解得3a ≥或1a ≤-,又因为(0,3]a ∈,所以3a =,在和两数间插入122015,...a a a 共2015个数,使之与,构成等比数列,T 122015...a a a =,201521...T a a a =,两式相乘,根据等比数列的性质得()()2015201521201513T a a ==⨯,T =201523,故选C.考点:1、不等式恒成立问题;2、等比数列的性质及倒序相乘的应用. 7. 【答案】C解析:高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队. 各个班的人数有5班的3人、16班的4人、33班的5人, 首发共有1、2、2;2、1、2;2、2、1类型;所求方案有:++=390.故选:C . 8. 【答案】B【解析】解:原式=sin (720°﹣150°)=﹣sin150°=﹣. 故选B【点评】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.9. 【答案】B【解析】解:∵f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )﹣g (x )=x 3﹣2x 2, ∴f (﹣2)﹣g (﹣2)=(﹣2)3﹣2×(﹣2)2=﹣16.即f (2)+g (2)=f (﹣2)﹣g (﹣2)=﹣16. 故选:B .【点评】本题考查函数的奇函数的性质函数值的求法,考查计算能力.10.【答案】D【解析】由定积分知识可得,故选D 。

江北区第三中学2018-2019学年上学期高二数学12月月考试题含解析(1)

江北区第三中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 满足条件{0,1}∪A={0,1}的所有集合A 的个数是( )A .1个B .2个C .3个D .4个2. 在正方体1111ABCD A BC D 中,,E F 分别为1,BC BB 的中点,则下列直线中与直线EF 相交的是( )A .直线1AAB .直线11A B C. 直线11A D D .直线11B C3. 已知tan (﹣α)=,则tan (+α)=( )A .B .﹣C .D .﹣4. 在“唱响内江”选拔赛中,甲、乙两位歌手的5次得分情况如茎叶图所示,记甲、乙两人的平均得分分别、,则下列判断正确的是( )A .<,乙比甲成绩稳定B .<,甲比乙成绩稳定C .>,甲比乙成绩稳定D .>,乙比甲成绩稳定5. 德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f (x )=被称为狄利克雷函数,其中R 为实数集,Q 为有理数集,则关于函数f (x )有如下四个命题:①f (f (x ))=1;②函数f (x )是偶函数;③任取一个不为零的有理数T ,f (x+T )=f (x )对任意的x=R 恒成立;④存在三个点A (x 1,f (x 1)),B (x 2,f (x 2)),C (x 3,f (x 3)),使得△ABC 为等边三角形.其中真命题的个数有( ) A .1个 B .2个 C .3个 D .4个6. 用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( )A .a ,b ,c 中至少有两个偶数B .a ,b ,c 中至少有两个偶数或都是奇数C .a ,b ,c 都是奇数D .a ,b ,c 都是偶数7. 平面α与平面β平行的条件可以是( )A .α内有无穷多条直线与β平行B .直线a ∥α,a ∥βC .直线a ⊂α,直线b ⊂β,且a ∥β,b ∥αD .α内的任何直线都与β平行8. 已知集合{2,1,0,1,2,3}A =--,{|||3,}B y y x x A ==-∈,则A B =( )A .{2,1,0}--B .{1,0,1,2}-C .{2,1,0}--D .{1,,0,1}-【命题意图】本题考查集合的交集运算,意在考查计算能力.9. 已知双曲线C :22221x y a b-=(0a >,0b >),以双曲线C 的一个顶点为圆心,为半径的圆被双曲线C 截得劣弧长为23a π,则双曲线C 的离心率为( )A .65BC .5D10.双曲线:的渐近线方程和离心率分别是( )A .B .C .D .11.设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A .1B .2C .4D .612.()()22f x a x a =-+ 在区间[]0,1上恒正,则的取值范围为( )A .0a >B .0a <<C .02a <<D .以上都不对二、填空题13.1785与840的最大约数为 .14.已知函数f (x )=有3个零点,则实数a 的取值范围是 .15.设x ,y 满足约束条件,则目标函数z=2x ﹣3y 的最小值是 .16.(sinx+1)dx 的值为 .17.已知1,3x x ==是函数()()()sin 0f x x ωϕω=+>两个相邻的两个极值点,且()f x 在32x = 处的导数302f ⎛⎫'<⎪⎝⎭,则13f ⎛⎫= ⎪⎝⎭___________. 18.若实数x ,y 满足x 2+y 2﹣2x+4y=0,则x ﹣2y 的最大值为 .三、解答题19.已知A (﹣3,0),B (3,0),C (x 0,y 0)是圆M 上的三个不同的点. (1)若x 0=﹣4,y 0=1,求圆M 的方程;(2)若点C 是以AB 为直径的圆M 上的任意一点,直线x=3交直线AC 于点R ,线段BR 的中点为D .判断直线CD 与圆M 的位置关系,并证明你的结论.20.设函数f (x )=lnx ﹣ax+﹣1.(Ⅰ)当a=1时,求曲线f (x )在x=1处的切线方程;(Ⅱ)当a=时,求函数f (x )的单调区间;(Ⅲ)在(Ⅱ)的条件下,设函数g (x )=x 2﹣2bx ﹣,若对于∀x 1∈[1,2],∃x 2∈[0,1],使f (x 1)≥g (x 2)成立,求实数b 的取值范围.21.如图,在底面是矩形的四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,PA=AB=2,BC=2,E 是PD 的中点. (1)求证:平面PDC ⊥平面PAD ;(2)求二面角E ﹣AC ﹣D 所成平面角的余弦值.22.【海安县2018届高三上学期第一次学业质量测试】已知函数()()2xf x x ax a e =++,其中a R ∈,e 是自然对数的底数.(1)当1a =时,求曲线()y f x =在0x =处的切线方程; (2)求函数()f x 的单调减区间;(3)若()4f x ≤在[]4,0-恒成立,求a 的取值范围.23.如图,在三棱锥 P ABC -中,,,,E F G H 分别是,,,AB AC PC BC 的中点,且,PA PB AC BC ==.;(1)证明:AB PC(2)证明:平面PAB平面FGH.24.如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示),(1)当BD的长为多少时,三棱锥A﹣BCD的体积最大;(2)当三棱锥A﹣BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小。

北流市第三中学2018-2019学年上学期高二数学12月月考试题含解析

北流市第三中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 如图,棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 为线段A 1B 上的动点,则下列结论正确的有( ) ①三棱锥M ﹣DCC 1的体积为定值 ②DC 1⊥D 1M ③∠AMD 1的最大值为90° ④AM+MD 1的最小值为2.A .①②B .①②③C .③④D .②③④2.双曲线上一点P 到左焦点的距离为5,则点P 到右焦点的距离为( ) A .13B .15C .12D .113. 若函数y=f (x )是y=3x 的反函数,则f (3)的值是( ) A .0B .1C .D .3 4.已知双曲线的方程为﹣=1,则双曲线的离心率为( ) A.B.C.或D.或5. 过抛物线y 2=﹣4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2),若x 1+x 2=﹣6,则|AB|为( ) A .8B .10C .6D .46. 已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题: (1)α∥β⇒l ⊥m ,(2)α⊥β⇒l ∥m , (3)l ∥m ⇒α⊥β,(4)l ⊥m ⇒α∥β, 其中正确命题是( )A .(1)与(2)B .(1)与(3)C .(2)与(4)D .(3)与(4)7. 已知三个数1a -,1a +,5a +成等比数列,其倒数重新排列后为递增的等比数列{}n a 的前三 项,则能使不等式1212111n na a a a a a +++≤+++成立的自然数的最大值为( ) A .9 B .8 C.7 D .5 8. 已知圆C 方程为222x y +=,过点(1,1)P -与圆C 相切的直线方程为( )A .20x y -+=B .10x y +-=C .10x y -+=D .20x y ++= 9. 命题“设a 、b 、c ∈R ,若ac 2>bc 2则a >b ”以及它的逆命题、否命题、逆否命题中,真命题的个数为( ) A .0 B .1C .2D .310.设f (x )=(e -x -e x )(12x +1-12),则不等式f (x )<f (1+x )的解集为( )A .(0,+∞)B .(-∞,-12)C .(-12,+∞)D .(-12,0)11.已知 m 、n 是两条不重合的直线,α、β、γ是三个互不重合的平面,则下列命题中 正确的是( ) A .若 m ∥α,n ∥α,则 m ∥n B .若α⊥γ,β⊥γ,则 α∥βC .若m ⊥α,n ⊥α,则 m ∥nD .若 m ∥α,m ∥β,则 α∥β12.已知函数()xF x e =满足()()()F x g x h x =+,且()g x ,()h x 分别是R 上的偶函数和奇函数, 若(0,2]x ∀∈使得不等式(2)()0g x ah x -≥恒成立,则实数的取值范围是( )A .(,-∞B .(,-∞C .(0,D .)+∞二、填空题13.长方体1111ABCD A B C D -中,对角线1A C 与棱CB 、CD 、1CC 所成角分别为α、β、, 则222sin sin sin αβγ++= .14.把函数y=sin2x 的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵15.设,则16.若正方形P 1P 2P 3P 4的边长为1,集合M={x|x=且i ,j ∈{1,2,3,4}},则对于下列命题:①当i=1,j=3时,x=2; ②当i=3,j=1时,x=0;③当x=1时,(i ,j )有4种不同取值; ④当x=﹣1时,(i ,j )有2种不同取值; ⑤M 中的元素之和为0.其中正确的结论序号为 .(填上所有正确结论的序号)17.(若集合A ⊊{2,3,7},且A 中至多有1个奇数,则这样的集合共有 个.18.若圆与双曲线C :的渐近线相切,则_____;双曲线C 的渐近线方程是____.三、解答题19.2016年1月1日起全国统一实施全面两孩政策.为了解适龄民众对放开生育二胎政策的态度,某市选取7080100位,得到数据如表:70后公民中随机抽取3位,记其中生二胎的人数为X ,求随机变量X 的分布列和数学期望;(Ⅱ)根据调查数据,是否有90%以上的把握认为“生二胎与年龄有关”,并说明理由. 2.0722.7063.8415.024(参考公式:,其中n=a+b+c+d )20.(本小题满分12分)已知函数2()(21)ln f x x a x a x =-++(a R ∈).(I )若12a >,求)(x f y =的单调区间; (II )函数()(1)g x a x =-,若0[1,]x e ∃∈使得00()()f x g x ≥成立,求实数a 的取值范围.21.已知函数f (x )=4sinxcosx ﹣5sin 2x ﹣cos 2x+3.(Ⅰ)当x ∈[0,]时,求函数f (x )的值域;(Ⅱ)若△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足=,=2+2cos (A+C ),求f (B )的值.22.(本小题满分14分)设函数2()1cos f x ax bx x =++-,0,2x π⎡⎤∈⎢⎥⎣⎦(其中a ,b R ∈).(1)若0a =,12b =-,求()f x 的单调区间; (2)若0b =,讨论函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上零点的个数.【命题意图】本题主要考查利用导数研究函数的单调性,最值、通过研究函数图象与性质,讨论函数的零点个数,考查考生运算求解能力、转化能力和综合应用能力,是难题.23.(本小题满分12分)已知12,F F 分别是椭圆C :22221(0)x y a b a b+=>>的两个焦点,(1,2P 是椭圆上1122|,||PF F F PF 成等差数列.(1)求椭圆C 的标准方程;、(2)已知动直线l 过点F ,且与椭圆C 交于A B 、两点,试问x 轴上是否存在定点Q ,使得716QA QB ⋅=-恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.24.(本题满分15分)设点P 是椭圆14:221=+y x C 上任意一点,过点P 作椭圆的切线,与椭圆)1(14:22222>=+t t y t x C 交于A ,B 两点.(1)求证:PB PA =;(2)OAB ∆的面积是否为定值?若是,求出这个定值;若不是,请说明理由.【命题意图】本题考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,意在考查解析几何的基本思想方法和综合解题能力.北流市第三中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:①∵A1B∥平面DCC1D1,∴线段A1B上的点M到平面DCC1D1的距离都为1,又△DCC1的面积为定值,因此三棱锥M﹣DCC1的体积V==为定值,故①正确.②∵A1D1⊥DC1,A1B⊥DC1,∴DC1⊥面A1BCD1,D1P⊂面A1BCD1,∴DC1⊥D1P,故②正确.③当0<A1P<时,在△AD1M中,利用余弦定理可得∠APD1为钝角,∴故③不正确;④将面AA1B与面A1BCD1沿A1B展成平面图形,线段AD1即为AP+PD1的最小值,在△D1A1A中,∠D1A1A=135°,利用余弦定理解三角形得AD1==<2,故④不正确.因此只有①②正确.故选:A.2.【答案】A【解析】解:设点P到双曲线的右焦点的距离是x,∵双曲线上一点P到左焦点的距离为5,∴|x﹣5|=2×4∵x>0,∴x=13故选A.3.【答案】B【解析】解:∵指数函数的反函数是对数函数,∴函数y=3x的反函数为y=f(x)=log3x,所以f(9)=log33=1.故选:B.【点评】本题给出f(x)是函数y=3x(x∈R)的反函数,求f(3)的值,着重考查了反函数的定义及其性质,属于基础题.4.【答案】C【解析】解:双曲线的方程为﹣=1,焦点坐标在x轴时,a2=m,b2=2m,c2=3m,离心率e=.焦点坐标在y轴时,a2=﹣2m,b2=﹣m,c2=﹣3m,离心率e==.故选:C.【点评】本题考查双曲线的离心率的求法,注意实轴所在轴的易错点.5.【答案】A【解析】解:由题意,p=2,故抛物线的准线方程是x=1,∵抛物线y2=﹣4x 的焦点作直线交抛物线于A(x1,y1)B(x2,y2)两点∴|AB|=2﹣(x1+x2),又x1+x2=﹣6∴∴|AB|=2﹣(x1+x2)=8故选A6.【答案】B【解析】解:∵直线l⊥平面α,α∥β,∴l⊥平面β,又∵直线m⊂平面β,∴l⊥m,故(1)正确;∵直线l⊥平面α,α⊥β,∴l∥平面β,或l⊂平面β,又∵直线m⊂平面β,∴l与m可能平行也可能相交,还可以异面,故(2)错误;∵直线l⊥平面α,l∥m,∴m⊥α,∵直线m⊂平面β,∴α⊥β,故(3)正确;∵直线l⊥平面α,l⊥m,∴m∥α或m⊂α,又∵直线m⊂平面β,则α与β可能平行也可能相交,故(4)错误;故选B.【点评】本题考查的知识点是空间中直线与平面之间的位置关系,其中熟练掌握空间中直线与平面位置关系的判定及性质定理,建立良好的空间想像能力是解答本题的关键.7.【答案】C【解析】试题分析:因为三个数1,1,5a a a -++等比数列,所以()()()2115,3a a a a +=-+∴=,倒数重新排列后恰好为递增的等比数列{}n a 的前三项,为111,,842,公比为,数列1n a ⎧⎫⎨⎬⎩⎭是以为首项,12为公比的等比数列,则不等式1212111n n a a a a a a +++≤+++等价为()1181122811212n n ⎛⎫-- ⎪⎝⎭≤--,整理,得722,17,n n n N +≤∴≤≤≤∈,故选C. 1考点:1、等比数列的性质;2、等比数列前项和公式. 8. 【答案】A 【解析】试题分析:圆心(0,0),C r =,设切线斜率为,则切线方程为1(1),10y k x kxy k -=+∴-++=,由,1d r k =∴=,所以切线方程为20x y -+=,故选A.考点:直线与圆的位置关系.9. 【答案】C【解析】解:命题“设a 、b 、c ∈R ,若ac 2>bc 2,则c 2>0,则a >b ”为真命题; 故其逆否命题也为真命题;其逆命题为“设a 、b 、c ∈R ,若a >b ,则ac 2>bc 2”在c=0时不成立,故为假命题 故其否命题也为假命题故原命题及其逆命题、否命题、逆否命题中,真命题的个数为2个 故选C【点评】本题考查的知识点是四种命题的真假判断,不等式的基本性质,其中熟练掌握互为逆否的两个命题真假性相同,是解答的关键.10.【答案】【解析】选C.f (x )的定义域为x ∈R ,由f (x )=(e -x -e x )(12x +1-12)得f (-x )=(e x -e -x )(12-x +1-12)=(ex-e -x )(-12x +1+12)=(e -x -e x )(12x +1-12)=f (x ),∴f (x )在R 上为偶函数,∴不等式f (x )<f (1+x )等价于|x |<|1+x |,即x 2<1+2x +x 2,∴x >-12,即不等式f (x )<f (1+x )的解集为{x |x >-12},故选C.11.【答案】C【解析】解:对于A ,若 m ∥α,n ∥α,则 m 与n 相交、平行或者异面;故A 错误; 对于B ,若α⊥γ,β⊥γ,则 α与β可能相交,如墙角;故B 错误; 对于C ,若m ⊥α,n ⊥α,根据线面垂直的性质定理得到 m ∥n ;故C 正确; 对于D ,若 m ∥α,m ∥β,则 α与β可能相交;故D 错误; 故选C .【点评】本题考查了空间线线关系.面面关系的判断;熟练的运用相关的定理是关键.12.【答案】B 【解析】试题分析:因为函数()xF x e =满足()()()F x g x h x =+,且()(),g x h x 分别是R 上的偶函数和奇函数,()()()()()()(],,,,0,222x x x xxxe e e e e g x h x eg x h x g x h x x ---+-∴=+=-∴==∀∈ 使得不等式()()20g x ah x -≥恒成立, 即22022xxx xe ee e a--+--≥恒成立, ()2222x x x xx xx xe e e ea e e e e -----++∴≤=--()2x x x xe e e e--=-++, 设x x t e e -=-,则函数x x t e e -=-在(]0,2上单调递增,220t e e -∴<≤-, 此时不等式2tt +≥当且仅当2t t=,即t =时, 取等号,a ∴≤故选B.考点:1、函数奇偶性的性质;2、不等式恒成立问题及函数的最值.【方法点晴】本题主要考查函数奇偶性的性质、不等式恒成立问题及函数的最值,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);②数形结合;③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数 .本题是利用方法①求得的最大值的.二、填空题13.【答案】 【解析】试题分析:以1AC 为斜边构成直角三角形:1111,,AC D AC B AC A ∆∆∆,由长方体的对角线定理可得:2222221111222111sin sin sin BC DC AC AC AC AC αβγ++=++2221212()2AB AD AA AC ++==.考点:直线与直线所成的角.【方法点晴】本题主要考查了空间中直线与直线所成的角的计算问题,其中解答中涉及到长方体的结构特征、直角三角形中三角函数的定义、长方体的对角线长公式等知识点的考查,着重考查学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直角三角形中三角函数的定义和长方体的对角线长定理是解答的关键. 14.【答案】 y=cosx .【解析】解:把函数y=sin2x的图象向左平移个单位长度,得,即y=cos2x 的图象,把y=cos2x的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cosx 的图象;故答案为:y=cosx .15.【答案】9【解析】由柯西不等式可知16.【答案】 ①③⑤【解析】解:建立直角坐标系如图:则P 1(0,1),P 2(0,0),P 3(1,0),P 4(1,1).∵集合M={x|x=且i ,j ∈{1,2,3,4}},对于①,当i=1,j=3时,x==(1,﹣1)•(1,﹣1)=1+1=2,故①正确; 对于②,当i=3,j=1时,x==(1,﹣1)•(﹣1,1)=﹣2,故②错误; 对于③,∵集合M={x|x=且i ,j ∈{1,2,3,4}}, ∴=(1,﹣1),==(0,﹣1),==(1,0),∴•=1;•=1;•=1;•=1;∴当x=1时,(i ,j )有4种不同取值,故③正确;④同理可得,当x=﹣1时,(i ,j )有4种不同取值,故④错误;⑤由以上分析,可知,当x=1时,(i ,j )有4种不同取值;当x=﹣1时,(i ,j )有4种不同取值,当i=1,j=3时,x=2时,当i=3,j=1时,x=﹣2;当i=2,j=4,或i=4,j=2时,x=0,∴M中的元素之和为0,故⑤正确.综上所述,正确的序号为:①③⑤,故答案为:①③⑤.【点评】本题考查命题的真假判断与应用,着重考查平面向量的坐标运算,建立直角坐标系,求得=(1,﹣1),==(0,﹣1),==(1,0)是关键,考查分析、化归与运算求解能力,属于难题.17.【答案】6【解析】解:集合A为{2,3,7}的真子集有7个,奇数3、7都包含的有{3,7},则符合条件的有7﹣1=6个.故答案为:6【点评】本题考查集合的子集问题,属基础知识的考查.18.【答案】,【解析】【知识点】圆的标准方程与一般方程双曲线【试题解析】双曲线的渐近线方程为:圆的圆心为(2,0),半径为1.因为相切,所以所以双曲线C的渐近线方程是:故答案为:,三、解答题19.【答案】【解析】解:(Ⅰ)由已知得该市70后“生二胎”的概率为=,且X ~B (3,),P (X=0)==,P (X=1)==,P (X=2)==,P (X=3)==,0 1 3∴E (X )=3×=2.(Ⅱ)假设生二胎与年龄无关,K 2==≈3.030>2.706,所以有90%以上的把握认为“生二胎与年龄有关”.20.【答案】【解析】【命题意图】本题考查导数的应用等基础知识,意在考查转化与化归思想的运用和综合分析问题解决问题的能力.请21.【答案】【解析】解:(Ⅰ)f(x)=4sinxcosx﹣5sin2x﹣cos2x+3=2sin2x﹣+3=2sin2x+2cos2x=4sin(2x+).∵x∈[0,],∴2x+∈[,],∴f(x)∈[﹣2,4].(Ⅱ)由条件得sin(2A+C)=2sinA+2sinAcos(A+C),∴sinAcos(A+C)+cosAsin(A+C)=2sinA+2sinAcos(A+C),化简得sinC=2sinA,由正弦定理得:c=2a,又b=,由余弦定理得:a2=b2+c2﹣2bccosA=3a2+4a2﹣4a2cosA ,解得:cosA=,故解得:A=,B=,C=,∴f (B )=f ()=4sin =2.【点评】本题考查了平方关系、倍角公式、两角和差的正弦公式及其单调性、正弦定理、余弦定理,考查了推理能力和计算能力,属于中档题.22.【答案】【解析】(1)∵0a =,12b =-, ∴1()1cos 2f x x x =-+-,1()sin 2f x x '=-+,0,2x π⎡⎤∈⎢⎥⎣⎦.(2分) 令()0f x '=,得6x π=.当06x π<<时,()0f x '<,当62x ππ<<时,()0f x '>,所以()f x 的单调增区间是,62ππ⎡⎤⎢⎥⎣⎦,单调减区间是0,6π⎡⎤⎢⎥⎣⎦. (5分)若112a -<<-π,则()102f a π'=π+<,又()(0)0f f θ''>=,由零点存在定理,00,2θπ⎛⎫∃∈ ⎪⎝⎭,使0()0f θ'=,所以()f x 在0(0,)θ上单调增,在0,2θπ⎛⎫⎪⎝⎭上单调减.又(0)0f =,2()124f a ππ=+. 故当2142a -<≤-π时,2()1024f a ππ=+≤,此时()f x 在0,2π⎡⎤⎢⎥⎣⎦上有两个零点; 当241a -<<-ππ时,2()1024f a ππ=+>,此时()f x 在0,2π⎡⎤⎢⎥⎣⎦上只有一个零点.23.【答案】【解析】【命题意图】本题考查椭圆的定义及方程、直线与椭圆的位置关系、平面向量数量积等基础知识,意在考查学生逻辑思维能力、运算求解能力、探索能力,以及分类讨论思想、待定系数法、设而不求法的应用.下面证明54m =时,716QA QB ⋅=-恒成立. 当直线l 的斜率为0时,结论成立;当直线l 的斜率不为0时,设直线l 的方程为1x ty =+,()11,A x y ,()22,B x y ,由1x ty =+及2212x y +=,得22(2)210t y ty ++-=, 所以0∆>,∴12122221,22t y y y y t t +=-=-++.111x ty =+,221x ty =+,∴112212125511(,)(,)()()4444x y x y ty ty y y -⋅-=--+=2(1)t +121211()416y y t y y -++=22222211212217(1)242162(2)1616t t t t t t t t --+-++⋅+=+=-+++. 综上所述,在x 轴上存在点5(,0)4Q 使得716QA QB ⋅=-恒成立.24.【答案】(1)详见解析;(2)详见解析.∴点P 为线段AB 中点,PB PA =;…………7分(2)若直线AB 斜率不存在,则2:±=x AB ,与椭圆2C 方程联立可得,)1,2(2--±t A ,)1,2(2-±t B ,故122-=∆t S OAB ,…………9分若直线AB 斜率存在,由(1)可得148221+-=+k km x x ,144422221+-=k t m x x ,141141222212+-+=-+=k t k x x k AB ,…………11分点O 到直线AB 的距离2221141kk km d ++=+=,…………13分∴12212-=⋅=∆t d AB S OAB ,综上,OAB ∆的面积为定值122-t .…………15分。

新华区第三高级中学2018-2019学年上学期高二数学12月月考试题含解析

新华区第三高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 若cos (﹣α)=,则cos (+α)的值是( )A .B .﹣C .D .﹣2. 复数Z=(i 为虚数单位)在复平面内对应点的坐标是( )A .(1,3)B .(﹣1,3)C .(3,﹣1)D .(2,4)3. 若动点),(),(2211y x B y x A 、分别在直线: 011=-+y x 和2l :01=-+y x 上移动,则AB 中点M 所在直线方程为( )A .06=--y xB .06=++y xC .06=+-y xD .06=-+y x 4. 设a >0,b >0,若是5a 与5b的等比中项,则+的最小值为( )A .8B .4C .1D .5. 已知x ,y ∈R ,且,则存在θ∈R ,使得xcos θ+ysin θ+1=0成立的P (x ,y )构成的区域面积为( )A .4﹣B .4﹣C .D . +6. 如图所示,函数y=|2x ﹣2|的图象是( )A .B .C .D .7. 下列命题中的假命题是( )A .∀x ∈R ,2x ﹣1>0B .∃x ∈R ,lgx <1C .∀x ∈N +,(x ﹣1)2>0D .∃x ∈R ,tanx=28. cos80cos130sin100sin130︒︒-︒︒等于( )A B .12 C .12- D . 9. 在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( )A .众数B .平均数C .中位数D .标准差10.如果一个几何体的三视图如图所示,主视图与左视图是边长为2的正三角形、俯视图轮廓为正方形,(单位:cm ),则此几何体的表面积是( )A .8cm 2B . cm 2C .12 cm 2D .cm 211.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为( )A .B .C .D .612.把“二进制”数101101(2)化为“八进制”数是( ) A .40(8)B .45(8)C .50(8)D .55(8)二、填空题13.已知关于的不等式20x ax b ++<的解集为(1,2),则关于的不等式210bx ax ++>的解集 为___________.14.直角坐标P (﹣1,1)的极坐标为(ρ>0,0<θ<π) . 15.在中,角、、所对应的边分别为、、,若,则_________16.已知直线:043=++m y x (0>m )被圆C :062222=--++y x y x 所截的弦长是圆心C 到直线的距离的2倍,则=m .17.已知双曲线x 2﹣y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为 .18.如图,△ABC 是直角三角形,∠ACB=90°,PA ⊥平面ABC ,此图形中有 个直角三角形.三、解答题19.(本题满分15分)已知函数c bx ax x f ++=2)(,当1≤x 时,1)(≤x f 恒成立. (1)若1=a ,c b =,求实数b 的取值范围;(2)若a bx cx x g +-=2)(,当1≤x 时,求)(x g 的最大值.【命题意图】本题考查函数单调性与最值,分段函数,不等式性质等基础知识,意在考查推理论证能力,分析问题和解决问题的能力.20.设函数f (x )=e mx +x 2﹣mx .(1)证明:f (x )在(﹣∞,0)单调递减,在(0,+∞)单调递增; (2)若对于任意x 1,x 2∈,都有|f (x 1)﹣f (x 2)|≤e ﹣1,求m 的取值范围.21.已知f (α)=,(1)化简f (α);(2)若f (α)=﹣2,求sin αcos α+cos 2α的值.22.(本小题满分12分)已知函数21()(3)ln 2f x x a x x =+-+. (1)若函数()f x 在定义域上是单调增函数,求的最小值;(2)若方程21()()(4)02f x a x a x -+--=在区间1[,]e e上有两个不同的实根,求的取值范围.23.(本小题12分)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=.111](1)求{}n a ,{}n b 的通项公式; (2)求数列{}nna b 的前项和n S .24.A={x|x2﹣3x+2=0},B={x|ax﹣2=0},若B⊆A,求a.新华区第三高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】B【解析】解:∵cos (﹣α)=,∴cos (+α)=﹣cos=﹣cos (﹣α)=﹣.故选:B .2. 【答案】A 【解析】解:复数Z===(1+2i )(1﹣i )=3+i 在复平面内对应点的坐标是(3,1).故选:A .【点评】本题考查了复数的运算法则、几何意义,属于基础题.3. 【答案】D 【解析】考点:直线方程 4. 【答案】B 【解析】解:∵是5a 与5b的等比中项, ∴5a •5b=()2=5,即5a+b =5, 则a+b=1,则+=(+)(a+b )=1+1++≥2+2=2+2=4,当且仅当=,即a=b=时,取等号,即+的最小值为4,故选:B【点评】本题主要考查等比数列性质的应用,以及利用基本不等式求最值问题,注意1的代换.5.【答案】A【解析】解:作出不等式组对应的平面区域如图:对应的区域为三角形OAB,若存在θ∈R,使得xcosθ+ysinθ+1=0成立,则(cosθ+sinθ)=﹣1,令sinα=,则cosθ=,则方程等价为sin(α+θ)=﹣1,即sin(α+θ)=﹣,∵存在θ∈R,使得xcosθ+ysinθ+1=0成立,∴|﹣|≤1,即x2+y2≥1,则对应的区域为单位圆的外部,由,解得,即B(2,2),A(4,0),则三角形OAB的面积S=×=4,直线y=x的倾斜角为,则∠AOB=,即扇形的面积为,则P(x,y)构成的区域面积为S=4﹣,故选:A【点评】本题主要考查线性规划的应用,根据条件作出对应的图象,求出对应的面积是解决本题的关键.综合性较强.6.【答案】B【解析】解:∵y=|2x﹣2|=,∴x=1时,y=0,x≠1时,y>0.故选B.【点评】本题考查指数函数的图象和性质,解题时要结合图象进行求解.7.【答案】C【解析】解:A.∀x∈R,2x﹣1=0正确;B.当0<x<10时,lgx<1正确;C.当x=1,(x﹣1)2=0,因此不正确;D.存在x∈R,tanx=2成立,正确.综上可知:只有C错误.故选:C.【点评】本题考查了指数函数与对数函数、正切函数的单调性,属于基础题.8.【答案】D【解析】试题分析:原式()()=︒︒-︒︒=︒+︒=︒=︒+︒=-︒cos80cos130sin80sin130cos80130cos210cos30180cos30=.考点:余弦的两角和公式.9.【答案】D【解析】解:A样本数据:82,84,84,86,86,86,88,88,88,88.B样本数据84,86,86,88,88,88,90,90,90,90众数分别为88,90,不相等,A错.平均数86,88不相等,B错.中位数分别为86,88,不相等,C错A样本方差S2=[(82﹣86)2+2×(84﹣86)2+3×(86﹣86)2+4×(88﹣86)2]=4,标准差S=2,B样本方差S2=[(84﹣88)2+2×(86﹣88)2+3×(88﹣88)2+4×(90﹣88)2]=4,标准差S=2,D正确故选D .【点评】本题考查众数、平均数、中位标准差的定义,属于基础题.10.【答案】C【解析】解:由已知可得:该几何体是一个四棱锥, 侧高和底面的棱长均为2,故此几何体的表面积S=2×2+4××2×2=12cm 2,故选:C .【点评】本题考查的知识点是棱柱、棱锥、棱台的体积和表面积,空间几何体的三视图,根据已知判断几何体的形状是解答的关键.11.【答案】B【解析】解:此几何体为一个三棱柱,棱柱的高是4,底面正三角形的高是,设底面边长为a ,则,∴a=6,故三棱柱体积.故选B【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是本棱柱的体积.三视图的投影规则是:“主视、俯视 长对正;主视、左视高平齐,左视、俯视 宽相等”.三视图是新课标的新增内容,在以后的高考中有加强的可能.12.【答案】D【解析】解:∵101101(2)=1×25+0+1×23+1×22+0+1×20=45(10).再利用“除8取余法”可得:45(10)=55(8). 故答案选D .二、填空题13.【答案】),1()21,(+∞-∞【解析】考点:一元二次不等式的解法.14.【答案】.【解析】解:ρ==,tanθ==﹣1,且0<θ<π,∴θ=.∴点P的极坐标为.故答案为:.15.【答案】【解析】因为,所以,所以,所以答案:16.【答案】9【解析】考点:直线与圆的位置关系【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,并且弦长公式是222d R l -=,R 是圆的半径,d 是圆心到直线的距离.17.【答案】 .【解析】解:∵PF 1⊥PF 2,∴|PF 1|2+|PF 2|2=|F 1F 2|2. ∵双曲线方程为x 2﹣y 2=1,∴a 2=b 2=1,c 2=a 2+b 2=2,可得F 1F 2=2∴|PF 1|2+|PF 2|2=|F 1F 2|2=8又∵P 为双曲线x 2﹣y 2=1上一点, ∴|PF 1|﹣|PF 2|=±2a=±2,(|PF 1|﹣|PF 2|)2=4因此(|PF 1|+|PF 2|)2=2(|PF 1|2+|PF 2|2)﹣(|PF 1|﹣|PF 2|)2=12∴|PF 1|+|PF 2|的值为故答案为:【点评】本题根据已知双曲线上对两个焦点的张角为直角的两条焦半径,求它们长度的和,着重考查了双曲线的基本概念与简单性质,属于基础题.18.【答案】 4【解析】解:由PA ⊥平面ABC ,则△PAC ,△PAB 是直角三角形,又由已知△ABC 是直角三角形,∠ACB=90°所以BC ⊥AC ,从而易得BC ⊥平面PAC ,所以BC ⊥PC ,所以△PCB 也是直角三角形,所以图中共有四个直角三角形,即:△PAC ,△PAB ,△ABC ,△PCB .故答案为:4【点评】本题考查空间几何体的结构特征,空间中点线面的位置关系,线面垂直的判定定理和性质定理的熟练应用是解答本题的关键.三、解答题19.【答案】【解析】(1)]0,222[-;(2)2.(1)由1=a 且c b =,得4)2()(222b b b x b bx x x f -++=++=,当1=x 时,11)1(≤++=b b f ,得01≤≤-b ,…………3分故)(x f 的对称轴]21,0[2∈-=b x ,当1≤x 时,2min max ()()124()(1)11b b f x f b f x f ⎧=-=-≥-⎪⎨⎪=-=≤⎩,………… 5分 解得222222+≤≤-b ,综上,实数b 的取值范围为]0,222[-;…………7分112≤+=,…………13分且当2a =,0b =,1c =-时,若1≤x ,则112)(2≤-=x x f 恒成立,且当0=x 时,2)(2+-=x x g 取到最大值2.)(x g 的最大值为2.…………15分20.【答案】【解析】解:(1)证明:f ′(x )=m (e mx﹣1)+2x .若m ≥0,则当x ∈(﹣∞,0)时,e mx ﹣1≤0,f ′(x )<0;当x ∈(0,+∞)时,e mx﹣1≥0,f ′(x )>0. 若m <0,则当x ∈(﹣∞,0)时,e mx ﹣1>0,f ′(x )<0;当x ∈(0,+∞)时,e mx﹣1<0,f ′(x )>0.所以,f (x )在(﹣∞,0)时单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m ,f (x )在单调递减,在单调递增,故f (x )在x=0处取得最小值. 所以对于任意x 1,x 2∈,|f (x 1)﹣f (x 2)|≤e ﹣1的充要条件是即设函数g (t )=e t﹣t ﹣e+1,则g ′(t )=e t﹣1.当t <0时,g ′(t )<0;当t >0时,g ′(t )>0.故g (t )在(﹣∞,0)单调递减,在(0,+∞)单调递增.又g (1)=0,g (﹣1)=e ﹣1+2﹣e <0,故当t ∈时,g (t )≤0.当m ∈时,g (m )≤0,g (﹣m )≤0,即合式成立;当m >1时,由g (t )的单调性,g (m )>0,即e m﹣m >e ﹣1.当m <﹣1时,g (﹣m )>0,即e ﹣m+m >e ﹣1.综上,m 的取值范围是21.【答案】【解析】解:(1)f (α)===﹣tan α;…5(分) (2)∵f (α)=﹣2, ∴tan α=2,…6(分)∴sin αcos α+cos 2α====.…10(分)22.【答案】(1);(2)01a <<.1111] 【解析】则'()0f x ≥对0x >恒成立,即1()3a x x≥-++对0x >恒成立,而当0x >时,1()3231x x-++≤-+=,∴1a ≥.若函数()f x 在(0,)+∞上递减,则'()0f x ≤对0x >恒成立,即1()3a x x≤-++对0x >恒成立, 这是不可能的. 综上,1a ≥. 的最小值为1. 1(2)由21()()(2)2ln 02f x a x a x x =-+-+=, 得21()(2)2ln 2a x a x x -+-=,即2ln x x a x +=,令2ln ()x x r x x +=,2331(1)2(ln )12ln '()x x x x x x x r x x x +-+--==, 得12ln 0x x --=的根为1,考点:1、利用导数研究函数的单调性;2、函数零点问题及不等式恒成立问题.【方法点晴】本题主要考查利用导数研究函数的单调性、函数零点问题及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成(max ()a f x ≥即可);②数形结合;③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数.本题(2)就是先将问题转化为不等式恒成立问题后再利用①求得的最小值的.请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号. 23.【答案】(1)2,2==q d ;(2)12326-+-=n n n S . 【解析】(2)1212--=n n n n b a ,………………6分122121223225231---+-++++=n n n n n S ,① n n n n n S 212232252321211321-+-++++=- .②……………8分 ①-②得n n n n n S 2122222222212`1221--+++++=-- 23112222211222222nn nn S --=++++-,…………10分所以12326-+-=n n n S .………………12分 考点:等差数列的概念与通项公式,错位相减法求和,等比数列的概念与通项公式.【方法点晴】本题主要考查等差数列和等比数列的通项公式以及数列的求和,通过设}{n a 的公差为d ,}{n b 的公比为,根据等差数列和等比数列的通项公式,联立方程求得d 和,进而可得}{n a ,}{n b 的通项公式;(2)数列}a {nnb 的通项公式由等差数列和等比数列对应项相乘构成,需用错位相减法求得前项和n S . 24.【答案】【解析】解:解:集合A={x|x 2﹣3x+2=0}={1,2}∵B ⊆A ,∴(1)B=∅时,a=0 (2)当B={1}时,a=2 (3))当B={2}时,a=1 故a 值为:2或1或0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精选高中模拟试卷 第 1 页,共 17 页 北林区第三高级中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 姓名__________ 分数__________ 一、选择题 1. 棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应截面面积 为1S、2S、3S

,则( )

A.123SSS B.123SSS C.213SSS D.213SSS 2. 把“二进制”数101101(2)

化为“八进制”数是( )

A.40(8) B.45(8) C.50(8) D.55(8) 3. 在高校自主招生中,某学校获得5个推荐名额,其中清华大学2名,北京大学2名,复旦大学1名.并且

北京大学和清华大学都要求必须有男生参加.学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有( ) A.20种 B.22种 C.24种 D.36种

4. 连续抛掷两次骰子得到的点数分别为m和n,记向量=(m,n),向量=(1,﹣2),则⊥的概率

是( )

A. B. C. D.

5. 已知直线mx﹣y+1=0交抛物线y=x2于A、B两点,则△AOB( )

A.为直角三角形 B.为锐角三角形 C.为钝角三角形 D.前三种形状都有可能

6. 直线l将圆x2+y2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l的方程是( )

A.x﹣y+1=0,2x﹣y=0 B.x﹣y﹣1=0,x﹣2y=0 C.x+y+1=0,2x+y=0 D.x﹣y+1=0,x+2y=0 7. 某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( ) 精选高中模拟试卷

第 2 页,共 17 页 A.2sin2cos2 B.sin3cos3 C. 3sin3cos1 D.2sincos1 8. 下列结论正确的是( ) A.若直线l∥平面α,直线l∥平面β,则α∥β. B.若直线l⊥平面α,直线l⊥平面β,则α∥β. C.若直线l1,l2与平面α所成的角相等,则l1∥l2 D.若直线l上两个不同的点A,B到平面α的距离相等,则l∥α

9. 5名运动员争夺3项比赛冠军(每项比赛无并列冠军),获得冠军的可能种数为( ) A.35 B. C. D.53

10.若,则下列不等式一定成立的是( ) A. B.

C. D.

11.执行如图所示的程序框图,输出的结果是( )

A.15 B.21 C.24 D.35 12.若a=ln2,b=5,c=xdx,则a,b,c的大小关系( ) A.a<b<cB B.b<a<cC C.b<c<a D.c<b<a 二、填空题

13.如图,在平面直角坐标系xOy中,将直线y=与直线x=1及x轴所围成的图形旋转一周得到一个圆锥,

圆锥的体积V圆锥=π()2dx=x3|=. 精选高中模拟试卷 第 3 页,共 17 页 据此类推:将曲线y=x2与直线y=4所围成的图形绕y轴旋转一周得到一个旋转体,该旋转体的体积V= .

14.已知,是空间二向量,若=3,||=2,|﹣|=,则与的夹角为 . 15.已知1sincos3,(0,),则sincos7sin12的值为 .

16.已知(1+x+x2)(x)n(n∈N+)的展开式中没有常数项,且2≤n≤8,则n= .

17.抽样调查表明,某校高三学生成绩(总分750分)X近似服从正态分布,平均成绩为500分.已知P(400<X<450)=0.3,则P(550<X<600)= . 18.下列命题: ①函数y=sinx和y=tanx在第一象限都是增函数;

②若函数f(x)在[a,b]上满足f(a)f(b)<0,函数f(x)在(a,b)上至少有一个零点;

③数列{an}为等差数列,设数列{an}的前n项和为Sn,S10>0,S11<0,Sn最大值为S5;

④在△ABC中,A>B的充要条件是cos2A<cos2B; ⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强.

其中正确命题的序号是 (把所有正确命题的序号都写上).

三、解答题 19.已知函数3()1xfxx

,2,5x.

(1)判断()fx的单调性并且证明; (2)求()fx在区间2,5上的最大值和最小值. 精选高中模拟试卷

第 4 页,共 17 页 20.一个几何体的三视图如图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图 是一个长为3,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形. (1)求该几何体的体积V;111] (2)求该几何体的表面积S.

21.已知△ABC的三边是连续的三个正整数,且最大角是最小角的2倍,求△ABC的面积. 22.(本小题满分10分)选修4-4:坐标系与参数方程 已知椭圆C的极坐标方程为222123cos4sin,点12,FF

为其左、右焦点,直线的参数方程为精选高中模拟试卷 第 5 页,共 17 页 22222xtyt



(为参数,tR).

(1)求直线和曲线C的普通方程; (2)求点12,FF

到直线的距离之和.

23.已知向量,满足||=1,||=2,与的夹角为120°. (1)求及|+|; (2)设向量+与﹣的夹角为θ,求cosθ的值.

24.(本小题满分12分) 如图,在四棱锥ABCDS中,底面ABCD为菱形,QPE、、分别是棱ABSCAD、、的中点,且SE平面ABCD.

(1)求证://PQ平面SAD; 精选高中模拟试卷

第 6 页,共 17 页 (2)求证:平面SAC平面SEQ. 精选高中模拟试卷

第 7 页,共 17 页 北林区第三高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题 1. 【答案】A 【解析】

考点:棱锥的结构特征. 2. 【答案】D 【解析】解:∵101101(2)=1×25+0+1×23+1×22+0+1×20=45(10). 再利用“除8取余法”可得:45(10)=55(8). 故答案选D.

3. 【答案】C 【解析】解:根据题意,分2种情况讨论: ①、第一类三个男生每个大学各推荐一人,两名女生分别推荐北京大学和清华大学,

共有=12种推荐方法;

②、将三个男生分成两组分别推荐北京大学和清华大学,其余2个女生从剩下的2个大学中选,

共有=12种推荐方法; 故共有12+12=24种推荐方法; 故选:C.

4. 【答案】A 【解析】解:因为抛掷一枚骰子有6种结果,设所有连续抛掷两次骰子得到的点数为(m,n),有36种可能, 而使⊥的m,n满足m=2n,这样的点数有(2,1),(4,2),(6,3)共有3种可能;

由古典概型公式可得⊥的概率是:; 故选:A. 精选高中模拟试卷 第 8 页,共 17 页 【点评】本题考查古典概型,考查用列举法得到满足条件的事件数,是一个基础题. 5. 【答案】A 【解析】解:设A(x1,x12),B(x2,x22),

将直线与抛物线方程联立得, 消去y得:x2﹣mx﹣1=0, 根据韦达定理得:x1x2=﹣1,

由=(x1,x12),=(x2,x22), 得到=x1x2+(x1x2)2=﹣1+1=0,

则⊥,

∴△AOB为直角三角形. 故选A 【点评】此题考查了三角形形状的判断,涉及的知识有韦达定理,平面向量的数量积运算,以及两向量垂直时满足的条件,曲线与直线的交点问题,常常联立曲线与直线的方程,消去一个变量得到关于另外一个变量的一元二次方程,利用韦达定理来解决问题,本题证明垂直的方法为:根据平面向量的数量积为0,两向量互相垂直.

6. 【答案】C 【解析】解:圆x2+y2﹣2x+4y=0化为:圆(x﹣1)2+(y+2)2=5,圆的圆心坐标(1,﹣2),半径为,直

线l将圆

x2+y2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l经过圆心与坐标原点.或者直线经过圆心,直线

的斜率为﹣1, ∴直线l的方程是:y+2=﹣(x﹣1),2x+y=0,即x+y+1=0,2x+y=0.

故选:C. 【点评】本题考查直线与圆的位置关系,直线的截距式方程的求法,考查计算能力,是基础题.

7. 【答案】A 【解析】 试题分析:利用余弦定理求出正方形面积cos22cos2-11

22

1S;利用三角形知识得出四个等

腰三角形面积sin2sin11

2

1

42S;故八边形面积2cos2sin221SSS.故本题正

确答案为A. 考点:余弦定理和三角形面积的求解.

相关文档
最新文档