2009年江苏省苏州沧浪区中考数学模拟卷(一).doc
江苏2009中考数学模拟试卷四数学

江苏省 2009 年中考模拟试卷(四)班级: 姓名 :一、选择题(每题 2 分,共 20 分)1、以下二次根式是最简二次根式的是()1B、8C、7D、以上都不是A 、22、 1mm 为十亿分之一M ,而个体中红细胞的直径约为0.0000077m,那么人体中红细胞直径的纳M 数用科学记数法表示为()A 、7.7× 103 mm B、7.7× 102mm C 、7.7× 104mm D 、以上都不对3、如图 5,PA 为⊙ O 的切线, A 为切点, PO 交⊙ O 于点 B,PA= 8,OA = 6,则 tan∠APO 的值为()33C、44A 、B 、 D 、4553k( k 04、在同向来角坐标系中,函数y=kx+k ,与 y=)的图像大概为()x二、填空题(每题 2 分,共 20 分)x15、函数 y=的自变量 X 的取值范围为。
x16、小明背对小亮按小列四个步骤操作:( 1)散发左、中、右三堆牌,每堆牌许多于两张,且各堆牌现有的张数同样;( 2)从左侧一堆取出两张,放入中间一堆;(3)从右侧一堆取出两张,放入中间一堆;(4)左侧一堆有几张牌,就从中间一堆拿几张牌放入左侧一堆,当小亮知道小明操作的步骤后,便正确地说出中间一堆牌现有的张数,你以为中间一堆牌现有的张数是。
7、小明以前方的镜子里看到后边墙上挂钟的时间为2: 30,则实质时间是。
8、一束光芒从Y 轴上点 A ( 0,1)出发,经过X 轴上的点 C 反射后经过点B( 3,3),则光芒从 A 点到B点经过的行程长为。
1 / 22三解答以下各题9、(本小题满分 5 分)当 a= 3 ,b=2时,计算:a ab a b的值2aa b10、(本小题满分 6 分)已知抛物线与x 轴交于 A (- 1, 0)和 B ( 3, 0)两点,且与y 轴交于点C( 0,3)。
( 1)求抛物线的解读式;(2)抛物线的对称轴方程和极点M 坐标;( 3)求四边形ABMC的面积。
2024年中考数学第一次模拟考试(苏州卷)(全解全析)

2024年中考第一次模拟考试(苏州卷)数学·全解全析第Ⅰ卷一、选择题(本大题共8个小题,每小题3分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.2 的绝对值是()A .2B .2C .12D .12 【答案】A【分析】本题主要考查了求一个数的绝对值,熟知正数和0的绝对值是它本身,负数的绝对值是它的相反数是解题的关键.【详解】解:2 的绝对值是2,即22 .故选:A .2.若分式1x x 有意义,则x 的取值范围是()A .0x B .1x C .1x D .1x 且0x 【答案】B 【分析】本题考查了分式有意义的条件,熟练掌握分式的分母不能为0是解题关键.根据分式的分母不能为0求解即可得.【详解】解:∵分式1x x 有意义,10x ,解得1x ,故选:B .3.下列计算正确的是()A .342a a a B . 339a a C .33()ab a b D .824a a a 【答案】B【分析】本题主要考查同底数幂的乘法、幂的乘方、积的乘方及同底数幂的除法,熟练掌握同底数幂的乘法、幂的乘方、积的乘方及同底数幂的除法是解题的关键.根据同底数幂的乘法、幂的乘方、积的乘方及同底数幂的除法可进行排除选项.【详解】A .34a a a ,原计算错误,故不符合题意;B . 339a a ,原计算正确,故符合题意;C .333()ab a b ,原计算错误,故不符合题意;D .826a a a ,原计算错误,故不符合题意;故选:B .4.某轮滑队所有队员的年龄只有12,13,14,15,16(岁)五种情况,其中部分数据如图所示,若队员年龄的唯一的众数与中位数相等,则这个轮滑队队员人数最少是()A .10B .11C .12D .13【答案】C 【分析】本题考查了条形统计图,中位数,众数,熟悉条形统计图,掌握中位数,众数的相关概念是解答本题的关键.根据题目,利用众数和中位数的定义,得到这组数据的中位数为:14,众数是14,由此得到答案.【详解】解:由题图中数据可知:小于14的人有4人,大于14的人也有4人,这组数据的中位数为:14,∵队员年龄的唯一的众数与中位数相等,众数是14,即年龄为14的人最多,14岁的队员最少有4人,故选:C .5.如图,在ABC 中,以顶点B 为圆心,适当长为半径画弧,交BA 于点M ,交BC 于点N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧在ABC 内部交于点P ,过点P 作射线BP 交AC 于点D ,过点D 作DE BC ∥,交AB 于点E ,若65A ,195 ,则ADE ()A .85°B .75°C .60°D .55°【答案】D 【分析】本题考查作图-基本作图、平行线的性质,㠇练掌握平行线的性质是解答本题的关键.由题意可得BP 为ABC 的角平分线,DE BC ∥,则,,,ABD CBD AED ABC EDB EBD 可得,ABD CBD EDB 根据三角形外角性质可得2AED EDB ,平角性质可得18095,ADE EDB 再结合三角形内角和定理可列出方程,进而可得出答案.【详解】由题意可得BP 为ABC 的角平分线,DE BC ∥,,,,ABD CBD AED ABC EDB BDC ,ABD CBD EDB 2AED ABC EDB ,65A ∵,195 ,18095,ADE EDB 65218095180A AED ADE EDB EDB30,EDB 180953055ADE ,故选:D .6.一个圆锥的底面半径为3,侧面展开图是半圆,则圆锥的侧面积是()A .9B .18C .27D .36【答案】B【分析】本题考查了求圆锥侧面积;利用圆锥侧面展开图的弧长 底面周长,可求得圆锥的底面周长以及圆锥母线长,那么圆锥的侧面积 底面周长 母线长2 .【详解】解:底面半径为3,则底面周长6 ,侧面展开图是半圆,则母线长6226 ,圆锥的侧面积是16π618π2故选:B .7.如图在平面直角坐标系中,OA AB ,且90OAB , 13A ,则点B 的坐标是()A .(14),B .(24),C .(34),D .(44),【答案】B【分析】本题主要考查了全等三角形的判定和性质.过点B 作BC y 轴于点C ,过点A 作AD x 轴于点D ,AD 、BC 相交于点E ,证明 AAS ODA AEB ≌,据此求解即可.【详解】解:过点B 作BC y 轴于点C ,过点A 作AD x 轴于点D ,AD 、BC 相交于点E.∵ 13A ,,∴13OD AD ,,∵90BAO ,∴19023 ,在ODA V 和AEB △中,9031OA AB ODA E,∴ AAS ODA AEB ≌,∴31BE AD OD AE ,,∴134312DE BC ,,∴点B 的坐标是 24,,故选:B .8.如图,四边形ABCD 是菱形,边长为45A .点P 从点A 出发,沿A D C 个单位长度的速度运动,同时点Q 沿射线BA 的方向以每秒1个单位长度的速度运动,当点P 运动到达点C 时,点Q 也立刻停止运动,连接PQ .APQ △的面积为y ,点P 运动的时间为()08x x 秒,则能大致反映y 与x 之间的函数关系的图像是()A .B .C .D .【答案】B【分析】本题考查函数的图象与解析之间的联系,解决问题的关键在于弄清图形的变化情况,结合勾股定理,给出面积的表达式,即可解题.【详解】解:①当P 在AD 上时,作PE AQ ,如图所示:由题知AP ,AQ x ,45A ∵,45APE A ,PE AE ,则222222AE PE PE x ,解得PE x ,故 2122APQ x xS x 04x ,②当P 在D 上时,即4x 时,14482APQ S △,③当P 在CD 上不与D 重合,且Q 在AB 上时,作DF AQ ,如图所示:45A ∵,AD 4DF ,AP x ∵则 1422APQ S x x 4x ,④当Q 在AB 延长线上时,1422APQ S x x △8x .故选:B .第Ⅱ卷二、填空题(本大题共8个小题,每小题3分,共24分)9.稀土是制造国防、军工等工业品不可或缺的原料.据有关数据表明,我国已探明稀土储量约4400万吨,居世界第一位,将数4400万用科学记数法可表示为.【答案】74.410 【分析】本题考查了绝对值大于1的科学记数法的表示,解题的关键在于确定a n ,的值.根据绝对值大于1的数,用科学记数法表示为10n a ,其中110a ,n 的值为整数位数少1.【详解】解:4400万即44000000大于1,用科学记数法表示为10n a ,其中 4.4a ,7n ,∴4400万用科学记数法表示为74.410 ,故答案为:74.410 .10.比较大小:7227 (填“ ”“ ”或“ ”)【答案】【分析】此题主要考查了有理数大小,有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:77||22 ,22||77,∵7227,2772 .故答案为: .11.分解因式321025x x x.【答案】 25x x 【分析】题目主要考查因式分解,熟练掌握提取公因式及完全平方公式分解因式是解题关键.【详解】解: 32225.1025(1025)x x x x x x x x 故答案为: 25x x .12.如图,一次函数y ax b 与y mx n 的图象交于点(1,2)P ,则关于x 的方程ax b mx n 的解是.【答案】1x = 【分析】本题考查了一次函数与一元一次方程,根据图象的交点的横坐标就是方程ax b mx n 的解即可求解,熟练掌握基础知识是解题的关键.【详解】解:由图象得:方程ax b mx n 的解是1x = ,故答案为:1x = .13.中国邮政集团公司曾发行《二十四节气》特殊版式小全张(图1),其中的24枚邮票大小相同,上面绘制了代表二十四节气风貌的图案,这24枚邮票组成了一个圆环,传达了四季周而复始、气韵流动的理念和中国传统文化中圆满、圆融的概念,以“大雪”节气单枚邮票为例(图2),该邮票的“上圆弧”的长为l ,“直边长”为d ,“下圆弧”的长为x ,则x (用含l ,d 的式子表示).【答案】π12l d 【分析】本题考查弧长公式,根据题意,作出图形,数形结合,利用弧长公式表示出l ,d ,找到两者之间的关系即可得到答案,熟记弧长公式是解决问题的关键.【详解】解:根据题意,作出图形,如图所示:3601524BOC,15π2π36012l OC OC ; 15π2π36012x OC d OC d , πππ121212x OC d l d ,故答案为:π12l d.14.如图,已知3AB AC DC DE ,180A D ,ABC 与CDE 的面积和为10,则BE 的长为.【答案】【分析】本题考查三角形的面积,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.如图,过点A 作AH BC 于点H ,过点D 作DK CE 于点K .证明 AAS AHC AKD ≌,推出,AH CK CH DK ,设AH CK x ,CH DK y ,构建方程组求出x y ,可得结论.【详解】解:如图,过点A 作AH BC 于点H ,过点D 作DK CE 于点K .3AB AC DC DE ∵,,AH BC DK CE ,1122BH CH BC CK KE CE ,,12BAH CAH BAC ,12CDK EDK CDE ,180BAC CDE ∵,90CAH CDK ,90CAH ACH ∵,ACH CDK ,又,90AC CD AHC CKD ∵,AAS AHC CKD ≌,,AH CK CH DK ,设,AH CK x CH DK y ,22BC y,CE xABC ∵ 与CDE 的面积和为10,即1111·····2··2·102222BC AH CE DK y x x y ,5xy ,在Rt CDK △中,222CK DK CD ,即229x y ,则有2259xy x y ,x y ,22BE BC CE CH CK x y .故答案为:15.如图,在边长相同的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 与CD 相交于点M ,则cos BMD 的值为.【分析】本题考查了求余弦,连接,CE DE ,根据勾股定理和勾股定理逆定理,推出45DCE ,再证明四边形ACEB 是平行四边形,则45BMD DCE ,即可求解.【详解】解:连接,CE DE ,∵CD DE CE ,∴222CD DE CD DE CE ,,∴90CDE ,∴45DCE ,∵1,AC BE AC BE ∥,∴四边形ACEB 是平行四边形,∴AB CE ∥,∴45BMD DCE ,∴cos cos 452BMD,故答案为:22.16.如图,已知二次函数223y x x 的图象与x 轴交于A ,B 两点,与y 轴交于点C ,P 点为该图象在第一象限内的一点,过点P 作直线BC 的平行线,交x 轴于点M .若点P 从点C 出发,沿着抛物线运动到点B ,则点M 经过的路程为.【答案】92【分析】根据题意,可以先求出点、、A B C 的坐标,从而可以得到直线BC 的解析式,再根据PM BC ∥,点P 在抛物线上,可以写出点P 的坐标和对应的直线PM 的解析式,再根据题意,可以得到点M 横坐标的最大值,从而可以得到点M 经过的路程.【详解】解:∵二次函数 22331y x x x x ,∴当0y 时1213x x ,,,当0x 时,3y ,∴点A 的坐标为 10 ,,点B 的坐标为 3,0,点C 的坐标为 0,3,设直线BC 的函数解析式为y kx b ,31303b k k b b ,解得,即直线BC 的函数解析式为3y x ,∵PM BC ∥,点P 在抛物线上且在第一象限,∴设点P 的坐标为223m m m (,),设直线PM 的解析式为y x c ,223m m m c ,解得233c m m ,∴直线PM 的解析式为233y x m m ,令223323x m m x x 且Δ0 ,解得32m ,此时直线PM 的解析式为214y x,当0y 时214x ,∴点M 横坐标最大值是214,∴点M 经过的路程为:2193242 ,故答案为:92.三、解答题(本大题共11个小题,共82分.解答应写出文字说明,证明过程或演算步骤)(4分)17.计算:036(20231)|2| .【详解】原式18123212421(4分)18.解方程:31122x x .【详解】解:31122x x,去分母,化为整式方程得: 321x ,即321x ,解得6x ,经检验,6x 是原分式方程的解.(8分)19.解方程组和不等式组,并把不等式组的解集在数轴上表示出来:(1)321022x y x y (2)解不等式组 2142115x x x【详解】(1)解:321022x y x y①②,2 ②得:424x y ③,①+③得:714x ,解得:2x ,把2x 代入②得:42y ,解得:=2y ,∴原方程组的解为:22x y ;(2)解: 2142115x x x①②解不等式①,得,3x 解不等式②,得2x把不等式①和②的解集在数轴上表示出来:所以原不等式组解集为23x .(8分)20.某校为了解本校七年级学生对自己视力保护的重视程度,随机在校内调查了部分学生,调查结果分为“非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成如图所示的两幅不完整的统计图,根据图中信息,解答下列问题:(1)此次调查中样本容量为_______;在扇形统计图中,“非常重视”所占的圆心角的度数为_______;(2)补全条形统计图;(3)该校七年级共有学生400人,请估计该校七年级学生对视力保护“比较重视”的学生人数.【详解】(1)解:由题知,1620%80 (人),48036018,故答案为:80,18 .(2)解:804361624 (人),(3)解:3640018080(人),答:七年级学生对视力保护“比较重视”的学生人数约为180人.(8分)21.北京时间2023年12月27日14时50分,我国在酒泉卫星发射中心使用快舟一号甲运载火箭,成功将天目一号气象星座19-22星发射升空,卫星顺利进入预定轨道,发射任务获得圆满成功.小明和小亮对航天知识都非常感兴趣,他们在中国载人航天网站上了解到,航天知识分为“梦圆天路”“飞天英雄”“探秘太空”“巡天飞船”等模块.他们决定从“梦圆天路”“飞天英雄”“探秘太空”“巡天飞船”四个模块中各自随机选择一个进行学习,设这四个模块依次为A 、B 、C 、D .(1)小明选择学习“梦圆天路”模块的概率为_____;(2)请用画树状图或列表的方法,求小明和小亮选择不同模块的概率.【详解】(1)解:小明选择学习“梦圆天路”模块的概率为14P ,故答案为:14;(2)树状图如下:共有16种等可能的结果,其中小明和小亮选择不同模块的结果有12种,小明和小亮选择不同模块的概率123164.(8分)22.如图,矩形EFGH 的顶点E ,G 分别在菱形ABCD 的边AD ,BC 上,顶点F ,H 在菱形ABCD的对角线BD 上.(1)求证:BG DE ;(2)若E 为AD 中点,=2AB ,求FH 的长.【详解】(1)∵四边形EFGH 是矩形,EH FG ,EH FG ∥,GFH EHF .180BFG GFH ∵,180DHE EHF ,BFG DHE .∵四边形ABCD 是菱形,AD BC ∥,GBF EDH ,(AAS)BGF DEH △△,BG DE ;(2)连接EG ,∵四边形ABCD 是菱形,AD BC ,AD BC ∥.E ∵为AD 中点,AE ED .BG DE ∵,AE BG ,AE BG ∥,四边形ABGE 是平行四边形,AB EG .∵四边形EFGH 是矩形,EG FH ,2AB ,2FH .(8分)23.如图,反比例函数2y x的图象与一次函数y kx b 的图象交于点A 、B ,点A 、B 的横坐标分别为1,2 ,一次函数图象与y 轴的交于点C ,与x 轴交于点D .(1)求一次函数的解析式;(2)对于反比例函数2y x,当1y 时,写出x 的取值范围;(3)点P 是第三象限内反比例图象上的一点,若点P 满足S △BDP =12S △ODA ,请求出点P 的坐标.【详解】(1)解:∵反比例函数2y x的图象与一次函数y kx b 的图象交于点A 、B ,点A 、B 的横坐标分别为1,﹣2;∴A 1,2,B 2,1 ;把A 、B 的坐标代入y kx b 得221k b k b;解得11k b;∴一次函数的解析式为1y x .(2)∵ 2,1B ;由图象可知,当20x 时,1y .(3)∵一次函数为1y x ;∴D 1,0 ;∵A 1,2,∴1212ODA S V ;∴1122BDP ODA S S V V ,设点P 的坐标为:2,x x,0x ;∴ON x ,2PN x;当P 在直线下方时,如图1,则;121211=1212112222BDP BDM PDNBMNP S S S S x x x x 梯形;解得x ∴点P .当P 在直线AB 的上方时,如图2,则;1211112211122222BDF BDM PDNBMNP S S S S x x x x 梯形;解得1x ;∴点P 1 ;综上可得:点P的坐标为:或 1.(8分)24.如图,AB 是O 的直径,点C 在O 上,点M 在O 外,连接MC ,若MCA B;(1)求证:CM 是O 的切线;(2)已知,点D 是OA 的中点,过点D 作DE AB ,交CM 于点E ,若O 的半径为10,3tan 4A,求CE 的长.【详解】()证明:连接OC ,∵AB 是O 的直径,∴90BCA ,∴90BAC ABC ,∵OC OA ,∴OCA OAC ,∵MCA B ,∴90OCA MCA ,即90OCM ,∵OC 是半径,∴CM 是O 的切线;(2)解:设AC 与DE 相交于点F ,过点E 作EG AC 于点G ,如图所示:∵DE AB ,10OA ,点D 是OA 的中点,∴90,5,20ADE OD DA AB ,∴90A DFA A B GFE GEF ,∵,GFE AFD MCA B ,∴,GEF A GFE MCA B ,∴CE EF ,由3tan 4A 可设3,4BC x AC x ,根据勾股定理可知5AB x ,∴520x ,即4x ,∴12,16BC AC ,∴3sin sin 5AC A GEF AB ,∴15tan 4DF AD A,∴25sin 4DF AF A ,∴394CF AC AF,∵,CE EF EG AC ,∴13928CG GF CF,∴65sin 8GF EF CE GEF .(8分)25.杭州亚运会于2023年9月23日至10月8日举行,作为今年我国举办的最为盛大的赛事,是向世界展示中国形象、传播中国文化的重要窗口.宁夏枸杞作为几千年来备受推崇、药食同源的滋补上品,小小的红果凝聚和传承着宁夏这片土地上,珍贵的历史记忆和宝贵的精神财富,已然成为宁夏独特的地域符号、主导产业和文化象征,不但为宁夏社会经济发展作出了积极贡献,也为助力“健康中国”跑出了“加速度”.在宁夏一特产专卖店销售某种枸杞,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种枸杞要想平均每天获利2240元,请回答:(1)为尽可能让利于顾客,赢得市场,每千克枸杞应降价多少元?(2)根据市场需求,该店将售价定为多少出售,每天可获取最大利润,最大利润是多少?【详解】(1)解:设每千克枸杞应降价x 元,根据题意,得 60401002022402x x,化简,得210240x x ,解得1246x x ,.∵为尽可能让利于顾客,赢得市场,6x ,答:每千克枸杞应降价6元;(2)设每千克枸杞应降价x 元,每天获得利润为y 元,根据题意得:2260401002010100200010522502()()()x y x x x x ,100∵ ,当5x 时,y 有最大值,最大值为2250,此时售价为60555( 元),该店将售价定为55元出售,每天可获取最大利润,最大利润是2250元.(8分)26.已知抛物线212y x bx c与x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C ,直线6y x 经过点A 与点C .(1)求抛物线的表达式;(2)点P 在线段AC 下方的抛物线上,过点P 作BC 的平行线交线段AC 于点D ,交y 轴于点E .①如果C F 、两点关于抛物线的对称轴对称,联结DF ,当DF CF 时,求PDF 的正切值;②如果:3:5PD DE ,求点P 的坐标.【详解】(1)解:∵直线6y x 经过点A 与点C则当06x y ,;06y x ,∴ 6060A C ,,,∴60186c b c ,,解得62c b 21262y x x ;(2)解:①如图:∵ 6060A C ,,,,且C F 、两点关于抛物线21262y x x 的对称轴对称,∴6F c y y ,221222b x a 则4F x ∵DF CF∴DF y ∥轴则FDC OCA∵过点P 作BC 的平行线交线段AC 于点D ,交y 轴于点E .∴PE BC PDF ACB,则PDF OCB∵21262y x xx 轴交于A B 、两点(点A 在点B 的左侧),∴210262x x ∴6x ,2x ∴ 20B ,∵PDF OCB则PDF 的正切值等于21tan 63OB OCB OC ;②设21262P p p p,,BC 的解析式为y mx n ∴把 0620C B ,,,代入y mx n 得602n m n解得63n m ∵过点P 作BC 的平行线交线段AC 于点D ,交y 轴于点E ∴设PE 的解析式为3y x b把21262P p p p,代入3y x b 得2162p p b ∴21623y x p p 令0x ,2162p p y即21062E p p,当261362y x y x p p 解得21184x p p 则把21184x p p 代入21623y x p p 得211684y p p ∴22111168484D p p p p,∵过点P 作PM y 轴,过点D 作DN y轴,∴EDN EPM∽∴EN DE EM EP∵:3:5PD DE ∴58EN EM ∶∶∵21062E p p ,,22111168484D p p p p ,,21262P p p p ,∴222111336628484EN p p p p p p,2211626322EM p p p p p ∴23358348p p p ∶∶解得1103p p ,∵点P 在线段AC 下方的抛物线上,∴10p (舍去)∴3p .把3p 代入21262y p p∴19241592362222y ∴点P 的坐标1532,(10分)27.【问题初探】(1)在数学活动课上,李老师给出如下问题:如图1,在ABC 中,60BAC ,D 为AC 上的动点,当AD AB 时,连接BD ,将线段BD 绕点B 逆时针旋转60 得到线段BE ,且BE 在边AB 的右侧,连接AE ,你能得到哪些结论呢?①小明说:“在点D 的运动过程中,只要保证BE 在边AB 的右侧,BAE 的度数是固定的,我能求出BAE 的度数”;小强说:“在点D 的运动过程中,只要保证BE 在边AB 的右侧,我能得到从点A 发出的三条线段,,AB AE AD 的数量关系”.②小涛说:“我利用60BAC ,如图2,在AD 上截取AF AB ,连接BF ,再利用旋转的性质,就可以得到小明和小强的结论”.请你根据小涛的思路,求BAE 的度数,并探究线段,,AB AE AD 的数量关系.【类比分析】(2)李老师发现同学们都利用了转化的思想,转化角,转化线段,为了帮助同学们更好地感悟转化思想,李老师将图1进行变换,并提出下面问题,请你解答.如图3,在ABC 中,60,BAC D 为AC 上的动点,当AD AB 时,连接BD ,将线段BD 绕点B 逆时针旋转60 得到线段BE ,且BE 在边AB 的左侧,连接AE ,过B 作BG AD 于点G ,求证:2AD AE AG .【学以致用】(3)如图4,在ABC 中,60,BAC D 为AC 上的动点,当AD AB 时,连接BD ,将线段BD 绕点B 逆时针旋转60 得到线段BE ,且BE 在边AB 的右侧,连接,AE DE ,过B 作BM AD 于M ,线段DE 的中点为N ,连接MN ,若4,AB MN ABDE 的面积.【详解】解:(1)在AD 上截取AF AB ,连接BF .如图1,60,BAC AB AF ∵.ABF 是等边三角形,,60AB BF ABF AFB .∵线段BD 绕点B 逆时针旋转60 得到线段BE ,60,B BD E BD E ,ABF EBD ,ABE EBF FBD EBF ,即ABE FBD .在ABE 和FBD 中,AB BF ABE FBD BE BD,(SAS)ABE FBD △≌△.,BAE BFD AE FD ,60AFB∵120BFD .120BAE .=AD AF FD ∵,AD AB AE .(2)证明:在AC 上截取AH AB ,连接BH .如图2,60,BAC AB AH ∵.ABH 是等边三角形,,60AB BH ABH .∵线段BD 绕点B 逆时针旋转60 得到线段BE ,,60BD BE DBE .ABE ABD ABD HBD ,即ABE HBD在ABE 和HBD △中,,,,AB HB ABE HBD BE BDSAS ABE HBD △≌△,AE HD .又ABH ∵△为等边三角形BG AH ,2AH AG .AH AD DH AD AE ∵,2AG AD AE .(3)解:连接BN ,如图3.∵线段BD 绕点B 逆时针旋转60 得到线段BE .,60BD BE DBE ,BDE 是等边三角形.60BEN ,N Q 为DE 中点,1,302BN DE EBN EBD .在Rt BNE 中,sin sin602BN BEN BE ,60BAC ∵,BM AC 于M .sin sin 60BM BAM AB,BN BM BE AB.又906030ABM ∵,ABM EBNABE EBM EBM MBN ,即ABE MBN ,ABE MBN △∽△,MN BM AE AB MN ∵2AE .在AD 上截取AH AB ,由(1)得ABH 是等边三角形,ABE HBD △≌△.4,2,120AH AB AE DH BAE BHD ,6AD AH DH .过E 作EQ AD 于Q ,120,60BAE BAC∵60EAQ .sin 602EQ AE2BM AB ∵,4AB ,BM四边形ABDE 的面积1111662222ADE ADB S S AD EQ AD BM △△。
最新江苏省苏州市中考数学全真模拟考试试卷A卷附解析

江苏省苏州市中考数学全真模拟考试试卷A 卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.2008年8月8日,五环会旗将在“鸟巢”高高飘扬,会旗上的五环(如图)间的位置关系有( )A .相交或相切B .相交或内含C .相交或相离D .相切或相离 2.如图,在⊙O 中,AB 是弦,OC ⊥AB ,垂足为C ,若AB=16,OC=6,则⊙O 的半径OA 等于( )A .16B .12C .10D .8 3.抛物线2y ax =和22y x =的形状相同,则 a 的值是( )A .2B .-2C .2±D .不确定 4.一梯形两底为10和16,一腰长为8,则另一腰长a 的取值范围是( ) A .2<a<14B .2<a<26C .6<a<18D .6<a<26 5.下列说法中,正确的是 ( ) A .命题就是定理B .每一个定理都有逆定理C .原命题是真命题,那么它的逆命题也是真命题D .定理和逆定理都是命题6.一个凸多边形的外角和等于它的内角和的一半,那么这个多边形的边数为 ( )A .4B . 5C .6D .7 7.化简)22(28+-得( ) A .-2B .22-C .2D .224- 8.若01=++-y x x ,则20052006y x +的值为( ) A .0 B .1 C .-1 D . 29.如图是由一些相同的小正方体构成的几何体的三视图.这些相同的小正方体的个数是 ( )A .4个B .5个C .6个D .7个 10.无论m 取何实数,直线y=x-2m 与y=-2x+3的交点不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限11.若22()()x y m x y -+=+,则m 等于( )A .4xy -B .4xyC .2xy -D . 2xy二、填空题12.如果一个立体图形的主视图为矩形,则这个立体图形可能是 (•只需填上一个立体图形). 13.已知点A 、点 B 在x 轴上,分别以A 、B 为圆心的两圆相交于M(a ,-12)、N(3,2a+ 3b),则b a 的值是 .14.如图,点O 是等边三角形PQR 的中心,P ′、Q ′、R ′分别是OP 、OQ 、OR 的中点,则△P ′Q ′R ′与△PQR 是位似三角形.此时,△P ′Q ′R ′与△PQR 的位似比为 .15.如图,已知在⊙O 中,直径10MN =,正方形ABCD 的四个顶点分别在⊙O 及半径OM OP ,上,并且45POM ∠=,则AB 的长为 .16.函数22y x x =+-的图象如图所示,当 y>0时,x 的取值范围是 当 y<0 时,x 的取值范围是 .17.如图,AB 为⊙O 的直径,P 为AB 延长线上的一点,PC 切⊙O 于点C ,若PB=2,AB=6,则PC=_________.18.如图,已知 AC 与BD 相交于点0,AO=CO ,BO=DO ,则AB = CD. 请说明理由. 解:在△AOB 和△COD 中,(_____((AO CO BO DO =⎧⎪⎨⎪=⎩已知)对顶角相等)已知) 所以△AOB ≌△COD( ).所以AB=DC( ).19.早上8:15分.钟面上的时针与分针所夹的角的度数是 .20.如图,0D⊥AB,垂足为点O,∠DOC:∠AOC=2:1,则∠BOC= .21.填空:(1)温度由 t℃下降2℃后是;(2)今年李华 m 岁,去年李华岁;5年后李华岁;(3)a 的15%减去 70 可以表示为;(4)某商店上月收入为 a元,本月的收入比上月的 2 倍还多 10 元,本月的收入是元;(5)明明用 t(s)走了s(m),那么他的速度是 m/s.三、解答题22.如图,在直角坐标系中,P是第一象限的点,其坐标是(3,y),且OP与x轴的正半轴的夹角α的正切值是43,求(1)y的值;(2)角α的正弦值.23.如图,由 5个大小完全相同的小正方形摆成如图①③的形状,现移动其中的一个小正方形,请在图②,图③,图④中分别画出满足以下各要求的图形(用阴影表示).(1)使得图形成为轴对称图形,而不是中心对称图形;(2)使得图形成为中心对称图形,而不是轴对称图形;(3)使得图形既是轴对称图形,又是中心对称图形.24.如图所示,已知 EB∥DC,∠C=∠E.试说明:∠A=∠ADE.25.如图所示,在甲、乙两地之间要修一条公路,从甲地测得公路的走向是北偏东55°(即∠α),如果甲、乙两地同时开工,那么在乙地公路按是多少度施工时,才能使公路准确接通?26.当m取什么整数时,方程组2630x myx y-=⎧⎨-=⎩的解是正整数?27.上海到北京的航线全程为 s(km),飞行时间需 a(h). 而上海到北京的铁路全长为航线长的m倍,乘车时间需 b(h). 问飞机的速度是火车速度的多少倍?(用含 a,b,s,m 的分式表示)28.(1)如图,已知∠AOB=Rt∠,∠BOC=40°,0M平分∠AOC,ON平分∠BOC,求∠MON 的度数;(2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数;(3)你能从(1)、(2)的结果中发现什么规律?29.如图,一个长方体,(1)用符号表示出与棱A1B1平行的棱;(2)用符号表示出过棱AB的端点且垂直于AB的棱;(3)棱DD1与棱BC没有交点,它们平行吗?30.已知甲数的绝对值是乙数的绝对值的 3倍,且在数轴上表示这两个数的点位于原点的两侧,相距为 8,求这两个数.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.C4.A5.D6.C7.A8.A9.B10.C11.B二、填空题12.答案不唯一如:长方体、圆柱等13.914.1:215.516.x<-2 或 x>1,-2<x<1.17.418.∠AOB=∠COD ,SAS ,全等三角形的对应边相等19.157.5°20.150°21.(1) (t-2) (2)m-1,m+5 (3)15%a- 70 (4)2a+10 (5)s t三、解答题22.(1)4;(2)54. 23.略24.可由AC ∥DE 说明25.125°26.26(1)30(2)x my x y -=⎧⎨-=⎩,由②,得3x y =.代入①,得66y my -=,所以66y m =-. 因为y 是正整数,所以66m-是正整数,6m -= 1,2,3,6,而m 是整数, 于是m 的取值是5,4,3,027.b am倍 28.(1)45°;(2)12α;(3)∠MON 的度数是∠AOB 度数的一半,即∠MON=12∠AOB 29.(1)AB ∥DC ∥D 1C 1∥A 1B 1 (2)AA 1⊥AB ,DA ⊥AB ,CB ⊥AB ,BB 1⊥AB (3)不平行. 30.-6 和 2 或 6 和-2。
2023年苏州中考数学全真模拟卷1

2023年中考数学全真模拟卷(苏州专用)第一模拟(本卷满分130分,考试时间120分钟)一.选择题(本大题共8小题,每小题3分,共24分.每小题只有一个选项是符合题意的)1.与132−相等的是()A.−3−12B.3−12C.132−+D.3+12【答案】A【解析】A、−3−12=−72,故此选项符合题意;以上.数据11000000用科学记数法表示应为()A.80.1110⨯B.1.1×107C.11×106D.1.1×106【答案】B【解析】解:数据11000000用科学记数法表示应为1.1×107.故选:B.3.下列运算正确的是()A.a2⋅a3=a5B.()328=a a C.(a2b)3=a2b3D.a6÷a3=a2【答案】A【解析】解:A.a2⋅a3=a5,正确,该选项符合题意;B.(a2)3=a6,原计算错误,该选项不符合题意;C.(a2b)3=a6b3,原计算错误,该选项不符合题意;D.a6÷a3=a3,原计算错误,该选项不符合题意;故选:A.4.五名同学捐款数分别是5,3,6,5,10(单位:元),捐10元的同学后来又追加了10元.追加后的5个数据与之前的5个数据相比,集中趋势相同的是()A.只有平均数B.只有中位数C.只有众数D.中位数和众数【答案】D【解析】解:追加前的平均数为:15(5+3+6+5+10)=5.8;从小到大排列为3,5,5,6,10,则中位数为5; 5出现次数最多,众数为5;追加后的平均数为:15 (5+3+6+5+20)=7.8; 从小到大排列为3,5,5,6,20,则中位数为5; 5出现次数最多,众数为5; 综上,中位数和众数都没有改变, 故选:D .5.如图,点O 在直线AB 上,OC ⊥OD .若∠AOC =120°,则∠BOD 的大小为( )A .30°B .40°C .50°D .60°【答案】A【解析】解:∵点O 在直线AB 上,OC ⊥OD , ∴∠AOC +∠COB =180°,∠COD =90°,∵∠AOC =120°,∴∠COB =60°,∴∠BOD =90°−∠COB =30°; 故选A .6.如图,一张圆桌共有3个座位,甲、乙,丙3人随机坐到这3个座位上,则甲和乙相邻的概率为( )A .13B .12C .23D .1【答案】D【解析】解:这张圆桌的3个座位是彼此相邻的,甲乙相邻是必然事件,所以甲和乙相邻的概率为1. 故选:D .7. 相传大禹在治洛水的时候,洛水神龟献给大禹一本洛书,书中有一幅奇怪的图(如图所示),这幅图用今天的符号翻译出来,就是一个三阶幻方,也就是在3×3的方阵中填入9个数,每行、每列和每条对角线上的数字和相等.我们定义:在3×3的方阵图中,每行、每列和每条对角线上的数字和都相等,称为三阶幻方.下图为三阶幻方的一部分,图中“?”代表的有理数是( ). A.8 B. 9 C. 12 D.13【答案】C【解析】解:设图中“?”代表的有理数是x,∵每行、每列、每条对角线上三个数字之和都相等,∴4+15+18=10+15+x,x=,解得12∴图中“?”代表的有理数是12.故选:C.8.如图,已知△ABC内接于半径为1的⊙O,∠BAC=θ(θ是锐角),则△ABC的面积的最大值为()A.cosθ(1+cosθ)B.cosθ(1+sinθ)C.sinθ(1+sinθ)D.sinθ(1+cosθ)【答案】D【解析】解:当△ABC的高AD经过圆的圆心时,此时△ABC的面积最大,∵A'D⊥BC,∴BC在Rt△BOD中,∴BD=sinθ,OD=cos9.计算m⋅m7的结果等于___________.【答案】m8【解析】解:m ⋅m 7=m 1+7=m 8, 故答案为:m 8.10.分解因式:2xy x −=______. 【答案】()()11x y y +−【解析】2xy x −()21x y =−=x (y +1)(y −1)故答案为:()()11x y y +−. 11.计算:x 2+xy xy+xy−x 2xy=___________.【答案】2 【解析】解:x 2+xy xy+xy−x 2xy=2xy xy=2,故答案为:2.12.若一次函数y =x +b (b 是常数)的图象经过第一、二、三象限,则b 的值可以是___________(写出一个..即可). 【答案】1(答案不唯一,满足b >0即可)【解析】解:∵一次函数y =x +b (b 是常数)的图象经过第一、二、三象限, ∴b >0故答案为:1答案不唯一,满足b >0即可)13.如图,在△ABC 中,AC =2,BC =4,点O 在BC 上,以OB 为半径的圆与AC 相切于点A ,D 是BC 边上的动点,当△ACD 为直角三角形时,AD 的长为___________.①当D 点与O 点重合时,∠CAD 为90°, 设圆的半径=r ,∴OA =r ,OC =4-r ,∵AC =2,在Rt △AOC 中,根据勾股定理可得:r 2+4=(4-r )2,解得:r =32,即AD =AO =32;14.如图,在△ABC 中,分别以点A 和点C 为圆心,大于2AC 长为半径画弧,两弧相交于点M 、N ,作直线MN 分别交BC 、AC 于点D 、E ,若△ABC 的周长为23cm ,△ABD 的周长为13cm ,则AE 为___________cm .【答案】5【解析】解:由题意可得MN 垂直平分AC , 则AE =CE =12AC ,AD =CD ,△ABC 的周长为AB +AC +BC =AB +2AE +BD +CD =23cm , △ABD 的周长为AB +AD +BD =AB +CD +BD =13cm , 则2AE =10cm ,即AE =5cm ,故答案为:515.图,在△ABC 中,边AB 在x 轴上,边AC 交y 轴于点E .反比例函数y =kx (x >0)的图象恰好经过点C ,与边BC 交于点D .若AE =CE ,CD =2BD ,6ABC S =V ,则k =____.设点C的坐标为(m,n∵AE=CE,CD=2BD∵OE⊥x轴,CF⊥x发,沿MA方向以每秒2个单位长度的速度向点A匀速运动;同时,动点F从点N出发,沿NC方向以每秒1个单位长度的速度向点C匀速运动,其中一点运动到矩形顶点时,两点同时停止运动,连接EF,过点B作EF 的垂线,垂足为H.在这一运动过程中,点H所经过的路径长是_____.【答案】√5π2∵四边形ABCD是矩形,∴17.(5分)计算:(−1)2021+|1−√2|−√1164418.(5分)解方程:2xx−2=1+1x−2. 【答案】x =﹣1 【解析】解:2x x−2=1+1x−2,2x =x ﹣2+1,x =﹣1, 经检验x =﹣1是原方程的解, 则原方程的解是x =﹣1.19.(6分)已知2220x x +−=,求代数式x(x +2)+(x +1)2的值. 【答案】5【解析】解:∵2220x x +−=,∴x 2+2x =2,∴x(x +2)+(x +1)2=x 2+2x +x 2+2x +1=2x 2+4x +1=2(x 2+2x )+1=2×2+15=20.(6分)从甲、乙、丙、丁4名学生中选2名学生参加一次乒乓球单打比赛,求下列事件发生的概率. (1)甲一定参加比赛,再从其余3名学生中任意选取1名,恰好选中丙的概率是 ; (2)任意选取2名学生参加比赛,求一定有乙的概率.(用树状图或列表的方法求解).三种等可能,符合条件的情况数有1种,∴甲一定参加比赛,再从其余3名学生中任意选取1名,恰好选中丙的概率是13. (2)列表如下:所以一定有乙的概率为:612=12.21.(6分)如图,在四边形ABCD 中,∠ACB =∠CAD =90°,点E 在BC 上,AE //DC,EF ⊥AB ,垂足为F .(1)求证:四边形AECD 是平行四边形; (2)若AE 平分4,5,cos 5BAC BE B ∠==,求BF 和AD 的长. 【答案】(1)见详解;(2)BF =4,AD =3【解析】(1)证明:∵∠ACB =∠CAD =90°,∴AD ∥CE , ∵AE //DC ,∴四边形AECD 是平行四边形;(2)解:由(1)可得四边形AECD 是平行四边形,∴CE =AD , ∵EF ⊥AB ,AE 平分∠BAC ,∠ACB =90°,∴EF =CE ,∴EF =CE =AD , ∵BE =5,cos B =45,∴BF =BE ⋅cos B =5×45=4,∴EF =√BE 2−BF 2=3, ∴AD =EF =3.22.(8分)为了解甲、乙两座城市的邮政企业4月份收入的情况,从这两座城市的邮政企业中,各随机抽取了25家邮政企业,获得了它们4月份收入(单位:百万元)的数据,并对数据进行整理、描述和分析.下面给出了部分信息.a .甲城市邮政企业4月份收入的数据的频数分布直方图如下(数据分成5组:68,810,1012,1214,1416x x x x x ≤<≤<≤<≤<≤≤):b.甲城市邮政企业4月份收入的数据在10≤x<12这一组的是:10.0,10.0,10.1,10.9,11.4,11.5,11.6,11.8c.甲、乙两座城市邮政企业4月份收入的数据的平均数、中位数如下:根据以上信息,回答下列问题:(1)写出表中m的值;(2)在甲城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为p1.在乙城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为p2.比较p1,p2的大小,并说明理由;(3)若乙城市共有200家邮政企业,估计乙城市的邮政企业4月份的总收入(直接写出结果).【答案】(1)m=10.1;(2)p1<p2,理由见详解;(3)乙城市的邮政企业4月份的总收入为2200百万元.【解析】解:(1)由题意可得m为甲城市的中位数,由于总共有25家邮政企业,所以第13家邮政企业的收入作为该数据的中位数,∵6≤x<8有3家,8≤x<10有7家,10≤x<12有8家,∴中位数落在10≤x<12上,∴m=10.1;(2)由(1)可得:甲城市中位数低于平均数,则p1最大为12个;乙城市中位数高于平均数,则p2至少为13个,∴p1<p2;(3)由题意得:200×11=2200(百万元);答:乙城市的邮政企业4月份的总收入为2200百万元.23.(8分)如图,在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图像与反比例函数y =nx (n ≠0)的图像交于第二、四象限内的A 、B 两点,与x 轴交于点C ,点B 坐标为(m,−1),AD ⊥x 轴,且AD =3,3tan 2AOD ∠=.(1)求该反比例函数和一次函数的解析式; (2)直接写出不等式kx +b >nx 的解集;(3)若点E 是x 轴上一点,若△AOE 的面积是△AOC 的面积的2倍,求点E 的坐标.【解析】(1)∵AD ⊥x 轴,∴∠ADO =90°,24.(8分)如图,C ,D 是以AB 为直径的半圆上的两点,∠CAB =∠DBA ,连结BC ,CD .(1)求证:CD ∥AB .(2)若AB =4,∠ACD =30°,求阴影部分的面积.【解析】(1)证明:∵AD ⌒=AD ⌒, ∴∠ACD =∠DBA ,又∵∠CAB =∠DBA ,∴∠CAB =∠ACD , ∴CD ∥AB ;(2)解:如图,连结OC ,OD .∵∠ACD =30°,∴∠ACD =∠CAB =30°,∴∠AOD =∠COB =60°,∴∠COD =180°-∠AOD -∠COB =60°.∵CD ∥AB ,∴S △DOC =S △DBC ,∴S 阴影=S 弓形COD +S △DOC =S 弓形COD +S △DBC=S 扇形COD ,∵AB =4,∴OA =2,∴S 扇形COD=nπr 2360=60×π×22360=23π. ∴S 阴影=23π.25.(10分)端午节前夕,某超市从厂家分两次购进A 、B 两种品牌的粽子,两次进货时,两种品牌粽子的进价不变.第一次购进A 品牌粽子100袋和B 品牌粽子150袋,总费用为7000元;第二次购进A 品牌粽子180袋和B 品牌粽子120袋,总费用为8100元.(1)求A 、B 两种品牌粽子每袋的进价各是多少元;(2)当B 品牌粽子销售价为每袋54元时,每天可售出20袋,为了促销,该超市决定对B 品牌粽子进行降价销售.经市场调研,若每袋的销售价每降低1元,则每天的销售量将增加5袋.当B 品牌粽子每袋的销售价降低多少元时,每天售出B 品牌粽子所获得的利润最大?最大利润是多少元?【答案】(1)A 种品牌粽子每袋的进价是25元,B 种品牌粽子每袋的进价是30元(2)当B 品牌粽子每袋的销售价降低10元时,每天售出B 品牌粽子所获得的利润最大,最大利润是980元【解析】(1)解:设A 种品牌粽子每袋的进价是x 元,B 种品牌粽子每袋的进价是y 元, 根据题意得,{100x +150y =7000180x +120y =8100,解得{x =25y =30, 故A 种品牌粽子每袋的进价是25元,B 种品牌粽子每袋的进价是30元;(2)解:设B 品牌粽子每袋的销售价降低a 元,利润为w 元,根据题意得,w =(54−a −30)(20+5a )=−5a 2+100a +480=−5(a −10)2+980,∵−5<0,∴当B 品牌粽子每袋的销售价降低10元时,每天售出B 品牌粽子所获得的利润最大,最大利润是980元.26.(10分)已知抛物线y =ax 2+bx +c (a ,b ,c 是常数,a >0)的顶点为P ,与x 轴相交于点(1,0)A −和点B .(1)若2,3b c =−=−,①求点P 的坐标;②直线x m =(m 是常数,1<m <3)与抛物线相交于点M ,与BP 相交于点G ,当MG 取得最大值时,求点M ,G 的坐标;(2)若3b =2c ,直线2x =与抛物线相交于点N ,E 是x 轴的正半轴上的动点,F 是y 轴的负半轴上的动点,当PF +FE +EN 的最小值为5时,求点E ,F 的坐标.【解析】(1)①∵抛物线y =ax 2+bx +c 与x 轴相交于点, ∴a −b +c =0.又2,3b c =−=−,得a =1.∴抛物线的解析式为y =x 2−2x −3.∵y =x 2−2x −3=(x −1)2−4,∴点P 的坐标为(1,−4).②当y =0时,由x 2−2x −3=0,解得x 1=−1,x 2=3.∴点B 的坐标为(3,0).设经过B ,P 两点的直线的解析式为y =kx +n ,有{3k +n =0,k +n =−4.解得{k =2,n =−6.∴直线BP 的解析式为y =2x −6. ∵直线x m =(m 是常数,1<m <3)与抛物线y =x 2−2x −3相交于点M ,与BP 相交于点G ,如图所示:∴点M 的坐标为(m,m 2−2m −3),点G 的坐标为(m,2m −6).∴MG =(2m −6)−(m 2−2m −3)=−m 2+4m −3=−(m −2)2+1.∴当m =2时,MG 有最大值1.此时,点M的坐标为(2,−3),点G的坐标为(2,−2).(2)由(1)知a−b+c=0,又3b=2c,∴b=−2a,c=−3a.(a>0)∴抛物线的解析式为y=ax2−2ax−3a.∵y=ax2−2ax−3a=a(x−1)2−4a,∴顶点P的坐标为(1,−4a).∵直线2x=与抛物线y=ax2−2ax−3a相交于点N,∴点N的坐标为(2,−3a).作点P关于y轴的对称点P′,作点N关于x轴的对称点N′,如图所示:得点P′的坐标为(1,4)a−−,点N′的坐标为(2,3a).当满足条件的点E,F落在直线P′N′上时,PF+FE+EN取得最小值,此时,PF+FE+EN=P′N′=5.延长P′P与直线2x=相交于点H,则P′H⊥N′H.在Rt△P′HN′中,P′H=3,HN′=3a−(−4a)=7a.∴P′N′2=P′H2+HN′2=9+49a2=25.解得a1=47,a2=−47(舍).∴点P′的坐标为(−1,−167),点N′的坐标为(2,127).则直线P′N′的解析式为y=43x−2021.∴点E(57,0)和点F(0,−2021).27.(10分)在平面直角坐标系xOy中,⊙O的半径为1,对于点A和线段BC,给出如下定义:若将线段BC绕点A旋转可以得到⊙O的弦B′C′(B′,C′分别是B,C的对应点),则称线段BC是⊙O的以点A为中心的“关联线段”.(1)如图,点112233,,,,,,A B C B C B C 的横、纵坐标都是整数.在线段112233,,B C B C B C 中,⊙O 的以点A 为中心的“关联线段”是______________;(2)△ABC 是边长为1的等边三角形,点()0,A t ,其中t ≠0.若BC 是⊙O 的以点A 为中心的“关联线段”,求t 的值;(3)在△ABC 中,AB =1,AC =2.若BC 是⊙O 的以点A 为中心的“关联线段”,直接写出OA 的最小值和最大值,以及相应的BC 长.通过观察图象可得:线段B 得到;故答案为B 2C 2;(2)由题意可得:当BC 是1,当点A 在y 轴的正半轴上时,如图所示:设B C ''与y 轴的交点为D ,连接OB ∴B ′D =DC ′=12,∴OD =√OB ∴OA =√3,∴t =√3;当点A 在y 轴的正半轴上时,如图所示:由运动轨迹可得当点A也在⊙O上时为最小,最小值为∴∠AB′C′=90°,∴∠AC′B′=30°,∴BC由以上情况可知当点A,B′,O三点共线时,OA连接OC′,B′C′,过点C′作C′P⊥OA于点P设OP=x,则有AP=2−x,∴由勾股定理可得:1−x2,解得:x=14,∴C′P=√154,∴B′P=OB′在Rt△B′PC′中,B′C′=√B′P2+C′P2=综上所述:当OA min时,此时BC=√3;当。
2009年江苏省连云港市中考数学模拟考试试题含参考答案及评分标准苏科版

2009年连云港市中考模拟考试数学试题参考答案及评分说明一、选择题(每小题3分,共24分)1. B2. C3. C4. C5. B6. A7. B8. D二、填空题(每小题3分,共30分)9. 3 10. -6 11. 21± 12.不唯一,如∠1=∠2,∠3=∠B 等13. 2 14. 90 15.正五边形 16. 2 17.x 8 18. 7 三、解答题19.解:原式=22)(2)2(3)2(2)422622(3)233a a a a a a a a a a +-+-+--+++=+=+-++(=32+a ,…(6分) 求值:取值不同,结果也不同,但是a 不能取–3和2. …………………………(8分)20.解:(1)将x =500代入,y =–2x +2009=1009>0, ………………………(2分) 再将x=1500代入,y= –2x+2009= –991<0. ………………(5分)(2)由-2x+2009<0,得220090>x . ……………………………(8分) 21.解:连接OC ,∵AB ⊥CD ,∴CE =DE =8cm . ……………………………(2分) 在Rt △OCE 中,∵222OC CE OE =+,∴2228(4)OC OC =+-. ………(4分) 解之,得OC =10cm . …………………………(6分) ∴AE =OA +OE =16cm . …………………………(8分)22.(1)男生25人,女生25人; …………………………(4分)(2)由题意,得50:22=1200:x ,解得x =528. …………………………(8分)23.解:(1)在R t △CHE 中,CH = 60sin 74⋅=373≈63(cm ). ……………………(3分)(2)在R t △ODH 中,∵OH = 30sin ⋅OD ,∴2(OC+63)=150+OC. …………………(6分) 解得 OC =24(cm ). …………………………(8分)24.(1)52; …………………………(3分) (2)不公平, …………………………(4分) 可以采用列表或者画树状图的方法等展示解题过程. …………………………(7分) ∴P(小明)=52 ,P(小红)=53, …………………………(9分) ∵P(小明)≠ P(小红),∴这个游戏规则不公平. …………………………(10分)25. (1)设批发康乃馨x 枝,百合y 枝,根据题意,得方程组 1.54300,0.580.x y x y +=⎧⎨+=⎩ …………………………(3分)A B C (第27题②答图)B ′解得40,60.x y =⎧⎨=⎩答:康乃馨进货40枝,百合进货60枝. …………………………(5分)(2)设乙组每小时售出鲜花a 枝,则甲组每小时售出鲜花2a 枝,根据题意,可得 505012x x+=, 解得a =25. …………………………(8分) 经检验:a =25是原方程的解,此时2a =50.即甲组每小时售出鲜花50枝. …………………………(10分)26.(1)丙车在甲车出发后40min 时追上乙车,此时丙、乙两车距离A 地30km ;…………(2分)(2)60min ; …………………………(6分)(3)54km . …………………………(10分)27. 解:(1)∵∠BAC =45°,∠ABD =30°,∴∠AOB =∠BAC+∠ABD=75°,∴∠AOB =∠105°. …………………………(3分)(2)①当α=15°时,∠AOB ′=90°. …………………………(4分) ∵∠BAC =45°,∠AB ′O =30°,∴∠AOB ′=180°-∠BA C -∠AB ′O -∠BA B ′=90°. …………………………(7分) ②有可能,如下图,此时α=60°. …………………………(9分)∵AB =AB ′,α=60°,即∠B ′AB =60°.又∵ AB =AB ′,∴△ABB ′为等边三角形.∴AB ′=BB ′.又∵ AC =BC ,∴点B ′、点C 都在线段AB 的垂直平分线上,因此,四边形ACBB ′是轴对称图形,直线CB ′就是它的对称轴.…………………………(12分)28.(1)A ()0,3,B (0,1); …………………………(2分)(2)解:设所求二次函数的关系式为y =a (x –m )2+n .∵顶点C 2),∴y =a (x 2+2. …………………………(4分) 又∵点B 的坐标为(0,1),∴1= a (2+2,解得a =13-. ∴1332312++-=x x y (或2)3(312+--=x y ). …………………………(6分) (3)存在,如图,①点B 关于直线AC 的对称点P 1),(132. ………………………(7分) ②解法一:将△ABC 沿直线AB 对折,显然点C 的对称点为点D (0,–1),过点D 作DP 2∥AB ,交抛物线于点P 2,P 3,则点P 2,P 3也是符合要求的点.设直线DP 2的解析式为y=kx+b ,则k=b =-1. …………………………(9分)因此直线DP 2的函数关系式为y=-1.由题意,可联立方程组2113y x ⎧=-++⎪⎪⎨⎪⎪⎩, 解方程组,得11x y ⎧=⎪⎪⎨⎪=⎪⎩,11x y ⎧=⎪⎪⎨⎪=⎪⎩, 因此 P 2P 3, 即符合条件的P 点有3个. …………………………(12分) 解法二:设点P 点坐标为(x ,y ) .根据题意,得 (3+3–x )(1–y ) –3+y (3–x )=23. ……………………(9分) 化简,得 x=–3y –3.(※) …………………………(10分) 代入2)3(312+--=x y ,得0252=++y y . 解得2175±-=y . …………………………(11分) 再代入(※)式,得11x y ⎧=⎪⎪⎨⎪=⎪⎩11x y ⎧=⎪⎪⎨⎪=⎪⎩ 因此 P 2P 3, 即符合条件的P 点有3个. …………………………(12分)(第28题答图)。
中考数学(苏教版)模拟试卷及参考答案

中考数学(苏教版)模拟试卷一、选择题(共12小题,每小题3分,共36分)1.下列各数中,最大的是( ) A .-3 B .0 C .1 D .2 2.式子1-x 在实数范围内有意义,则x 的取值范围是( ) A .x <1 B .x ≥1 C .x ≤-1 D .x <-13.不等式组⎩⎨⎧≤-≥+0102x x 的解集是( )A .-2≤x ≤1 B .-2<x <1 C .x ≤-1D .x ≥24.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( )A .摸出的三个球中至少有一个球是黑球.B .摸出的三个球中至少有一个球是白球.C .摸出的三个球中至少有两个球是黑球.D .摸出的三个球中至少有两个球是白球.5.若1x ,2x 是一元二次方程0322=--x x 的两个根,则21x x 的值是( ) A .-2 B .-3 C .2 D .36.如图,△ABC 中,AB =AC ,∠A =36°,BD 是AC 边上的高,则∠DBC 的 度数是( )A .18° B .24° C .30° D .36°7.如图,是由4个相同小正方体组合而成的几何体,它的主视图是( )A .B .C .D .8.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么六条直线最多有( )A .21个交点B .18个交点C .15个交点D .10个交点9.为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其它”类统计。
图(1)与图(2)是整理数据后绘制的两幅不完整的统计图。
以下结论不正确...的是( )A .由这两个统计图可知喜欢“科普常识”的学生有90人.第6题图DCBA第9题图(2)第9题图(1)30%其它10%科普常识漫画小说书籍B .若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有360个.C .由这两个统计图不能确定喜欢“小说”的人数.D .在扇形统计图中,“漫画”所在扇形的圆心角为72°.10.如图,⊙A 与⊙B 外切于点D ,PC ,PD ,PE 分别是圆的切线,C ,D ,E 是切点, 若∠CED =x °,∠ECD =y °,⊙B 的半径为R ,则⋂DE 的长度是(A .()9090Rx-π B .()9090Ry -πC .()180180Rx -π D .()180180R y -π第II 卷(非选择题 共84分)二、填空题(共4小题,每小题3分,共12分)11.计算︒45cos = .12.在2013年的体育中考中,某校6名学生的分数分别是27、28、29、28、26、28.这组数据的众数是 .13.太阳的半径约为696 000千米,用科学记数法表示数696 000为 . 14.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x 秒后两车间的距离为y 千米,y 关于x 的函数关系如图所示,则甲车的速度是 米/秒.15.如图,已知四边形ABCD 是平行四边形,BC =2AB ,A ,(0,2),C ,D 两点在反比例函数)0(<=x xky 的图象上,则k 的值等于 .16.如图,E ,F 是正方形ABCD 的边AD 上两个动点,满足AE =DF .连接CF 交BD 于G ,连接BE 交AG 于点H .若正方形的边长为2,则线段DH 长度的最小值是 .P第10题图第16题图HGF E DCBA三、解答题(共9小题,共72分)17.(本题满分6分)解方程:xx 332=-.18.(本题满分6分)直线b x y +=2经过点(3,5),求关于x 的不等式b x +2≥0的解集.19.(本题满分6分)如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .求证:∠A =∠D .20.(本题满分7分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁. (1)请用列表或画树状图的方法表示出上述试验所有可能结果; (2)求一次打开锁的概率.21.(本题满分7分)如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是A (-3,2),B (0,4C (0,2).(1)将△ABC 以点C 为旋转中心旋转180°,画出旋 转后对应的△11B A C ;平移△ABC ,若A 的对应点2A 的坐标为(0,4),画出平移后对应的△222C B A ; (2)若将△11B A C 绕某一点旋转可以得到△222C B A ,请直接写出旋转中心的坐标;(3)在x 轴上有一点P ,使得PA+PB 的值最小,请直 接写出点P 的坐标.第19题图AB C DE F第21题图22.(本题满分8分)如图,在平面直角坐标系中,△ABC 是⊙O 的内接三角形,AB =AC ,点P 是⋂AB 的中点,连接PA ,PB ,PC . (1)如图①,若∠BPC =60°,求证:AP AC 3=; (2)如图②,若2524sin =∠BPC ,求PAB ∠tan 的值.23.(本题满分10分)科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下数、一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度的增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm ,那么实验室的温度x 应该在哪个范围内选择?请直接写出结果.24.(本题满分12分)如图,点P 是直线l :22--=x y 上的点,过点P 的另一条直线m交抛物线2x y =于A 、B 两点. (1)若直线m 的解析式为2321+-=x y ,求A 、B 两点的坐标; (2)①若点P 的坐标为(-2,t ),当PA =AB 时,请直接写出点A 的坐标;②试证明:对于直线l上任意给定的一点P ,在抛物线上都能找到点A ,使得PA =AB成立.(3)设直线l 交y 轴于点C ,若△AOB 的外心在边AB 上,且∠BPC =∠OCP ,求点P 的坐标. 第22题图①第22题图②中考数学(苏教版)模拟试卷参考答案二、填空题 11.2212.28 13.51096.6⨯ 14.20 15.-12 16.15- 三、解答题17.(本题满分6分)解:方程两边同乘以()3-x x ,得()332-=x x 解得9=x .经检验, 9=x 是原方程的解. 18.(本题满分6分)解:∵直线b x y +=2经过点(3,5)∴b +⨯=325.∴1-=b .即不等式为12-x ≥0,解得x ≥21. 19.(本题满分6分)证明:∵BE =CF ,∴BE+EF =CF+EF ,即BF =CE . 在△ABF 和△DCE 中,⎪⎩⎪⎨⎧=∠=∠=CE BF C B DC AB∴△ABF ≌△DCE , ∴∠A =∠D . 20.(本题满分7分)解:(1)设两把不同的锁分别为A 、B ,能把两锁打开的钥匙分别为a 、b ,其余两把钥匙分别为m 、n ,根据题意,可以画出如下树形图:由上图可知,上述试验共有8种等可能结果.(列表法参照给分)(2)由(1)可知,任意取出一把钥匙去开任意一把锁共有8种可能的结果,一次打开锁的结果有2种,且所有结果的可能性相等. ∴P (一次打开锁)=4182=.b m nn m b A Ba21.(本题满分7分)(1)画出△A 1B 1C 如图所示:(2)旋转中心坐标(23,1-);(3)点P 的坐标(-2,0).22.(本题满分8分) (1)证明:∵弧BC =弧BC ,∴∠BAC =∠BPC =又∵AB =AC ,∴△ABC 为等边三角形∴∠ACB =60°,∵点P 是弧AB 的中点,∴∠ACP =30°,又∠APC =∠ABC =60°,∴AC =3AP .(2)解:连接AO 并延长交PC 于F ,过点E 作EG ⊥AC 于G ,连接OC . ∵AB =AC ,∴AF ⊥BC ,BF =CF .∵点P 是弧AB 中点,∴∠ACP =∠PCB ,∴EG =EF . ∵∠BPC =∠FOC ,∴sin ∠FOC =sin ∠BPC=2524. 设FC =24a ,则OC =OA =25a , ∴OF =7a ,AF =32a .在Rt △AFC 中,AC 2=AF 2+FC 2,∴AC =40a .在Rt △AGE 和Rt △AFC 中,sin ∠FAC =ACFCAE EG =, ∴aaEG a EG 402432=-,∴EG =12a . ∴tan ∠PAB =tan ∠PCB=212412==a a CF EF .23.(本题满分10分)解:(1)选择二次函数,设c bx ax y ++=2,得⎪⎩⎪⎨⎧=++=+-=4124492449c b a c b a c ,解得⎪⎩⎪⎨⎧=-=-=4921c b a∴y 关于x 的函数关系式是4922+--=x x y .不选另外两个函数的理由:注意到点(0,49)不可能在任何反比例函数图象上,所以y 不是x 的反比例函数;点(-4,41),(-2,49),(2,41)不在同一直线上,所以y 不是x 的一次函数. (2)由(1),得4922+--=x x y ,∴()5012++-=x y ,∵01<-=a ,∴当1-=x 时,y 有最大值为50. 即当温度为-1℃时,这种植物每天高度增长量最大.第21题图第22(2)题图(3)46<<-x .24.(本题满分12分)解:(1)依题意,得⎪⎩⎪⎨⎧=+-=.,23212x y x y 解得⎪⎪⎩⎪⎪⎨⎧=-=492311y x ,⎩⎨⎧==1122y x∴A (23-,49),B (1,1). (2)①A 1(-1,1),A 2(-3,9).②过点P 、B 分别作过点A 且平行于x 轴的直线的垂线,垂足分别为G 、H.设P (a ,22--a ),A (m ,2m ),∵PA =PB ,∴△PAG ≌△BAH , ∴AG =AH ,PG =BH ,∴B (a m -2,2222++a m ), 将点B 坐标代入抛物线2x y =,得0224222=--+-a a am m , ∵△=()()081816168228162222>++=++=---a a a a a a∴无论a 为何值时,关于m 的方程总有两个不等的实数解,即对于任意给定的 点P ,抛物线上总能找到两个满足条件的点A .(3)设直线m :()0≠+=k b kx y 交y 轴于D ,设A (m ,2m ),B (n ,2n ).过A 、B 两点分别作AG 、BH 垂直x 轴于G 、H . ∵△AOB 的外心在AB 上,∴∠AOB =90°, 由△AGO ∽△OHB ,得BHOHOG AG =,∴1-=mn . 联立⎩⎨⎧=+=2xy b kx y 得02=--b kx x ,依题意,得m 、n 是方程02=--b kx x 的两根,∴b mn -=,∴1-=b ,即D (0,1). ∵∠BPC =∠OCP ,∴DP =DC =3.P设P (a ,22--a ),过点P 作PQ ⊥y 轴于Q ,在Rt △PDQ 中,222PD DQ PQ =+,∴()2223122=---+a a .∴01=a (舍去),5122-=a ,∴P (512-,514). ∵PN 平分∠MNQ ,∴PT =NT ,∴()t t t -=+-22212,。
江苏中考数学模拟试卷十
江苏省2009中考数学模拟试卷(十)班级 姓名1.设一元二次方程2730x x -+=的两个实数根分别为1x 和2x ,则x 1+x 2= ,x 1×x 2= .2.函数y =x 的取值范围是3..若O 为ABC ∆的外心,且ο60=∠BOC ,则ο__________=∠BAC4.已知平面上四点(00)A ,,(100)B ,,(106)C ,,(06)D ,,直线32y mx m =-+将四边形ABCD 分成面积相等的两部分,则m 的值为 .5.下列计算正确的是A .a 2+a 2=a 4B .a 5·a 2=a 7C .()325a a = D .2a 2-a 2=2 6.函数1k y x-=的图象与直线y x =没有交点,那么k 的取值范围是 ( ) A .1k > B .1k < C .1k >- D .1k <-7.若关于x 的一元二次方程2250ax x +-=的两根中有且仅有一根在0与1之间(不含0和1),则a 的取值范围是 ( )A .3a <B .3a >C .3a <-D .3a >-8.计算:.)41.12(45tan 32)31(01-++---ο(2)解方程:2410x x +-=9.小刚和小明两位同学玩一种游戏.游戏规则为:两人各执“象、虎、鼠”三张牌,同时各出一张牌定胜负,其中象胜虎、虎胜鼠、鼠胜象,若两人所出牌相同,则为平局.例如,小刚出象牌,小明出虎牌,则小刚胜;又如,两人同时出象牌,则两人平局.(1)一次出牌小刚出“象”牌的概率是多少?(2)如果用A B C ,,分别表示小刚的象、虎、鼠三张牌,用1A ,1B ,1C 分别表示小明的象、虎、鼠三张牌,那么一次出牌小刚胜小明的概率是多少?用列表法或画树状图(树形图)法加以说明.10.已知一个三角形的两条边长分别是1cm 和2cm ,一个内角为40o .(1)请你借助图1画出一个满足题设条件的三角形;(2)你是否还能画出既满足题设条件,又与(1)中所画的三角形不全等的三角形?若能,请你在图1的右边用“尺规作图”作出所有这样的三角形;若不能,请说明理由.(3)如果将题设条件改为“三角形的两条边长分别是3cm 和4cm ,一个内角为40o ”,那么满足这一条件,且彼此不全等的三角形共有 个.友情提醒:请在你画的图中标出已知角的度数和已知边的长度,“尺规作图”不要求写作法,但要保留作图痕迹.11.(本题满分12分)如图,圆B 切y 轴于原点O ,过定点A (-23,0)作圆B 的切线交圆于点P ,已知tan ∠PAB =33,抛物线C 经过A 、P 两点。
苏教版中考仿真模拟检测《数学试题》含答案解析
苏教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题1.2-值等于( ) A. 2B. 12-C.12D. ﹣22.比较350,440,530的大小关系为( ) A. 530<350<440B. 350<440<530C. 530<440<350D. 440<350<5303.如图,AB ∥CD ,EF ⊥AB 于E , EF 交CD 于F ,已知∠2=30°,则∠1是( )A. 20°B. 60°C. 30°D. 45°4.下列式子为最简二次根式的是( ) A.0.1a B.52 C.24a +D.125.下列因式分解正确的是( ) A. 6x+9y+3=3(2x+3y) B. x 2+2x+1=(x+1)2 C. x 2﹣2xy ﹣y 2=(x ﹣y)2D. x 2+4=(x+2)26.某车间20名工人每天加工零件数如下表所示: 每天加工零件数 4 5 6 7 8 人数 36542这些工人每天加工零件数的众数、中位数分别是( ). A. 5,5B. 5,6C. 6,6D. 6,57.轮船沿江从港顺流行驶到港,比从港返回港少用3小时,若船速为26千米/时,水速为2千米/时,求港和港相距多少千米. 设港和港相距千米. 根据题意,可列出方程是( ). A.32824x x =- B.32824x x =+C.2232626x x+-=+ D.2232626x x+-=-8.如图,A、B是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是( )A. 625B.15C.425D.7259.若点C是线段AB的黄金分割点,且AB=2(AC>BC),则AC等于( )A. 5﹣1B. 3﹣5C. 512-D. 5﹣1或3﹣510.如图,在平面直角坐标系中,菱形OABC的顶点A的坐标为(4,3),点D是边OC上的一点,点E在直线OB上,连接DE、CE,则DE+CE的最小值为( )A 5 7+1 5 D. 24 5二、填空题11.多项式(mx+8)(2-3x)展开后不含x 的一次项,则m=_____.12.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为______万元.13.二次函数y=2(x+1)2﹣3的顶点坐标是_____.14.方程233x x=-的解是.15.如图,O为Rt△ABC斜边中点,AB=10,BC=6,M,N在AC边上,∠MON=∠B,若△OMN与△OBC 相似,则CM=_____.16.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠D=45°,则劣弧AC的长为_____.17.如图,▱ABCD中,点F在CD上,且CF:DF=1:2,则S△CEF:S▱ABCD=_____.18.如图,一次函数与反比例函数的图象交于A(1,12)和B(6,2)两点.点P是线段AB上一动点(不与点A 和B重合),过P点分别作x、y轴的垂线PC、PD交反比例函数图象于点M、N,则四边形PMON面积的最大值是_____.三、解答题19.计算:(﹣3)0﹣|﹣3|+(﹣1)2015+(12)﹣1.20.解不等式组3(2)2513212x xxx+≥+⎧⎪⎨+-<⎪⎩,并把不等式组的解集在数轴上表示出来.21.先化简代数式1﹣1xx-÷2212xx x-+,并从﹣1,0,1,3中选取一个合适的代入求值.22.为了解某校九年级男生的体能情况,体育老师从中随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成尚不完整的扇形图和条形图,根据图形信息回答下列问题: (1)本次抽测的男生有 人,抽测成绩的众数是 ; (2)请将条形图补充完整;(3)若规定引体向上6次以上(含6次)为体能达标,则该校125名九年级男生中估计有多少人体能达标?23.小颖和小红两位同学在学习”概率”时,做投掷骰子(质地均匀正方体)实验,他们共做了60次实验,实验的结果如下: 朝上的点数 1 2 3 4 5 6 出现的次数 79682010(1)计算”3点朝上”的频率和”5点朝上”的频率.(2)小颖说:”根据实验,一次实验中出现5点朝上的概率最大”;小红说:”如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?(3)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率. 24.如图,在ABC ∆中,是BC 的中点,过点的直线GF 交AC 于点,交AC 的平行线BG 于点,ED DF ⊥交AB 于点,连接EG 、EF .(1)求证:BG CF =;(2)请你判断BE CF +与EF 的大小关系,并说明理由.25.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:x/元…15 20 25 …y/件…25 20 15 …已知日销售量y是销售价x的一次函数.(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?26.已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:BC是⊙O的切线;(3)在(2)的条件下,求证:四边形ABCD是菱形.27.如图,直线L:y=﹣12x+2与x轴、y轴分别交于A、B两点,在y轴上有一点N(0,4),动点M从A点以每秒1个单位的速度匀速沿x轴向左移动.(1)点A的坐标:;点B的坐标:;(2)求△NOM的面积S与M的移动时间t之间的函数关系式;(3)在y轴右边,当t为何值时,△NOM≌△AOB,求出此时点M的坐标;(4)在(3)的条件下,若点G是线段ON上一点,连结MG,△MGN沿MG折叠,点N恰好落在x轴上的点H处,求点G的坐标.28.如图,抛物线y=x2+bx+c与x轴交于点A和B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)若点M是抛物线上在x轴下方的动点,过M作MN∥y轴交直线BC于点N,求线段MN的最大值;(3)E是抛物线对称轴上一点,F是抛物线上一点,是否存在以A,B,E,F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.答案与解析一、选择题1.2-的值等于( )A. 2B.12- C. 12D. ﹣2【答案】A【解析】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以22-=,故选A.2.比较350,440,530的大小关系为( )A. 530<350<440B. 350<440<530C. 530<440<350D. 440<350<530【答案】A【解析】【分析】先将各数转化为指数相同的幂的乘方的形式,再比较底数大小即可.【详解】解:350=()1053;440= ()1044;550=()1035;∵53=243, =256,35=125,∴35<53<,∴530<350<440,故选A.【点睛】本题考查了幂的大小比较,灵活转化幂的形式是解题关键.3.如图,AB∥CD,EF⊥AB于E,EF交CD于F,已知∠2=30°,则∠1是( )A. 20°B. 60°C. 30°D. 45°【答案】B【解析】【分析】根据三角形内角之和等于180°,对顶角相等的性质求解.【详解】解:∵AB∥CD,EF⊥AB,∴EF⊥CD.∵∠2=30°,∴∠1=∠3=90°-∠2=60°.故选:B.4.下列式子为最简二次根式的是( )A. 0.1aB. 52C. 24a+ D. 1 2【答案】C 【解析】【详解】解:A0.1a 1010a,不是最简二次根式;B5213; C24a+是最简二次根式;D 122故选C.【点睛】根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.被开方数是多项式时,还需将被开方数进行因式分解,然后再观察判断.5.下列因式分解正确的是( )A. 6x+9y+3=3(2x+3y)B. x2+2x+1=(x+1)2C. x2﹣2xy﹣y2=(x﹣y)2D. x2+4=(x+2)2【答案】B【解析】【详解】(A)原式=3(2x+3y+1),故A错误;(C)x²−2xy−y²不是完全平方式,不能因式分解,故C错误;(D)x 2+4不能因式分解,故D 错误; 故选B.6.某车间20名工人每天加工零件数如下表所示:这些工人每天加工零件数的众数、中位数分别是( ). A. 5,5 B. 5,6C. 6,6D. 6,5【答案】B 【解析】 【分析】根据众数、中位数的定义分别进行解答即可.【详解】解:由表知数据5出现次数最多,所以众数为5; 因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为662+=6, 故选:B .【点睛】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 7.轮船沿江从港顺流行驶到港,比从港返回港少用3小时,若船速为26千米/时,水速为2千米/时,求港和港相距多少千米. 设港和港相距千米. 根据题意,可列出的方程是( ).A. 32824x x =-B.32824x x=+ C. 2232626x x +-=+ D. 2232626x x +-=- 【答案】A 【解析】 【分析】通过题意先计算顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26-2=24千米/时.根据”轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时”,得出等量关系,据此列出方程即可.【详解】解:设A 港和B 港相距x 千米,可得方程:32824x x =- 故选:A .【点睛】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键.顺水速度=水流速度+静水速度,逆水速度=静水速度-水流速度.8.如图,A 、B 是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C ,恰好能使△ABC 的面积为1的概率是( )A.625B.15C.425D.725【答案】A 【解析】试题解析:在4×4的网格中共有25个格点,而使得三角形面积为1的格点有6个,故使得三角形面积为1的概率为625. 故选A .9.若点C 是线段AB 的黄金分割点,且AB =2(AC >BC),则AC 等于( ) A.51 B. 35 C.51- D.5﹣1或35【答案】A 【解析】 【分析】51-即可解题. 【详解】解:如下图,∵点C是线段AB的黄金分割点,∴ACAB=512,∵AB=2∴AC=5﹣1,故选A.【点睛】本题考查了黄金分割点的定义,属于简单题,熟悉黄金分割点的概念以及黄金分割比的比值是解题关键.10.如图,在平面直角坐标系中,菱形OABC的顶点A的坐标为(4,3),点D是边OC上的一点,点E在直线OB上,连接DE、CE,则DE+CE的最小值为( )A. 5B. 7+1C. 5D. 24 5【答案】D【解析】【分析】首先根据菱形的对角线性质得到DE+CE的最小值=CF,再利用菱形的面积列出等量关系即可解题. 【详解】解:如下图,过点C作CF⊥OA与F,交OB于点E,过点E作ED⊥OC与D,∵四边形OABC是菱形,由菱形对角线互相垂直平分可知EF=ED,∴DE+CE的最小值=CF,∵A的坐标为(4,3),∴对角线分别是8和6,OA=5,∴菱形的面积=24,(二分之一对角线的乘积),即24=CF×5,解得:CF= 24 5,即DE+CE的最小值=24 5,故选D.【点睛】本题考查了菱形的性质,图形中的最值问题,中等难度,利用菱形的对称性找到点E的位置并熟悉菱形面积的求法是解题关键.二、填空题11.多项式(mx+8)(2-3x)展开后不含x 的一次项,则m=_____.【答案】12【解析】【分析】乘积含x项包括两部分,①mx×2,②8×(-3x),再由展开后不含x的一次项可得出关于m的方程,解出即可.【详解】由题意得,乘积含x项包括两部分,①mx×2,②8×(-3x),又∵(mx+8)(2-3x)展开后不含x的一次项,∴2m-24=0,解得:m=12.故答案为12.【点睛】此题考查了多项式乘多项式的知识,属于基础题,注意观察哪些项相乘所得的结果含一次项,难度一般.12.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为______万元.【答案】65.410【解析】试题分析:在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.解:5 400 000=5.4×106万元.故答案为5.4×106.考点:科学记数法—表示较大的数.13.二次函数y =2(x+1)2﹣3的顶点坐标是_____. 【答案】()1,3-- 【解析】 【分析】二次函数顶点式为y=a(x-h)2+k(a,h,k 是常数,a≠0),其顶点坐标为(h ,k). 【详解】解:由顶点式的定义可知该二次函数的顶点坐标为()1,3--. 【点睛】本题考查了二次函数的顶点式. 14.方程233x x=-的解是 . 【答案】x=9. 【解析】 【分析】根据解分式方程的步骤解答即可. 【详解】去分母得:2x=3x ﹣9, 解得:x=9,经检验x=9是分式方程的解, 故答案为x=9.【点睛】本题主要考查了解分式方程的步骤,牢牢掌握其步骤就解答此类问题的关键.15.如图,O 为Rt △ABC 斜边中点,AB=10,BC=6,M ,N 在AC 边上,∠MON=∠B ,若△OMN 与△OBC 相似,则CM=_____.【答案】258或74【解析】 【分析】分两种情形分别求解:①如图1中,当∠MON=∠OMN 时.②如图2中,当∠MON=∠ONM 时. 【详解】解:∵∠ACB=90°,AO=OB ,∴∠B=∠OCB ,∵∠MON=∠B ,若△OMN 与△OBC 相似,∴有两种情形:①如图1中,当∠MON=∠OMN 时,∵∠OMN=∠B ,∠OMC+∠OMN=180°, ∴∠OMC+∠B=180°, ∴∠MOB+∠BCM=90°, ∴∠MOB=90°,∵∠AOM=∠ACB ,∠A=∠A , ∴△AOM ∽△ACB ,∴AM AB =OAAC , ∴10AM =58, ∴AM=254,∴CM=AC-AM=8-254=74. ②如图2中,当∠MON=∠ONM 时,∵∠BOC=∠OMN ,∴∠A+∠ACO=∠ACO+∠MOC , ∴∠MOC=∠A , ∵∠MCO=∠ACO , ∴△OCM ∽△ACO ,∴25=CM•8,∴CM=258,故答案为:74或258.【点睛】本题考查相似三角形的判定和性质,直角三角形斜边中线的性质等知识,解题关键是学会用分类讨论的思想思考问题.16.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠D=45°,则劣弧AC的长为_____.【答案】π【解析】【分析】首先连接OA,OC,利用同弧所对的圆心角的度数是圆周角度数的二倍求出∠AOC的度数,再利用圆的周长即可解题.【详解】解:连接OA,OC,∵∠D=45°,∴∠AOC=90°,⊙O的半径为2,∴弧AC的长=四分之一圆的周长,即144ACππ==,【点睛】本题考查了弧长的计算,属于简单题,熟悉同弧所对的圆周角和圆心角之间的关系是解题关键.17.如图,在▱ABCD中,点F在CD上,且CF:DF=1:2,则S△CEF:S▱ABCD=_____.【答案】1:24 【解析】试题解析:∵四边形ABCD 是平行四边形 ∴AB ∥CD ,AB =CD ∵CF :FD =1:2∴CF :CD =1:3,即CD :AB =1:3 ∵AB ∥CD ∴ΔCEF ∽ΔABE∴FE :BE =1:3 S ΔCEF :S ΔABE =1:9 ∴S ΔCEF :S ΔBCE =1:3 ∴S ΔCEF : S ΔABC =1:12 ∴S ΔCEF : S □ABCD =1:2418.如图,一次函数与反比例函数的图象交于A (1,12)和B (6,2)两点.点P 是线段AB 上一动点(不与点A 和B 重合),过P 点分别作x 、y 轴的垂线PC 、PD 交反比例函数图象于点M 、N ,则四边形PMON 面积的最大值是_____.【答案】【解析】试题分析:设反比例函数解析式k y x=和一次函数解析式y=kx+b ,由A ,B 的坐标分别求的解析式为:12y x =和y=-2x+14,然后可设P点的坐标为(m ,-2m+14),因此可知=--OCM ODN PMON OCPD S S SS四边形四边形=(214)12m m ⨯-+-=221412m m -+-=2725()22m --+,所以四边形PNOM 的最大值为252. 考点:1、一次函数,2、反比例函数三、解答题19.计算:(﹣3)0﹣|﹣3|+(﹣1)2015+(12)﹣1.【答案】-1【解析】分析:根据零次幂、绝对值以及负指数次幂的计算法则求出各式的值,然后进行求和得出答案.详解:解:(﹣3)0﹣|﹣3|+(﹣1)2015+(12)﹣1=1﹣3+(﹣1)+2=﹣1.点睛:本题主要考查的是实数的计算法则,属于基础题型.理解各种计算法则是解决这个问题的关键.20.解不等式组3(2)2513212x xxx+≥+⎧⎪⎨+-<⎪⎩,并把不等式组的解集在数轴上表示出来.【答案】–1≤x<3【解析】分析】分别求出不等式组中两不等式的解集并在数轴上表示,找出两解集的公共部分即可确定出不等式组的解集.【详解】解:3(2)2513212x xxx+≥+⎧⎪⎨+-<⎪⎩①②,解不等式①,得:x≥–1,解不等式②,得:x<3,则不等式组的解集为–1≤x<3,将不等式组的解集表示在数轴上如下:【点睛】本题考查解一元一次不等式组,在数轴上表示不等式组的解集.能依据不等式的性质正确求得不等式组中每一个不等式的解集是解决问题的关键.21.先化简代数式1﹣1xx-÷2212xx x-+,并从﹣1,0,1,3中选取一个合适的代入求值.【答案】-11x+,-14.【解析】试题分析:根据分式的除法和减法可以化简题目中的式子,然后在﹣1,0,1,3中选取一个使得原分式有意义的x的值代入即可解答本题.试题解析:原式=1﹣()()()21·11x xxx x x+-+-=1﹣21xx++=121x xx+--+=-11x+,当x=3时,原式=﹣131+=-14.22.为了解某校九年级男生的体能情况,体育老师从中随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成尚不完整的扇形图和条形图,根据图形信息回答下列问题:(1)本次抽测的男生有人,抽测成绩的众数是;(2)请将条形图补充完整;(3)若规定引体向上6次以上(含6次)为体能达标,则该校125名九年级男生中估计有多少人体能达标?【答案】(1)25,6次;(2)补全图见解析;(3)该校125名九年级男生约有90人体能达标.【解析】试题分析:(1)对比扇形统计图与条形统计图可知,抽测成绩为7次的男生人数有7人,占总人数的28%,由此可求出总人数,求出抽测成绩为4,5,6,7,8次的人数,即可得到抽测成绩的人数.(2)由抽测成绩为6次的男生的人数补全条图形.(3)用样本估计总体的方法解题.试题解析:(1)本次抽测的男生有:7÷28%=25,抽测6次的人数有25-2-5-7-3=8人,所以众数是6次;(2)如图所示(3)8731259025++⨯=(人).答:该校125名九年级男生约有90人体能达标.23.小颖和小红两位同学在学习”概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:(1)计算”3点朝上”的频率和”5点朝上”的频率.(2)小颖说:”根据实验,一次实验中出现5点朝上的概率最大”;小红说:”如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?(3)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.【答案】(1)110,13;(2)小颖、小红的说法都是错误的;(3)13【解析】【分析】列举出符合题意的各种情况的个数,再根据概率公式解答即可.注意概率在0和1之间的事件为随机事件.【详解】解:()1“点朝上”出现的频率是61 6010=,“点朝上”出现的频率是201 603=;()2小颖的说法是错误的.这是因为:”点朝上”的频率最大并不能说明”点朝上”这一事件发生的概率最大.只有当实验的次数足够大时,该事件发生的频率稳定在事件发生的概率附近;小红的判断是错误的,因为事件发生具有随机性,故”点朝上”的次数不一定是100次;()3列表如下:∵点数之和为的倍数的一共有种情况,总数有种情况, ∴ (点数之和为的倍数)121363==. 【点睛】本题考查了列表法与树状图法,解题的关键是根据题意列出表格即可.24.如图,在ABC ∆中,是BC 的中点,过点的直线GF 交AC 于点,交AC 的平行线BG 于点,ED DF ⊥交AB 于点,连接EG 、EF .(1)求证:BG CF =;(2)请你判断BE CF +与EF 的大小关系,并说明理由. 【答案】(1)证明见解析;(2)证明见解析. 【解析】 【分析】(1)利用平行线的性质和中点的定义得到,BGD CFD BD CD ∠=∠= ,进而得到三角形全等,从而求证结论;(2)利用中垂线的性质和三角形的三边关系进行判断即可. 【详解】证明:(1)∵BG∥AC ∴BGD CFD ∠=∠ ∵是BC 的中点 ∴BD CD =又∵BDG CDF ∠=∠∴△BDG≌△CDF∴BG CF =(2)由(1)中△BDG≌△CDF∴GD=FD,BG=CF又∵ED DF ⊥∴ED 垂直平分DF∴EG=EF∵△BEG 中,BE+BG>GE,∴BE CF +>EF【点睛】本题考查平行线性质的应用、全等三角形的判定和性质的应用及三角形三边关系,熟练掌握相关知识点是解题关键.25.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:已知日销售量y 是销售价x 的一次函数.(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?【答案】()40y x =-+;()此时每天利润为125元.【解析】试题分析:(1) 根据题意用待定系数法即可得解;(2)把x=35代入(1)中的解析式,得到销量,然后再乘以每件的利润即可得. 试题解析:()设y kx b =+,将15x =,25y =和20x =,20y =代入,得:25152020k b k b =+⎧⎨=+⎩,解得:140k b =-⎧⎨=⎩, ∴40y x =-+;()将35x =代入()中函数表达式得:35405y =-+=,∴利润()35105125=-⨯=(元),答:此时每天利润为125元.26.已知,四边形ABCD 中,E 是对角线AC 上一点,DE =EC ,以AE 为直径的⊙O 与边CD 相切于点D ,点B 在⊙O 上,连接OB .(1)求证:DE =OE;(2)若CD∥AB,求证:BC 是⊙O 的切线;(3)在(2)的条件下,求证:四边形ABCD 是菱形.【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)根据等腰三角形的性质得到∠3=∠COD =∠DEO =60°,根据平行线的性质得到∠4=∠1,根据全等三角形的性质得到∠CBO =∠CDO =90°,于是得到结论;(3)先判断出△ABO ≌△CDE 得出AB =CD ,即可判断出四边形ABCD 是平行四边形,最后判断出CD =AD 即可.【详解】(1)如图,连接OD ,∵CD 是⊙O 的切线,∴OD ⊥CD ,∴∠2+∠3=∠1+∠COD =90°, ∵DE =EC ,∴∠1=∠2,∴∠3=∠COD ,∴DE =OE;(2)∵OD =OE ,∴OD =DE =OE ,∴∠3=∠COD =∠DEO =60°, ∴∠2=∠1=30°, ∵AB ∥CD ,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA =30°, ∴∠BOC =∠DOC =60°, 在△CDO 与△CBO 中,{OD OBDOC BOC OC OC=∠=∠=,∴△CDO ≌△CBO(SAS),∴∠CBO =∠CDO =90°, ∴OB ⊥BC ,∴BC 是⊙O 的切线;(3)∵OA =OB =OE ,OE =DE =EC ,∴OA =OB =DE =EC ,∵AB ∥CD ,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA =30°, ∴△ABO ≌△CDE(AAS),∴AB =CD ,∴四边形ABCD 是平行四边形,∴∠DAE =12∠DOE =30°, ∴∠1=∠DAE ,∴CD =AD ,∴▱ABCD 是菱形.【点睛】此题主要考查了切线的性质,同角的余角相等,等腰三角形的性质,平行四边形的判定和性质,菱形的判定,判断出△ABO≌△CDE是解本题的关键.27.如图,直线L:y=﹣12x+2与x轴、y轴分别交于A、B两点,在y轴上有一点N(0,4),动点M从A点以每秒1个单位的速度匀速沿x轴向左移动.(1)点A的坐标:;点B的坐标:;(2)求△NOM的面积S与M的移动时间t之间的函数关系式;(3)在y轴右边,当t为何值时,△NOM≌△AOB,求出此时点M的坐标;(4)在(3)的条件下,若点G是线段ON上一点,连结MG,△MGN沿MG折叠,点N恰好落在x轴上的点H处,求点G的坐标.【答案】(1)(4,0),(0,2);(2)82(04)28(4)t tSt t-<≤⎧=⎨->⎩;(3)M(2,0);(4)G(051).【解析】【分析】(1)在122y x=-+中,令别令y=0和x=0,则可求得A、B的坐标;(2)利用t可表示出OM,则可表示出S,注意分M在y轴右侧和左侧两种情况;(3)由全等三角形的性质可得OM=OB=2,则可求得M点的坐标;(4)由折叠的性质可知MG平分∠OMN,利用角平分线的性质定理可得到OG OMNG MN=,则可求得OG的长,可求得G点坐标.【详解】(1)在122y x=-+中,令y=0,得x=4,令x=0可,y=2,∴A(4,0),B(0,2);(2)由题题意可知AM=t.①当点M在y轴右边,即0<t≤4时,OM=OA﹣AM=4﹣t.∵N(0,4),∴ON=4,∴S=12OM•ON=12×4×(4﹣t)=8﹣2t;②当点M在y轴左边,即t>4时,则OM=AM﹣OA=t﹣4,∴S=12×4×(t﹣4)=2t﹣8;综上所述:82(04)28(4)t tSt t-<≤⎧=⎨->⎩;(3)∵△NOM≌△AOB,∴MO=OB=2,∴M(2,0);(4)∵OM=2,ON=4,∴MN=2224+=25.∵△MGN沿MG折叠,∴∠NMG=∠OMG,∴OG OMNG MN=,且NG=ON﹣OG,∴2425OGOG=-,解得OG=51-,∴G(0,51-).【点睛】本题为一次函数的综合应用,涉及函数与坐标轴的交点、三角形的面积、全等三角形的性质、角平分线的性质定理及分类讨论思想等知识.在(1)中注意求函数图象与坐标轴交点的方法,在(2)中注意分两种情况,在(3)中注意全等三角形的对应边相等,在(4)中利用角平分线的性质定理求得关于OG的等式是解题的关键.本题考查知识点较多,综合性很强,但难度不大.28.如图,抛物线y=x2+bx+c与x轴交于点A和B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)若点M是抛物线上在x轴下方的动点,过M作MN∥y轴交直线BC于点N,求线段MN的最大值;(3)E是抛物线对称轴上一点,F是抛物线上一点,是否存在以A,B,E,F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.【答案】(1) y=x2﹣4x+3;(2)94;(3)见解析.【解析】【分析】(1)利用待定系数法进行求解即可;(2)设点M的坐标为(m,m2﹣4m+3),求出直线BC的解析,根据MN∥y轴,得到点N的坐标为(m,﹣m+3),由抛物线的解析式求出对称轴,继而确定出1<m<3,用含m的式子表示出MN,继而利用二次函数的性质进行求解即可;(3)分AB为边或为对角线进行讨论即可求得.【详解】(1)将点B(3,0)、C(0,3)代入抛物线y=x2+bx+c中,得:0933b cc=++⎧⎨=⎩,解得:43bc=-⎧⎨=⎩,故抛物线的解析式为y=x2﹣4x+3;(2)设点M的坐标为(m,m2﹣4m+3),设直线BC的解析式为y=kx+3,把点B(3,0)代入y=kx+3中,得:0=3k+3,解得:k=﹣1,∴直线BC的解析式为y=﹣x+3,∵MN∥y轴,∴点N的坐标为(m,﹣m+3),∵抛物线的解析式为y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为x=2,∴点(1,0)在抛物线的图象上,∴1<m<3.∵线段MN=﹣m+3﹣(m2﹣4m+3)=﹣m2+3m=﹣(m﹣32)2+94,∴当m=32时,线段MN取最大值,最大值为94;(3)存在.点F的坐标为(2,﹣1)或(0,3)或(4,3).当以AB对角线,如图1,∵四边形AFBE为平行四边形,EA=EB,∴四边形AFBE为菱形,∴点F也在对称轴上,即F点为抛物线顶点,∴F点坐标为(2,﹣1);当以AB为边时,如图2,∵四边形AFBE为平行四边形,∴EF=AB=2,即F2E=2,F1E=2,∴F1的横坐标为0,F2的横坐标为4,对于y=x2﹣4x+3,当x=0时,y=3;当x=4时,y=16﹣16+3=3,∴F点坐标为(0,3)或(4,3),综上所述,F点坐标为(2,﹣1)或(0,3)或(4,3).【点睛】本题考查了二次函数的综合题,涉及了待定系数法,二次函数的性质,平行四边形的性质,菱形的判定等,综合性较强,有一定的难度,熟练掌握相关知识,正确进行分类讨论是解题的关键.。
苏州市初三中考数学一模模拟试卷
苏州市初三中考数学一模模拟试卷一、选择题(本大题共12小题,共48.0分)1.2的相反数是()A. B. C. D. 22.人数相同的八年级甲、乙两班学生在同一次数学单元测试,班级平均分和方差如下:甲=乙=80,s甲2=240,s乙2=180,则成绩较为稳定的班级是()A. 甲班B. 乙班C. 两班成绩一样稳定D. 无法确定3.如图,DE是△ABC的中位线,则△ADE与△ABC的面积之比是()A. 1:1B. 1:2C. 1:3D. 1:44.关于方程x2+2x-4=0的根的情况,下列结论错误的是()A. 有两个不相等的实数根B. 两实数根的和为C. 两实数根的差为D. 两实数根的积为5.函数y=中自变量x的取值范围是()A. B. C. D.6.下列计算正确的是()A. B. C. D.7.在下列图形中,既是中心对称图形又是轴对称图形的是()A. 等腰三角形B. 圆C. 梯形D. 平行四边形8.如图,函数y1=-2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式-2x>ax+3的解集是()A.B.C.D.9.若正六边形外接圆的半径为4,则它的边长为()A. 2B.C. 4D.10.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修后,因怕耽误上课,他比修车前加快了骑车速度继续匀速行驶,正面是行驶路程S(米)关于时间t(分)的函数图象,那么符合这个同学行驶情况的图象大致是()A. B.C. D.11.已知方程x2+(2k+1)x+k2-2=0的两实根的平方和等于11,k的取值是()A. 或1B.C. 1D. 312.某超市(商场)失窃,大量的商品在夜间被罪犯用汽车运走.三个嫌疑犯被警察局传讯,警察局已经掌握了以下事实:(1)罪犯不在甲、乙、丙三人之外;(2)丙作案时总得有甲作从犯;(3)乙不会开车.在此案中,能肯定的作案对象是()A. 嫌疑犯乙B. 嫌疑犯丙C. 嫌疑犯甲D. 嫌疑犯甲和丙二、填空题(本大题共6小题,共24.0分)13.在0,3,-,这四个数中,最大的数是______.14.分解因式:-4xy2+x=______.15.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西______度.16.平移抛物线y=x2+2x-8,使它经过原点,写出平移后抛物线的一个解析式______.17.如图,从一个直径为1m的圆形铁片中剪出一个圆心角为90°的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为______m.18.已知|a+1|=-(b-2019)2,则a b=______.三、计算题(本大题共1小题,共8.0分)19.解方程:四、解答题(本大题共7小题,共70.0分)20.某中学部分同学参加全国初中数学竞赛,取得了优异的成绩,指导老师统计了所有参赛同学的成绩(成绩都是整数,试题满分120分),并且绘制了“频率分布直方图”(如图).请回答:(1)该中学参加本次数学竞赛的有多少名同学?(2)如果成绩在90分以上(含90分)的同学获奖,那么该中学参赛同学的获奖率是多少?(3)这次竞赛成绩的中位数落在哪个分数段内?(4)图中还提供了其它信息,例如该中学没有获得满分的同学等等,请再写出两条信息.21.有一个未知圆心的圆形工件.现只允许用一块直角三角板(注:不允许用三角板上的刻度)画出该工件表面上的一根直径并定出圆心.要求在图上保留画图痕迹,写出画法.22.已知正比例函数y=kx与反比例函数y=的图象都过A(m,1)点,求出正比例函数解析式及另一个交点的坐标.23.如图,AB是⊙O的直径,弦BC=OB,点D是上一动点,点E是CD中点,连接BD分别交OC,OE于点F,G.(1)求∠DGE的度数;(2)若=,求的值;(3)记△CFB,△DGO的面积分别为S1,S2,若=k,求的值.(用含k的式子表示)24.超市里,某商户先后两次购进若干千克的黄瓜,第一次用了300元,第二次用了900元,但第二次的进货单价比第次的要高1.5元,而所购的黄瓜数量是第一次的2倍.(1)问该商户两次一共购进了多少千克黄瓜?(2)当商户按每千克6元的价格卖掉了时,商户想尽快卖掉这些黄瓜,于是商户决定将剩余的黄瓜打折销售,请你帮忙算算,剩余的黄瓜至少打几折才能使两次所进的黄瓜总盈利不低于360元?25.抛物线经过点E(5,5),其顶点为C点.(1)求抛物线的解析式,并直接写出C点坐标.(2)将直线沿y轴向上平移b个单位长度交抛物线于A、B两点.若∠ACB=90°,求b的值.(3)是否存在点D(1,a),使抛物线上任意一点P到x轴的距离等于P点到点D的距离?若存在,请求点D的坐标;若不存在,请说明理由.26.材料一:一个大于1的正整数,若被N除余1,被(N-1)除余1,被(N-2)除余1…,被3除余1,被2除余1,那么称这个正整数为“明N礼”数(N取最大),例如:73(被5除余3)被4除余1,被3除余1,被2除余1,那么73为“明四礼”数.材料二:设N,(N-1),(N-2),…3,2的最小公倍数为k,那么“明N礼”数可以表示为kn+1,(n为正整数),例如:6,5,4,3,2的最小公倍数为60,那么“明六礼”数可以表示为60n+1.(n为正整数)(1)17______“明三礼”数(填“是”或“不是”);721是“明______礼”数;(2)求出最小的三位“明三礼”数;(3)一个“明三礼”数与“明四礼”数的和为32,求出这两个数.答案和解析1.【答案】A【解析】解:2的相反数是-2.故选:A.利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.此题主要考查了相反数的概念,正确把握定义是解题关键.2.【答案】B【解析】解:∵s甲2>s乙2,∴成绩较为稳定的班级是乙班.故选:B.根据方差的意义判断.方差越小,波动越小,越稳定.本题考查方差的意义:一般地设n个数据,x 1,x2,…x n的平均数为,则方差S2= [(x 1-)2+(x2-)2+…+(x n-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.3.【答案】D【解析】解:∵DE是△ABC的中位线,∴△ADE∽△ABC,相似比为,面积比为.故选:D.由DE是△ABC的中位线,可证得DE∥BC,进而推得两个三角形相似,然后利用相似三角形的性质解答即可.三角形的三条中位线把原三角形分成可重合的4个小三角形,因而每个小三角形的周长为原三角形周长的,每个小三角形的面积为原三角形面积的.4.【答案】C【解析】解:A、△=22-4×1×(-4)=4+16=20>0,则该方程有两个不相等的实数根.故本选项不符合题意.B、设方程的两个为α,β,则α+β=-2,故本选项不符合题意.C、设方程的两个为α,β,则α-β=±==±2,故本选项符合题意.D、设方程的两个为α,β,则α•β=-4,故本选项不符合题意.故选:C.根据根与系数的关系和根的判别式进行解答.此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.5.【答案】B【解析】解:由题意,得x+4≥0,解得x≥-4,故选:B.根据被开方数是非负数,可得答案.本题考查了函数自变量的取值范围,利用被开方数是非负数得出不等式是解题关键.6.【答案】C【解析】解:A.a2•a3=a5,故本选项不合题意;B.a3÷a=a2,故本选项不合题意;C.(a2)3=a6故本选项符合题意;D.(3a2)4=81a8故本选项不合题意.故选:C.分别根据同底数幂的乘法法则、同底数幂的除法法则、幂的乘方法则以及积的乘方法则逐一判断即可.本题主要考查了幂的运算,熟练掌握幂的运算性质是解答本题的关键.7.【答案】B【解析】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、不是轴对称图形,是中心对称图形.故错误.故选:B.根据轴对称图形与中心对称图形的概念求解.掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.8.【答案】D【解析】解:∵函数y1=-2x过点A(m,2),∴-2m=2,解得:m=-1,∴A(-1,2),∴不等式-2x>ax+3的解集为x<-1.故选:D.首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式-2x >ax+3的解集即可.此题主要考查了一次函数与一元一次不等式,关键是求出A点坐标.9.【答案】C【解析】解:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的外接圆半径等于4,则正六边形的边长是4.故选:C.根据正六边形的外接圆半径和正六边形的边长将组成一个等边三角形,即可求解.此题主要考查了正多边形和圆,利用正六边形的外接圆半径和正六边形的边长将组成一个等边三角形得出是解题关键.10.【答案】C【解析】解:小明骑自行车上学,开始以正常速度匀速行驶,正常匀速行驶的路程、时间图象是一条过原点O的斜线,修车时自行车没有运动,所以修车时的路程保持不变是一条平行于横坐标的水平线,修车后为了赶时间,他比修车前加快了速度继续匀速行驶,此时的路程、时间图象仍是一条斜线,只是斜线的倾角变大.因此选项A、B、D都不符合要求,故选:C.根据匀速直线运动的路程、时间图象是一条过原点的斜线,修车时自行车没有运动,所以修车时的路程保持不变是一条直线,修车后为了赶时间,加大速度后再做匀速直线运动,其速度比原来变大,斜线的倾角变大,即可得出答案.此题考查了函数的图象,本题的解题关键是知道匀速直线运动的路程、时间与图象的特点,要能把实际问题转化成数学问题.11.【答案】C【解析】解:∵方程x2+(2k+1)x+k2-2=0有两实根∴△≥0,即(2k+1)2-4(k2-2)=4k+9≥0,解得k≥,设原方程的两根为α、β,则α+β=-(2k+1),αβ=k2-2,∴α2+β2=α2+β2+2αβ-2αβ=(α+β)2-2αβ=[-(2k+1)]2-2(k2-2)=2k2+4k+5=11,即k2+2k-3=0,解得k=1或k=-3,∵k≥,∴k=-3舍去,∴k=1.故选:C.因为方程x2+(2k+1)x+k2-2=0有两实根,所以△≥0,由此得到关于k的不等式,即可确定k的取值范围,然后把两实根的平方和变形为两根之积或两根之和的形式,再利用根与系数的关系确定k的取值.本题考查一元二次方程根与系数的关系及根的判别式,同时考查代数式变形与不等式的解法.12.【答案】C【解析】解:由于“大量的商品在夜间被罪犯用汽车运走”,根据条件(3)可知:乙肯定不是主犯;根据(1)可知:嫌疑犯必在甲和丙之间;由(2)知:若丙作案,则甲必作案;由于没有直接证明丙作案的证据,因此根据(1)(2)可以确定的是甲一定是嫌疑犯.故选:C.根据大量的商品在夜间被罪犯用汽车运走和条件(3)可知,案犯显然不是乙;根据条件(1)可知作案对象一定在甲、丙中间,或两人都是嫌犯.由(2)得,若丙作案,那么甲必作案,但是没有证据能够直接证明丙一定作案,所以嫌疑犯必是甲.解决问题的关键是读懂题意,能够运用排除法分析解决此类问题.13.【答案】3【解析】解:正数大于负数,即可排除-,其它的可知≈1.717,故大于0,而小于3,即可得最大的数为3.故答案为3.根据正数大于负数,即可排除-,其它的可知≈1.717,故大于0,而小于3,即可得最大的数为3.此题主要考查实数的比较大小.熟练掌握实数比较大小的规则即可.14.【答案】-x(2y+1)(2y-1)【解析】解:原式=-x(4y2-1)=-x(2y+1)(2y-1).故答案为:-x(2y+1)(2y-1).直接提取公因式-x,再利用平方差公式分解因式即可.此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.15.【答案】48【解析】解:如图,∵AC∥BD,∠1=48°,∴∠2=∠1=48°,根据方向角的概念可知,乙地所修公路的走向是南偏西48°.故答案为:48.先根据题意画出图形,利用平行线的性质解答即可.解答此类题需要从运动的角度,正确画出方位角,再结合平行线的性质求解.16.【答案】y=x2+2x(答案不唯一)【解析】解:可设这个函数的解析式为y=x2+2x+c,那么(0,0)适合这个解析式,解得c=0.故平移后抛物线的一个解析式:y=x2+2x(答案不唯一)抛物线平移不改变a的值即可.解决本题的关键是抓住抛物线平移不改变a的值.17.【答案】【解析】解:易得扇形的圆心角所对的弦是直径,∴扇形的半径为:m,∴扇形的弧长为:=πm,∴圆锥的底面半径为:π÷2π=m.利用勾股定理易得扇形的半径,那么就能求得扇形的弧长,除以2π即为圆锥的底面半径.本题用到的知识点为:90度的圆周角所对的弦是直径;圆锥的侧面展开图的弧长等于圆锥的底面周长.18.【答案】-1【解析】解:原式移项,|a+1|+(b-2019)2=0,得a+1=0,b-2019=0,解得a=-1,b=2019∴a b=(-1)2019=-1故答案为-1对原式进行移项,可得|a+1|+(b-2019)2=0根据绝对值、偶次方的非负性,求出a.、b的值,即解此题主要考查绝对值、偶次方的非负性性质,解题的关键,两非负数之和为零,那各项均为零.19.【答案】解:方程两边同乘(x+1)(x-1),得6-3(x+1)=x2-1,整理得x2+3x-4=0,即(x+4)(x-1)=0,解得x1=-4,x2=1.经检验x=1是增根,应舍去,∴原方程的解为x=-4.【解析】本题考查解分式方程的能力.因为x2-1=(x+1)(x-1),所以可得方程最简公分母为(x+1)(x-1).再去分母整理为整式方程即可求解.结果需检验.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)分式方程去分母时不要漏乘常数项,本题要避免出现6-(x+1)=1的错误出现.20.【答案】解:(1)4+6+8+7+5+2=32,所以参加本次数学竞赛的有32名同学;(2),所以该中学的参赛同学获奖率是43.75%;(3)∵共有32人,∴中位数是第16和第17个数和的一半,∵第16和第17个数都落在第三小组,∴中位数落在80~90分数段内;(4)该中学参赛同学的成绩均不低于60分;成绩在80~90分数段的人数最多.【解析】(1)观察直方图,可得学生总数=频数之和;(2)因为成绩在90分以上(含90分)的有7+5+2人,共有32人,由此即可求出获奖率;(3)因为共有32人,4+6+8=18,所以排序后,可得中位数在第3段内;(4)可从成绩的最低分或人数最多的分数段等来描述.本题需仔细分析题意,观察直方图,从中寻找有用的信息,即可解决问题.21.【答案】解:(1)选择合适的直角三角板,用等腰直角三角板;(2)用直角三角板的直角和圆上一点重合,沿两直角边划直线,连接两条直线与圆的交点,两圆之间的线段即为⊙O的直径;(3)因为直角三角板上角的度数是一定的,所以过直角三角形的顶点向斜边作垂线即可.斜边与垂线的交点即为该圆的圆心.【解析】根据直径所对的圆周角是直角画图即可.本题是圆周角定理在实际生活中的运用,锻炼了学生对所学知识的应用能力.22.【答案】解:∵y=图象过A(m,1)点,∴=1,∴m=3,即A(3,1).(1分)将A(3,1)代入y=kx,得k=,(2分)∴正比例函数解析式为y=x(3分)两函数解析式联立,得解得,(4分)∴另一交点为(-3,-1).(5分)说明:若由“A点关于原点O对称的点是直线与双曲线的另一个交点“而直接写出另一交点坐标为(-3,-1)也是正确的.【解析】先把点A坐标代入反比例函数,求出m的值,再把点A代入正比例函数即可求出正比例函数解析式,联立两函数解析式成方程组,求解即可得到另一个交点的坐标.本题考查了列方程组求函数的交点坐标,这是求函数交点的常用方法.同学们要掌握解方程组的方法.23.【答案】解:(1)∵BC=OB=OC,∴∠COB=60°,∴∠CDB=∠COB=30°,∵OC=OD,点E为CD中点,∴OE⊥CD,∴∠GED=90°,∴∠DGE=60°;(2)过点F作FH⊥AB于点H设CF=1,则OF=2,OC=OB=3∵∠COB=60°∴OH==1,∴HF=OH=,HB=OB-OH=2,在Rt△BHF中,BF==,由OC=OB,∠COB=60°得:∠OCB=60°,又∵∠OGB=∠DGE=60°,∴∠OGB=∠OCB,∵∠OFG=∠CFB,∴△FGO∽△FCB,∴,∴GF=,∴;(3)过点F作FH⊥AB于点H,设OF=1,则CF=k,OB=OC=k+1,∵∠COB=60°,∴OH=,∴HF=,HB=OB-OH=k+,在Rt△BHF中,BF=,由(2)得:△FGO∽△FCB,∴,即,∴GO=,过点C作CP⊥BD于点P∵∠CDB=30°∴PC=CD,∵点E是CD中点,∴DE=CD,∴PC=DE,∵DE⊥OE,∴.【解析】(1)根据等边三角形的性质,同弧所对的圆心角和圆周角的关系,可以求得∠DGE 的度数;(2)根据题意,三角形相似、勾股定理可以求得的值;(3)根据题意,作出合适的辅助线,然后根据三角形相似、勾股定理可以用含k的式子表示出的值.本题是一道圆的综合题,解答本题的关键是明确题意,找出所求问题需要的条件,利用三角形相似和勾股定理、数形结合的思想解答.24.【答案】解:(1)设第一次的进货单价为x元/千克,则第二次的进货单价为(x+1.5)元/千克.依题意,得2×=.解得x=3.经检验:x=3是原方程的解,且符合题意.所以=100(千克).2×100=200(千克)100+200=300(千克)答:该商户两次一共购进了300千克黄瓜.(2)设剩余黄瓜打x折,依题意得:6×300×+6×300ו-300-900≥360.解得x≥8.答:剩余的黄瓜至少打8折才能使两次所进的黄瓜总盈利不低于360元.【解析】(1)设第一次的进货单价为x元/千克,则第二次的进货单价为(x+1.5)元/千克.根据“所购的黄瓜数量是第一次的2倍”列出方程并解答.(2)设剩余黄瓜打x折,根据“总盈利不低于360元”列出不等式并解答.此题主要考查了一元一次不等式的应用以及分式方程的应用,正确得出不等关系是解题关键.25.【答案】解:(1)将点E(5,5)代入y=ax2-+5=25a-+a=∴y=,顶点(1,1)(2)直线y=平移后获得解析式y=交抛物线于A(x1,y1)、B(x2,y2)y1=,y2=联立x2-4x+5-4b=0∴x1+x2=4,x1•x2=5-4b如图,过点A、B作y轴的平行线与过点C平行于x轴的线交于点E,F可证△ACE∽△BCF∴=∴(x1+x2)-(x1•x2)-1=y1•y2-(y1+y2)+1∴b2-5b+=0,解,b1=,b2=(舍)∴b=.(3)设P(m,n),作PQ⊥x轴于Q若PQ=PD,则PQ2=PD2(m-1)2+(n-a)2=n2整理得m2-2m+1+a2-2an=0将n=代入整理得当a=2时,方程成立∴D(1,2)【解析】(1)将点E坐标代入解析式,求出系数a,获得解析式,并求出顶点C坐标;(2)平移直线y=,获得平移后的解析式y=,直线与抛物线交于两点A、B,设A(x1,y1)、B(x2,y2),因为∠ACB=90°,利用A、B、C三点构造相似,得到=,将直线与抛物线联立获得方程,根据韦达定理,获得x1+x2,x1•x2,从而获得关于b的方程,求出b值;(3)过点P作PQ⊥x轴,设点P(m,)因为PQ=PD,所以PQ2=PD2,整理可得,所以当a=2时,存在点D(1,2).本题考查了二次函数与直角三角形问题,线段关系问题,(2)问难点在于多参数的运算,要设多个点参数,并利用K型相似构造方程,(3)问难点在于多参数方程的特殊性,需要通过因式分解变形,是一道很好的压轴题.26.【答案】不是六【解析】解:(1)17÷3=5余2,故不是“明三礼”数.721÷2=360余1,721÷3=240余1,721÷4=180余1,721÷5=144余1,721÷6=120余1,721÷7=103,故721是“明六礼”数.(2)可知3和2的最小公倍数是6,故设此“明三礼”数为6n+1,其中n是正整数.当它是最小的三位数时,则满足:6n+1≥100,从而可得:n≥16.5,∴满足上述条件的最小正整数是17.所以,最小的三位“明三礼”数是6×17+1=103.(3)3和2的最小公倍数是6,3、2的最小公倍数是12,故设这个“明三礼”数为6m+1,“明四礼”数为12n+1,其中m,n为正整数.∵它们的和是32,∴6m+1+12n+1=32,∴m+2n=5,又∵m和n是正整数,∴m=1,n=2或m=3,n=1,∴这个“明三礼”数为7,“明四礼”数为25 或“明三礼”数为19,“明四礼”数为13.本题是一道材料阅读题,解答时只需紧扣材料中“明N礼”数的定义和表示方法即可.本题重点考查学生对阅读材料的理解和运用,只要把握“明N礼中学数学一模模拟试卷一、选择题(本大题共12小题,共48.0分)27.2的相反数是()A. B. C. D. 228.人数相同的八年级甲、乙两班学生在同一次数学单元测试,班级平均分和方差如下:甲=乙=80,s甲2=240,s乙2=180,则成绩较为稳定的班级是()A. 甲班B. 乙班C. 两班成绩一样稳定D. 无法确定29.如图,DE是△ABC的中位线,则△ADE与△ABC的面积之比是()A. 1:1B. 1:2C. 1:3D. 1:430.关于方程x2+2x-4=0的根的情况,下列结论错误的是()A. 有两个不相等的实数根B. 两实数根的和为C. 两实数根的差为D. 两实数根的积为31.函数y=中自变量x的取值范围是()A. B. C. D.32.下列计算正确的是()A. B. C. D.33.在下列图形中,既是中心对称图形又是轴对称图形的是()A. 等腰三角形B. 圆C. 梯形D. 平行四边形34.如图,函数y1=-2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式-2x>ax+3的解集是()A.B.C.D.35.若正六边形外接圆的半径为4,则它的边长为()A. 2B.C. 4D.36.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修后,因怕耽误上课,他比修车前加快了骑车速度继续匀速行驶,正面是行驶路程S(米)关于时间t(分)的函数图象,那么符合这个同学行驶情况的图象大致是()A. B.C. D.37.已知方程x2+(2k+1)x+k2-2=0的两实根的平方和等于11,k的取值是()A. 或1B.C. 1D. 338.某超市(商场)失窃,大量的商品在夜间被罪犯用汽车运走.三个嫌疑犯被警察局传讯,警察局已经掌握了以下事实:(1)罪犯不在甲、乙、丙三人之外;(2)丙作案时总得有甲作从犯;(3)乙不会开车.在此案中,能肯定的作案对象是()A. 嫌疑犯乙B. 嫌疑犯丙C. 嫌疑犯甲D. 嫌疑犯甲和丙二、填空题(本大题共6小题,共24.0分)39.在0,3,-,这四个数中,最大的数是______.40.分解因式:-4xy2+x=______.41.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西______度.42.平移抛物线y=x2+2x-8,使它经过原点,写出平移后抛物线的一个解析式______.43.如图,从一个直径为1m的圆形铁片中剪出一个圆心角为90°的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为______m.44.已知|a+1|=-(b-2019)2,则a b=______.三、计算题(本大题共1小题,共8.0分)45.解方程:四、解答题(本大题共7小题,共70.0分)46.某中学部分同学参加全国初中数学竞赛,取得了优异的成绩,指导老师统计了所有参赛同学的成绩(成绩都是整数,试题满分120分),并且绘制了“频率分布直方图”(如图).请回答:(1)该中学参加本次数学竞赛的有多少名同学?(2)如果成绩在90分以上(含90分)的同学获奖,那么该中学参赛同学的获奖率是多少?(3)这次竞赛成绩的中位数落在哪个分数段内?(4)图中还提供了其它信息,例如该中学没有获得满分的同学等等,请再写出两条信息.47.有一个未知圆心的圆形工件.现只允许用一块直角三角板(注:不允许用三角板上的刻度)画出该工件表面上的一根直径并定出圆心.要求在图上保留画图痕迹,写出画法.48.已知正比例函数y=kx与反比例函数y=的图象都过A(m,1)点,求出正比例函数解析式及另一个交点的坐标.49.如图,AB是⊙O的直径,弦BC=OB,点D是上一动点,点E是CD中点,连接BD分别交OC,OE于点F,G.(1)求∠DGE的度数;(2)若=,求的值;(3)记△CFB,△DGO的面积分别为S1,S2,若=k,求的值.(用含k的式子表示)50.超市里,某商户先后两次购进若干千克的黄瓜,第一次用了300元,第二次用了900元,但第二次的进货单价比第次的要高1.5元,而所购的黄瓜数量是第一次的2倍.(1)问该商户两次一共购进了多少千克黄瓜?(2)当商户按每千克6元的价格卖掉了时,商户想尽快卖掉这些黄瓜,于是商户决定将剩余的黄瓜打折销售,请你帮忙算算,剩余的黄瓜至少打几折才能使两次所进的黄瓜总盈利不低于360元?51.抛物线经过点E(5,5),其顶点为C点.(1)求抛物线的解析式,并直接写出C点坐标.(2)将直线沿y轴向上平移b个单位长度交抛物线于A、B两点.若∠ACB=90°,求b的值.(3)是否存在点D(1,a),使抛物线上任意一点P到x轴的距离等于P点到点D的距离?若存在,请求点D的坐标;若不存在,请说明理由.52.材料一:一个大于1的正整数,若被N除余1,被(N-1)除余1,被(N-2)除余1…,被3除余1,被2除余1,那么称这个正整数为“明N礼”数(N取最大),例如:73(被5除余3)被4除余1,被3除余1,被2除余1,那么73为“明四礼”数.材料二:设N,(N-1),(N-2),…3,2的最小公倍数为k,那么“明N礼”数可以表示为kn+1,(n为正整数),例如:6,5,4,3,2的最小公倍数为60,那么“明六礼”数可以表示为60n+1.(n为正整数)(1)17______“明三礼”数(填“是”或“不是”);721是“明______礼”数;(2)求出最小的三位“明三礼”数;(3)一个“明三礼”数与“明四礼”数的和为32,求出这两个数.答案和解析1.【答案】A【解析】解:2的相反数是-2.故选:A.利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.此题主要考查了相反数的概念,正确把握定义是解题关键.2.【答案】B【解析】解:∵s甲2>s乙2,∴成绩较为稳定的班级是乙班.故选:B.根据方差的意义判断.方差越小,波动越小,越稳定.本题考查方差的意义:一般地设n个数据,x 1,x2,…x n的平均数为,则方差S2= [(x 1-)2+(x2-)2+…+(x n-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.3.【答案】D【解析】解:∵DE是△ABC的中位线,∴△ADE∽△ABC,相似比为,面积比为.故选:D.由DE是△ABC的中位线,可证得DE∥BC,进而推得两个三角形相似,然后利用相似三角形的性质解答即可.三角形的三条中位线把原三角形分成可重合的4个小三角形,因而每个小三角形的周长为原三角形周长的,每个小三角形的面积为原三角形面积的.4.【答案】C【解析】解:A、△=22-4×1×(-4)=4+16=20>0,则该方程有两个不相等的实数根.故本选项不符合题意.B、设方程的两个为α,β,则α+β=-2,故本选项不符合题意.C、设方程的两个为α,β,则α-β=±==±2,故本选项符合题意.D、设方程的两个为α,β,则α•β=-4,故本选项不符合题意.故选:C.根据根与系数的关系和根的判别式进行解答.此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.5.【答案】B【解析】解:由题意,得x+4≥0,解得x≥-4,故选:B.根据被开方数是非负数,可得答案.本题考查了函数自变量的取值范围,利用被开方数是非负数得出不等式是解题关键.6.【答案】C【解析】解:A.a2•a3=a5,故本选项不合题意;B.a3÷a=a2,故本选项不合题意;C.(a2)3=a6故本选项符合题意;。
2024年江苏省苏州市中考数学真题 (解析版)
2024年苏州市初中学业水平考试试卷数学注意事项:1.本试卷共27小题,满分130分,考试时间120分钟;2.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;3.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;4.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相对应的位置上...........1.用数轴上的点表示下列各数,其中与原点距离最近的是()A.3- B.1 C.2 D.3【答案】B【解析】【分析】本题考查了绝对值的定义,一个数的绝对值就是表示这个数的点到原点的距离.到原点距离最远的点,即绝对值最大的点,首先求出各个数的绝对值,即可作出判断.【详解】解:∵33-=,11=,22=,33=,123<<,∴与原点距离最近的是1,故选:B .2.下列图案中,是轴对称图形的是()A. B. C. D.【答案】A【解析】【分析】此题主要考查轴对称图形的概念,掌握轴对称图形的概念是解题的关键.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A 、是轴对称图形,故此选项正确;B 、不是轴对称图形,故此选项错误;C 、不是轴对称图形,故此选项错误;D 、不是轴对称图形,故此选项错误.故选:A .3.苏州市统计局公布,2023年苏州市全年实现地区生产总值约为2.47万亿元,被誉为“最强地级市”.数据“2470000000000”用科学记数法可表示为()A.102.4710⨯ B.1024710⨯ C.122.4710⨯ D.1224710⨯【答案】C【解析】【分析】本题考查的是科学记数法-表示较大的数,把一个大于10的数记成10n a ⨯的形式,其中a 是整数数位只有一位的数,n 是正整数,这种记数法叫做科学记数法.根据科学记数法-表示较大的数的方法解答.【详解】解:122470000000000 2.4710=⨯,故选:C .4.若1a b >-,则下列结论一定正确的是()A.1a b+< B.1a b -< C.a b > D.1a b+>【答案】D【解析】【分析】本题主要考查不等式的性质,掌握不等式的性质是解题的关键.不等式的性质:不等式的两边同时加上或减去同一个数或字母,不等号方向不变;不等式的两边同时乘以或除以同一个正数,不等号方向不变;不等式的两边同时乘以或除以同一个负数,不等号方向改变.直接利用不等式的性质逐一判断即可.【详解】解:1a b >-,A 、1a b +>,故错误,该选项不合题意;B 、12a b ->-,故错误,该选项不合题意;C 、无法得出a b >,故错误,该选项不合题意;D 、1a b +>,故正确,该选项符合题意;故选:D .5.如图,AB CD ,若165∠=︒,2120∠=︒,则3∠的度数为()A.45︒B.55︒C.60︒D.65︒【答案】B【解析】【分析】题目主要考查平行线的性质求角度,根据题意得出60BAD ∠=︒,再由平角即可得出结果,熟练掌握平行线的性质是解题关键【详解】解:∵AB CD ,2120∠=︒,∴2180BAD ∠+∠=︒,∴60BAD ∠=︒,∵165∠=︒,∴3180155BAD ∠=︒-∠-∠=︒,故选:B 6.某公司拟推出由7个盲盒组成的套装产品,现有10个盲盒可供选择,统计这10个盲盒的质量如图所示.序号为1到5号的盲盒已选定,这5个盲盒质量的中位数恰好为100,6号盲盒从甲、乙、丙中选择1个,7号盲盒从丁、戊中选择1个,使选定7个盲盒质量的中位数仍为100,可以选择()A.甲、丁B.乙、戊C.丙、丁D.丙、戊【答案】C【解析】【分析】本题主要考查了用中位数做决策,由图像可知,要使选定7个盲盒质量的中位数仍为100,则需要选择100克以上的一个盲盒和100克以下的盲盒一个,根据选项即可得出正确的答案.【详解】解:由图像可知,要使选定7个盲盒质量的中位数仍为100,则需要从第6号盲盒和第7号盲盒里选择100克以上的一个盲盒和100克以下的盲盒一个,因此可排除甲、丁,乙、戊,丙、戊故选:C .7.如图,点A 为反比例函数()10y x x =-<图象上的一点,连接AO ,过点O 作OA 的垂线与反比例()40y x x =>的图象交于点B ,则AO BO的值为()A.12 B.14 C.33 D.13【答案】A【解析】【分析】本题考查了反比例函数图象上点的坐标特征,反比例函数系数k 的几何意义,三角形相似的判定和性质,数形结合是解题的关键.过A 作AC x ⊥轴于C ,过B 作BD x ⊥轴于D ,证明AOC OBD △∽△,利用相似三角形的面积比等于相似比的平方求解即可.【详解】解:过A 作AC x ⊥轴于C ,过B 作BD x ⊥轴于D,∴11122ACO S =⨯-= ,1422BDO S =⨯= ,90ACO ODB ∠=∠=︒,∵OA OB ⊥,∴90AOC OBD BOD ∠=∠=︒-∠,∴AOC OBD △∽△,∴2ACO BDO S OA S OB ⎛⎫= ⎪⎝⎭ ,即2122OA OB ⎛⎫= ⎪⎝⎭,∴12OA OB =(负值舍去),故选:A .8.如图,矩形ABCD中,AB =,1BC =,动点E ,F 分别从点A ,C 同时出发,以每秒1个单位长度的速度沿AB ,CD 向终点B ,D 运动,过点E ,F 作直线l ,过点A 作直线l 的垂线,垂足为G ,则AG 的最大值为()A.B.2C.2D.1【答案】D【解析】【分析】连接AC ,BD 交于点O ,取OA 中点H ,连接GH ,根据直角三角形斜边中线的性质,可以得出G 的轨迹,从而求出AG 的最大值.【详解】解:连接AC ,BD 交于点O ,取OA 中点H ,连接GH,如图所示:∵四边形ABCD 是矩形,∴90ABC ∠=︒,OA OC =,AB CD ,∴在Rt ABC △中,2AC ==,∴112OA OC AC ===,∵AB CD ,EAO FCO ∴∠=∠,在AOE △与COF 中,AE CF EAO FCO OA OC =⎧⎪∠=∠⎨⎪=⎩(SAS)AOE COF ∴△≌△,AOE COF ∴∠=∠,E ∴,O ,F 共线,AG EF ⊥ ,H 是OB 中点,∴在Rt AGO △中,1122GH AO ==,G ∴的轨迹为以H 为圆心,12为半径即AO 为直径的圆弧.∴AG 的最大值为AO 的长,即max1AG AO ==.故选:D .【点睛】本题主要考查了矩形的性质、动点轨迹、与圆有关的位置关系等知识,根据矩形的性质以及直角三角形斜边中线的性质确定G 的轨迹是本题解题的关键.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相对应的位置.........上..9.计算:32x x ⋅=___________.【答案】5x 【解析】【分析】利用同底数幂的乘法解题即可.【详解】解:32325x x x x +⋅==,故答案为:5x .【点睛】本题考查了同底数幂的乘法,掌握相应的运算法则是解题的关键.10.若2a b =+,则()2b a -=______.【答案】4【解析】【分析】本题考查了求代数式的值,把2a b =+整体代入化简计算即可.【详解】解:∵2a b =+,∴()2b a -()22b b ⎡⎤=-+⎣⎦()22b b =--()22=-4=,故答案为:4.11.如图,正八边形转盘被分成八个面积相等的三角形,任意转动这个转盘一次,当转盘停止转动时,指针落在阴影部分的概率是______.【答案】38【解析】【分析】首先确定在图中阴影区域的面积在整个面积中占的比例,根据这个比例即可求出指针指向阴影区域的概率.本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A ),然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.【详解】解:∵转盘被分成八个面积相等的三角形,其中阴影部分占3份,∴指针落在阴影区域的概率为38,故答案为:38.12.如图,ABC 是O 的内接三角形,若28OBC ∠=︒,则A ∠=______.【答案】62︒##62度【解析】【分析】本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理,连接OC ,利用等腰三角形的性质,三角形内角和定理求出BOC ∠的度数,然后利用圆周角定理求解即可.【详解】解:连接OC ,∵OB OC =,28OBC ∠=︒,∴28OCB OBC ∠=∠=︒,∴281041OC OC O B B BC ∠=∠=︒∠=︒-,∴1622A BOC =∠=︒∠,故答案为:62︒.13.直线1:1l y x =-与x 轴交于点A ,将直线1l 绕点A 逆时针旋转15︒,得到直线2l ,则直线2l 对应的函数表达式是______.【答案】33y x =【解析】【分析】根据题意可求得1l 与坐标轴的交点A 和点B ,可得45OAB OBA ∠=∠=︒,结合旋转得到60OAC ∠=︒,则30OCA ∠=︒,求得tan OC OC OCA =⨯∠,即有点C ,利用待定系数法即可求得直线2l 的解析式.【详解】解:依题意画出旋转前的函数图象1l 和旋转后的函数图象2l ,如图所示∶设1l 与y 轴的交点为点B ,令0x =,得1y =-;令0y =,即1x =,∴()1,0A ,()0,1B -,∴1OA =,1OB =,即45OAB OBA ∠=∠=︒∵直线1l 绕点A 逆时针旋转15︒,得到直线2l ,∴60OAC ∠=︒,30OCA ∠=︒,∴tan OC OC OCA =⨯∠==,则点(0,C ,设直线2l 的解析式为y kx b =+,则0k b b =+⎧⎪⎨=⎪⎩,解得k b ⎧=⎪⎨=⎪⎩那么,直线2l的解析式为y =故答案为:y =【点睛】本题主要考查一次函数与坐标轴的交点、直线的旋转、解直角三角形以及待定系数法求一次函数解析式,解题的关键是找到旋转后对应的直角边长,即可利用待定系数法求得解析式.14.铁艺花窗是园林设计中常见的装饰元素.如图是一个花瓣造型的花窗示意图,由六条等弧连接而成,六条弧所对应的弦构成一个正六边形,中心为点O , AB 所在圆的圆心C 恰好是ABO 的内心,若AB =,则花窗的周长(图中实线部分的长度)=______.(结果保留π)【答案】8π【解析】【分析】题目主要考查正多边形与圆,解三角形,求弧长,过点C 作CE AB ⊥,根据正多边形的性质得出AOB 为等边三角形,再由内心的性质确定30CAO CAE CBE ∠∠∠===︒,得出120ACB ∠=︒,利用余弦得出2cos30AE AC ==︒,再求弧长即可求解,熟练掌握这些基础知识点是解题关键.【详解】解:如图所示:过点C 作CE AB ⊥,∵六条弧所对应的弦构成一个正六边形,∴60,AOB OA OB ∠=︒=,∴AOB 为等边三角形,∵圆心C 恰好是ABO 的内心,∴30CAO CAE CBE ∠∠∠===︒,∴120ACB ∠=︒,∵AB =∴AE BE ==,∴2cos30AE AC ==︒,∴ AB 的长为:1202π4π1803⨯⨯=,∴花窗的周长为:4π68π3⨯=,故答案为:8π.15.二次函数()20y ax bx c a =++≠的图象过点()0,A m ,()1,B m -,()2,C n ,()3,D m -,其中m ,n 为常数,则m n的值为______.【答案】35-##0.6-【解析】【分析】本题考查了待定系数法求二次函数解析式,把A 、B 、D 的坐标代入()20y ax bx c a =++≠,求出a 、b 、c ,然后把C 的坐标代入可得出m 、n 的关系,即可求解.【详解】解:把()0,A m ,()1,B m -,()3,D m -代入()20y ax bx c a =++≠,得93c m a b c m a b c m =⎧⎪++=-⎨⎪++=-⎩,解得2383a m b m c m ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,∴22833y mx x m =-+,把()2,C n 代入22833y mx mx m =-+,得2282233n m m m =⨯-⨯+,∴53n m =-,∴5533m m m n ==--,故答案为:35-.16.如图,ABC ,90ACB ∠=︒,5CB =,10CA =,点D ,E 分别在AC AB ,边上,AE =,连接DE ,将ADE V 沿DE 翻折,得到FDE V ,连接CE ,CF .若CEF △的面积是BEC 面积的2倍,则AD =______.【答案】103##133【解析】【分析】本题考查了相似三角形的判定与性质、折叠性质、等腰直角三角形的判定与性质、全等三角形的判定与性质、三角形的面积公式等知识,是综合性强的填空压轴题,熟练掌握相关知识的联系与运用是解答的关键.设AD x =,AE =,根据折叠性质得DF AD x ==,ADE FDE ∠=∠,过E 作EH AC ⊥于H ,设EF 与AC 相交于M ,证明AHE ACB ∽得到EH AH AE BC AC AB==,进而得到EH x =,2AH x =,证明Rt EHD 是等腰直角三角形得到45HDE HED ∠=∠=︒,可得90FDM ∠=︒,证明()AAS FDM EHM ≌得到12DM MH x ==,则3102CM AC AD DM x =--=-,根据三角形的面积公式结合已知可得()31022552x x x ⎛⎫-⋅=- ⎪⎝⎭,然后解一元二次方程求解x 值即可.【详解】解:∵AE =,∴设AD x =,AE =,∵ADE V 沿DE 翻折,得到FDE V ,∴DF AD x ==,ADE FDE ∠=∠,过E 作EH AC ⊥于H ,设EF 与AC 相交于M,则90AHE ACB ︒∠=∠=,又A A ∠=∠,∴AHE ACB ∽,∴EH AH AE BC AC AB==,∵5CB =,10CA =,AB ===∴510EH AH ==∴EH x =,2AH x ==,则DH AH AD x EH =-==,∴Rt EHD 是等腰直角三角形,∴45HDE HED ∠=∠=︒,则135ADE EDF ∠=∠=︒,∴1354590FDM ∠=︒-︒=︒,在FDM 和EHM 中,90FDM EHM DMF HME DF EH ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴()AAS FDM EHM ≌,∴12DM MH x ==,3102CM AC AD DM x =--=-,∴111331*********CEF CME CMF S S S CM EH CM DF x x x x ⎛⎫⎛⎫=+=⋅+⋅=-⋅⨯=-⋅ ⎪ ⎪⎝⎭⎝⎭ ,111051025522BEC ABC AEC S S S x x =-=⨯⨯-⨯⋅=- ,∵CEF △的面积是BEC 面积的2倍,∴()31022552x x x ⎛⎫-⋅=- ⎪⎝⎭,则23401000x x -+=,解得1103x =,210x =(舍去),即103AD =,故答案为:103.三、解答题:本大题共11小题,共82分.把解答过程写在答题卡相对应的位置上..........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.17.计算:()042-+-.【答案】2【解析】【分析】本题考查了实数的运算,利用绝对值的意义,零指数幂的意义,算术平方根的定义化简计算即可.【详解】解:原式413=+-2=.18.解方程组:27233x y x y +=⎧⎨-=⎩.【答案】31x y =⎧⎨=⎩【解析】【分析】本题考查的是解二元一次方程组,解题的关键是掌握加减消元法求解.根据加减消元法解二元一次方程组即可.【详解】解:27233x y x y +=⎧⎨-=⎩①②-①②得,44y =,解得,1y =.将1y =代入①得3x =.∴方程组的解是31x y =⎧⎨=⎩19.先化简,再求值:2212124x x x x x +-⎛⎫+÷ ⎪--⎝⎭.其中3x =-.【答案】2x x +,13【解析】【分析】本题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.原式括号中两项通分并利用同分母分式的加法法则计算,同时利用因式分解和除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:原式()()()21122222x x x x x x x x -+-⎛⎫=+÷ ⎪--+-⎝⎭()()()2221·221x x x x x x +--=--x 2x+=.当3x =-时,原式32133-+==-.20.如图,ABC 中,AB AC =,分别以B ,C 为圆心,大于12BC 长为半径画弧,两弧交于点D ,连接BD ,CD ,AD ,AD 与BC 交于点E .(1)求证:ABD ACD △≌△;(2)若2BD =,120BDC ∠=︒,求BC 的长.【答案】(1)见解析(2)BC =【解析】【分析】本题考查了全等三角形的判定与性质,等腰三角形的性质,解直角三角形等知识,解题的关键是:(1)直接利用SSS 证明ABD ACD △≌△即可;(2)利用全等三角形的性质可求出60BDA CDA ∠=∠=︒,利用三线合一性质得出DA BC ⊥,BE CE =,在Rt BDE △中,利用正弦定义求出BE ,即可求解.【小问1详解】证明:由作图知:BD CD =.在ABD △和ACD 中,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩,,.ABD ACD ∴≌△△.【小问2详解】解:ABD ACD ≌,120BDC ∠=︒,60BDA CDA ∴∠=∠=︒.又BD CD = ,DA BC ∴⊥,BE CE =.2BD =,sin 22BE BD BDA ∴=⋅∠=⨯=,2BC BE ∴==21.一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,书签除图案外都相同,并将4张书签充分搅匀.(1)若从盒子中任意抽取1张书签,恰好抽到“夏”的概率为______;(2)若从盒子中任意抽取2张书签(先抽取1张书签,且这张书签不放回,再抽取1张书签),求抽取的书签恰好1张为“春”,1张为“秋”的概率.(请用画树状图或列表等方法说明理由)【答案】(1)14(2)16【解析】【分析】本题考查了利用画树状图或列表的方法求两次事件的概率,解题的关键是:(1)用标有“夏”书签的张数除以书签的总张数即得结果;(2)利用树状图画出所有出现的结果数,再找出1张为“春”,1张为“秋”的结果数,然后利用概率公式计算即可.【小问1详解】解:∵有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,∴恰好抽到“夏”的概率为14,故答案为:14;【小问2详解】解:用树状图列出所有等可的结果:等可能的结果:(春,夏),(春,秋),(春,冬),(夏,春),(夏,秋),(夏,冬),(秋,春),(秋,夏),(秋,冬),(冬,春),(冬,夏),(冬,秋).在12个等可能的结果中,抽取的书签1张为“春”,1张为“秋”出现了2次,∴P (抽取的书签价好1张为“春”,张为“秋”)16=.22.某校计划在七年级开展阳光体育锻炼活动,开设以下五个球类项目:A (羽毛球),B (乒乓球),C (篮球),D (排球),E (足球),要求每位学生必须参加,且只能选择其中一个项目.为了了解学生对这五个项目的选择情况,学校从七年级全体学生中随机抽取部分学生进行问卷调查,对调查所得到的数据进行整理、描述和分析,部分信息如下:根据以上信息,解决下列问题:(1)将图①中的条形统计图补充完整(画图并标注相应数据);(2)图②中项目E 对应的圆心角的度数为______°;(3)根据抽样调查结果,请估计本校七年级800名学生中选择项目B (乒乓球)的人数.【答案】(1)见解析(2)72(3)本校七年级800名学生中选择项目B (乒乓球)的人数约为240人【解析】【分析】本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.(1)利用C 组的人数除以所占百分比求出总人数,然后用总人数减去A 、B 、C 、E 组的人数,最后补图即可;(2)用360︒乘以E 组所占百分比即可;(3)用800乘以B 组所占百分比即可.【小问1详解】解:总人数为915%60÷=,D 组人数为6061891215----=,补图如下:【小问2详解】解:123607260︒⨯=︒,故答案为:72;【小问3详解】解:1880024060⨯=(人).答:本校七年级800名学生中选择项目B (乒乓球)的人数约为240人.23.图①是某种可调节支撑架,BC 为水平固定杆,竖直固定杆AB BC ⊥,活动杆AD 可绕点A 旋转,CD 为液压可伸缩...支撑杆,已知10cm AB =,20cm BC =,50cm AD =.(1)如图②,当活动杆AD 处于水平状态时,求可伸缩支撑杆CD 的长度(结果保留根号);(2)如图③,当活动杆AD 绕点A 由水平状态按逆时针方向旋转角度α,且3tan 4α=(α为锐角),求此时可伸缩支撑杆CD 的长度(结果保留根号).【答案】(1)CD =(2)CD =【解析】【分析】本题考查了解直角三角形的应用,解题的关键是:(1)过点C 作CE AD ⊥,垂足为E ,判断四边形ABCE 为矩形,可求出CE ,DE ,然后在在Rt CED 中,根据勾股定理求出CD 即可;(2)过点D 作DF BC ⊥,交BC 的延长线于点F ,交AD '于点G .判断四边形ABFG 为矩形,得出90AGD =︒△.在Rt AGD 中,利用正切定义求出34DG AG =.利用勾股定理求出54AD AG =,由50AD =,可求出40BF AG ==,10FG AB ==,20CF =,40DF =.在Rt CFD 中,根据勾股定理求出CD 即可.【小问1详解】解:如图,过点C 作CE AD ⊥,垂足为E ,由题意可知,90B A ∠=∠=︒,又CE AD ⊥ ,∴四边形ABCE 为矩形.10AB = ,20BC =,20AE ∴=,10CE =.50AD = ,30ED ∴=.∴在Rt CED 中,CD ===.即可伸缩支撑杆CD 的长度为;【小问2详解】解:过点D 作DF BC ⊥,交BC 的延长线于点F ,交AD '于点G .由题意可知,四边形ABFG 为矩形,90AGD ∴=︒△.在Rt AGD 中,3tan 4DG AG α==,34DG AG ∴=.2254AD AG DG AG ∴=+=,50AD = ,40AG ∴=,30DG =.40BF AG ∴==,10FG AB ==,20CF ∴=,40DF =.∴在Rt CFD 中,22222040205CD CF DF =+=+=即可伸缩支撑杆CD 的长度为205cm .24.如图,ABC 中,AC BC =,90ACB ∠=︒,()2,0A -,()6,0C ,反比例函数()0,0k y k x x=≠>的图象与AB 交于点(),1D m ,与BC 交于点E .(1)求m ,k 的值;(2)点P 为反比例函数()0,0k y k x x=≠>图象上一动点(点P 在D ,E 之间运动,不与D ,E 重合),过点P 作PM AB ∥,交y 轴于点M ,过点P 作PN x ∥轴,交BC 于点N ,连接MN ,求PMN 面积的最大值,并求出此时点P 的坐标.【答案】(1)2m =,8k =(2)PMN S △有最大值92,此时83,3P ⎛⎫ ⎪⎝⎭【解析】【分析】本题考查了二次函数,反比例函数,等腰三角形的判定与性质等知识,解题的关键是:(1)先求出B 的坐标,然后利用待定系数法求出直线AB 的函数表达式,把D 的坐标代入直线AB 的函数表达式求出m ,再把D 的坐标代入反比例函数表达式求出k 即可;(2)延长NP 交y 轴于点Q ,交AB 于点L .利用等腰三角形的判定与性质可得出QM QP =,设点P 的坐标为8,t t ⎛⎫ ⎪⎝⎭,()26t <<,则可求出()162PMN S t t =⋅-⋅ ,然后利用二次函数的性质求解即可.【小问1详解】解:()2,0A - ,()6,0C ,8AC ∴=.又AC BC = ,8BC ∴=.90ACB ∠=︒ ,∴点()6,8B .设直线AB 的函数表达式为y ax b =+,将()2,0A -,()6,8B 代入y ax b =+,得2068a b a b -+=⎧⎨+=⎩,解得12a b =⎧⎨=⎩,∴直线AB 的函数表达式为2y x =+.将点(),4D m 代入2y x =+,得2m =.()2,4D ∴.将()2,4D 代入k y x=,得8k =.【小问2详解】解:延长NP 交y 轴于点Q ,交AB 于点L .AC BC = ,90BCA ∠=︒,45BAC ∴∠=︒.PN x ∥轴,45BLN BAC ∴∠=∠=︒,90∠=︒NQM .PM AB ∥ ,45MPL BLP ∴∠=∠=︒,45QMP QPM ∴∠=∠=︒,QM QP ∴=.设点P 的坐标为8,t t ⎛⎫⎪⎝⎭,()26t <<,则PQ t =,6PN t =-.MQ PQ t ∴==.()()21119632222PMN S PN MQ t t t ∴=⋅⋅=⋅-⋅=--+ .∴当3t =时,PMN S △有最大值92,此时83,3P ⎛⎫ ⎪⎝⎭.25.如图,ABC 中,AB =,D 为AB 中点,BAC BCD ∠=∠,cos 4ADC ∠=,O 是ACD 的外接圆.(1)求BC 的长;(2)求O 的半径.【答案】(1)4BC =(2)O 的半径为477【解析】【分析】本题考查相似三角形的判定及性质,解直角三角形,圆周角定理.(1)易证BAC BCD ∽,得到BC BA BD BC=,即可解答;(2)过点A 作AE CD ⊥,垂足为E ,连接CO ,并延长交⊙O 于F ,连接AF ,在Rt AED △中,通过解直角三角形得到1DE =,7AE =由BAC BCD ∽得到2AC AB CD BC ==.设CD x =,则2AC =,1CE x =-,在Rt ACE 中,根据勾股定理构造方程,求得2CD =,2AC =AFC ADC ∠=∠得到sin sin AFC ADC ∠=∠,根据正弦的定义即可求解.【小问1详解】解:BAC BCD ∠=∠ ,B B ∠=∠,BAC BCD ∴ ∽.BC BA BD BC∴=,即2BC AB BD =⋅2AB = ,D 为AB 中点,122BD AD AB ∴===,∴2422216BC AB BD =⋅==4BC ∴=.【小问2详解】解:过点A 作AE CD ⊥,垂足为E ,连接CO ,并延长交⊙O 于F ,连接AF ,在Rt AED △中,2cos 4DE CDA AD ∠==.又2AD = ,1DE =∴.∴在Rt AED △中,227AE AD DE =-=BAC BCD △∽△,2AC AB CD BC∴==.设CD x =,则2AC x =,1CE CD DE x =-=-.∵在Rt ACE 中,222AC CE AE =+,)()222217x ∴=-+,即2280x x +-=,解得12x =,24x =-(舍去).2CD ∴=,2AC =∵ AC AC=,AFC ADC ∴∠=∠.CF 为⊙O 的直径,90CAF ∴∠=︒.14sin sin 4AC AE AFC CDA CF AD ∴∠==∠==.877CF ∴=,即⊙O 的半径为477.26.某条城际铁路线共有A ,B ,C 三个车站,每日上午均有两班次列车从A 站驶往C 站,其中D 1001次列车从A 站始发,经停B 站后到达C 站,G 1002次列车从A 站始发,直达C 站,两个车次的列车在行驶过程中保持各自的行驶速度不变.某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示.列车运行时刻表车次A 站B 站C 站发车时刻到站时刻发车时刻到站时刻D 10018:009:309:5010:50G 10028:25途经B 站,不停车10:30请根据表格中的信息,解答下列问题:(1)D 1001次列车从A 站到B 站行驶了______分钟,从B 站到C 站行驶了______分钟;(2)记D 1001次列车的行驶速度为1v ,离A 站的路程为1d ;G 1002次列车的行驶速度为2v ,离A 站的路程为2d .①12v v =______;②从上午8:00开始计时,时长记为t 分钟(如:上午9:15,则75t =),已知1240v =千米/小时(可换算为4千米/分钟),在G 1002次列车的行驶过程中()25150t ≤≤,若1260d d -=,求t 的值.【答案】(1)90,60(2)①56;②75t =或125【解析】【分析】本题考查了一元一次方程的应用,速度、时间、路程的关系,明确题意,合理分类讨论是解题的关键.(1)直接根据表中数据解答即可;(2)①分别求出D 1001次列车、G 1002次列车从A 站到C 站的时间,然后根据路程等于速度乘以时间求解即可;②先求出2v ,A 与B 站之间的路程,G 1002次列车经过B 站时,对应t 的值,从而得出当90110t ≤≤时,D 1001次列车在B 站停车.G 1002次列车经过B 站时,D 1001次列车正在B 站停车,然后分2590t ≤<,90100t ≤≤,100110t <≤,110150t <≤讨论,根据题意列出关于t 的方程求解即可.【小问1详解】解:D 1001次列车从A 站到B 站行驶了90分钟,从B 站到C 站行驶了60分钟,故答案为:90,60;【小问2详解】解:①根据题意得:D 1001次列车从A 站到C 站共需9060150+=分钟,G 1002次列车从A 站到C 站共需356030125++=分钟,∴12150125v v =,∴1256v v =,故答案为:56;②14v = (千米/分钟),1256v v =,2 4.8v ∴=(千米/分钟).490360⨯=Q ,∴A 与B 站之间的路程为360.360 4.875÷= ,∴当100t =时,G 1002次列车经过B 站.由题意可如,当90110t ≤≤时,D 1001次列车在B 站停车.∴G 1002次列车经过B 站时,D 1001次列车正在B 站停车.ⅰ.当2590t ≤<时,12d d >,1212d d d d ∴-=-,()4 4.82560t t ∴--=,75t =(分钟);ⅱ.当90100t ≤≤时,12d d ≥,1212d d d d ∴-=-,()360 4.82560t ∴--=,87.5t =(分钟),不合题意,舍去;ⅲ.当100110t <≤时,12d d <,1221d d d d ∴-=-,()4.82536060t ∴--=,112.5t =(分钟),不合题意,舍去;ⅳ.当110150t <≤时,12d d <,1221d d d d ∴-=-,()()4.825360411060t t ∴--+-=⎡⎤⎣⎦,125t =(分钟).综上所述,当75t =或125时,1260d d -=.27.如图①,二次函数2y x bx c =++的图象1C 与开口向下....的二次函数图象2C 均过点()1,0A -,()3,0B .(1)求图象1C 对应的函数表达式;(2)若图象2C 过点()0,6C ,点P 位于第一象限,且在图象2C 上,直线l 过点P 且与x 轴平行,与图象2C 的另一个交点为Q (Q 在P 左侧),直线l 与图象1C 的交点为M ,N (N 在M 左侧).当PQ MP QN =+时,求点P 的坐标;(3)如图②,D ,E 分别为二次函数图象1C ,2C 的顶点,连接AD ,过点A 作AF AD ⊥.交图象2C 于点F ,连接EF ,当EF AD ∥时,求图象2C 对应的函数表达式.【答案】(1)2=23y x x --(2)点P 的坐标为)1,4+(3)25515424y x x =-++【解析】【分析】(1)运用待定系数法求函数解析式即可;(2)可求2C 对应的函数表达式为:()()213y x x =-+-,其对称轴为直线1x =.作直线1x =,交直线l 于点H .(如答图①)由二次函数的对称性得,QH PH =,PM NQ =,由PQ MP QN =+,得到PH PM =,设()02PH t t =<<,则点P 的横坐标为1t +,点M 的横坐标为21t +,()()222P y t t =-+-,()()2222M y t t =+-,故有()()()()2222222t t t t -+-=+-,解得1t =,2t =,故点P 的坐标为)1,4+;(3)连接DE ,交x 轴于点G ,过点F 作FIED ⊥于点I ,过点F 作FJ x ⊥轴于点J ,(如答图②),则四边形IGJF 为矩形,设2C 对应的函数表达式为()()()130y a x x a =+-<,可求()1,4D -,()1,4E a -,则4DG =,2AG =,4EG a =-,而21tan 42AG ADG DG ∠===,则1tan tan 2FJ FAB ADG AJ ∠=∠==.设()02GJ m m =<<,则FI m =,2AJ m =+,22m FJ +=,即21,2m F m +⎛⎫+ ⎪⎝⎭,可得1tan tan 2FI FEI ADG EI ∠=∠==,故2EI m =,则2242m m a ++=-,则258m a +=-①,由点F 在2C 上,得到()()211132m a m m ++++-=,化简得()122a m -=②,由①,②可得()251282m m +--=,解得85m =,因此54a =-,故2C 的函数表达式为25515424y x x =-++.【小问1详解】解:(1)将()1,0A -,()3,0B 代入2y x bx c =++,得,10930b c b c -+=⎧⎨++=⎩,解得:23b c =-⎧⎨=-⎩1C ∴对应的函数表达式为:223y x x =--;【小问2详解】解:设2C 对应的函数表达式为()()()130y a x x a =+-<,将点()0,6C 代入得:36a -=,解得:2a =-.2C ∴对应的函数表达式为:()()213y x x =-+-,其对称轴为直线1312x -+==.又 图象1C 的对称轴也为直线1x =,作直线1x =,交直线l 于点H (如答图①)由二次函数的对称性得,QH PH =,NHMH=∴PM NQ =.又PQ MP QN =+ ,而PQ HP QH =+PH PM ∴=.设()02PH t t =<<,则点P 的横坐标为1t +,点M 的横坐标为21t +.将1x t =+代入()()213y x x =-+-,得()()222P y t t =-+-,将21x t =+代入()()13y x x =+-,得()()2222M y t t =+-.P M y y = ,()()()()2222222t t t t ∴-+-=+-,即2612t =,解得12t =,22t =-(舍去).∴点P 的坐标为)21,4+;【小问3详解】解:连接DE ,交x 轴于点G ,过点F 作FI ED ⊥于点I ,过点F 作FJ x ⊥轴于点J .(如答图②)FI ED ⊥ ,FJ x ⊥轴,ED x ⊥轴,∴四边形IGJF 为矩形,IF GJ ∴=,IG FJ =.设2C 对应的函数表达式为()()()130y a x x a =+-<,点D ,E 分别为二次函数图象1C ,2C 的顶点,将1x =分别代入223y x x =--,()()()130y a x x a =+-<得4,4D E y y a =-=-,∴()1,4D -,()1,4E a -,4DG ∴=,2AG =,4EG a =-.∴在Rt AGD 中,21tan 42AG ADG DG ∠===.AF AD ⊥ ,90FAB DAB ∴∠+∠=︒.又90DAG ADG ∠+∠=︒ ,ADG FAB ∴∠=∠.1tan tan 2FJ FAB ADG AJ ∴∠=∠==.设()02GJ m m =<<,则FI m =,2AJ m =+.22m FJ +∴=,21,2m F m +⎛⎫∴+ ⎪⎝⎭.EF AD ∥,FEI ADG ∴∠=∠.1tan tan 2FI FEI ADG EI ∴∠=∠==,2EI m ∴=.又EG EI IG =+ ,2242m m a +∴+=-,258m a +∴=-① 点F 在2C 上,()()211132m a m m +∴+++-=,即()()2222m a m m ++-=.20m +≠ ,()122a m ∴-=②由①,②可得()251282m m +--=.解得10m =(舍去),285m =,54a ∴=-.2C ∴的函数表达式为()()255515134424y x x x x =-+-=-++.【点睛】本题考查了二次函数的图像与性质,待定系数法求函数解析式,二次函数的对称性,矩形的判定与性质,解直角三角形的相关运算,熟练掌握知识点,正确添加辅助线是解决本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
czwljyw数学站 所有资源全部免注册下载 http://www.czwljyw.com 全力打造一流免费资源平台 CZWLJYW.COM 搜集整理@czwljyw数学站 江苏省苏州沧浪区2009中考数学模拟卷(一) 本试卷共3大题,29小题,满分130 分,考试用时120分钟. 注意事项: 1.答卷前考生务必将自己的班级、姓名、考试号使用0.5毫米黑色签字笔书写在答题卡和答案卷的相应位置上,并将考试号、考试科目用2B铅笔正确填涂,第二大题的选择题答案必须用2B铅笔填涂在答题卡上. 2.非选择题部分的答案,除作图可以使用2B铅笔作答外,其余各题请按题号用0.5毫米黑色签字笔在各题目规定的答题区域内作答,不能超出横线或方格、字体工整、笔迹清晰,超出答题区域的答案无效;在草稿纸、试题卷上答题无效. 3.考试结束后,只交答题卡和答案卷
一、填空题:本大题共12小题,每小题3分,共36分,把答案填在答案卷相应题中横线上 1.12的相反数是 . 2.在函数15yx中,自变量x的取值范围是 . 3.4的算术平方根是 . 4.把多项式)1()1)(1(aaa提取公因式)1(a后,则另一个因式是 . 5.如图,数轴上所表示的不等式组的解集是 .
6.小明要制作一个圆锥模型,其侧面是由一个半径为9cm,圆心角为240°的扇形纸板制成的,还需要一块圆形纸板做底面,那么这块圆形纸板的半径为 cm. 7.抛物线2)2(xy的顶点坐标是 ▲ . 8.据统计,2007年苏州工业园区实现地区生产总值836亿元,人均GDP已经接近新加坡水平,请你将836亿元用科学记数法表示成 ▲ 元. 9.若关于x的一元二次方程x2-3x+m=0有实数根,则m的取值范围是 ▲ . 10.如图,AB∥CD,EG⊥AB,垂足为G.若∠1=50°,则∠E= ▲ . 11.如图,矩形内有两个相邻的正方形,面积分别为4和9,那么阴影部分的面积为 ▲ . 12.如图,在等边△ABC中,AC=3,点O在AC上,且AO=1.点P是AB上一点,连接OP,以线段OP为一边作正△OPD,且O、P、D三点依次呈逆时针方向,当点D恰好
第5题图 0 1 2 -1 第10题图
C O D czwljyw数学站 所有资源全部免注册下载 http://www.czwljyw.com 全力打造一流免费资源平台 CZWLJYW.COM 搜集整理@czwljyw数学站 落在边BC上时则AP的长是 ▲ .
二、选择题:本大题共6小题;每小题3分,共18分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的答案填涂在答题卡上 13.下列运算正确的是 A. x2+x2=x4 B.(a-1)2=a2-1 C.a2·a3=a5 D.3x+2y=5xy 14.函数y=x和2yx在同一直角坐标系中的图象大致是
15.如图所示,在图甲中,Rt△OAB绕其直角顶点O每次旋转90˚,旋转三次得到右边的图形.在图乙中,四边形OABC绕O点每次旋转120˚,旋转二次得到右边的图形.
下列图形中,不能通过上述方式得到的是 16.由7个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是 A.正视图的面积最大 B.俯视图的面积最大 C.左视图的面积最大 D.三个视图的面积一样大
O y x A O y x B O y x C O y x
D
乙 O A B C O A(C1B A1(C2) B1 B2 C (A2) O A B O A B A3
B3 B
1
A1
B2
A2
甲
A B C D
9 4
第11题图
O A B C 第16题图 A D B C 第17题图 第18题图 czwljyw数学站 所有资源全部免注册下载 http://www.czwljyw.com 全力打造一流免费资源平台 CZWLJYW.COM 搜集整理@czwljyw数学站 17.如图,△ABC中,∠BAC=70°,∠ABC=45°,点O是△ABC的外接圆的圆心,则∠AOB等于 A.65° B.90° C.130° D.140° 18.如图,直角梯形ABCD中,AB=3,AD=CD=5,则对角线AC的长为 A.73 B.310 C. 8 D.9 三、解答题:(本大题共11小题,共76分.解答应写出必要的计算过程、推演步骤或文字说明)
19.(本题5分)2101(2)2()31+∣-12∣
20.(本题5分)解方程:12112xxx 21.(本题5分)解不等式组223314232xxxx… 22.(本题6分)已知:如图,在等腰梯形ABCD中,AB//CD,点E、F分别在AD、BC上,且DE=CF. 求证:AF=BE
23.(本题6分)某学校为了学生的身体健康,每天开展体育活动一小时,开设排球、篮球、羽毛球、体操四项体育活动课.学生可根据自己的爱好任选其中一项,老师根据学生报名情况进行了统计,并绘制了下面尚未完成的扇形统计图和频数分布直方图,请你结合图中的信息,解答下列问题: (1)该校学生报名总人数有多少人? (2)从表中可知选羽毛球的学生有多少人?选排球和篮球的人数分别占报名总人数的百分之几?
A B C D F E czwljyw数学站 所有资源全部免注册下载 http://www.czwljyw.com
全力打造一流免费资源平台 CZWLJYW.COM 搜集整理@czwljyw数学站 (3)频数分布直方图补充完整.
24.(本题6分) 如图,已知一次函数y=kx+b的图象与反比例函数8yx=-的图象交
于A、B两点,且点A的横坐标和点B的纵坐标都是-2. 求:(1)一次函数的解析式; (2)△AOB的面积.
25.(本题8分)某校初三(1)班毕业联欢会设计了一个“08好运”的游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,游戏者同时转动两个转盘,两个转盘停止转动时,若有一个转盘的指针指向0,另一个转盘的指针指向8,则游戏者被称为“08好运”,求游戏者“08好运”的概率.
26.(本题8分)如图,某广场一灯柱AB被一钢缆CD固定,CD与地面成40°夹角,且CB=5米. (1)求钢缆CD的长度;(精确到0.1米) (2)若AD=2米,灯的顶端E距离A处1.6米,且∠EAB=120°, 则灯的顶端E距离地面多少米? (参考数据:tan400=0.84, sin400=0.64, cos400=34)
A D
C B
E
体操 40% 羽毛球
25%
篮球 排球
8 8 0
8 0 czwljyw数学站 所有资源全部免注册下载 http://www.czwljyw.com
全力打造一流免费资源平台 CZWLJYW.COM 搜集整理@czwljyw数学站 27.(本题9分)如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC, (1)求证:△BAD ∽△CED (2)求证:DE是⊙O的切线 (3)若AE=1,AB=4,求AD的长.并计算出∠B的大小
28.(本题9分)某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表: A B 成本(万元/套) 25 28 售价(万元/套) 30 34 (1)该公司对这两种户型住房有哪几种建房方案? (2)该公司如何建房获得利润最大? (3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大? 注:利润=售价-成本
29.(本题9分) 如图1,已知直线EA与x轴、y轴分别交于点E和点A(0,2),过直线EA上的两点F、G分别作x轴的垂线段,垂足分别为M(m,0)和N(n,0),其中m<0,n>0. (1)如果m=-4,n=1,试判断△AMN的形状; (2)如果mn=-4,(1)中有关△AMN的形状的结论还成立吗?如果成立,请证明;如果不成立,请说明理由; (3)如图2,题目中的条件不变,如果mn=4,并且ON=4,求经过M、A、N三点的抛物线所对应的函数关系式; (4)在(3)的条件下,如果抛物线的对称轴l与线段AN交于点P,点Q是对称轴上一动点,以点P、Q、N为顶点的三角形和以点M、A、N为顶点的三角形相似,求符合条件
A B C D E O czwljyw数学站 所有资源全部免注册下载 http://www.czwljyw.com
全力打造一流免费资源平台 CZWLJYW.COM 搜集整理@czwljyw数学站 的点Q的坐标.
数学模拟卷(一)答案 一、填空题:本大题共12小题,每小题3分,共36分 1. 12 ; 2. 5x; 3.2; 4.2a ; 5.-1<x≤2; 6.6;
7. ( 2 ,0 ) ; 8. 8.361010 ; 9. m≤94 ; 10.40°; 11.2 ; 12.2 二、选择题:本大题共6小题;每小题3分,共18分 13. C 14.D 15. D 16.B 17.C 18.B 三、解答题(本大题共11小题,共76分 19.原式=4-12+1+12=5 (4分+1分)
20.解:121221xxxxx ……………… 1分 2222322xxxxx ……………… 1分
l (图2) (图1) N M E F P G B A x O y y N M F
E O
G
x A