竞赛数学 同余式与不定方程

竞赛数学 同余式与不定方程
竞赛数学 同余式与不定方程

同余式与不定方程

同余式和不定方程是数论中古老而富有魅力的内容.考虑数学竞赛的需要,下面介绍有关的基本内容.

1.同余式及其应用

定义:设a、b、m为整数(m>0),若a和b被m除得的余数相同,则称a和b 对模m同余.记为或

一切整数n可以按照某个自然数m作为除数的余数进行分类,即n=pm+r(r=0,1,…,m-1),恰好m个数类.于是同余的概念可理解为,若对n1、n2,有n1=q1m+ r,n2=q2m+r,那么n1、n2

对模m的同余,即它们用m除所得的余数相等.

利用整数的剩余类表示,可以证明同余式的下述简单性质:

(1)若,则m|(b-a).反过来,若m|(b-a),则;

(2)如果a=km+b(k为整数),则;

(3)每个整数恰与0,1,…,m-1,这m个整数中的某一个对模m同余;

(4)同余关系是一种等价关系:

①反身性;

②对称性,则,反之亦然.

③传递性,,则;

(5)如果,,则

①;

②特别地

应用同余式的上述性质,可以解决许多有关整数的问题.

例1(1898年匈牙利奥林匹克竞赛题)求使2n+1能被3整除的一切自然数n.

解∵∴

则2n+1

∴当n为奇数时,2n+1能被3整除;当n为偶数时,2n+1不能被3整除. 例2、求2999最后两位数码.

解考虑用100除2999所得的余数.

∴2999的最后两位数字为88.

例3 、求证31980+41981能被5整除. 证明∵

2.不定方程

不定方程的问题主要有两大类:判断不定方程有无整数解或解的个数;如果不定方程有整数解,采取正确的方法,求出全部整数解.

(1)不定方程解的判定

如果方程的两端对同一个模m(常数)不同余,显然,这个方程必无整数解.而方程如有解则解必为奇数、偶数两种,因而可以在奇偶性分析的基础上应用同余概念判定方程有无整数解.

例4 、证明方程2x2-5y2=7无整数解.

证明∵2x2=5y2+7,显然y为奇数.

①若x为偶数,则

∵方程两边对同一整数8的余数不等,

∴x不能为偶数.

②若x为奇数,则

但5y2+7

∴x不能为奇数.因则原方程无整数解.

说明:用整数的整除性来判定方程有无整数解,是我们解答这类问题的常用方法.

例5 、(第14届美国数学邀请赛题)不存在整数x,y使方程

证明如果有整数x,y使方程①成立,

=知(2x+3y2)+5能被17整除.

设2x+3y=17n+a,其中a是0,±1,±2,±3,±4,±5,±6,±7,±8中的某个数,但是这时(2x+3y)2+5=(17n)2+34na+(a2+5)=a2+5(mod17),而a 2+5被17整除得的余数分别是5,6,9,14,4,13,7,3,1,即在任何情况下(2 x+3y)2+5都不能被17整除,这与它能被17整除矛盾.故不存在整数x,y使①成立. 例7、(第33届美国数学竞赛题)满足方程x2+y2=x3的正整数对(x,y)的个数是().

(A)0 (B)1(C)2(D)无限个(E)上述结论都不对

解由x2+y2=x3得y2=x2(x-1),

所以只要x-1为自然数的平方,则方程必有正整数解.令x-1=k2(k为自然数),则

为方程的一组通解.由于自然数有无限多个,故满足方程的正整数对(x, y)有无限多个,应选(D).

说明:可用写出方程的一组通解的方法,判定方程有无数个解.

(2)、不定方程的解法

不定方程没有统一的解法,常用的特殊方法有:配方法、因式(质因数)分解法、不等式法、奇偶分析法和余数分析法.对方程进行适当的变形,并正确应用整数的性质是解不定方程的基本思路.

例6、求方程的整数解.

解(配方法)原方程配方得(x-2y)2+y2=132.

在勾股数中,最大的一个为13的只有一组即5,12,13,因此有8对整数的平方和等于1 32即(5,12),(12,5),(-5,-12),(-12,-5),(5-,12),(12,-5),(-5,12),(-12,5).故原方程组的解只能是下面的八个方程组的解

解得

例7 、(原民主德国1982年中学生竞赛题)已知两个自然数b和c及素数a满足方程a2+b2=c2.证明:这时有a<b及b+1=c.

证明(因式分解法)∵a2+b2=c2,

∴a2=(c-b)(c+b),

又∵a为素数,∴c-b=1,且c+b=a2.

于是得c=b+1及a2=b+c=2b+1<3b,

即<.而a≥3,∴≤1,∴<1.∴a<b.

例9(第35届美国中学数学竞赛题)满足联立方程

的正整数(a,b,c)的组数是().

(A)0 (B)1 (C)2 (D)3 (E)4

解(质因数分解法)由方程ac+bc=23得

(a+b)c=23=1×23.

∵a,b,c为正整数,∴c=1且a+b=23.将c和a=23-b代入方程ab+bc=44得(23-b)b+b=44,即(b-2)(b-22)=0,

∴b1=2,b2=22.从而得a1=21,a2=1.故满足联立方程的正整数组(a,b,c)有两个,即(21,2, 1)和(1,22,1),应选(C).

例10、求不定方程2(x+y)=xy+7的整数解.

解由(y-2)x=2y-7,得

分离整数部分得

由x为整数知y-2是3的因数,

∴y-2=±1,±3,∴x=3,5,±1.

∴方程整数解为

例11、求方程x+y=x2-xy+y2的整数解.

解(不等式法)方程有整数解必须△=(y+1)2-4(y2-y)≥0,解得

≤y≤.

满足这个不等式的整数只有y=0,1,2.

当y=0时,由原方程可得x=0或x=1;当y=1时,由原方程可得x=2或0;当y=2时,由原方程可得x=1或2.

所以方程有整数解

最后我们来看两个分式和根式不定方程的例子.

例12、求满足方程且使y是最大的正整数解(x,y).

解将原方程变形得

由此式可知,只有12-x是正的且最小时,y才能取大值.又12-x应是144的约数,所以,

12-x=1,x=11,这时y=132.

故满足题设的方程的正整数解为

(x,y)=(11,132).

例13(第35届美国中学生数学竞赛题)满足0<x<y及的不同的整数对(x,y)的个数是().

(A)0 (B)1 (C)3 (D)4 (E)7

解法1 根据题意知,0<x<1984,由

当且仅当1984x是完全平方数时,y是整数.而1984=26·31,故当且仅当x具有31 t2形式时,1984x是完全平方数.

∵x<1984,∵1≤t≤7.当t=1,2,3时,得整数对分别为(31,1519)、(124,1 116)和(279,775).当t>3时y≤x不合题意,因此不同的整数对的个数是3,故应选(C).

解法2 ∵1984=∴由此可知:x必须具有31t2形式,y必须具有31k2形式,并且t+k=8(t,k均为正整数).因为0<x<y,所以t<k.当t=1,k=7时得(31,1519);t=2,k=6时得(124,1116);当t=3,k=5时得(279,775).因此不同整数对的个数为3.

练习二十

1.选择题

(1)方程x2-y2=105的正整数解有( ).

(A)一组(B)二组(C)三组(D)四组

(2)在0,1,2,…,50这51个整数中,能同时被2,3,4整除的有().

(A)3个(B)4个(C)5个(D)6个

2.填空题

(1)的个位数分别为_________及_________.

(2)满足不等式104≤A≤105的整数A的个数是x×104+1,则x的值____ ____.

(3)已知整数y被7除余数为5,那么y3被7除时余数为________.

(4)(全俄第14届中学生数学竞赛试题)求出任何一组满足方程x2-51y2=1的自然数解x和y_________.

3.(第26届国际数学竞赛预选题)求三个正整数x、y、z满足

.

4.(1985年上海数学竞赛题)在数列4,8,17,77,97,106,125,238中相邻若干个数之和是3的倍数,而不是9的倍数的数组共有多少组?

5.求的整数解.

6.求证可被37整除.

7.(全俄1986年数学竞赛题)求满足条件的整数x,y的所有可能的值.

8.(1985年上海初中数学竞赛题)已知直角三角形的两直角边长分别为l厘米、m 厘米,斜边长为n厘米,且l,m,n均为正整数,l为质数.证明:2(l+m+n)是完全平方数.

9.(1988年全国初中数学竞赛题)如果p、q、、都是整数,并且p>1,q>1,试求p+q的值.

练习二十

1.D.C.

2.(1)9及1. (2)9. (3)4.

(4)原方程可变形为x2=(7y+1)2+2y(y-7),令y=7可得x=50.

3.不妨设x≤y≤z,则,故x≤3.又有故x≥2.若x=2,则,

故y≤6.又有,故y≥4.若y=4,则z=20.若y=5,则z=10.若y=6,则z无整数解.若x=3,类似可以确定3≤y≤4,y=3或4,z都不能是整数.

4.可仿例2解.

5.先求出,然后将方程变形为y=5+x-2要使y为整数,5x-1应是完全平方数,…,解得

6.8888≡8(mod37),∴88882222≡82(mod37).

7777≡7(mod37),77773333≡73(mod37),88882222+77773333≡(82+73)(mod37),而82+ 73=407,37|407,∴37|N.

7.简解:原方程变形为3x2-(3y+7)x+3y2-7y=0由关于x的二次方程有解的条件△≥0及y为整数可得0≤y≤5,即y=0,1,2,3,4,5.逐一代入原方程可知,原方程仅有两组解(4, 5)、(5,4).

8.∵l2+m2=n2,∴l2=(n+m)(n-m).∵l为质数,且n+m>n-m>0,∴n+m=l2,n-m=1.于是l2=n+m=(m+1)+m=2m+1,2m=l2-1,2(l+m+1)=2l+2+2m=l2+2l+1=(l+1)2.即2(l +m+1)是完全平方数.

9.易知p≠q,不妨设p>q.令=n,则m>n由此可得不定方程(4-mn) p=m+2,解此方程可得p、q之值.

同余与尾数

同余与尾数

两个整数在作除法运算时,被除数和除数之间的关系不全是整除的关系.

如果a是整数,b是一个自然数,那么一定有两个整数q和r,使得

a=b×q+r(0≤r<b).

当r=0时,则称a被b整除.

当r≠0时,r叫做a除以b的余数,q叫做a除以b的不完全商,r/b叫做a除以b的尾数.

如果a、b两个整数除以自然数m后所得的余数相同,就称a、b对于模m同余.记作

a≡b(mod m).

同余有下面的一些性质:

a、b是整数,m是自然数.

1.如果a≡b(mod m),则m|(a-b).

2. a≡a(mod,m).

3.如果a≡b(mod m),则b≡a(mod m).

4.如果a≡b(mod m),b≡c(mod m),则a≡c(mod m).

5.如果a≡b(mod m),c≡d(mod m),

则a+c≡b+d(mod m),a—c≡b—d(mod m).

6.如果a≡b(mod m),c≡d(mod m),

则a×c≡b×d(mod m).

7.如果a≡b(mod m),则a n≡b n(mod m).根据余数相同,可以对整数分类.例如一个整数a被3除时,余数只能有0、1、2这三种可能,因此所有整数可以分为3k、 3k+1、3k+2( k为整数)这三种类型.

问题22.1一个两位数除310,余数是37,求这样的两位数.

分析用被除数减去余数.然后将其差分解质因数.

解310-37=273.

273=3×7×13.

考虑到所求的两位数(除数)要比37(余数)大,而3×13=39,7×13=91,因此所求的两位数为39或91.

问题22.2有一个77位数,它的各位数字都是1,这个数除以7,余数是多少?

分析因为1001能被7整除,所以111111能被7整除.

解因为1001=7×11×13,而

111111= 100100+10010+1001,

所以,由六个数字1组成的六位数必定是7的倍数.

77÷6=12余5.

11111÷7=1587余2.

所以,这个77位数除以7的余数是2.

问题22.3一个整数除300、262、205都得到相同的余数,且余数不为0.问这个整数是几?

分析这个整数能整除300、262、205中任何两个数的差.

解300-262=38=19×2,

262-205=57=9×3,

300-205=95=19×5.

因为所求整数是38、57、95的不为1的公约数,所以这个整数是19.

问题22.4已知某数被5除的尾数是0.2,求这个数被5除的余数.

分析尾数与除数之积等于余数.

解5×0.2=1.所以,这个数被5除的余数为1.

问题22.5一名养牛专业户,共有牛41头,他准备把这些牛分给3个农民去养,要求第一位农民养总数的1/2,第二位农民养总数的1/3,第三位农民养总数的1/7.由于牛的头数不是偶数,二分之一办不到,允许借一些牛来参加分,但借的牛分后要归还原主.问这三位农民各分几头牛?

分析利用尾数及其尾数之和解题.

答:这三位农民各分得21头、14头、6头牛.

问题22.6求77被4除的余数.

分析利用同余的性质.

解77=(72)3×7.

∵ 72≡1(mod 4),

(72)3≡13(mod 4).

即(72)≡1(mod 4).

又7≡(mod 4),

∴(72)3×7≡1×3(mod 4).

即 77≡3(mod 4).

故77被4除的余数为3.

问题22.7今天是星期日,再过364365天是星期几?再过365364天又是星期几?

分析就是求364365、365364分别被7除的余数.

解∵364≡0(mod 7),

∴ 364365≡0(mod 7).

∵365≡1(mod 7),

∴ 365364≡1(mod 7).

因此,如果今天是星期日,那么再过364365天是星期日,再过365364天是星期一.

问题22.839865×48731=1382476895吗?为什么?

分析在检验a×b=c是否正确时,可以看一看a×b与c对于模9是否同余,如果是同余,则a×b有可能与c相等(当然也有可能不等),否则,a×b必不等于c.这种方法称为弃九法.

解39865≡3+9+8+6+5≡4(mod 9),

48731≡4+8+7+3+1≡5(mod 9),

1382476895≡1+3+8+2+4+7+6+8+9+5

≡8(mod 9).

∴39865×48731≠1382476895.

问题22.9 a、b都是整数,则a+b,a-b,

a×b中至少有一个数是3的倍数.为什么?

分析将所有整数分为3k,3k+1, 3k+2(k为整数)进行讨论.

解如果a、b中有一个是3的倍数,则a×b是3的倍数.

如果a、b都不是3的倍数,则有四种可能.(以下字母表示整数)

(1)当a=3m+1,b=3n+1时,

a-b=3( m-n),

∴ 3|(a-b).

(2)当a=3m+2,b=3n+2时,

a-b=3(m-n),

∴ 3|(a-b).

(3)当a=3m+1,b=3n+2时,

a+b=3(m+n+1),

∴ 3|(a+b).

(4)当,a=3m+2,b=3n+1时,

a+b=3(m+n+1),

∴ 3|(a+b).

综上所述,不论a、b为何整数,a+b,a-b,a×b中至少有一个数是3的倍数.

练习22

1.修改五位数31354的某一个数字,可以得到654的倍数.问修改后的五位数是多少?

2.已知某数被8除的尾数是0.5,求这个数被8除的余数.

3.求乘积15×38×412×541除以13所得的余数.

4.142857×514876302=7355368387484吗?为什么?

5.已知1991年7月1日是星期一,那么2000年10月1日是星期几?

6.有5个不同的自然数,它们当中任意3个的和是3的倍数,任意4个的和是4的倍数,为了使这5个数的和尽可能地小,这5个数分别是什么?

同餘理論,韓信點兵與 Lagrange插值法

疊合原理:一般解=特別解+齊次解

ax+by=0是x,y的一次齊次式,其解為

若ax+by=c有一組特別解,則

ax+by=c的一般解為

例求的一般解

解所謂齊次解就是的解,即n=3t;特別解取n=1,則一般解為n=3t+1

甲.同餘理論

n是任意整數,兩個整數a,b,如果用n除了之後得到相同的餘數,則稱a與b對模n同餘,用(mod n),亦即(mod n)

例如(mod 5),(mod 5)

同餘式的基本性質(以下皆mod n)

1.(反身性)

2.若則(對稱性)

3.若則(遞移性)

4.若則

,,,

我們證明了在整數Z中,新的運算符號""與"+"號有相同的性質

1.試證(1)若,則 (2)若則

2.(40)255除以13的餘數=

3.,試證恆為7的倍數

4.證明11,111,111,...,1....1(n個1)都不可能是完全

平方數

5.證明沒有非零的整數解

6.解(mod 5)

習作

1.解

2.,求(1)m除以9的餘數

= (2)證明m是4的倍數

3.求的十位數字與個位數

字 61

4.整數x,y,z滿足,則x,y,z中至少有一個

數是3的倍數,試證之

5.求九位數123456789除以11的餘數

6.任意正整數n,都不可能是3的倍數

7.證明不是完全平方數

挑戰題

1.證明費馬數是641的倍數(趣味數論單

墫 p.69),這件事是Euler(1707~1783)發現的

2.不定方程式沒有整數解(趣味數

論單墫 p.85)

數學史篇

同餘的的概念與符號都是高斯(1777~1855)發明的

例題的解

1.(mod 13),所以(mod 13)

2.因為(mod 7),(mod 7)

3.對任意n,(mod 4),但是(mod 4)

4.任意n,(mod 3),若存在非零的整數(a,b,c)是

原方程式的解,則(mod 3),所以

(mod 3),a=3a',b=3b',代入原式,得

(mod 3),即(mod 3),令c=3c',則

,如果,同理可以繼續往下遞降,但是a,b是有限大的數,所以不能一直

變小,亦即存在一組,使得,但是

不成立,矛盾,得證

5.即,齊次解為x=5t,特別解取x=4,即

(mod 5)

乙.中國餘數定理(Chinese Remainder Theorem)

數學史篇

中國餘數定理源出三國或晉朝的"孫子算經",其中有一題:今有物不知其數,三三數之剩2,五五數之剩3,七七數之剩2,問物幾何?

以同餘式表之,即解,孫子算經中給出答案x=23

一元一次聯立同餘式,後世稱為"大衍",其解法稱為"

大衍求一術",到宋代秦九韶(1202~1261年)集大成

解 x的齊次解為105t,假設特別解為x=15a+21b+35c, 代入(1),則,取c=1,代入(2),則

,取b=3,代入(3),則,取a=2,所以x=30+63+35=128=105+23,取x'=23,即原式的特別解

所以x=105t+23

例 n是自然數 ,除以3餘1,除以5餘2,除以7餘5,則n最小=

例求滿足的最小自然數n=

例 n是自然數,,且200

1.n是正整數,n除以4餘1,除以5餘2,除以6餘3,n最

小=

2.中國古代以干支紀年,天干:甲乙丙丁戊己庚辛壬癸

地支:子丑寅卯辰巳午未申酉戌亥為什麼沒有丁寅

年?

3.解

x=385t+367 丙.Lagrange插值法

溫故知新篇餘式定理多項式f(x)除以x-a的餘式

=f(a)

我們先來看兩個簡單的例題

(1)求通過(2,7),(5,13)的直線方程式

(2)求三次函數,使其圖形通過

(-2,13),(1,4),(2,9)

以上只是簡單的代入求解的題目,(2)即,若互異,是否有y=f(x)=通過

,亦即求f(x),使

一般而言,互異,求同餘式

,i=1,2,3,...n解的方法,稱為Lagrange插值法

例求三次多項式y=f(x)使其圖形通過

(-2,13),(1,4),(2,9)

解設f(x)=a(x+2)(x-1)+b(x+2)(x-2)+c(x-1)(x-2),由f(-2)=13,解得c=,由f(1)=4,解得b=;由

f(2)=9,解得a=,所以

例 f(x)是三次多項

式,f(1995)=1,f(1996)=2,f(1997)=3,f(1998)=4,求

f(1999)=

概念增廣篇

為什麼會把中國餘數定理與Lagrange插值法擺在一起?在大學代數中整數系Z與多項式R[x]代數結構相同,各位看兩者在解題方法上的相同處可以有所體會,再

做下面兩個例子,你可以更清楚看到Z與R[x]之間的關聯

高中数学竞赛专题精讲27同余(含答案)

27同余 1.设m 是一个给定的正整数,如果两个整数a 与b 用m 除所得的余数相同,则称a 与b 对模同余,记作,否则,就说a 与b 对模m 不同余,记作,显然,; 每一个整数a 恰与1,2,……,m ,这m 个数中的某一个同余; 2.同余的性质: 1).反身性:; 2).对称性:; 3).若,则; 4).若,,则 特别是; 5).若,,则; 特别是 ; 6).; 7).若 ; 8).若, ……………… ,且 例题讲解 1.证明:完全平方数模4同余于0或1; 2.证明对于任何整数,能被7整除; )(mod m b a ≡)(mod m b a ≡)(|)(,)(mod b a m Z k b km a m b a -?∈+=?≡)(mod m a a ≡)(mod )(mod m a b m b a ≡?≡)(mod m b a ≡)(mod m c b ≡)(mod m c a ≡)(m od 11m b a ≡)(m od 22m b a ≡)(m od 2121m b b a a ±≡±)(mod )(mod m k b k a m b a ±≡±?≡)(m od 11m b a ≡)(m od 22m b a ≡)(m od 2121m b b a a ≡)(m od ),(m od m bk ak Z k m b a ≡?∈≡则)(m od ),(m od m b a N n m b a n n ≡?∈≡则)(mod )(m ac ab c b a +≡+)(m od 1),(),(m od m b a m c m bc ac ≡=≡时,则当)(mod )(mod ).(mod ),(m b a mc bc ac d m b a d m c ≡?≡≡=特别地,时,当)(m od 1m b a ≡)(m od 2m b a ≡)(mod 3m b a ≡)(mod n m b a ≡)(m od ],,[21M b a m m m M n ≡??=,则0≥k 153261616+++++k k k

不定方程的解法

基本介绍编辑本段 不定方程是数论的一个分支,它有着悠 久的历史与丰富的内容。所谓不定方程是指解的范围为整数、正整数、有理数或代数整数的方程或方程组,其未知数的个数通常多于方程的个数。 古希腊数学家丢番图于三世纪初就研究过若干这类方程,所以不定方程又称丢番图方程,是数论的重要分支学科,也是历史上最活跃的数学领域之一。不定方程的内容十分丰富,与代数数论、几何数论、集合数论等等都有较为密切的联系。1969 年,莫德尔较系统地总结了这方面的研究成果。 2 发展历史编辑本段

希腊的丢番图早在公元3 世纪就开始研究不定方程,因此常称不定方程为丢番图方程。Diophantus ,古代希腊人,被誉为代数学的鼻祖,流传下来关于他的生平事迹并不多。今天我们称整系数的不定方程为「Diophantus 方程」,内容主要是探讨其整数解或有理数解。他有三本著作,其中最有名的是《算术》,当中包含了189 个问题及其答案,而许多都是不定方程组(变量的个数大于方程的个数)或不定方程式(两个变数以上)。丢番图只考虑正有理数解,而不定方程通常有无穷多解的。 研究不定方程要解决三个问题:①判断何时有解。②有解时决定解的个数。③求出所有的解。中国是研究不定方程最早的国家,公元初的五家共井问题就是一个不定方程组问题,公元5 世纪的《张丘建算经》中的百鸡问题标志中国对不定方程理论有了系统研究。秦九韶的大衍求一术将不定方程与同余理论联系起来。百鸡问题说:“鸡翁一,直钱五,鸡母一,直钱三,鸡雏三,直钱一。百钱买百鸡,问鸡翁、母、雏各几何”。设x,y,z 分别表鸡翁、母、雏的个数,则此问题即为不定方程组的非负整数解x,y,z,这是一个三元不定方程组问题。 3 常见类型编辑本段

一招教你搞定不定方程

一招教你搞定不定方程 一相关概念 1.什么是不定方程 未知数个数多于方程个数的方程,叫做不定方程,比如:3x+4y=42就是一个二元一次方程。在各类公务员考试中通常只讨论它的整数解或正整数解。在解不定方程问题时,我们可以利用整数的奇偶性、自然数的质合性、数的整除特性、尾数法、特殊值法、代入排除法等多种数学知识来得到答案。但是方法越是繁多,我们在备考过程中学习的压力就越大,为了让大家更好的地理解和掌握不定方程的求解问题,这里我们介绍一种“万能”的方法——利用同余性质求解不定方程。 2.什么是余数 被除数减去商和除数的积,结果叫做余数。比如:19除以3,如果商6,余数就是1;如果商是5,余数就是4;如果商是7,余数就是-2.(注意,这里余数的概念指的是广义上的概念,即余数不再是比除数小的正整数)。 3.关于同余特性 ①余数的和决定和的余数 例:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1;23,24除以5的余数分别是3和4,所以23+24除以5的余数等于余数和7,正余数是2.

②余数的差决定差的余数; 例:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,即两个余数的差3-1;16-23除以5的负余数为-2,正余数为3. ③余数的积决定积的余数; 例:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。二利用同余性质解不定方程 例1:解不定方程x+3y=100,x,y皆为整数。 A 41 B 42 C 43 D 44 解析:因为3y能够被3整除,100除以3余1,根据余数的和决定和的余数,x除以3必定是余1的,所以答案为C。 例2::今有桃95个,分给甲,乙两个工作组的工人吃,甲组分到的桃有2/9是坏的,其他是好的,乙组分到的桃有3/16是坏的,其他是好的。甲,乙两组分到的好桃共有多少个? A.63 B.75 C.79 D.86 解析:由题意,甲组分到的桃的个数是9的倍数,乙组分到的桃的个数是16的倍数。设甲组分到的桃有9x个,乙组分到16y个,则9x+16y=95。因为9x 可以被9整除,所以95除以9的余数就等于16y除以9的余数,95除以9余5(或者余14),16y除以9的余数由16除以9的余数(7)和y除以9的余数之

【高中数学(竞赛)知识点提纲】

【高中数学(竞赛)知识点提纲】1.集.合(set) 1.1集.合的阶,集.合之间的关系。1.2集.合的分划 1.3子集,子集族 1.4容斥原理 1.5极端原理 1.6抽屉原理 2. 函数(function) 2.1函数的基本概念 2.1.1映射 2.1.1.1单射 2.1.1.2满射 2.1.1.3一一映射(双射) 2.1.2函数的定义域、值域 2.2函数的性质 2.2.1对称性 2.2.2单调性 2.2.3奇偶性 2.2.4周期性 2.2.5凹凸性 2.2.6连续性 2.2.7可导性 2.2.8有界性 2.2.9收敛性 2.3初等函数 2.3.1一次、二次、三次函数 2.3.2幂函数 2.3.3双勾函数 2.3.4指数、对数函数 2.4函数的迭代 2.5函数方程 3. 三角函数(trigonometricfunction)3.1三角函数图像与性质 3.2三角函数运算 3.3三角恒等式、不等式、最值 3.4正弦、余弦定理 3.5反三角函数 3.6三角方程 4. 向量(vector)4.1向量的运算 4.2向量的坐标表示,数量积 5. 数列(sequence) 5.1数列通项公式求解 5.1.1换元法 5.1.2特征根法 5.1.3不动点法 5.1.4迭代法 5.1.5数学归纳法 5.1.6代换法 5.1.7待定系数法 5.1.8阶差法 5.2数列求和 5.2.1裂项相消法 5.2.2错位相减法 5.2.3倒序相加法 5.2.4分组分解法 5.2.5归纳猜想法 6.不等式(inequality)6.1解不等式 6.2重要不等式 6.2.1均值不等式 6.2.2柯西不等式 6.2.3排序不等式 6.2.4契比雪夫不等式 6.2.5赫尔德不等式 6.2.6权方和不等式 6.2.7幂平均不等式 6.2.8琴生不等式 6.2.9 Schur不等式 6.2.10嵌入不等式 6.2.11卡尔松不等式 6.3证明不等式的常用方法6.3.1利用重要不等式 6.3.2调整法(放缩法) 6.3.3归纳法 6.3.4切线法 6.3.5展开法 6.3.6局部法 6.3.7反证法

高中数学竞赛中数论问题的常用方法

高中数学竞赛中数论问题的常用方法 数论是研究数的性质的一门科学,它与中学数学教育有密切的联系.数论问题解法灵活,题型丰富,它是中学数学竞赛试题的源泉之一.下面介绍数论试题的常用方法. 1.基本原理 为了使用方便,我们将数论中的一些概念和结论摘录如下: 我们用),...,,(21n a a a 表示整数1a ,2a ,…,n a 的最大公约数.用[1a ,2a ,…,n a ]表示1a ,2a ,…,n a 的 最小公倍数.对于实数x ,用[x ]表示不超过x 的最大整数,用{x }=x -[x ]表示x 的小数部分.对于整数 b a ,,若)(|b a m -,,1≥m 则称b a ,关于模m 同余,记为)(mod m b a ≡.对于正整数m ,用)(m ?表示 {1,2,…,m }中与m 互质的整数的个数,并称)(m ?为欧拉函数.对于正整数m ,若整数m r r r ,...,,21中任何两个数对模m 均不同余,则称{m r r r ,...,,21}为模m 的一个完全剩余系;若整数)(21,...,,m r r r ?中每一个数都与m 互质,且其中任何两个数关于模m 不同余,则称{)(21,...,,m r r r ?}为模m 的简化剩余系. 定理1 设b a ,的最大公约数为d ,则存在整数y x ,,使得yb xa d +=. 定理2(1)若)(mod m b a i i ≡,1=i ,2,…,n ,)(m od 21m x x =,则 1 1n i i i a x =∑≡2 1 n i i i b x =∑; (2)若)(mod m b a ≡,),(b a d =,m d |,则 )(mod d m d b d a ≡; (3)若b a ≡,),(b a d =,且1),(=m d ,则)(mod m d b d a ≡; (4)若b a ≡(i m mod ),n i ,...,2,1=,M=[n m m m ,...,,21],则b a ≡(M mod ). 定理3(1)1][][1+<≤<-x x x x ; (2)][][][y x y x +≥+; (3)设p 为素数,则在!n 质因数分解中,p 的指数为 ∑≥1 k k p n . 定理4 (1)若{m r r r ,...,,21}是模m 的完全剩余系,1),(=m a ,则{b ar b ar b ar m +++,...,,21}也是模 m 的完全剩余系; (2)若{)(21,...,,m r r r ?}是模m 的简化剩余系,1),(=m a ,则{)(21...,,m ar ar ar ?}是模m 的简化剩余系. 定理5(1)若1),(=n m ,则)()()(n m mn ???=. (2)若n 的标准分解式为k k p p p n ααα (2) 121=,其中k ααα,...,21为正整数,k p p p ,...,21为互不相

一次同余式解法的综述

一次同余式的解法的综述 陈明丹 (华南师范大学数学科学学院 广州 510070) 【摘要】本文系统地将解一次同余式的各种解法集中在一起,如欧拉定理算法、代入求解法、消去系数法、不定方程求解法、不定方程求解法、分式法、威尔逊定理法、求s 、t 法、矩阵求法、“倒数”求法,这样就使得学习者在学习一次同余式的时候有个系统的归纳总结,方便理解。 关键词:一次同余式;解法;欧拉定理;威尔逊定理;不定方程;综述 初等数论是师范院校数学专业学生的一门必修课,也是高中数学教师继续教育的一项重要内容,而同余式是初等数论中非常重要的一部分内容,主要研究一次同余式、二次同余式、同余式组及高次同余式的解法及解数。[1]一次同余式是学习这一部分内容的基础,且结一次同余式是学习初等数论必须要掌握的解题方法。但是在严士键 [2]的教材中只给出了如欧拉定理算法[3]等一些比较简单的方法,而且比 较散乱。本文旨在系统地整理解一次同余式的各种方法,以方便大家的学习。 1.一次同余式ax ≡ b(mod m)的解法 1.1 同余式(mod ),(,)1ax b m a m ≡= 的解法 1.1.1欧拉定理算法 李晓东[1]和李婷[3]指出欧拉定理这种算法主要是运用欧拉定理,则有()1(mod )m m a ?≡,则()(mod )m a b b m a ???≡,则

()1(mod )m x b m a ?-≡ 满足同余式(mod )ax b m ≡,故为同余式的解。李婷还指出这种解法在理论上较易分析,但当模m 较大时,求()m ?就涉及m 的标准分解,此时这种解法在计算量上较为复杂,不宜进行计算机编程计算。所以这种解法更适合模m 较小时,或()m ?较易求解时使用。王靖娜 [4]给出了详细的定理证明过程,以帮 助大家的理解。 1.1.2代入求解法 代入求解法也称为观察法[3],当模m 较小时,可以将模m 的完全剩余系0、1、2……m-1 代入到(mod )ax b m ≡中,求出该同 余式的解。当模m 较大时,则可以利用同余式的性质[2],将同余式的 系数减少,而且有带余除法定理[5]可保证系数在一个固定的范围内作为模m 的余数,从而再用观察法得出一次同余式的解。 李婷[3]这种解法适用于多数情况,但是当模m 及x 的系数较大时,计算量也会变得比较大,此时就不适合使用这种方法,而改用其他的方法。 1.1.3 消去系数法 在同余式(mod )ax b m ≡中,如果|a b ,则可以解出该同 余式的解,因此,将x 的系数a 消去是解一次同余式的最简捷的方 法[6]。如果在同余式中但能找到c 使得(mod )b c m ≡且 |a c ,则根据同余的传递性质有(mod )ax b c m ≡≡,可解出 (mod )c x m a ≡。或者找到(mod )ax b c m ≡≡,且,a c 有公

全国高中数学联赛竞赛大纲(修订稿)

全国高中数学联赛竞赛大纲(修订稿) 在“普及的基础上不断提高”的方针指引下,全国数学竞赛活动方兴未艾,特别是连续几年我国选手在国际数学奥林匹克中取得了可喜的成绩,使广大中小学师生和数学工作者为之振奋,热忱不断高涨,数学竞赛活动进入了一个新的阶段。为了使全国数学竞赛活动持久、健康、逐步深入地开展,应广大中学师生和各级数学奥林匹克教练员的要求,特制定《数学竞赛大纲》以适应当前形势的需要。 本大纲是在国家教委制定的全日制中学“数学教学大纲”的精神和基础上制定的。《教学大纲》在教学日的一栏中指出:“要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性”。具体作法是:“对学有余力的学生,要通过课外活动或开设选修课等多种方式,充分发展他们的数学才能”,“要重视能力的培养......,着重培养学生的运算能力、逻辑思维能力和空间想象能力,要使学生逐步学会分析、综合、归纳、演绎、概括、抽象、类比等重要的思想方法。同时,要重视培养学生的独立思考和自学的能力”。 《教学大纲》中所列出的内容,是教学的要求,也是竞赛的最低要求。在竞赛中对同样的知识内容的理解程度与灵活运用能力,特别是方法与技巧掌握的熟练程度,有更高的要求。而“课堂教学为主,课外活动为辅”是必须遵循的原则。因此,本大纲所列的课外讲授内容必须充分考虑学生的实际情况,分阶段、分层次让学生逐步地去掌握,并且要贯彻“少而精”的原则,这样才能加强基础,不断提高。 一试 全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。

【数学竞赛各阶段书籍推荐】

金牌学生推荐(可参照选择) 一、第零阶段:知识拓展 《数学选修4-1:几何证明选讲》 《数学选修4-5:不等式选讲》 《数学选修4-6:初等数论初步》 二、全国高中数学联赛各省赛区预赛(即省选初赛) 1、《五年高考三年模拟》B版或《3年高考2年模拟》第二轮复习专用 2、《高中数学联赛备考手册》华东师范大学出版社(推荐指数五颗星) 3、《奥赛经典:超级训练系列》高中数学沈文选主编湖南师范大学出版社(推荐指数五颗星) 4、单樽《解题研究》(推荐指数五颗星) 5、单樽《平面几何中的小花》(个别地区竞赛会考到平几) 6、《平面几何》浙江大学出版社 7、奥林匹克小丛书第二版《不等式的解题方法与技巧》苏勇熊斌著 三、第二阶段:全国高中数学联赛 一试 0、《奥林匹克数学中的真题分析》沈文选湖南师范大学出版社(推荐指数五颗星) 1、《高中数学联赛考前辅导》熊斌冯志刚华东师范大学出版社 2、《数学竞赛培优教程(一试)》浙江大学出版社 3、命题人讲座《数列与数学归纳法》单樽 4、《数列与数学归纳法》(小丛书第二版,冯志刚) 5、《数列与归纳法》浙江大学出版社韦吉珠 6、《解析几何的技巧》单樽(建议买华东师大出版的版本) 7、《概率与期望》单樽 8、《同中学生谈排列组合》苏淳 9、《函数与函数方程》奥林匹克小丛书第二版 10、《三角函数》奥林匹克小丛书第二版 11、《奥林匹克数学中的几何问题》沈文选(推荐指数五颗星) 12、《圆锥曲线的几何性质》 13、《解析几何》浙江大学出版社 二试 平几 1、高中数学竞赛解题策略(几何分册)沈文选(推荐指数五颗星)

2、《奥林匹克数学中的几何问题》沈文选(推荐指数五颗星) 3、奥林匹克小丛书第二版《平面几何》 4、浙大小红皮《平面几何》 5、沈文选《三角形的五心》 6、田廷彦《三角与几何》 7、田廷彦《面积与面积方法》 不等式 8、《初等不等式的证明方法》韩神 9、命题人讲座《代数不等式》计神 10、《重要不等式》中科大出版社 11、奥林匹克小丛书《柯西不等式与平均值不等式》 数论 (9,10,11选一本即可,某位大神说二试改为四道题以来没出过难题) 12、奥林匹克小丛书初中版《整除,同余与不定方程》 13、奥林匹克小丛书《数论》 14、命题人讲座《初等数论》冯志刚 组合 15、奥林匹克小丛书第二版《组合数学》 16、奥林匹克小丛书第二版《组合几何》 17、命题人讲座刘培杰《组合问题》 18、《构造法解题》余红兵 19、《从特殊性看问题》中科大出版社 20、《抽屉原则》常庚哲 四、中国数学奥林匹克(Chinese Mathematical Olympiad)及以上 命题人讲座《圆》田廷彦 《近代欧式几何学》 《近代的三角形的几何学》 《不等式的秘密》范建熊、隋振林 《奥赛经典:奥林匹克数学中的数论问题》沈文选 《奥赛经典:数学奥林匹克高级教程》叶军 《初等数论难题集》 命题人讲座《图论》 奥林匹克小丛书第二版《图论》 《走向IMO》

二元一次不定方程及其解

2013年第·1期 太原城市职业技术学院学报 Journal of TaiYuan Urban Vocational college 期 总第138期 Jan2013 [摘要]不定方程是数论中最古老的一个分支,也是数论中的一个十分重要的研究课题,我国古代对不 定方程的研究很早,且研究的内容也极为丰富,在世界数学史上有不可忽视的地位。论文重点探讨了二元一次不定方程及其解。[关键词]通解; 特解;观察法;辗转相除法;整数分离法;同余法[中图分类号]O15[文献标识码]A[文章编号]1673-0046(2013)1-0161-02浅析二元一次不定方程及其解 韩孝明 (吕梁学院汾阳师范分校,山西吕梁032200) 不定方程是数论中最古老的一个分支,也是数论中一个十分重要的研究课题,我国古代对不定方程的研究很早,且研究的内容也极为丰富,在世界数学史上有不可忽视的地位。如《张丘建算经》中的“百钱买百鸡”问题、《九章算术》中的“五家共井”问题等等,中外驰名,影响甚远。在公元3世纪初,古希腊数学家丢番图曾系统研究了某些不定方程问题,因此不定方程也叫做丢番图方程。 一、不定方程定义所谓不定方程,是指未知数的个数多于方程的个数且其解受到某种条件的限制的方程或方程组。 不定方程领域中的基本问题是:不定方程有无整数解,有多少整数解,如何求出整数解。围绕这些问题,至今存在着大量的未解决问题,因此不定方程仍是一个很 活跃的数学领域。 中小学的数学竞赛也常常因为某些不定方程的解法巧妙而引入不定方程问题。 二、二元一次不定方程及其解形如ax+by=c(a,b,c∈z,ab≠0)的方程称为二元一 次不定方程。 求其整数解的问题叫做解二元一次不定方程。 由于方程的解x、y可以是正整数,也可以是负整数,或者零,所以我们可以只讨论a、b都是正整数的情 况。例如, 3x-2y=1与3x+2y=1的解相比较,y的值只差一个负号。 当c=0时,如果(a,b)=d(a、b的最大公约数为d),那么在方程的两边同时除以d,使x、y的系数互质。因此不妨假设(a,b)=1,解方程得x=-,由于(a,b)=1,因此当y能被a整除时,方程ax+by=0才有整数解。所以可令y=at(t为任意整数),这时x=-bt,即方程ax+by=0的一切整数解为 (其中t为任意整数) 当c≠0时,实际上也只需要讨论c>0的情况。因 为当c<0时,我们可以在方程两边同时乘以-1,这样方程ax+by=c的右边就成为正整数了。因此对于二元一次不定方程,可以只讨论a>0、b>0、c>0的情况。 现在我们研究二元一次不定方程在什么条件下才有整数解。先考察下面几个方程有没有整数解:2x+y=10,4x+2y=20,4x+2y=25。对于方程2x+y=10,通过 观察可以知道,x=1,y=8是这方程的整数解,因此这个方 程有整数解。 对于方程4x+2y=20,方程两边同时除以2,得2x+y=10,因此这个方程也有整数解。 对于方程4x+2y=25,由于4x+2y=2(2x+y)为偶数,而25是奇数,因此这个方程没有整数解。 对于方程2x+y=10来说,x、y的系数互质,上面已经指出这个方程是有解的;对方程4x+2y=20来说,虽然x、y的系数不互质,但它们的最大公约数2能整除20,这是方程也有解;对方程4x+2y=25来说,x、y的系数不互质,且它们的最大公约数2不能整除常数项20,这时方程无解。这些特点虽然是从一些具体的不定方程归纳出来的,但是它对一般不定方程也是适用的。我们有下面定理: 定理1:二元一次不定方程ax+by=c(a,b,c∈N*)有整数解的充要条件是d│c(其中d=(a,b)。 证明:一是必要性。如果方程ax+by=c有整数解x=x0, y=y0,则ax0+by0=c,因为d│a,d│b,所以d│(ax0+by0),即d│c。 二是充分性。因为d│c,所以c=dq,由裴蜀恒等式可以知道,存在两个整数x 0,y 0, 使ax 0+by 0=d。在上式两边同时乘以q,得ax 0q+by 0q=dq即ax 0q+by 0q=c。 因此方程ax+by=c有整数解x=x 0q,y=y 0q。由上述定理可知,如果c不能被a、b的最大公约数整除,那么方程ax+by=c无解,且可在ax+by=c两端都约去d,使得(a,b)=1。所以通常二元一次不定方程的解是在a、b互质的情况下讨论的。 判断出一个二元一次方程有解以后,如何求出它的一切整数解呢?我们有下面的结论: 定理2:如果二元一次不定方程ax+by=c[(a,b) =1]有整数解x=x0, y=y0,则此方程一切解可以表示为 (t是整数) 证明:先证明 是方程ax+by=c的整数解。 因为x=x0,y=y0是方程ax+by=c的整数解,所以ax0 +by0=c,又因为a(x0-bt)+b(y0+at)=ax0+by0=c。 161··

高中数学竞赛基本知识集锦

高中数学竞赛基本知识集锦 一、三角函数 常用公式 由于是讲竞赛,这里就不再重复过于基础的东西,例如六种三角函数之间的转换,两角和与差的三角函数,二倍角公式等等。但是由于现在的教材中常用公式删得太多,有些还是不能不写。先从最基础的开始(这些必须熟练掌握): 半角公式 2cos 12 sin α α -± = 2 cos 12 cos α α +± = α α ααααα cos 1sin sin cos 1cos 1cos 12 tan +=-=+-± = 积化和差 ()()[]βαβαβα-++= sin sin 21 cos sin ()()[]βαβαβα--+=sin sin 21 sin cos ()()[]βαβαβα-++=cos cos 21 cos cos ()()[]βαβαβα--+-=cos cos 2 1 sin sin 和差化积 2cos 2sin 2sin sin β αβ αβα-+=+ 2sin 2cos 2sin sin β αβαβα-+=- 2cos 2cos 2cos cos β αβαβα-+=+ 2 sin 2sin 2cos cos β αβαβα-+-=- 万能公式 α αα2 tan 1tan 22sin += α α α2 2tan 1tan 12cos +-= α α α2tan 1tan 22tan -= 三倍角公式

()() αααααα+-=-= 60sin sin 60sin 4sin 4sin 33sin 3 ()() αααααα+-=-= 60cos cos 60cos 4cos 3cos 43cos 3 二、某些特殊角的三角函数值 除了课本中的以外,还有一些 三、三角函数求值 给出一个复杂的式子,要求化简。这样的题目经常考,而且一般化出来都是一个具体值。要熟练应用上面的常用式子,个人认为和差化积、积化和差是竞赛中最常用的,如果看到一些不常用的角,应当考虑用和差化积、积化和差,一般情况下直接使用不了的时候,可以考虑先乘一个三角函数,然后利用积化和差化简,最后再把这个三角函数除下去 举个例子 求值:7 6cos 74cos 72cos π ππ++ 提示:乘以7 2sin 2π ,化简后再除下去。 求值:??-?+?80sin 40sin 50cos 10cos 2 2 来个复杂的 设n 为正整数,求证 n n n i n i 21 212sin 1 += +∏=π 另外这个题目也可以用复数的知识来解决,在复数的那一章节里再讲 四、三角不等式证明 最常用的公式一般就是:x 为锐角,则x x x tan sin <<;还有就是正余弦的有界性。 例 求证:x 为锐角,<2x 设12 π ≥ ≥≥z y x ,且2 π = ++z y x ,求乘积z y x cos sin cos 的最大值和最小值。

高中数学竞赛数论

高中数学竞赛 数论 剩余类与剩余系 1.剩余类的定义与性质 (1)定义1 设m 为正整数,把全体整数按对模m 的余数分成m 类,相应m 个集合记为:K 0,K 1,…,K m-1,其中K r ={qm+r|q ∈Z,0≤余数r ≤m-1}称为模m 的一个剩余类(也叫同余类)。K 0,K 1,…,K m-1为模m 的全部剩余类. (2)性质(ⅰ)i m i K Z 1 0-≤≤=Y 且K i ∩K j =φ(i ≠j). (ⅱ)每一整数仅在K 0,K 1,…,K m-1一个里. (ⅲ)对任意a 、b ∈Z ,则a 、b ∈K r ?a ≡b(modm). 2.剩余系的定义与性质 (1)定义2 设K 0,K 1,…,K m-1为模m 的全部剩余类,从每个K r 里任取一个a r ,得m 个数a 0,a 1,…,a m-1组成的数组,叫做模m 的一个完全剩余系,简称完系. 特别地,0,1,2,…,m -1叫做模m 的最小非负完全剩余系.下述数组叫做模m 的绝对最小完全剩余系:当m 为奇数时,2 1 ,,1,0,1,,121,21--+----m m m ΛΛ;当m 为偶数时,12 ,,1,0,1,,12,2--+-- m m m ΛΛ或2,,1,0,1,,12m m ΛΛ-+-. (2)性质(ⅰ)m 个整数构成模m 的一完全剩余系?两两对模m 不同余. (ⅱ)若(a,m)=1,则x 与ax+b 同时遍历模m 的完全剩余系. 证明:即证a 0,a 1,…,a m-1与aa 0+b, aa 1+b,…,aa m-1+b 同为模m 的完全剩余系, 因a 0,a 1,…,a m-1为模m 的完系时,若aa i +b ≡aa j +b(modm),则a i ≡a j (modm), 矛盾!反之,当aa 0+b, aa 1+b,…,aa m-1+b 为模m 的完系时,若a i ≡a j (modm),则有 aa i +b ≡aa j +b(modm),也矛盾!

1基本概念及一次同余式

1 基本概念及一次同余式 定义 设()110n n n n f x a x a x a --=+++,其中()0,0,1,,i n a i n >=是整数,又设0m >,则 ()()0mod f x m ≡ (1) 叫做模m 的同余式。若()0mod n a m ≡,则n 叫做同余式(1)的次数。如果0x 满足 ()()00mod ,f x m ≡则()0mod x x m ≡叫做同余式 (1)的解。不同余的解指互不同余的解。 当m 及n 都比较小时,可以用验算法求解同余式。如 例1 同余式 ()543222230mod7x x x x x +++-+≡ 仅有解()1,5,6mod7.x ≡ 例2 同余式 ()410mod16x -≡ 有8个解 ()1,3,5,7,9,11,13,15mod16x ≡ 例3 同余式 ()230mod5x +≡无解。 定理 一次同余式 ()()0mod ,0mod ax m a m ≡≡ (2) 有解的充要条件是(),.a m b 若(2)有解,则它的解数为(),d a m =。以及当同余式(2)有解时,若0x 是满足(2)的一个整数,则它的(),d a m =个解是 ()0mod ,0,1,,1m x x k m k d d ≡+=- (4) 证 易知同余式(2)有解的充要条件是不定方程 ax my b =+ (5) 有解。而不定方程(5)有解的充要条件为()(),,.a m a m b =- 当同余式(2)有解时,若0x 是满足(2)的一个整数,则

()0mod ,0,1,, 1.m a x k b m k d d ??+≡=- ??? 下证0,0,1,,1m x k k d d +=-对模m 两两部同余。设 ()00mod ,01,1m m x k x k m k d k d d d ''+≡+≤≤-≤≤- 则 ()mod ,mod ,.m m m k k d k k d k k d d d ??'''≡≡= ??? 再证满足(2)的任意一个整数1x 都会与某一个()001m x k k d d + ≤≤-对模m 同余。由 ()()01mod ,mod ax b m ax b m ≡≡得 ()101010mod ,mod ,.a a m m ax ax m x x x x d d d d ????≡≡≡ ? ????? 故存在整数t 使得10.m x x t d =+由带余除法,存在整数,q k 使得 ,0 1.t dq k k d =+≤≤-于是()()100mod .m m x x dq k x k m d d =++≡+ 故(2)有解时,它的解数为(),d a m =。以及若0x 是满足(2)的一个整数,则它的(),a m 个解是 ()0mod ,0,1,,1m x x k m k d d ≡+ =- 例1求同余式 ()912mod15x ≡ (6) 的解。 解 对如下的整数矩阵作初等列变换 9150303301052522501313113--???????? ? ? ? ?→--→--→- ? ? ? ? ? ? ? ?-???????? 故()9,15 3.=又因312,故同余式(6)有解,且由三个解。由以上初等变换还可知 ()()()()921513,924151412, 9812mod15. ?+?-=??+?-?=?????≡ 故同余式(6)的三个解为 ()158mod15,0,1,2.3 x k k ≡+=

不定方程的解法与应用

摘要 不定方程是初等数论的一个重要内容,在相关学科和实际生活中也有着广泛的应用.本文首先归纳了整数分离法、系数逐渐减小法和辗转相除法等几种常用的二元一次不定方程的解法;其次进一步讨论了求n元一次不定方程和二次不定方程整数解的方法;最后论述了不定方程在中学数学竞赛题、公务员行测试题和其他学科中的应用,并举例说明. 关键词:不定方程;二元一次不定方程;数学竞赛;公务员试题

Abstract The integral solutions of indeterminate equation solving method is an important content of elementary number theory, has been widely used in related disciplines and in real life. This paper summarizes the integer separation method, coefficient decreases and the Euclidean algorithm and several commonly used two element indefinite equation solution, secondly is further discussed. For n linear indeterminate equation and the method of two time indefinite equation integer solution, and finally discusses the indeterminate equation applied in secondary school mathematics, civil servants for test and other subjects, and illustrated with examples. Key words: i ndeterminate equation; two element indefinite equation; Mathematics contest; civil service examination.

高中数学竞赛基础知识讲解

高中数学竞赛基本知识集锦 广州市育才中学数学科 邓军民 整理 一、三角函数 常用公式 由于是讲竞赛,这里就不再重复过于基础的东西,例如六种三角函数之间的转换,两角和与差的三角函数,二倍角公式等等。但是由于现在的教材中常用公式删得太多,有些还是不能不写。先从最基础的开始(这些必须熟练掌握): 半角公式 2cos 12 sin α α -± = 2 cos 12 cos α α +± = α α ααααα cos 1sin sin cos 1cos 1cos 12 tan +=-=+-± = 积化和差 ()()[]βαβαβα-++= sin sin 21 cos sin ()()[]βαβαβα--+=sin sin 21 sin cos ()()[]βαβαβα-++=cos cos 21 cos cos ()()[]βαβαβα--+-=cos cos 2 1 sin sin 和差化积 2cos 2sin 2sin sin β αβ αβα-+=+ 2sin 2cos 2sin sin β αβαβα-+=- 2cos 2cos 2cos cos β αβαβα-+=+ 2 sin 2sin 2cos cos β αβαβα-+-=- 万能公式 α αα2 tan 1tan 22sin += α α α2 2tan 1tan 12cos +-= α α α2 tan 1tan 22tan -=

三倍角公式 ()() αααααα+-=-=οο60sin sin 60sin 4sin 4sin 33sin 3 ()() αααααα+-=-=οο60cos cos 60cos 4cos 3cos 43cos 3 二、某些特殊角的三角函数值 三、三角函数求值 给出一个复杂的式子,要求化简。这样的题目经常考,而且一般化出来都是一个具体值。要熟练应用上面的常用式子,个人认为和差化积、积化和差是竞赛中最常用的,如果看到一些不常用的角,应当考虑用和差化积、积化和差,一般情况下直接使用不了的时候,可以考虑先乘一个三角函数,然后利用积化和差化简,最后再把这个三角函数除下去 举个例子 求值:7 6cos 74cos 72cos π ππ++ 提示:乘以7 2sin 2π ,化简后再除下去。 求值:??-?+?80sin 40sin 50cos 10cos 2 2 来个复杂的 设n 为正整数,求证 n n n i n i 21 212sin 1 += +∏=π 另外这个题目也可以用复数的知识来解决,在复数的那一章节里再讲 四、三角不等式证明 最常用的公式一般就是:x 为锐角,则x x x tan sin <<;还有就是正余弦的有界性。 例 求证:x 为锐角,sinx+tanx<2x

高中数学竞赛讲义-同余

§27同余 1.设m 是一个给定的正整数,如果两个整数a 与b 用m 除所得的余数相同,则称a 与b 对模同余,记作)(mod m b a ≡,否则,就说a 与b 对模m 不同余,记作)(mod m b a ≡,显然,)(|)(,)(mod b a m Z k b km a m b a -?∈+=?≡; 每一个整数a 恰与1,2,……,m ,这m 个数中的某一个同余; 2.同余的性质: 1).反身性:)(mod m a a ≡; 2).对称性:)(mod )(mod m a b m b a ≡?≡; 3).若)(mod m b a ≡,)(mod m c b ≡则)(mod m c a ≡; 4).若)(m od 11m b a ≡,)(m od 22m b a ≡,则)(m od 2121m b b a a ±≡± 特别是)(mod )(mod m k b k a m b a ±≡±?≡; 5).若)(m od 11m b a ≡,)(m od 22m b a ≡,则)(m od 2121m b b a a ≡; 特别是)(m od ),(m od m bk ak Z k m b a ≡?∈≡则 )(m od ),(m od m b a N n m b a n n ≡?∈≡则; 6).)(mod )(m ac ab c b a +≡+; 7).若)(m od 1),(),(m od m b a m c m bc ac ≡=≡时,则当 )(mod )(mod ).(mod ),(m b a mc bc ac d m b a d m c ≡?≡≡=特别地,时,当; 8).若)(m o d 1m b a ≡, )(m od 2m b a ≡ )(mod 3m b a ≡ ……………… )(mod n m b a ≡,且)(m od ],,[21M b a m m m M n ≡??=,则 例题讲解 1.证明:完全平方数模4同余于0或1; 2.证明对于任何整数0≥k ,1532 6161 6+++++k k k 能被7整除;

高中数学竞赛专题讲座---竞赛中的数论问题

竞赛中的数论问题的思考方法 一. 条件的增设 对于一道数论命题,我们往往要首先排除字母取零值或字母取相等值等“平凡”的情况,这样,利用字母的对称性等条件,往往可以就字母间的大小顺序、整除性、互素性等增置新的条件,从而便于运用各种数论特有手段。 1. 大小顺序条件 与实数范围不同,若整数x ,y 有大小顺序x m ,而令n =m +u 1,n >u 1≥1,得-2 (m -1mu 1)(22112=--u mu m 。同理,又可令m = u 1+ u 2,m >u 2≥1。如此继续下去将得u k+1= u k =1,而11+-+=i i i u u u ,i ≤k 。故n m u u u u k k ,,,,,,121 +是不大于1981的裴波那契数,故m =987,n =1597。 例2. (匈牙利—1965)怎样的整数a ,b ,c 满足不等式?233222c b ab c b a ++<+++ @ 解:若直接移项配方,得01)1()12(3)2(222<--+-+-c b b a 。因为所求的都是整数,所以原不等 式可以改写为:c b ab c b a 234222++≤+++,变形为:0)1()12 (3)2(222≤-+-+-c b b a ,从而只有a =1, b =2, c =1。 2. 整除性条件 对于整数x ,y 而言,我们可以讨论其整除关系:若x |y ,则可令y =tx ;若x ?y ,则可令y =tx +r ,0,则q a b +≥。结合高斯函数,设n 除以k ,余数为r ,则有r k k n n +?? ????=。还可以运用抽屉原理,为同余增设一些条件。整除性与大小顺序结合,就可有更多的特性。 例3. 试证两相继自然数的平方之间不存在自然数a q )由p ,q 的互素性易知必有q |a ,q |b 。这样,由b >a 即得q a b +≥。(有了三个不等式,就可对 q p 的范围进行估计),从而q n n q a d b d q p q q q ++<+≤=<+=+22)1(111。于是将导致矛盾的结果:0)(2<-q n 。这里,因为a ,b 被q 整除,我们由b >a 得到的不仅是b ≥a +1,而是更强的条件b ≥a +q 。 例4. (IMO-25)设奇数a ,b ,c ,d 满足0

高中数学竞赛讲义(8)平面向量

高中数学竞赛讲义(八) ──平面向量 一、基础知识 定义1 既有大小又有方向的量,称为向量。画图时用有向线段来表示,线段的长度表示向量的模。向量的符号用两个大写字母上面加箭头,或一个小写字母上面加箭头表示。书中用黑体表示向量,如a. |a|表示向量的模,模为零的向量称为零向量,规定零向量的方向是任意的。零向量和零不同,模为1的向量称为单位向量。 定义2 方向相同或相反的向量称为平行向量(或共线向量),规定零向量与任意一个非零向量平行和结合律。 定理1 向量的运算,加法满足平行四边形法规,减法满足三角形法则。加法和减法都满足交换律和结合律。 定理2 非零向量a, b共线的充要条件是存在实数0,使得a=f 定理 3 平面向量的基本定理,若平面内的向量a, b不共线,则对同一平面内任意向是c,存在唯一一对实数x, y,使得c=xa+yb,其中a, b称为一组基底。

定义 3 向量的坐标,在直角坐标系中,取与x 轴,y轴方向相同的两个单位向量i, j作为基底,任取一个向量c,由定理3可知存在唯一一组实数x, y,使得c=xi+yi,则(x, y)叫做c坐标。 定义4 向量的数量积,若非零向量a, b的夹角为,则a, b的数量积记作a·b=|a|·|b|cos =|a|·|b|cos,也称内积,其中|b|cos叫做b 在a上的投影(注:投影可能为负值)。 定理4 平面向量的坐标运算:若a=(x1, y1), b=(x2, y2), 1.a+b=(x1+x2, y1+y2), a-b=(x1-x2, y1-y2), 2.λa=(λx1, λy1), a·(b+c)=a·b+a·c, 3.a·b=x 1x2+y1y2, cos(a, b)=(a, b0), 4. a//b x1y2=x2y1, a b x1x2+y1y2=0. 定义5 若点P是直线P1P2上异于p1,p2的一点,则存在唯一实数λ,使,λ叫P分所成的比,若O为平面内任意一点,则。由此可得若 P1,P,P2的坐标分别为(x1, y1), (x, y), (x2, y2),则 定义6 设F是坐标平面内的一个图形,将F上所有的点按照向量a=(h, k)的方向,平移|a|=个单位得到图形,这一过程叫做平移。设p(x, y)是F上任意一点,平移 到上对应的点为,则称为平移公式。 定理5 对于任意向量a=(x1, y1), b=(x2, y2), |a·b|≤|a|·|b|,并且|a+b|≤|a|+|b|.

相关文档
最新文档