电容器参数的基本公式

电容器参数的基本公式
电容器参数的基本公式

电容器参数的基本公式1、容量(法拉)

英制: C = ( × K · A) / TD

公制: C = ( × K · A) / TD

2、电容器中存储的能量

E = CV2

3、电容器的线性充电量

I = C (dV/dt)

4、电容的总阻抗(欧姆)

Z = √ [ R

S 2 + (X

C

– X

L

) 2 ]

5、容性电抗(欧姆)

X

C

= 1/(2πfC)

相位角Ф

理想电容器:超前当前电压 90o

理想电感器:滞后当前电压 90o

理想电阻器:与当前电压的相位相同

7、耗散系数 (%)

. = tg δ(损耗角)

= ESR / X

C

= (2πfC)(ESR)

8、品质因素

Q = cotan δ = 1/ DF

9、等效串联电阻ESR(欧姆)

ESR = (DF) XC = DF/ 2πfC

10、功率消耗

Power Loss = (2πfCV2) (DF)

11、功率因数

PF = sin δ (loss angle) – cos Ф (相位角) 12、均方根

rms = × V

p

13、千伏安KVA (千瓦)

KVA = 2πfCV2× 10-3

14、电容器的温度系数

. = [ (C

t – C

25

) / C

25

(T

t

– 25) ] × 106

15、容量损耗(%)

CD = [ (C

1– C

2

) / C

1

] × 100

16、陶瓷电容的可靠性

L

0 / L

t

= (V

t

/ V

) X (T

t

/ T

)Y

17、串联时的容值

n 个电容串联:1/C

T = 1/C

1

+ 1/C

2

+ …. + 1/C

n

两个电容串联:C

T = C

1

· C

2

/ (C

1

+ C

2

)

18、并联时的容值

C

T = C

1

+ C

2

+ …. + C

n

19、重复次数(Againg Rate)

. = % ΔC / decade of time

上述公式中的符号说明如下:

K = 介电常数 A = 面积 TD = 绝缘层厚度 V = 电压 t = 时间 RS = 串联电阻

f = 频率 L = 电感感性系数δ = 损耗角Ф = 相位角 L0 =使用寿命 Lt = 试验寿命

V t = 测试电压 V

= 工作电压 T

t

= 测试温度 T

= 工作温度 X

, Y = 电压与温度的效应指数。

电容的等效串联电阻ESR

普遍的观点是:一个等效串联电阻(ESR)很小的相对较大容量的外部电容能很好地吸收快速转换时的峰值(纹波)电流。但是,有时这样的选择容易引起稳压器(特别是线性稳压器 LDO)的不稳定,所以必须合理选择小容量和大容量电容的容值。永远记住,稳压器就是一个放大器,放大器可能出现的各种情况它都会出现。

由于 DC/DC 转换器的响应速度相对较慢,输出去耦电容在负载阶跃的初始阶段起主导的作用,因此需要额外大容量的电容来减缓相对于 DC/DC 转换器的快速转换,同时用高频电容减缓相对于大电容的快速变换。通常,大容量电容的等效串联电阻应该选择为合适的值,以便使输出电压的峰值和毛刺在器件的Dasheet 规定之内。

高频转换中,小容量电容在μF 到μF 量级就能很好满足要求。表贴陶瓷电容或者多层陶瓷电容(MLCC)具有更小的 ESR。另外,在这些容值下,它们的体积和 BOM 成本都比较合理。如果局部低频去耦不充分,则从低频向高频转换时将引起输入电压降低。电压下降过程可能持续数毫秒,时间长短主要取决于稳压器调节增益和提供较大负载电流的时间。用ESR 大的电容并联比用 ESR 恰好那么低的单个电容当然更具成本效益。然而,这需要你在 P CB 面积、器件数目与成本之间寻求折衷。

电容器的选择及分类

通常,应该如何为我们的电路选择一颗合适的电容呢应基于以下几点考虑:

1、静电容量;

2、额定耐压;

3、容值误差;

4、直流偏压下的电容变化量;

5、电容的类型;

6、电容的规格。

那么,是否有捷径可寻呢其实,电容作为器件的外围元件,几乎每个器件的 Datasheet 或者 Solutions,都比较明确地指明了外围元件的选择参数,也就是说,据此可以获得基本的器件选择要求,然后再进一步完善细化之。

其实选用电容时不仅仅是只看容量和封装,具体要看产品所使用环境,特殊的电路必须用特殊的电容。

下面是 chip capacitor 根据电介质的介电常数分类,介电常数直接影响电路的稳定性。

NP0 or CH (K < 150):

电气性能最稳定,基本上不随温度﹑电压与时间的改变而改变,适用于对稳定性要求高的高频电路。鉴于K 值较小,所以在0402、060 3、0805 封装下很难有大容量的电容。如 0603 一般最大的 10nF以下。

X7R or YB (2000 < K < 4000):

电气性能较稳定,在温度﹑电压与时间改变时性能的变化并不显著(ΔC < ±10%)。适用于隔直、偶合、旁路与对容量稳定性要求不太高的全频鉴电路。

Y5V or YF(K > 15000):

容量稳定性较 X7R 差(ΔC < +20% ~ -80%),容量﹑损耗对温度、电压等测试条件较敏感,但由于其K 值较大,所以适用于一些容值要求较高的场合。

电容的分类

电容的分类方式及种类很多,基于电容的材料特性,其可分为以下几大类:铝电解电容

电容容量范围为μF ~ 22000μF,高脉动电流、长寿命、大容量的不二之选,广泛应用于电源滤波、解藕等场合。

薄膜电容

电容容量范围为~ 10μF,具有较小公差、较高容量稳定性及极低的压电效应,因此是X、Y 安全电容、EMI/EMC 的首选。

钽电容

电容容量范围为μF ~ 560μF,低等效串联电阻(ESR)、低等效串联电感(ESL)。脉动吸收、瞬态响应及噪声抑制都优于铝电解电容,是高稳定电源的理想选择。

陶瓷电容

电容容量范围为~ 100μF,独特的材料和薄膜技术的结晶,迎合了当今“更轻、更薄、更节能“的设计理念。

超级电容

电容容量范围为~ 70F,极高的容值,因此又称做“金电容”或者“法拉电容”。主要特点是:超高容值、良好的充/放电特性,适合于电能存储和电源备份。缺点是耐压较低,工作温度范围较窄。

电容器在电路中的作用

作为无源元件之一的电容,其作用不外乎以下几种:

1、应用于电源电路,实现旁路、去藕、滤波和储能的作用。下面分类详述之:

1)旁路

旁路电容是为本地器件提供能量的储能器件,它能使稳压器的输出均匀化,降低负载需求。就像小型可充电电池一样,旁路电容能够被充电,并向器件进行放电。为尽量减少阻抗,旁路电容要尽量靠近负载器件的供电电源管脚和地管脚。这能够很好地防止输入值过大而导致的地电位抬高和噪声。地弹是地连接处在通过大电流毛刺时的电压降。

2)去藕

去藕,又称解藕。从电路来说,总是可以区分为驱动的源和被驱动的负载。如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作,这就是所谓的“耦合”。去藕电容就是起到一个“电池”的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。

将旁路电容和去藕电容结合起来将更容易理解。旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径。高频旁路电容一般比较小,根据谐振频率一般取μF、μF 等;而去耦合电容的容量一般较大,可能是10μF 或者更大,依据电路中分布参数、以及驱动电流的变化大小来确定。

旁路是把输入信号中的干扰作为滤除对象,而去耦是把输出信号的干扰作为滤除对象,防止干扰信号返回电源。这应该是他们的本质区别。

3)滤波

从理论上(即假设电容为纯电容)说,电容越大,阻抗越小,通过的频率也越高。但实际上超过1μF 的电容大多为电解电容,有很大的电感成份,所以频率高后反而阻抗会增大。有时会看到有一个电容量较大电解电容并联了一个小电容,这时大电容通低频,小电容通高频。电容的作用就是通高阻低,通高频阻低频。电容越大低频越容易通过,电容越大高频越容易通过。具体用在滤波中,大电容(1000μF)滤低频,

小电容(20pF)滤高频。曾有网友形象地将滤波电容比作“水塘”。由于电容的两端电压不会突变,由此可知,信号频率越高则衰减越大,可很形象的说电容像个水塘,不会因几滴水的加入或蒸发而引起水量的变化。它把电压的变动转化为电流的变化,频率越高,峰值电流就越大,从而缓冲了电压。滤波就是充电,放电的过程。

4)储能

储能型电容器通过整流器收集电荷,并将存储的能量通过变换器引线传送至电源的输出端。电压额定值为40~450VDC、电容值在220~150 000μF 之间的铝电解电容器(如EPCOS 公司的 B43504 或B 43505)是较为常用的。根据不同的电源要求,器件有时会采用串联、并联或其组合的形式,对于功率级超过10KW 的电源,通常采用体积较大的罐形螺旋端子电容器。

2、应用于信号电路,主要完成耦合、振荡/同步及时间常数的作用:

1)耦合

举个例子来讲,晶体管放大器发射极有一个自给偏压电阻,它同时又使信号产生压降反馈到输入端形成了输入输出信号耦合,这个电阻就是产生了耦合的元件,如果在这个电阻两端并联一个电容,由于适当容量的电容器对交流信号较小的阻抗,这样就减小了电阻产生的耦合效应,故称此电容为去耦电容。

2)振荡/同步

包括RC、LC 振荡器及晶体的负载电容都属于这一范畴。

3)时间常数

这就是常见的 R、C 串联构成的积分电路。当输入信号电压加在输入端时,电容(C)上的电压逐渐上升。而其充电电流则随着电压的上升而减小。电流通过电阻(R)、电容(C)的特性通过下面的公式描述:

i = (V / R)e - (t / CR)

高压并联电容器装置说明书

高压并联电容器装置说明书 一.概述 1.1产品适用范围与用途 TBB型高压并联电容器装置(以下简称装置),主要用于3~ 110kV,频率为50Hz的三相交流电力系统中,用以提高功率因数,调整网络电压,降低线路损耗,改善供电质量,提高供配电设备的使用效率的容性无功补偿装置。 1.2型号、规格 及外形尺寸 1.2.1型号说明 装置的保护方式通常与电容器组的接线方式有关系,一般的有

AK、AC、AQ和BC、BL之分。 1.2.2执行标准 GB 50227 标称电压1kV以上交流电力系统用并联电容器 GB 10229 电抗器 GB 311.1 高压输变电设备的绝缘配合 GB 50060 3~110kV高压配电装置设计规范 JB/T 5346 串联电抗器 JB/T 7111 高压并联电容器装置 DL/T 840 高压并联电容器使用技术条件 其它现行国家标准。 DL/T 604 高压并联电容器装置订货技术条件 1.2.3产品规格与外形尺寸 常用的产品规格与柜体外形尺寸如表1~5所示。装置的外形和基础的示意图分如图1、图2所示。 产品规格与外形尺寸 注:以下尺寸仅供参考,实际尺寸根据用户情况而定。以单台电容额定电压11/3kV 表格 1 卧式-阻尼电抗后置 单位:mm

序 号型号规格额定容量L1 L2 H 额定电 流 (A) 1 TBB10-600/100A K 600 1200 2800 2600 94.5 2 TBB10-900/100A K 900 1200 3100 2600 141.7 3 TBB10-1000/334A K 1000 1200 2100 2600 157.5 4 TBB10-2000/334A K 2000 1200 2800 2600 315 5 TBB10-2400/200A K 2400 1200 3400 2600 378 6 TBB10-3000/334A K 3000 1200 3000 2600 472.4 7 TBB10-3600/200A K 3600 1200 4000 2600 566.9 8 TBB10-4008/334A K 4008 1200 3400 2600 631.2 9 TBB10-4200/200A K 4200 1200 4400 2600 661.4 10 TBB10-4800/200A4800 1200 4600 2600 755.9

电容器主要技术参数的标注方法

电容器主要技术参数的标注方法: 1.直标法 指在电容器的表面直接用数字和单位符号或字母标注出标称容量和耐压等。 例某电容器上标CD—1、2200μF、35V,表示这是一个铝电解电容器,标称容量 为2200μF,耐压为35V。 某电容器上标CA1—1、2.2±5%、DC63V,表示这是一个钽电解电容器,标称容量 为2.2μF,允许误差为±5%,直流耐压为63V。 2.数字加字母标注法 指用数字和字母有规律的组合来表示容量,字母既表示小数点,又表示后缀单位。 例 p10表示0.1pF 1p0表示1pF 6P 8表示6.8pF 2μ2表示2.2μF 7p5表示7.5 pF 2n2表示2.2nF 8n2表示8200pF M1表示0.1μF 3m3表示3300μ F G1表示100μF 3.数码标注法 数码标注法多用于非电解电容器的标注,它采用三位数标注和四位数标注: 1)三位数标注法采用三位数标注的电容器,前两位数字表示标称值的有效数 字,第三位表示有效数字后缀零的个数,它们的单位是pF。这种标注法中有一个特殊的, 就是当第三位数字是9时,它表示有效数字乘以10-1。 例102表示标称容量是1000pF,即1nF; 473表示标称容量是47000pF,即47nF。479表示标称容量是 4.7pF。 2) 四位数标注法采用四位数标注的电容器不标注单位。这种标注方法是用1 ~4位数字表示电容量,其容量单位是pF;若用0.0X或0.X时,其单位为μF。

例 47表示标称容量是47 pF ;0.56表示标称容量是0.56μF 。 采用数码标注的,有些后面带的还有字母,它表示允许误差。识别方法: D——±0.5% F——±1% G——±2% J——±5% K——±10% M——±20% 例 223J表示标称容量是22000 pF,误差为±5% 。 4.电容器容量允许误差的标注方法 电容器容量允许误差的标注方法主要有三种: 1)用字母表误差 识别方法: B——±0.1% C——±0.25% D——±0. 5% F——±1% G——±2% J——±5% K——±10% M——±20% N——±30% 例 223J表示标称容量是22000 pF,误差为±5% 。 2)直接标出误差的值 例33 pF±0.2 pF则表示电容器的标称容量是33 pF,允许误差是±0.2 pF。 3)直接用数字表示百分比的误差 例 0.33/5 则表示电容器的标称容量是0.33μF,允许误差是±5%

电容器计算公式(2013_04_21)

电容器计算公式 电容器串并联容量 并联:C=C1+C2+…… 串联:2 121C C C C C +?= 电容器总容量 3.0.2 本条是并联电容器装置总容量的确定原则。 如没有进行调相调压计算,一般情况下,电容器容量可按主变压器的容量的10%~30%确定,这就是不具备计算条件时估算电容器安装总容量的简便方法。 谐波 3.0.3 发生谐振的电容器容量,可按下式计算: )1(2K n S Q d cx -= 式中,cx Q ----发生n 次谐波谐振的电容器容量(Mvar)d S ----并联电容器装置安装处的母线短路容量(MVA)n ----谐波次数,即谐波频率与电网基波频率之比K ----电抗率 母线电压升高 5.2.2 本条明确了电容器额定电压选择的主要原则 并联电容器装置接入电网后引起的母线电压升高值可按下式计算: d so s S Q U U =? 式中,s U ?----母线电压升高值(kV) so U ----并联电容器装置投入前的母线电压(kV) Q ---- 母线上所有运行的电容器容量(Mvar) d S ----母线短路容量(MVA) 电容器额定电压 5.2.2 本条明确了电容器额定电压选择的主要原则 电容器额定电压可由公式求出计算值,再从产品标准系列中选取,计算公式如下: )1(305.1K S U U SN CN -= 式中,CN U ----单台电容器额定电压(kV)SN U ----电容器投入点电网标称电压(kV)S ---- 电容器每组的串联段数K ----电抗率

串联电抗器的电抗率 5.5.2 (1)当电网背景谐波为5次及以上时,可配置电抗率4.5%一6%。因为6%的电抗器有明显的放大三次谐波作用,因此,在抑制5次及以上谐波,同时又要兼顾减小对3次谐波的放大,电抗率可选用4.5%。 (2)当电网背景谐波为3次及以上时,电抗率配置有两种方案:全部配12%电抗率,或采用4.5%一6%与12%两种电抗率进行组合。采用两种电抗率进行组合的条件是电容器组数较多,为了节省投资和减小电抗器消耗的容性无功。 电容器对母线短路容量的助增 5.1.2 在电力系统中集中装设大容量的并联电容器组,将会改变装设点的系统网络性质,电容器组对安装点的短路电流起着助增作用,而且助增作用随着电容器组的容量增大和电容器性能的改进(如介质损耗减小、有效电阻降低)、开关动作速度加快而增加。试验研究报告建议:在电容器总容量与安装地点的短路容量之比不超过5%或10%(对应于电抗率K=5%~6%,不超过5%;K=12%~13%,不超过10%),助增作用相对较小,可不考虑。 当K=12%~13%时,%10 d c S Q 式中,c Q ----电容器容量(kVar) d S ----母线短路容量(kVar) 回路导体的额定电流 5.1.3 所以取1.35倍电容器组额定电流作为选择回路设备和导体的条件是安全的也是合理的。 电容器分组原则 3.0.3 变电所装设无功补偿电容器的总容量确定以后,通常将电容器分组安装,分组的主要原则是根据电压波动、负荷变化、谐波含量等因素来确定。

高压并联电容使用说明

产品名称:高电压并联电容器出品单位:西安华超电力电容器有限公司 1 产品用途 本产品适用于频率50Hz电力系统,提高功率因数用的并联电容器。主要用于改善交流电力系统的功率因数,降低线路损耗,提高网路末端电压质量,增大变压器的有功输出。 2 特点 2.1该产品以粗化聚丙烯薄膜及苄基甲苯做介质,电子、电力电容器专用铝箔 为电极,采用无感卷制方式,为扁形元件,元件内部场强分布均匀,容量无衰减、比特性小、寿命长以及优良的电气性能等特点。 2.2采用高真空干燥浸渍技术除去电容器中全部残余水分和空气,填注苄基甲 苯浸渍剂(法国C101)。具有不易导磁、过流大、损耗小等特点,有良 好的耐低温特性。 2.3采用不锈钢外壳封装。两侧带有固定架,陶瓷绝缘子。以及科学合理的引出方式。 3 产品型号及含义

4 技术参数 4.1主要参数 4.1.1额定频率:50Hz 4.1.2端子间试验电压:交流试验电压2.15Un或直流试验电压4.3Un。 4.1.3损耗角正切值:小于0.0009。 4.1.4相数:单相。 4.1.5绝缘水平: 电容器的高压端子与地之间应能承受表1规定的耐受电压。工频耐受电压施加的时间为1min。 表1 绝缘水平(kV) 4.1.6放电电阻:电容器内部装有内放电电阻,从电网断开后,端子上的电压在10分钟内可降至75V以下。 4.1.7电容偏差:±5% 4.1.8电容器组三相最大电容量与最小电容量之比不大于1.01。 4.1.9执行标准:GB/11024-2001《标称电压1kV以上交流电力系统用并联电容器》 4.2过负载 4.2.1电容器可在表2的电压水平下运行。 表2

电容充放电计算公式

标 签:电容充放电公式 电容充电放电时间计算公式设,V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值; Vt 为t时刻电容上的电压值。 则, Vt="V0"+(V1-V0)* [1-exp(-t/RC)] 或, t = RC*Ln[(V1-V0)/(V1-Vt)] 例如,电压为E的电池通过R向初值为0的电容C充电 V0=0,V1=E,故充到t时刻电容上的电压为: Vt="E"*[1-exp(-t/RC)]

再如,初始电压为E的电容C通过R放电 V0=E,V1=0,故放到t时刻电容上的电压为: Vt="E"*exp(-t/RC) 又如,初值为1/3Vcc的电容C通过R充电,充电终值为 Vcc,问充到2/3Vcc需要的时间是多少? V0=Vcc/3,V1=Vcc,Vt=2*Vcc/3,故 t="RC"*Ln[(1-1/3)/(1-2/3)]=RC*Ln2 = 注:以上exp()表示以e为底的指数函数;Ln()是e为底的对数函 解读电感和电容在交流电路中的作用 山东司友毓 一、电感 1.电感对交变电流的阻碍作用 交变电流通过电感线圈时,由于电流时刻都在变化,因此在线圈中就会产生自感电动势,而自感电动势总是阻碍原电流的变化,故电感线圈对交变电流会起阻碍作用,前面我们已经学习过,自感电动势的大小与线圈的自感系数及电流变化的快慢有关,自感系数越大,交变电流的频率越高,产生的自感电动势就越大,对交变电流的阻碍作用就越大,电感对交流的阻碍作用大小的物理量叫做感抗,用X L表示,且X L=2πfL。感抗的大小由线圈的自感系数L和交变电流的频率f共同决定。 2.电感线圈在电路中的作用 (1)通直流、阻交流,这是对两种不同类型的电流而言的,因为恒定电流的电流不变化,不能引起自感现象,所以对恒定电流没有阻碍作用,交流电的电流时刻改变,必有自感

电容计算公式

电容定义式 C=Q/U Q=I*T 电容放电时间计算:C=(Vwork+ Vmin)*l*t/( Vwork2 -Vmin2) 电压(V)= 电流⑴x 电阻(R)电荷量(Q)= 电流⑴x 时间(T)功率(P) = V x I (I=P/U; P=Q*U/T)能量(W) = P x T = Q x V 容量F=库伦(C)/电压(V)将容量、电压转为等效电量电量二电压(V) x 电荷量(C)实例估算:电压5.5V仆(1法拉电容)的电量为5.5C (库伦),电压下限是3.8V,电容放电的有效电压差为5.5-3.8=1.7V ,所以有效电量为1.7C。 1.7C=1.7A*S (安秒)=1700mAS(毫安时)=0.472mAh (安时) 若电流消耗以10mA 计算,1700mAS/10mA=170S=2.83min(维持时间分钟) 电容放电时间的计算 在超级电容的应用中,很多用户都遇到相同的问题,就是怎样计算一定容量的超级电 容在以一定电流放电时的放电时间,或者根据放电电流及放电时间,怎么选择超级电容的容 量,下面我们给出简单的计算公司,用户根据这个公式,就可以简单地进行电容容量、放电电流、放电时间的推算,十分地方便。 C(F):超电容的标称容量; R(Ohms):超电容的标称内阻; ESR(Ohms) 1KZ下等效串联电阻;

Vwork(V):正常工作电压 Vmin(V):截止工作电压; t(s):在电路中要求持续工作时间; Vdrop(V):在放电或大电流脉冲结束时,总的电压降; 1(A):负载电流; 超电容容量的近似计算公式, 保持所需能量=超级电容减少的能量。 保持期间所需能量=1/2l(Vwork+ Vmi n)t ; 超电容减少能量=1/2C(Vwork -Vmin ), 因而,可得其容量(忽略由IR引起的压降) C=(Vwork+ Vmin)*l*t/( Vwork 2 -Vmin 2) 举例如下: 如单片机应用系统中,应用超级电容作为后备电源,在掉电后需要用超级电容维持 100mA的电流,持续时间为10s,单片机系统截止工作电压为4.2V,那么需要多大容量的超级电容能够保证系统正常工作? 由以上公式可知: 工作起始电压Vwork = 5V 工作截止电压Vmin= 4.2V 工作时间t=10s 工作电源I = 0.1A 那么所需的电容容量为:

并联电容器使用说明书

AAM型 滤波电容器 使用说明书杭州银湖电气有限公司

本说明书适用于频率50赫兹交流电力系统提高功率因数用的并联电容器(以下简称电容器) 1、产品型号命名及表示意义 户外式(户内式不用字母表示) 相数(1表示单相,3表示三相) (千乏,kvar) (千伏,kV) [F表示二芳基乙烷,A表示苄基甲苯] 例如:AFM11/√3—100—1W。 表示:滤波电容器,二芳基乙烷浸渍全膜介质,额定电压为11/√3千伏,额定容量为100千乏,单相,户外式。 2、结构 电容器由箱壳和芯子组成,箱壳用薄钢板密封焊接制成。箱壳盖上焊有出线瓷套,箱壁两侧焊有供安装用的吊攀,一侧吊攀上装有接地螺栓。 电容器芯子由若干个元件和绝缘件迭压组成。元件用电容器膜作为介质,铝箔作极板卷制组成。为适应各种电压,在芯子中元件接成并联或串联,根据用户需要可在电容器内部装有放电电阻。千伏及以上的电容器每台可配备单独的外装熔断器。 3、技术数据 所有系列电容器装置于普通气候条件,在环境温度-50℃~+55℃,海拔高度不超过1000 米的地区使用。 电容器的实测电容与额定值的偏差不超过标准值的+10%~-5%。

电容器在工频交流的额定电压下,温度为20℃时的损耗角正切(tgδ)值应符合表1。凡 内部装有放电电阻的电容器损耗角正切值允许增大。 电容器及电容器元件的工频稳态过电压和相应的运行时间应符合表2。为了延长电容器的 使用寿命,电容器应经常维持在不超过额定电压下运行。 持续1/2周波的过渡过电压。 电容器应能承受第一个峰值电压不超过2√2U n 电容器允许在由于电压升高及高次谐波引起的不超过的稳态过电流下长期运行。对于电容量有最大正偏差的电容器,这种过电流允许达到。为了延长电容器的使用寿命,电容器应维持在额定电流下运行。 电容器应能承受100倍电容器额定电流的涌流冲击,每年这样的涌流冲击不超过1000次,其中若干次是在电容器内部温度低于0℃与下限温度之间发生的。 内部并有放电电阻的电容器,从电网断开后,端子上的电压在10分钟内应降到75伏以下。 4、运输、搬运及保存 为了免于损坏,在搬运至较远的地方时,电容器必须装在密封的塑料袋内,然后再装入包装木箱。电容器之间,电容器与木箱内壁之间应填以软状物,谨防电容器受潮及互相碰撞。 在运输时,电容器应直立(套管向上),严禁拿电容器套管进行搬运。 4.3户内式电容器应该保存在能防雨雪及无腐蚀性及气体的房屋内,应使周围 空气温度在第3.1条规定的范围内,应避免灰尘直接落在电容器上,并应严防任何热源的影响。 4.4在保存期间,电容器应直立放置,套管向上,不允许不加支撑将一台电容器迭置于另 一台电容器上。 5、验收 用户收到电容器时,应该先检查外观即检查箱壳,瓷套,出线导杆,接地螺栓和铭牌的正确性以及是否漏油。 验收时,如果检查电容器的电容,应用测量相对误差不大于3%的仪器进行。三相电容器应按表3所示方法进行确定。 6、安装

常用电容器主要参数与特点

常用电容器主要参数与特点 1、标称电容量和允许偏差 标称电容量是标志在电容器上的电容量。 电解电容器的容值,取决于在交流电压下工作时所呈现的阻抗。因此容值,也就是交流电容值,随着工作频率、电压以及测量方法的变化而变化。在标准JISC 5102 规定:铝电解电容的电容量的测量条件是在频率为 120Hz,最大交 流电压为(Voltage Root Mean Square,通常指交流电压的有效值),DC bias (直流偏压直流偏置直流偏移直流偏磁)电压为~的条件下进行。可以断言,铝电解电容器的容量随频率的增加而减小。 电容器中存储的能量 E = CV^2/2 电容器的线性充电量 I = C (dV/dt) 电容的总阻抗(欧姆) Z = √ [ RS^2 + (XC – XL)^2 ] 容性电抗(欧姆) XC = 1/(2πfC)

电容器实际电容量与标称电容量的偏差称误差,在允许的偏差范围称精度。 精度等级与允许误差对应关系:00(01)-±1%、0(02)-±2%、Ⅰ-±5%、Ⅱ-±10%、Ⅲ-±20%、Ⅳ-(+20%-10%)、Ⅴ-(+50%-20%)、Ⅵ-(+50%-30%) 一般电容器常用Ⅰ、Ⅱ、Ⅲ级,电解电容器用Ⅳ、Ⅴ、Ⅵ级,根据用途选取。 2、额定电压 在最低环境温度和额定环境温度下可连续加在电容器的最高直流电压有效值,一般直接标注在电容器外壳上,如果工作电压超过电容器的耐压,电容器击穿,造成不可修复的永久损坏。 3、绝缘电阻 直流电压加在电容上,并产生漏电电流,两者之比称为绝缘电阻。 当电容较小时,主要取决于电容的表面状态,容量〉时,主要取决于介质的性能,绝缘电阻越大越好。 电容的时间常数:为恰当的评价大容量电容的绝缘情况而引入了时间常数,他等于电容的绝缘电阻与容量的乘积。 4、损耗 电容在电场作用下,在单位时间内因发热所消耗的能量叫做损耗。各类电容都规定了其在某频率范围内的损耗允许值,电容的损耗主要由介质损耗,电导损耗和电容所有金属部分的电阻所引起的。

电容计算公式

电容计算公式 教你两条不变应万变得原理: 1.电容器的计算依据是高斯通量定理和电压环流定律; 2.电感的计算依据是诺伊曼公式。要一两个答案查书就够了,要成高手只能靠你自己~慢慢学,慢慢练。 容量是电容的大小与电压没有关系。电压是电容的耐压范围。可变电容一般用在低压电路中电容的计算公式: 平板C=Q/U=Q/Ed=εS/4πkd 1. 所以E=4πkQ/εS即场强E与两板间距离d无关。2.当电容器两端接电时,即电压U一定时,U=Ed,所以U和d成正比。 容抗用XC表示,电容用C(F)表示,频率用f(Hz)表示,那么Xc=1/2πfc 容抗的单位是欧。知道了交流电的频率f和电容C,就可以用上式把容抗计算出来。 感抗用XL表示,电感用L(H)表示,频率用f(Hz)表示,那么XL=2πfL感抗的单位是欧。知道了交流电的频率f和线圈的电感L,就可以用上式把感抗计算出来。 已知容抗与感抗,则对应的电压与电流可以用欧姆定律算出,如果电容与电阻和电感一起使用,就要考虑相位关系了。 2、电容器的计算公式: C=Q\U =S\4*3.1415KD Q为电荷量 U为电势差 S为相对面积 D为距离 3.1415实际是圆周率 K为静电力常数并联:C=C1+C2 电路中各电容电压相等;总电荷量等于各电容电荷量之和。串 联:1/C=1/C1+1/C2 电路中各电容电荷量相等;总电压等于各电容电压之和。 电容并联的等效电容等于各电容之和!电容的并联使总电容值增大。当电容的耐压值符合要求,但容量不够时,可将几个电容并联。

3、Q=UI=I2Xc=U2/Xc 这是单相电容的 Xc=1/2*3.14fc 为什么我看到一个三相电容上面标的额定容量是30Kvar,而额定容量是472微法。额定电压是450伏。额定电流是38.5安三角接法, 答:C,KVar/(U×U×2×π×f×0.000000001) ,30/(450×450×2×3.14×50×0.000000001)?472(μF) 4、我知道电容公式有C=εS/D和C=Q/U,那么他们与电容"C"的关系,我特别想知道:我知道"U"与电容成反比,但是我在听老师讲时,没听到为什么成反比,就像知道"Q"与电容的关系时,就明白,一个电容放得的电荷越多就越大,还有"ε"是什么,与电容有什么关系, 再请问在计算中应注意什么,电容是如何阻直通交的呢, 五一长假除了旅游还能做什么, 辅导补习美容养颜家庭家务加班须知 答:电容c是常数,只跟自身性质有关,即使没有电压,电荷它也是存在的,ε是介电,跟电介质的性质有关,交流能不停的对电容充电放电(因为交流的方向是变化的),二直流无此性质,所以通交流阻直流,更专业的话,大学物理里面会讲,如果你要求不高的话就不用深究了 5、电 容降压 在常用的低压电源中,用电容器降压(实际是电容限流)与用变压器相比,电容降压的电源体积小、经济、可靠、效率高,缺点是不如变压器变压的电源安全。通过电容器把交流电引入负载中,对地有220V电压,人易触电,但若用在不需人体接触的电路内部电路电源中, 本弱点也可克服。如冰箱电子温控器或遥控电源的开/关等电源都是用电容器降压而制作的。 相对于电阻降压,对于频率较低的50Hz交流电而言,在电容器上产生的热能损耗很小,所以电容器降压更优于电阻降压。

无功补偿电容器运行特性参数选取

无功补偿电容器运行特性参数选取 1 电力电容器及其主要特性参数 电力电容器是无功补偿装置的主要部件。随着技术进步和工艺更新,纸介质电容器已被 自愈式电容器所取代,自愈式电容器采用在电介质中两面蒸镀金属体为电极,其最大的改进是电容器在电介质局部击穿时其绝缘具有自然恢复性能,即电介质局部击穿时,击穿处附近的金属涂层将熔化和气化并形成空洞,由此虽然会造成极板面积减少使电容C 及相应无功功率有所下降,但不影响电容器正常运行。 自愈式电容器主要特性参数有额定电压、电容、无功功率。 1. 1 额定电压 《自愈式低电压并联电容器》第3. 2 条规定“电容器额定电压优先值如 下0. 23 ,0. 4 ,0. 525 及0. 69 kV。”电容器额定电压选取一般比电气设备额定运行电压高5 %。 1. 2 电容 电容器的电容是极板上的电荷相对于极板间电压的比值,该值与极板面积、极板间绝缘 厚度和绝缘介质的介电系数有关, 其计算式为C = 1 4πε× S D 式中ε为极板间绝缘介质的介电系数; S 为电容器极板面积; D 为电容器绝缘层厚度。 在上式中,电容C 数值与电压无直接关系, C 值似乎仅取决于电容器极板面积和绝缘介质,但这只是电容器未接网投运时的静态状况;接网投运后,由于电介质局部击穿造成极板面积减少从而会影响到电容C 数值降低,因此运行过程中, 电容C 是个逐年衰减下降的变量,其衰减速度取决于运行电压状况和自身稳态过电压能力。出厂电容器的电容值定义为静态电 容。一般,投运后第一年电容值下降率应在2 %以内,第二年至第五年电容值下降率应在1 %~ 2 % ,第五年后因电介质老化,电容值将加速下降,当电容值下降至出厂时的85 %以下,可认为该电容器寿命期结束。 1. 3 无功功率 在交流电路中,无功功率QC = UI sinφ由于电容器电介质损耗角极小,φ= 90°,所以sin φ= 1 ,则无功功率QC = UI =ωCU2 ×10 - 3 = 2πf CU2 ×10 - 3 (μF) ,从该式可见,电容器无功功率不仅取决于电容C ,而且还与电源频率f 、端电压U 直接相关,电容器额定无功功率的准确定义应是标准频率下外接额定电压时静态电容C 所对应的无功率。接网投运后电容器所输出实际无功功率能否达到标定容量,则需视运行电压状况。当电网电压低于电容器额定电压时,电容器所输出的无功功率将小于标定值。因此如果电容器额定电压选择偏高,电容器实际运行电压长期低于额定值,很可能因电容器无功出力低于设计值造成电网无功短 缺。 2 无功补偿电容装置参数的选取误区 无功补偿装置在进行设计选型及设备订货时,提供给厂家的参数往往仅是电容补偿柜型 号和无功功率数值,而电容器额定电压及静态电容值这两个重要参数常被忽略。由于电容器 生产厂家对产品安装处电压状况不甚了解,在产品设计时往往侧重于降低产品生产成本和减 少电介质局部击穿,所选取的电容器额定电压往往高于国家标准推荐值,这样做对电网运行的无功补偿效果会造成什么影响对电网建设投资又会引起什么变化呢可通过以下案例进行 分析。 例如某台10 0. 4 kV 变压器,按照功率因数0. 9 的运行要求,需在变压器低压侧进行集中 无功补偿,经计算需补偿无功功率100 kvar ,如果按额定电压U = 450 V 配置电容器,根据QC=ωCU2 ×10 - 3 计算,电容器组的静态电容值C 为1 572μF ,接入电网后在运行电压U =400 V 的状态下,该电容器实际向电网提供的无功功率QC 为79 kvar ,补偿效果仅达预期的79 %。反之,在上述条件下,要想保证实际补偿效果为100 kvar ,则至少需配置电容器无功功率为127 kvar ,也就意味着设备投资需要增加27 %。中山市2004 年变压器增加898 台,合计容量近60 万kvar ,按30 %补偿率计需补偿无功功率近18 万kvar 。

电容的选取与充放电时间的计算

电容的选取与充放电时间的计算 电容的选取: 电容在电路中实际要承受的电压不能超过它的耐压值。在滤波电路中,电容的耐压值不要小于交流有效值的1.42倍。使用电解电容的时候,还要注意正负极不要接反。 不同电路应该选用不同种类的电容。揩振回路可以选用云母、高频陶瓷电容,隔直流可以选用纸介、涤纶、云母、电解、陶瓷等电容,滤波可以选用电解电容,旁路可以选用涤纶、纸介、陶瓷、电解等电容。 电容在装入电路前要检查它有没有短路、断路和漏电等现象,并且核对它的电容值。安装的时候,要使电容的类别、容量、耐压等符号容易看到,以便核实。 电容的原理: 在电子线路中,电容用来通过交流而阻隔直流,也用来存储和释放电荷以充当滤波器,平滑输出脉动信号。小容量的电容,通常在高频电路中使用,如收音机、发射机和振荡器中。大容量的电容往往是作滤波和存储电荷用。而且还有一个特点,一般1μF以上的电容均为电解电容,而1μF以下的电容多为瓷片电容,当然也有其他的,比如独石电容、涤纶电容、小容量的云母电容等。电解电容有个铝壳,里面充满了电解质,并引出两个电极,作为正(+)、负(-)

极,与其它电容器不同,它们在电路中的极性不能接错,而其他电容则没有极性。 把电容器的两个电极分别接在电源的正、负极上,过一会儿即使把电源断开,两个引脚间仍然会有残留电压(学了以后的教程,可以用万用表观察),我们说电容器储存了电荷。电容器极板间建立起电压,积蓄起电能,这个过程称为电容器的充电。充好电的电容器两端有一定的电压。电容器储存的电荷向电路释放的过程,称为电容器的放电。 举一个现实生活中的例子,我们看到市售的整流电源在拔下插头后,上面的发光二极管还会继续亮一会儿,然后逐渐熄灭,就是因为里面的电容事先存储了电能,然后释放。当然这个电容原本是用作滤波的。至于电容滤波,不知你有没有用整流电源听随身听的经历,一般低质的电源由于厂家出于节约成本考虑使用了较小容量的滤波电容,造成耳机中有嗡嗡声。这时可以在电源两端并接上一个较大容量的电解电容(1000μF,注意正极接正极),一般可以改善效果。发烧友制作HiFi音响,都要用至少1万微法以上的电容器来滤波,滤波电容越大,输出的电压波形越接近直流,而且大电容的储能作用,使得突发的大信号到来时,电路有足够的能量转换为强劲有力的音频输出。这时,大电容的作用有点像水库,使得原来汹涌的水流平滑地输出,并可以保证下游大量用水时的供应。

并联电容器通用使用说明书西安西电电力电容器新样本

目录 内容 1、电容器名称和型号…………………………………………….…. 2、主要技术参数及主要技术性能指标…………………………….. 3、主要结构………………………………………………………….. 4、吊运、验收、保存及安装……………………………………….. 5、使用前的试验…………………………………………………….. 6、保护……………………………………………………………….. 7、接通和断开……………………………………………………….. 8、电容器的放电…………………………………………………….. 9、使用中的维护保养及故障排除………………………………… 10、电容器安装容量的确定…………………………………………..

本说明书适用于频率50Hz或60Hz、额定电压1kV以上交流电力系统用并联电容器, 该种电容器主要为工频交流电力系统提供无功功率, 用来提高电网功率因数, 降低损耗, 改进电压质量, 充分发挥发电、供电设备的效率。 西安西电电力电容器有限责任公司( 以下简称西容公司) 高压并联电容器产品性能优良, 质量可靠。电容器开发、设计、制造及试验严格执行IEC60871-1.1997国际电工委员会标准、 GB/T11024- 国家标准和DL/T840- 电力行业标准要求, 某些参数高于标准要求。 1电容器的名称和型号 1.1电容器的名称—高压并联电容器 1.2电容器型号表示方法 其中—以大写的汉语拼音字母表示 —以阿拉伯数字表示 1.2.1系列代号: B—并联电容器 1.2.2介质代号 FM—二芳基乙烷(S油)或苯基乙苯基乙烷( PEPE油) 浸全膜介质 AM—苄基甲苯( C101油) 浸全膜介质 1.2.3第一特征号: 表示额定电压, 以kV为单位。 1.2.4第二特征号: 表示额定容量, 以kvar为单位。 1.2.5第三特征号: 表示相数: 1为单相, 3为三相( 内部星接) , 1×3W为单相连接, 三相独立。

电阻,电感,电容的主要参数

电阻,电感,电容的主要参数 电阻主要特性参数 1、标称阻值:电阻器上面所标示的阻值。 2、允许误差:标称阻值与实际阻值的差值跟标称阻值之比的百分数称阻值偏差,它表示电阻器的精度。 允许误差与精度等级对应关系如下:±0.5%-0.05、±1%-0.1(或00)、±2%-0.2(或0)、±5%-Ⅰ级、±10%-Ⅱ级、±20%-Ⅲ级 3、额定功率:在正常的大气压力90-106.6KPa及环境温度为-55℃~+70℃的条件下,电阻器长期工作所允许耗散的最大功率。 线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、4、8、10、16、25、40、50、75、100、150、250、500 非线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、5、10、25、50、100 4、额定电压:由阻值和额定功率换算出的电压。 5、最高工作电压:允许的最大连续工作电压。在低气压工作时,最高工作电压较低。 6、温度系数:温度每变化1℃所引起的电阻值的相对变化。温度系数越小,电阻的稳定性越好。阻值随温度升高而增大的为正温度系数,反之为负温度系数。 7、老化系数:电阻器在额定功率长期负荷下,阻值相对变化的百分数,它是表示电阻器寿命长短的参数。 8、电压系数:在规定的电压范围内,电压每变化1伏,电阻器的相对变化量。 9、噪声:产生于电阻器中的一种不规则的电压起伏,包括热噪声和电流噪声两部分,热噪声是由于导体内部不规则的电子自由运动,使导体任意两点的电压不规则变化。 电感器的主要参数 电感器的主要参数有电感量、允许偏差、品质因数、分布电容及额定电流等。

RC电路充放电时间计算

RC电路充放电时间计算 V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值; Vt 为t时刻电容上的电压值。 则, Vt="V0"+(V1-V0)* [1-exp(-t/RC)] 或, t = RC*Ln[(V1-V0)/(V1-Vt)] 求充电到90%VCC的时间。(V0=0,V1=VCC,Vt=0.9VCC) 代入上式: 0.9VCC=0+VCC*[[1-exp(-t/RC)] 既 [[1-exp(-t/RC)]=0.9; exp(-t/RC)=0.1 - t/RC=ln(0.1) t/RC=ln(10) ln10约等于2.3 也就是t=2.3RC。 带入R=10k C=10uf得。 t=2.3*10k*10uf=230ms RC回路充放电时间的推导过程需要用高等数学,简单的方法只要记住RC回路的时间常数τ=R×C,在充电时,每过一个τ的时间,电容器上电压就上升(1-1/e)约等于0.632倍的电源电压与电容器电压之差;放电时相反。 如C=10μF,R=10k,则τ=10e-6×10e3=0.1s 在初始状态Uc=0时,接通电源,则过0.1s(1τ)时,电容器上电压Uc为0+(1-0)×0.632=0.632倍电源电压U,到0.2s(2τ)时,Uc为0.632+(1-0.632)×0.632=0.865倍U……以此类推,直到t=∞时,Uc=U。放电时同样运用,只是初始状态不同,初始状态Uc=U。

单片机复位(上电复位和按键复位,复位脉宽10ms,R常取值10k~47k,c 取值10~100uf,电容大些为好): 原理:如果复位是高电平复位,加电后电容充电电流逐渐减少,此时经电阻接地的单片机IO是没电压的,因为电容是隔直流的,直到充电完毕开始放电,放电的过程同样是电流逐渐减少的,开始放电时电流很大,加到电阻上后提供给IO高电平,一段时间(电容器的充放电参数:建立时间等)后,电流变弱到0,但是复位引脚已经有了超过3us的高电平,所以复位就完成了; 手动复位,如加按键,则是直接将电容短路,给复位引脚送高电平,此部分就只有电容在起作用;当然电源较大(一般3.3v-5v)的话,加电阻是为了分压,防止烧坏引脚。

电容器的主要参数有哪些

电容器的主要参数有哪些? 电容器的主要参数有标称容量(简称容量)、允许偏差、额定电压、漏电流、绝缘电阻、损耗因数、温度系数、频率特性等。 (一)标称容量 标称容量是指标注在电容器上的电容量。 电容量的基本单位是法拉(简称法),用字母“F”表示。比法拉小的单位还在毫法(mF)、微法(μF)、纳法(nF)、皮法(pF),它们之间的换算关系是: 1F=1000mF 1mF=1000μF 1μF=1000nF 1nF=1000pF 其中,微法(μF)和皮法(pF)两单位最常用。 在实际应用时,电容量在1万皮法以上电容量,通常用微法作单位,例如:0.047μF、0.1μF、2.2μF、47μF、330μF、4700μF等等。 电容量在1万皮法以下的电容器,通常用皮法作单位,例如:2pF、68 pF、100 pF、680 pF、5600 pF等等。 标称容量的标注方法有直标法、文字符号标注法和色标法等,具体的识别方法将在以后的内容中作详细介绍。 (二)允许偏差 允许偏差是指电容器的标称容量与实际容量之间的允许最大偏差范围。 电容器的容量偏差与电容器介质材料及容量大小有关。电解电容器的容量较大,误差范围大于±10%;而云母电容器、玻璃釉电容器、瓷介电容器及各种无极性高频在机薄膜介质电容器(如涤纶电容器、聚苯乙烯电容器、聚丙烯电容器

等)的容量相对较小,误差范围小于±20%。 (三)额定电压 额定电压也称电容器的耐压值,是指电容器在规定的温度范围内,能够连续正常工作时所能承受的最高电压。 该额定电压值通常标注在电容器上。在实际应用时,电容器的工作电压应低于电容器上标注的额定电压值,否则会造成电容器因过压而击穿损坏。 (四)漏电流 电容器的介质材料不是绝艰绝缘体,宁在一定的工作温度及电压条件下,也会有电流通过,此电流即为漏电流。 一般电解电容器的漏电流略大一些,而其它类型电容器的漏电流较小。 (五)绝缘电阻 绝缘电阻也称漏电阻,它与电容器的漏电流成反比。漏电流越大,绝缘电阻越小。绝缘电阻越大,表明电容器的漏电流越小,质量也越好。 (六)损耗因数 损耗因数也称电容器的损耗角正切值,用来表示电容器能量损耗的大小。该值越小,说明电容器的质量越好。 (七)温度系数 温度系数是指在一定温度范围内,温度每变化1℃时,电容器容量的相对变化值。温度系数值越小,电容器的性能越好。 (八)频率特性 频率特性是指电容器对各种不同高低的频率所表现出的性能(即电容量等电参数随着电路工作频率的变化而变化的特性)。不同介质材料的电容器,其最高工作频率也不同,例如,容量较大的电容器(如电解电容器)只能在低频电路中正常工作,高频电路中只能使用容量较小的高频瓷介电容器或云母电容器等。 信息来源:慧聪电子 【我来说两句】【推荐给朋友】【关闭窗口】

电容计算公式

教你两条不变应万变得原理: 1.电容器的计算依据是高斯通量定理和电压环流定律; 2.电感的计算依据是诺伊曼公式。要一两个答案查书就够了,要成高手只能靠你自己!慢慢学,慢慢练。 容量是电容的大小与电压没有关系。电压是电容的耐压范围。可变电容一般用在低压电路中电容的计算公式: 平板C=Q/U=Q/Ed=εS/4πkd 1. 所以E=4πkQ/εS即场强E与两板间距离d无关。2.当电容器两端接电时,即电压U一定时,U=Ed,所以U和d成正比。 容抗用XC表示,电容用C(F)表示,频率用f(Hz)表示,那么Xc=1/2πfc 容抗的单位是欧。知道了交流电的频率f和电容C,就可以用上式把容抗计算出来。 感抗用XL表示,电感用L(H)表示,频率用f(Hz)表示,那么XL=2πfL感抗的单位是欧。知道了交流电的频率f和线圈的电感L,就可以用上式把感抗计算出来。 已知容抗与感抗,则对应的电压与电流可以用欧姆定律算出,如果电容与电阻和电感一起使用,就要考虑相位关系了。 2、电容器的计算公式: C=Q\U =S\4*3.1415KD Q为电荷量 U为电势差 S为相对面积 D为距离 3.1415实际是圆周率 K为静电力常数 并联:C=C1+C2 电路中各电容电压相等;总电荷量等于各电容电荷量之和。串联:1/C=1/C1+1/C2 电路中各电容电荷量相等;总电压等于各电容电压之和。 电容并联的等效电容等于各电容之和!电容的并联使总电容值增大。当电容的耐压值符合要求,但容量不够时,可将几个电容并联。 3、Q=UI=I2Xc=U2/Xc 这是单相电容的 Xc=1/2*3.14fc 为什么我看到一个三相电容上面标的额定容量是30Kvar,而额定容量是472微法。额定电压是450伏。额定电流是38.5安三角接法? 答:C=KVar/(U×U×2×π×f×0.000000001) =30/(450×450×2×3.14×50×0.000000001)≈472(μF) 4、我知道电容公式有C=εS/D和C=Q/U,那么他们与电容"C"的关系,我特别想知道:我知道"U"与电容成反比,但是我在听老师讲时,没听到为什么成反比,就像知道"Q"与电容的关系时,就明白,一个电容放得的电荷越多就越大?还有"ε"是什么,与电容有什么关系?再请问在计算中应注意什么?电容是如何阻直通交的呢? 五一长假除了旅游还能做什么?辅导补习美容养颜家庭家务加班须知 第 2 页共 3 页 答:电容c是常数,只跟自身性质有关,即使没有电压,电荷它也是存在的,ε是介电,跟电介质的性质有关,交流能不停的对电容充电放电(因为交流的方向是变化的),二直流无此性质,所以通交流阻直流,更专业的话,大学物理里面会讲,如果你要求不高的话就不用深究了 5、电容降压 在常用的低压电源中,用电容器降压(实际是电容限流)与用变压器相比,电容降压的电源体积小、经济、可靠、效率高,缺点是不如变压器变压的电源安全。通过电容器把交流电引入负载中,对地有220V电压,人易触电,但若用在不需人体接触的电路内部电路电源中,

电容的选取与充放电时间的计算完整版

电容的选取与充放电时 间的计算 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

电容的选取与充放电时间的计算 电容的选取: 电容在电路中实际要承受的电压不能超过它的耐压值。在滤波电路中,电容的耐压值不要小于交流有效值的倍。使用电解电容的时候,还要注意正负极不要接反。 不同电路应该选用不同种类的电容。揩振回路可以选用云母、高频陶瓷电容,隔直流可以选用纸介、涤纶、云母、电解、陶瓷等电容,滤波可以选用电解电容,旁路可以选用涤纶、纸介、陶瓷、电解等电容。电容在装入电路前要检查它有没有短路、断路和漏电等现象,并且核对它的电容值。安装的时候,要使电容的类别、容量、耐压等符号容易看到,以便核实。 电容的原理: 在电子线路中,电容用来通过交流而阻隔直流,也用来存储和释放电荷以充当滤波器,平滑输出脉动信号。小容量的电容,通常在高频电路中使用,如收音机、发射机和振荡器中。大容量的电容往往是作滤波和存储电荷用。而且还有一个特点,一般1μF以上的电容均为电解电容,而1μF以下的电容多为瓷片电容,当然也有其他的,比如独石电容、涤纶电容、小容量的云母电容等。电解电容有个铝壳,里面充满了电解质,并引出两个电极,作为正(+)、负

(-)极,与其它电容器不同,它们在电路中的极性不能接错,而其他电容则没有极性。 把电容器的两个电极分别接在电源的正、负极上,过一会儿即使把电源断开,两个引脚间仍然会有残留电压(学了以后的教程,可以用万用表观察),我们说电容器储存了电荷。电容器极板间建立起电压,积蓄起电能,这个过程称为电容器的充电。充好电的电容器两端有一定的电压。电容器储存的电荷向电路释放的过程,称为电容器的放电。 举一个现实生活中的例子,我们看到市售的整流电源在拔下插头后,上面的发光二极管还会继续亮一会儿,然后逐渐熄灭,就是因为里面的电容事先存储了电能,然后释放。当然这个电容原本是用作滤波的。至于电容滤波,不知你有没有用整流电源听随身听的经历,一般低质的电源由于厂家出于节约成本考虑使用了较小容量的滤波电容,造成耳机中有嗡嗡声。这时可以在电源两端并接上一个较大容量的电解电容(1000μF,注意正极接正极),一般可以改善效果。发烧友制作HiFi音响,都要用至少1万微法以上的电容器来滤波,滤波电容越大,输出的电压波形越接近直流,而且大电容的储能作用,使得突发的大信号到来时,电路有足够的能量转换为强劲有力的音频输出。这时,大电容的作用有点像水库,使得原来汹涌的水流平滑地输出,并可以保证下游大量用水时的供应。

相关文档
最新文档