人教版初二数学上册期中试题及答案

合集下载

人教版八年级上册数学期中考试试卷附答案

人教版八年级上册数学期中考试试卷附答案

人教版八年级上册数学期中考试试题一、单选题1.下列四个图形中,不是轴对称图形的是( )A .B .C .D . 2.下列图形中具有稳定性的是( )A .正三角形B .正方形C .正五边形D .正六边形3.一定能确定△ABC△△DEF 的条件是( )A .AB=DE,BC=EF,△A=△DB .△A=△E,AB=EF,△B=△DC .△A=△D,AB=DE,△B=△ED .△A=△D,△B=△E,△C=△F4.已知等腰三角形的一边长为4cm ,周长是18cm ,则它的腰长是( )A .4cmB .7cmC .10cmD .4cm 或7cm5.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( )A .ASAB .SASC .AASD .SSS6.下列命题中正确的是( )A .一个三角形最多有2个钝角B .直角三角形的外角不可以是锐角C .三角形的两边之差可以等于第三边D .三角形的外角一定大于相邻内角 7.如图,把长方形ABCD 沿EF 对折,若150∠=︒,则AEF ∠的度数为( )A .110︒B .115︒C .120︒D .130︒8.如图,在△ABC 中,AB =8cm ,BC =6cm ,AC =5cm .沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则△AED 的周长是( )A .5cmB .6cmC .7cmD .8cm9.一个多边形少算一个内角,其余内角之和是1500°,则这个多边形的边数是( ) A .8 B .9 C .10 D .1110.如图,△ACB 和△DCE 均为等腰直角三角形,且△ACB =△DCE =90°,点A 、D 、E 在同一条线上,CM 平分△DCE ,连接BE .以下结论:△AD =CE ;△CM△AE ;△AE =BE+2CM ;△S △COE >S △BOE ,正确的有( )A .1个B .2个C .3个D .4个二、填空题11.在平面直角坐标系中,点(2,1)-关于x 轴对称的点的坐标为________.12.若从一个多边形的一个顶点出发,最多可以引9条对角线,则它是_____边形. 13.如图,在ABC 中,AB AC =,点D 为BC 中点,35BAD ∠=︒,则C ∠的度数为_____.14.已知ABC 的周长为30,面积为20,其内角平分线交于点O ,则点O 到边BC 的距离为________.15.如图△ABC ,DE 垂直平分线段AC ,AF△BC 于点F ,AD 平分△FAC ,则FD :DC =______.16.△ABC中,已知点D,E,F分别是BC,AD,CE边上的中点,且S△ABC=16cm2,则S△CDF的值为_______cm2.17.如图,一种机械工件,经测量得△A=20°,△C=27°,△D=45°.那么不需工具测量,可知△ABC= __________°.三、解答题18.如图,AC和BD相交于点0,OA=OC,OB=OD,求证:DC//AB19.在△ABC中,△B=△A+20°,△C=△B+20°,求△ABC的三个内角的度数.20.如图,△ABC是等腰直角三角形,BD△AE,CE△AE,垂足为D,E,CE=3,BD=7,(1)求证:△ABD△△CAE;(2)求DE 的长度.21.如图,在正方形网格中,每个小正方形的边长都为1,ABC 在网格中的位置如图所示,ABC 的三个顶点都在格点上.将A 、B 、C 的横坐标和纵坐标都乘以1 ,分别得到点1A 、1B 、1C .(1)写出111A B C △三个顶点的坐标_______;(2)若ABC 与222A B C △关于x 轴对称,在平面直角坐标系中画出222A B C △;(3)若以点A 、C 、P 为顶点的三角形与ABC 全等,直接写出所有符合条件的点P 的坐标.22.如图,在四边形ABCD 中,△A =△C =90°,BE 平分△ABC ,DF 平分△ADC . 求证:BE△DF .23.如图,在△ABC 中,AC =BC ,△ACB =90°,D 为△ABC 内一点, △BAD =15°,AD =AC ,CE△AD 于E ,且CE =5.(1)求BC 的长;(2)求证:BD =CD .24.如图,已知△ABC 中AB =AC =12厘米,BC =9厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.△若点P 点Q 的运动速度相等,经过1秒后,△BPD 与△CQP 是否全等,请说明理由; △若点P 点Q 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(2)若点Q 以△中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间,点P 与点Q 第一次在△ABC 的哪条边上相遇?此时相遇点距到达点B 的路程是多少?25.在等腰ABC 中,AB AC =,点D 是AC 上一动点,点E 在的BD 延长线上且AB AE =,AF 平分CAE ∠交DE 于点F 连接FC .(1)如图1,求证:ABE ACF ∠=∠;(2)如图2,当60ABC ∠=︒时,求证:AF EF FB +=;(3)如图3,当45ABC ∠=︒,且//AE BC 时,求证:2BD EF =.参考答案1.A【解析】【分析】根据轴对称图形的定义逐项分析即可,轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】A.不是轴对称图形,符合题意;B.是轴对称图形,不符合题意;C. 是轴对称图形,不符合题意;D. 是轴对称图形,不符合题意;故选A【点睛】本题考查了轴对称图形的定义,找到对称轴是解题的关键.2.A【解析】【详解】解:△三角形具有稳定性,△A正确,B.C、D错误.故选A.3.C【解析】【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,4种,看看给出的条件是否符合即可.【详解】A. 根据AB=DE,BC=EF,△A=△D不能推出两三角形全等,故本选项不符合题意;B.△A和△D对应,△B和△E对应,即根据△A=△E,AB=EF,△B=△D不能推出两三角形全等,故本选项不符合题意;C. 在△ABC和△DEF中△A D AB DEB E ∠=∠⎧⎪=⎨⎪∠=∠⎩,△△ABC△△DEF(ASA),故本选项符合题意;D. 根据△A=△D,△B=△E,△C=△F不能推出两三角形全等,故本选项不符合题意;故选:C.【点睛】考查全等三角形的判定,掌握全等三角形的判定定理是解题的关键.4.B【解析】【分析】分4cm为等腰三角形的腰长和底边长两种情况,结合三角形的三边关系解答即可.【详解】解:若4cm为等腰三角形的腰长,则底边长=18-4-4=10cm,由于4+4<10,此时不能构成三角形,故此种情况须舍去;若4cm为等腰三角形的底边长,则腰长=(18-4)÷2=7cm,此时三角形的三边长分别为7cm、7cm、4cm,能构成三角形.故选:B.【点睛】本题考查了等腰三角形的定义和三角形的三边关系,属于基础题型,正确分类、熟练掌握基本知识是解题关键.5.A【解析】【分析】根据ASA:有两角及夹边对应相等的两个三角形全等即可判断.【详解】解:由图可知三角形的两个角和夹边可以确定全等三角形,△可由ASA判断全等;故选:A.【点睛】本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.6.B【解析】【分析】利用三角形的内角的性质、直角三角形的性质、三角形的三边关系及三角形的外角的性质分别判断后即可确定正确的选项.【详解】解:A、一个三角形最多有1个钝角,故原命题错误,不符合题意;B、直角三角形的外角不可以是锐角,正确,符合题意;C、三角形的两边之差小于第三边,故原命题错误,不符合题意;D、三角形的外角不一定大于相邻的内角,故原命题错误,不符合题意,【点晴】本题考查了命题与定理的知识,解题的关键是了解三角形的内角的性质、直角三角形的性质、三角形的三边关系及三角形的外角的性质等知识,难度不大.7.B【解析】【分析】根据折叠的性质及△1=50°可求出△BFE的度数,再由平行线的性质即可得到△AEF的度数.【详解】解:根据折叠以及△1=50°,得△BFE=12△BFG=12(180°﹣△1)=65°.△AD△BC,△△AEF=180°﹣△BFE=115°.故选:B.【点睛】本题考查的是平行线的性质及图形翻折变换的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8.C【解析】【分析】由折叠的性质可得DE=DC,BE=BC,从而易得周长的值.【详解】由折叠的性质可得DE=DC,BE=BC=6cm△AE=AB-BE=8-6=2(cm)△△AED 的周长=AD+DE+AE=AD+DC+AE=AC+AE=5+2=7(cm)故选:C.【点睛】本题考查了折叠的性质,三角形的周长等知识,关键是掌握折叠的性质.9.D【分析】根据n 边形的内角和是(n -2)•180°,可以得到内角和一定是180度的整数倍,即可求解.【详解】1150018083÷=, 则正多边形的边数是8+1+2=11.故选:D .【点睛】本题考查了根据多边形的内角和计算公式求多边形的边数,掌握n 边形的内角和公式(n -2)•180°是解题的关键.10.B【解析】【分析】由“SAS”可证△ACD△△BCE ,可得AD =BE ,△ADC =△BEC ,可判断△,由等腰直角三角形的性质可得△CDE =△CED =45°,CM△AE ,可判断△,由三角形的面积公式可判断△,由线段和差关系可判断△,即可求解.【详解】解:△△ACB 和△DCE 均为等腰直角三角形,△CA =CB ,CD =CE ,△ACB =△DCE =90°,△△ACD =△BCE ,在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,△△ACD△△BCE (SAS ),△AD =BE ,故△错误,△△DCE 为等腰直角三角形,CM 平分△DCE ,△CM△AE ,故△正确,△CD =CE ,CM△DE ,△DM =ME .△△DCE=90°,△CDE=△CED=45°△DM=ME=CM.△AE=AD+DE=BE+2CM.故△正确,由△ACD△△BCE(SAS)得△ADC=△BEC,△△DCE+△CED=△AEB+△CED,△△AEB=△DCE=90°,△S△COE=12OE•CM,S△BOE=12OE•BE,△CM不一定大于BE,△S△COE不一定大于S△BOE,故△错误,故选:B.【点睛】本题考查了全等三角形的判定和性质、等腰直角三角形的性质、三角形外角性质,证明△ACD△△BCE是本题的关键.11.(2,1).【解析】【分析】根据关于x轴对称的两点,横坐标相同,纵坐标互为相反数解答即可.【详解】点(2,1)关于x轴对称的点的坐标是(2,1).故答案为:(2,1).【点睛】本题考查了坐标平面内的轴对称变换,关于x轴对称的两点,横坐标相同,纵坐标互为相反数;关于y轴对称的两点,纵坐标相同,横坐标互为相反数;关于原点对称的两点,横坐标和纵坐标都互为相反数.12.十二【解析】【分析】可根据n边形从一个顶点引出的对角线与边的关系:n-3,列方程求解.【详解】设多边形有n条边,则n-3=9,解得:n=12,故多边形的边数为12,即它是十二边形,故答案为:十二.【点睛】多边形有n条边,则经过多边形的一个顶点的所有对角线有(n-3)条,经过多边形的一个顶点的所有对角线把多边形分成(n-2)个三角形.13.55°【解析】【分析】由等腰三角形的三线合一性质可知△BAC=70°,再由三角形内角和定理和等腰三角形两底角相等的性质即可得出结论.【详解】解:AB=AC,D为BC中点,△AD是△BAC的平分线,△B=△C,△△BAD=35°,△△BAC=2△BAD=70°,△△C=12(180°-70°)=55°.故答案为:55°.【点睛】本题考查的是等腰三角形的性质,熟知等腰三角形三线合一的性质是解答此题的关键.14.4 3【解析】【分析】过O作OD△BC于D,OE△AB于E,OF△AC于F,连接OA、OB、OC,根据三角形的内心和角平分线的性质得出OE=OD=OF,再根据三角形的面积公式求出即可.【详解】如图,过O作OD△BC于D,OE△AB于E,OF△AC于F,连接OA、OB、OC,△O是△ABC内角平分线的交点,△OE=OF=OD,△△ABC的面积是20,△S△AOB+S△BOC+S△AOC=20,△111AB OE BC OD222⨯⨯+⨯⨯+×AC×OF=20,△(AB+BC+AC)×OD=40,△△ABC的周长为30,△AB+BC+AC=30,△OD=404 303=,△即O到BC的距离是43,故答案为:43.【点睛】本题考查了三角形的内心,角平分线的性质和三角形的面积等知识点,能求出OD=OE=OF 是解此题的关键.15.1:2【解析】【分析】根据线段垂直平分线的性质得到DA=DC,得到△DAC=△C,根据角平分线的定义、直角三角形的性质求出△DAF=30°,根据直角三角形的性质解答即可.解:△DE垂直平分线段AC,△DA=DC,△△DAC=△C,△AD平分△FAC,△△DAC=△DAF,△△DAC=△C=△DAF,△AF△BC,△△DAF=30°,△AD=2DF,△FD:DC=1:2,故答案为:1:2.【点睛】本题考查的是线段的垂直平分线的性质、直角三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.16.2【解析】【分析】根据三角形的中线平分三角形的面积用△ABC的面积先后表示出△ACD、△CDE、△CDF的面积,然后代入数据进行计算即可得解.【详解】解:△点D,E,F分别是BC,AD,CE边上的中点,△S△ABD=S△ACD=12S△ABC,S△CDE=12S△ACD=14S△ABC,S△CDF=12S△CDE=18S△ABC,△S△ABC=16cm2,△S△CDF=18×16=2cm2.故答案为:2.本题考查了三角形的面积,根据三角形的中线平分三角形的面积推出△CDF与△ABC的面积的关系是解题的关键,也是本题的难点.17.92【解析】【分析】延长CB,交AD于点E,根据三角形外角的性质得出△AEC=△C+△D=72°,△ABC=△A十△AEC=92°.【详解】延长CB,交AD于点E.△△C=27°,△D=45°,△△AEC=△C+△D=72°,△△A=20°,△△ABC=△A+△AEC=92°.故答案为92°.【点睛】本题考查了三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和,正确作出辅助线是解题的关键.18.证明见解析【解析】【分析】根据SAS可知△AOB△△COD,从而得出△A=△C,根据内错角相等两直线平行的判定可得结论.【详解】解:△OA=OC,△AOB=△COD,OB=OD,△△AOB△△COD(SAS).△△A=△C.△AB△CD.【点睛】本题考查了1.全等三角形的的判定和性质;2.平行线的判定.19.△A=40°,△B=60°,△C=80°【解析】【详解】△在△ABC 中,△B=△A+20°代入△C=△B+20°中,得△C=△A+40°设△A=x△△A+△B+△C=180°,得x+x+20°+x+40°=180°解方程得x=40°△ △A=40°, △B=60°,△C=80°.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和是180°是解答此题的关键.20.(1)见解析;(2)4.【解析】【分析】(1)利用AAS 判定△ABD△△CAE ;(2)因为BD=AE ,AD=CE ,AE=AD+DE=CE+DE ,所以BD=DE+CE .【详解】(1)证明:△△ABC 是等腰直角三角形,△AB=AC ,△BAC=90°,△BD△AE 于D ,CE△AE 于E ,△△BDA=△AEC=90°,△DBA+△BAD=90°,△BAD+△EAC=90°,△△DBA=△EAC ,在△ABD 和△CAE 中,DBA EACBDA AEC AB AC∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ABD△△CAE (AAS );(2)解:由(1)知,△ABD△△CAE ,△AD=CE ,BD=AE ,△AE=AD+DE ,△BD=DE+CE ,△CE=3,BD=7,△DE=7-3=4.【点睛】本题考查了全等三角形的性质和判定,三角形的内角和定理的应用,关键是推出BD=DE+CE .21.(1)1(3,1)A -、1(1,4)B -、1(1,1)C -;(2)如图所示,见解析;(3)点P 的坐标为(3,2)--、()3,4-、(1,2)--.【解析】【分析】(1)根据平面直角坐标系写出A 、B 、C 各点的坐标,将点A 、B 、C 的横坐标和纵坐标都乘以1-,分别得到点1A 、1B 、1C 即可,(2)先作出A 、B 、C 关于x 轴的对称点A 2、B 2、C 2,然后顺次连接即可;(3)根据全等三角形对应边相等,分△CAP=△ACB=90°和△ACP=△ACB=90°两种情况讨论求解.【详解】(1)先求出ABC 三点坐标分别为A (-3,1),B (-1,4),C (-1,1)将点A 、B 、C 的横坐标和纵坐标都乘以1-,分别得到点1A 、1B 、1C ,则A 1(3,-1)、B 1(1,-4)、C (1,-1); 故答案为:1(3,1)A -、1(1,4)B -、1(1,1)C -;(2)如图所示,先作A 、B 、C 三点关于x 轴的对称点A 2、B 2、C 2,然后连接A 2B 2、B 2C 2、C 2A 2,,则△A 2B 2C 2为所求;(3)若90CAP ACB ︒∠=∠=,则点P 的坐标为(3,2)--或()3,4-,若90ACP ACB ︒∠=∠=,则点P 的坐标为(1,2)--,综上所述,点P 的坐标为(3,2)--、()3,4-、(1,2)--.【点睛】本题考查了全等三角形的判定,解题的关键是熟练的掌握全等三角形的判定与性质.22.证明见解析【解析】【分析】根据四边形内角和为360°可得△ABC+△ADC =180°,根据角平分线的定义可得△EBC+△FDC =90°,根据同角的余角相等可得△EBF =△DFC ,即可证明BE//DF.【详解】△在四边形ABCD 中,△A =△C =90°,△△ABC+△ADC =180°,△BE 平分△B ,DF 平分△D ,△△ABE=△EBC ,△ADF=△FDC ,△△EBC+△FDC=90°,△△C=90°,△△DFC+△FDC=90°,△△EBF=△DFC,△BE△DF.23.(1)10;(2)证明见解析【解析】(1)根据等腰直角三角形的性质得出△BAC=45°,从而得出△CAD=30°,根据垂直得出AC=BC=10;(2)过D作DF△BC于F,然后证明Rt△DCE和Rt△DCF全等,从而得出CF=CE=5,根据BC=10得出BF=FC,从而得出答案.【详解】(1)在△ABC中,△AC=BC,△ACB=90°,△△BAC=45°,△△BAD=15°,△△CAD=30°,△CE△AD,CE=5,△AC=10,△BC=10.(2)过D作DF△BC于F,在△ADC中,△CAD=30°,AD=AC,△△ACD=75°,△△ACB=90°,△△FCD=15°,在△ACE中,△CAE=30°,CE△AD,△△ACE=60°,△△ECD=△ACD-△ACE=15°,△△ECD=△FCD,△DF=DE,在Rt△DCE与Rt△DCF中,{DC DC DE DF==,△Rt△DCE△Rt△DCF,△CF=CE=5,△BC=10,△BF=FC,△DF△BC,△BD=CD.24.(1)△全等,理由见解析;△4厘米/秒;(2)经过24秒,点P与点Q第一次在BC边上相遇;相遇点距到达点B的路程是6厘米.【解析】(1)△根据速度×时间=距离可得BP=CQ=3,PC=BD=6,根据等腰三角形的性质可得△B =△C,利用SAS即可得△BPD△△CQP;△VP≠VQ可得BP≠CQ,根据△B=△C,要使△BPD与△CQP全等,只能BP=CP,根据全等得出CQ=BD=6,然后根据运动速度求得运动时间,根据时间和CQ的长即可求得Q的运动速度;(2)根据VQ>VP,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,据此列出方程,解这个方程即可得答案.【详解】(1)△全等,理由如下:△t=1(秒),点P、Q的速度为3厘米/秒,△BP=CQ=3(厘米)△AB=12,D为AB中点,△BD=6(厘米)△PC=BC﹣BP=9﹣3=6(厘米)△PC=BD△AB =AC ,△△B =△C ,在△BPD 与△CQP 中,BP CQ B C BD PC =⎧⎪∠=∠⎨⎪=⎩,△△BPD△△CQP .△△VP≠VQ ,△BP≠CQ ,△△B =△C ,△要使△BPD△△CPQ ,只能BP =CP =12BC=4.5, △△BPD△△CPQ ,△CQ =BD =6.△点P 的运动时间t =3BP =4.53=1.5(秒), 此时VQ =CQ t =61.5=4(厘米/秒). △当点Q 的运动速度为4厘米/秒时,能够使△BPD 与△CQP 全等.(2)△VQ >VP ,△只能是点Q 追上点P ,即点Q 比点P 多走AB+AC 的路程,设经过x 秒后P 与Q 第一次相遇,依题意得4x =3x+2×12,解得:x =24(秒),此时P 运动了24×3=72(厘米),△△ABC 的周长为33厘米,72=33×2+6,△此时相遇点距到达点B 的路程是6厘米,△点P 、Q 在BC 边上相遇,即经过了24秒,点P 与点Q 第一次在BC 边上相遇. 25.(1)见解析;(2)见解析;(3)见解析【解析】(1)利用“SAS”证明△ACF△△AEF ,根据全等三角形的性质得到△E=△ACF ,根据等腰三角形的性质得到△E=△ABE ,等量代换证明结论;(2)在FB 上截取BM=CF ,连接AM ,证明△ABM△△ACF ,根据全等三角形的性质得到AM=AF ,△BAM=△CAF ,进而证明△AMF 为等边三角形,结合图形证明结论;(3)延长BA 、CF 交于N ,证明△BFN△△BFC ,得到CN=2CF=2EF ,再证明△BAD△△CAN ,得到BD=CN ,等量代换得到答案.【详解】(1)△AF 平分△CAE ,△△EAF=△CAF ,△AB=AC ,AB=AE ,△AE=AC ,在△ACF 和△AEF 中,AE ACCAF EAF AF AF=⎧⎪∠=∠⎨⎪=⎩,△△ACF△△AEF (SAS ),△△E=△ACF ,△AB=AE ,△△E=△ABE ,△△ABE=△ACF ;(2)如图,在FB 上截取BM=CF ,连接AM ,△△ACF△△AEF ,△EF=CF ,△E=△ACF=△ABM ,在△ABM 和△ACF 中,AB ACABM ACF BM CF=⎧⎪∠=∠⎨⎪=⎩,△△ABM△△ACF (SAS ),△AM=AF ,△BAM=△CAF ,△AB=AC ,△ABC=60°,△△ABC 是等边三角形,△△BAC=60°,△△MAF=△MAC+△CAF=△MAC+△BAM=△BAC=60°, △AM=AF ,△△AMF 为等边三角形,△AF=AM=MF ,△AF+EF=BM+MF=FB ;(3)如图,延长BA 、CF 交于N ,△AE△BC ,△△E=△EBC ,△AB=AE ,△△ABE=△E ,△△ABF=△CBF ,△△ABC=45°,△△ABF=△CBF=22.5°,△ACB=45°,△BAC=180°-45°-45°=90°, △△ACF=△E=△ABF=22.5°,△△BFC=180°-22.5°-45°-22.5°=90°,△△BFN=△BFC=90°,在△BFN 和△BFC 中,NBF CBFBF BF BFN BFC∠=∠⎧⎪=⎨⎪∠=∠⎩,△△BFN△△BFC (ASA ),△CF=FN ,即CN=2CF=2EF ,△△BAC=90°,△△NAC=△DAB=90°, 在△BAD 和△CAN 中, ABD ACN AB AC BAD CAN ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△BAD△△CAN (ASA ), △BD=CN , △BD=2EF .。

人教版初二数学上册《期中考试数学试卷》及答案

人教版初二数学上册《期中考试数学试卷》及答案

人教版初二数学上册《期中考试数学试卷》及答案与水平面接触,如图所示。

若三角板的直角边长分别为2cm、3cm,则它们的高度之比为______。

14.在平面直角坐标系中,点A(3,4)关于y轴的对称点为(______,4)。

15.已知函数y=2x-1,求其在x=3处的函数值为______。

16.若a:b=2:3,b:c=4:5,则a:b:c=______。

17.如图,正方形ABCD中,E为BC的中点,F为CD的三分点,连接AF交BD于G,则18.如图,四边形ABCD中,∠A=∠B=60°,AD=BC=2,AB=1,则四边形的面积为______。

19.如图,ABCD为矩形,E为BC的中点,F为CD的三分点,连接AF交BD于G,则△ABG的面积为______。

20.已知直角三角形的一条直角边为3,另一条直角边为4,则斜边长为______。

三.解答题(共46分)21.如图,在△ABC中,D为BC的中点,E为AC的三分点,连接AE,BD交于F。

求证:AF=EF。

22.如图,以AB为直径的圆的周长为20π,点C在圆上,AC=5,BC=3.求△XXX的面积。

23.如图,ABCD为平行四边形,E为BC的中点,F为CD的三分点,连接AF交BD于G,连接BE交AC于H。

求证:GH=2EF。

24.如图,ABCD为矩形,AB=6,BC=4,点E在AB上,点F在CD上,且AE=CF。

求△BEF的面积。

25.如图,在矩形ABCD中,E为BC的中点,F为CD的三分点,连接AF交BD于G,连接BE交AC于H。

若AB=8,BC=6,求证:GH=2EF。

19.已知在等腰三角形ABC中,AD是BC边上的高,AE是∠BAC的平分线,且∠EAD=5°,∠B=50°,求∠C的度数。

解:由题意得,∠BAD=∠ACD,∠EAB=∠EAC,又∠EAD=5°,∠B=50°,则∠BAD=∠ACD=25°,∠EAB=∠EAC=75°。

(人教版)初中数学八年级上册期中测试03(含答案解析)

(人教版)初中数学八年级上册期中测试03(含答案解析)

加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!期中测试一、选择题(36分)1.下面四个手机应用图标中是轴对称图形的是( )ABCD2.若点(1,1)A m n +-与点(3,2)B -关于y 轴对称,则m n +的值是( ) A .5-B .3-C .3D .13.如图,已知等腰三角形ABC ,AB AC =.若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是( )A .AE EC =B .AE BE =C .EBC BAC ∠=∠D .EBC ABE ∠=∠4.如图是跷跷板示意图,支柱OC 与地面垂直,点O 是AB 的中点,AB 绕着点O 上下转动.当A 端落地时,20OAC ∠=︒,跷跷板上下可转动的最大角度(即A OA ∠')是( )A .20︒B .40︒C .60︒D .80︒5.如图,ABC △的面积为6,3AC =,现将ABC △沿AB 所在直线翻折,使点C 落在直线AD 上的C 处,P 为直线AD 上的一点,则线段BP 的长不可能是( )A .3B .4C .5.5D .106.如图,CD ,CE ,CF 分别是ABC △的高、角平分线、中线,则下列各式中错误的是( )A .2AB BF =B .12ACE ACB ∠=∠ C .AE BE = D .CD BE ⊥7.如图所示,在ABC △中,P ,Q 分别是BC ,AC 上的点,作PR AB ⊥,垂足分别为R ,S ,若AQ PQ =,PR PS =,下面三个结论:①AS AR =;②QP AR ∥;③BRP CSP △≌△,其中正确的是( )A .20︒B .40︒C .60︒D .80︒8.如图,在ABC △中,AB AC =,BF CD =,BD CE =,FDE α∠=,则下列结论中正确的是( )A .2180A α+∠=︒B .90A α+∠=︒C .290A α+∠=︒D .180A α+∠=︒9.在ABC △和'''A B C △中,A B C ∠+∠=∠,'''B C A ∠+∠=∠,''b a b c -=-,''b a b c +=+,则这两个三角形的关系是( ) A .不一定全等B .不全等C .根据“ASA ”全等D .根据“SAS ”全等10.如图,已知30MON ∠=︒,点1A ,2A ,3A …在射线ON 上,点1B ,2B ,3B …在射线OM 上,112A B A △,223A B A △,334A B A △…均为等边三角形,若11OA =,则667A B A △,的边长为( )A .6B .12C .32D .6411.一个多边形切去一个角后,形成的另一个多边形的内角和为1 080︒,那么原多边形的边数为( ) A .7B .7或8C .8或9D .7或8或912.小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形,如图所示,现在他将正方形ABCD 从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有( )A .3个B .4个C .5个D .无数个二、填空题(24分)13.如图,AB ,CD 相交于点O ,AD CB =,请你补充一个条件,使得AOD COB △≌△,你补充的条件是_____________________.14.已知等腰三角形的周长为20,腰长为x ,x 的取值范围是_________.15.如图为某公司的产品标志图案,图中A B C D E F G ∠+∠+∠+∠+∠+∠+∠=_________度.16.如图,在ABC △中,90C ∠=︒,50CAB ∠=︒,按以下步骤作图:①以点A 为圆心,小于AC 的长为半径画弧,分别交AB ,AC 于点E ,F ;②分别以点E ,F 为圆心,大于号EF 的长为半径画弧,两弧相交于点G :③作射线AG ,交BC 边于点D ,则ADC ∠的度数为_________.17.如图,将长方形ABCD 折叠,使点D 和点B 重合,点C 落在点'C 处,折痕为EF ,若20ABE ∠=︒,则'EFC ∠的度数为_________.18.如图,已知2BC 的平分线与BC 的垂直平分线相交于点P ,PE AB ⊥,PF AC ⊥,垂足分别为E ,F .若8AB =,4AC =,则AE =_________.19.如图,在第1个1ABA △中,20B ∠=︒,1AB A B =,往上取一点,延长1AA 到2A ,使得121A A A C =;在2A C 上取一点D ,延长12A A 到3A ,使得232A A A D =;…;按此作法进行下去,第n 个三角形中以n A 为顶点的内角的度数为_________.20.如图,等腰直角三角形BDC 的顶点D 在等边三角形ABC 的内部,90BDC ∠=︒,连接AD ,过点O 作一条直线将ABD △分割成两个等腰三角形,则分割出的这两个等腰三角形的顶角分别是_________.三、解答题(++++=101012141460分)21.如图,在Rt ABC △中,90ACB ∠=︒,40A ∠=︒,ABC △的外角CBD ∠的平分线BE 交AC 的延长线于点E .(1)求CBE ∠的度数.(2)过点D 作DF BE ∥,交AC 的延长线于点F ,求F ∠的度数.22.如图,点E ,C 在线段BF 上,BE CF =,AB DE =,AC DF =.求证:AB DE ∥.23.如图,ABC △中,AB AC =,点D 在BA 的延长线上,点E 在BC 上,DC DE =,点F 是DE 与AC 的交点,且DF FE =.(1)图中是否存在与BDE ∠相等的角?若存在,请找出,并加以证明;若不存在,说明理由. (2)若EG AC ∥,求证:DA EG =.24.阅读探索题:(1)如图①,OP 是MON ∠的平分线,以O 为圆心任意长为半径作弧,分别交射线ON ,OM 于C ,B 两点,在射线OP 上任取一点A (点O 除外),连接AB ,AC .求证:AOB AOC △≌△.(2)请你参考以上方法,解答下列问题:如图②,在Rt ABC △中,90ACB ∠=︒,60A ∠=︒,CD 平分ACB ∠,试判断BC 和AC ,AD 之间的数量关系并证明.25.(1)如图①,已知在ABC △中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为D ,E .求证:DE BD CE =+.(2)如图②,将(1)中的条件改为:在ABC △中,AB AC =,D ,A ,E 三点都在直线m 上,并且有BDA AEC BAC a ∠==∠=∠,其中a 为任意锐角或钝角.请问结论DE BD CE =+是否成立?若成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图③,D ,E 是D ,A ,E 三点所在直线m 上的两动点(D ,A ,E 三点互不重合),点F 为BAC ∠平分线上的一点,且ABF △和ACF △均为等边三角形,连接BD ,CE ,若BDA AEC BAC ∠=∠=∠,试判断DEF △的形状.期中测试 答案一、 1.【答案】D 2.【答案】D 3.【答案】C 4.【答案】B 5.【答案】A 6.【答案】C 7.【答案】A 8.【答案】A 9.【答案】D 10.【答案】C 11.【答案】D 12.【答案】C 二、13.【答案】示例:A C ∠=∠ 14.【答案】510x << 15.【答案】540 16.【答案】65︒ 17.【答案】125︒ 18.【答案】619.【答案】11802n -⎛⎫⋅︒ ⎪⎝⎭20.【答案】120︒和150︒ 三、21.【答案】解:(1)∵在Rt ABC △中,90ACB ∠=︒,40A ∠=︒,∴9050ABC A ∠=︒-∠=︒.∴130CBD ∠=︒,∵BE 是CBD ∠的平分线, ∴1652CBE CBD ∠=∠=︒.(2)∵90ACB ∠=︒,65CBE ∠=︒.∴906525CEB ∠=︒-︒=︒,∵DF BE ∥,∴25F CEB ∠=∠=︒.22.证明:∵BE CF =,∴BE EC CF EC +=+,∴BC EF =.在ABC △与DEF △中,AB DE BC EF AC DF =⎧⎪=⎨⎪=⎩,∴(SSS)ABC DEF △≌△,∴ABC DEF ∠=∠,∴ AB DE ∥.23.【答案】(1)解:DCA BDE ∠=∠.证明:∵AB AC =,DC DE =,∴ABC ACB ∠=∠,DEC DCE ∠=∠.∴BDE DEC DBC DCE ACB DCA ∠=∠-∠=∠-∠=∠.(2)证明:∵EG AC ∥,∴DAC DGE ∠=∠.在DCA △和EDG △中,DCA EDGDAC EGD DC ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS DCA EDG △≌△.∴DA ED =.24.(1)证明:在AOB △和AOC △中,∵OB OC BOA COA OA OA =⎧⎪∠=∠⎨⎪=⎩,∴(SAS)AOB AOC △≌△.(2)解:BC AC AD =+.证明:如图,在CB 上截取CE CA =.∵CD 平分ACB ∠,∴ACD BCD ∠=∠.在ACD △和ECD △中,∵AC CE ACD ECD CD CD =⎧⎪∠=∠⎨⎪=⎩,∴ACD ECDSAS △≌△(),∴60CAD CED ∠=∠=︒,AD ED =. ∵90ACB ∠=︒,∴30B ∠=︒,∴30EDB ∠=︒,即EDB B ∠=∠, ∴DE EB =.∵BC CE BE =+,∴BC AC DE =+,∴BC AC AD =+.25.(1)证明:∵BD ⊥直线m ,CE ⊥直线m .∴90BDA CEA ∠=∠=︒.∵90BAC ∠=︒,∴90BAD CAE ∠+∠=︒.∵90BAD ABD ∠+∠=︒,∴CAE ABD ∠=∠.又∵AB AC =,∴ADB CEA △≌△,∴AE BD =,AD CE = ∴DE AE AD BD CE =+=+.(2)解:DE BD CE =+成立.证明:∵BDA BAC α∠=∠=,∴180DBA BAD BAD CAE α︒∠+∠=∠+∠=-,∴DBA CAE ∠=∠.∵BDA AEC α∠=∠=,AB AC =, ∴ADB CEA △≌△,∴AE BD =,AD CE =,∴DE AE AD BD CE =+=+.(3)解:由(2)知,ADB CEA △≌△,∴BD AE =,DBA EAC ∠=∠.∵ABF △和ACF △均为等边三角形,.∴60ABF CAF ∠=∠=︒,BF AF =.∴DBA ABF CAE CAF ∠+∠=∠+∠,∴DBF FAE ∠=∠,∴DBF EAF △≌△,∴DF EF =,BFD AFE ∠=∠,∴60∠=∠+∠=∠+∠=︒,DFE DFA AFE DFA BFD∴DEF△为等边三角形.。

人教版八年级数学上册期中测试题及参考答案(WL统考精编)

人教版八年级数学上册期中测试题及参考答案(WL统考精编)

八年级数学上册期中测试题及参考答案(WL统考精编)(时间:120分钟满分:120分)第Ⅰ卷(选择题共36分)一、选择题(本大题共12个小题,每小题3分,共36分)1.下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是()2.一副三角板如图叠放在一起,则图中∠a的度数为()A.15°B.25°C.30°D.35°3.已知等腰三角形的两边长分别为4cm、8cm,则该等腰三角形的周长是()A.12cmB.16cmC.16cm或20cmD. 20cm4.下列说法正确的是()A.三角形三条高交于三角形内一点B.一个钝角三角形一定不是等腰三角形,也不是等边三角形C.有两条边及其中一条边的对角对应相等的两个三角形全等D.平面上两个全等的图形不一定关于某直线对称5.如右图,已知点A(2,3)和点B(4,1),在坐标轴上有一点P,且点P到点A和点B的距离相等,则点P的坐标为()A(1,0) B.(0,-1)C.(1,0)或(0,-1)D.(2,0)或(0,1)6.△ABC中,AC=5,中线AD=6,则AB边的取值范围是()A.1<AB<11B.4<AB<6 C 5<AB<17 D.7<AB<177.如右图,BE、CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,EB、CF相交于D,则∠CDE的度数是()A.130°B.70°C.80°D.75°8.如图,在△ABC中,∠C=90°,按以下步骤作图:①以点A为圆心、适当长为半径作圆弧,分别交边AC、AB于点M、N;②分别以点M和点N为圆心、大于1/2MN的长为半径作圆弧,在∠BAC内,两弧交于点P;③作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15B.30C.45D.60(8题)(9题图)(10题图)(11题图)9.如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C'处,折痕为EF,若AB=1,BC=2,则△ABE和△BC'F的周长之和为()A.3B.4C.6D.810.如图,△ABC是等边三角形,D为BA的中点,DE⊥AC,垂足为点E,EF∥AB,AE=1,下列结论错误的是()A.∠ADE=30°B. AD=2C.△ABC的周长为10D.△EFC的周长为911.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为()A.15°B.22.5°C.30°D.45°12.如图,已知△ABC和△CDE都是等边三角形,且A、C、E三点共线,AD与BE交点O,AD与BC交于点P,BE与CD交于点Q,连接PQ有以下五个结论:①AD=BE;②∠AOB=60°;③AP=BO;④△PCQ是等边三角形;⑤PQ∥AE.其中正确结论的个数是()A.5B.4C.3D.2第Ⅱ卷(非选择题共84分)二、填空题(本大题共4个小题;每小题4分,共16分)13.一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形边数为______。

人教版八年级上册数学期中试题(带答案)

人教版八年级上册数学期中试题(带答案)

2021年八年级上册期中考试数学试题满分:120分时间:120分钟亲爱的同学:沉着应试,认真书写,祝你取得满意成绩!一、选择题(本大题共10小题,共30.0分)1.长度分别为a,2,4的三条线段能组成一个三角形,则a的值可能是()A.1 B.2 C.3 D.62.如图,AM是△ABC的中线,△ABC的面积为4cm2,则△ABM的面积为()A.8cm2B.4cm2C.2cm2D.以上答案都不对3.将一副直角三角板按如图所示方式放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A.45°B.65°C.70°D.75°4.如图所示,有一个简易平分角的仪器(四边形ABCD),其中AB=AD,BC=DC,将点A放在角的顶点处,AB和AD沿着角的两边张开,并分别与AQ,AP重合,沿对角线AC画射线AE,AE就是∠PAQ 的平分线.这个平分角的仪器的制作原理是()A.角平分线性质B.AASC.SSS D.SAS5.如图,在△ABC中,AB=BC,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则下面四个结论中正确的有几个()①∠1=∠EFD;②BE=EC;③BF=DF=CD;④FD∥BC.A.1个B.2个C.3个D.4个6.在下列条件中,能判定△ABC≌△A'B'C'的是()A.AB=A'B',AC=A'C',∠C=∠C'B.AB=A'B',∠A=∠A',BC=B'C'C.AC=A'C',∠A=∠A',BC=B'C'D.AC=A'C',∠C=∠C',BC=B'C'7.点M(3,2)关于y轴对称的点的坐标为()A.(﹣3,2)B.(﹣3,﹣2)C.(3,﹣2)D.(2,﹣3)8.有一等腰直角三角形纸片,以它的对称轴为折痕,将三角形对折,得到的三角形还是等腰直角三角形(如图)依照上述方法将原等腰直角三角形折叠四次,所得小等腰直角三角形的周长是原等腰直角三角形周长的()A.B.C.D.9.如图,△ABC,点D在AC上,连接BD,∠ABD=2∠DBC,∠ADB=2∠C,∠DBC=∠A,则图中共有等腰三角形()个.A.0 B.1 C.2 D.310.如图,在△ABC中,∠BAC=90°,AB=3,AC=4,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是()A.3 B.4 C.5 D.6二、填空题(本大题共7小题,共28.0分)11.已知等腰三角形的一边等于6cm,一边等于7cm,则它的周长为.12.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=°.13.在△ABC中,已知AB=3,AC=5,AD是BC边上的中线,则AD取值范围是.14.如图所示,G、H分别是四边形ABCD的边AD、AB上的点,CD=CB=2,∠D=∠DCB=∠B=90°,∠GCH=45°,则△AGH的周长为.15.如图,是轴对称图形且只有两条对称轴的是(填序号).16.如图,在三角形纸片中,AB=8cm,BC=5cm,AC=6cm,沿过点B的直线折叠这个三角形,使点C 落在AB边上的点E处,折痕为BD,则△AED的周长等于cm.17.如图,∠ABC,∠ACB的平分线相交于点F,过点F作DE∥BC,交AB于D,交AC于E,那么下列结论:①△BDF,△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长为AB+AC;④BD=CE.其中正确的是.三、解答题(本大题共8小题,共72.0分)18.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.19.如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于点F,且∠BDE=∠CDF.求证:AD 平分∠BAC.20.如图,BD平分△ABC的外角∠ABP,DA=DC,DE⊥BP于点E,若AB=5,BC=3,求BE的长.21.如图,在△ABC中,D为AB上一点,E为AC中点,连接DE并延长至点F,使得EF=ED,连CF.(1)求证:CF∥AB(2)若∠ABC=50°,连接BE,BE平分∠ABC,AC平分∠BCF,求∠A的度数.22.如图,已知等腰△ABC顶角∠A=36°.(1)在AC上作一点D,使AD=BD(要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加黑);(2)求证:△BCD是等腰三角形.23.如图,已知AD=BC,AC=BD.(1)求证:△ADB≌△BCA;(2)OA与OB相等吗?若相等,请说明理由.24.已知:点B,C,D在同一直线上,△ABC和△CDE都是等边三角形,BE交AC于点F,AD交CE 于点H,(1)求证:△BCE≌△ACD;(2)求证:CF=CH;(3)判断△CFH的形状并说明理由.25.如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P 作PE⊥AB于E,连接PQ交AB于D.(Ⅰ)若设AP=x,则PC=,QC=;(用含x的代数式表示)(Ⅱ)当∠BQD=30°时,求AP的长;(Ⅲ)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.参考答案一、选择题(本大题共10小题,共30.0分)1.长度分别为a,2,4的三条线段能组成一个三角形,则a的值可能是()A.1 B.2 C.3 D.6【分析】根据三角形三边关系定理得出4﹣2<a<4+2,求出即可.解:由三角形三边关系定理得:4﹣2<a<4+2,即2<a<6,即符合的只有3,故选:C.2.如图,AM是△ABC的中线,△ABC的面积为4cm2,则△ABM的面积为()A.8cm2B.4cm2C.2cm2D.以上答案都不对【分析】根据三角形的中线把三角形分成面积相等的两个三角形解答即可.解:∵AM是△ABC的中线,△ABC的面积是18cm2,∴△ABM的面积=×4=2cm2.故选:C.3.将一副直角三角板按如图所示方式放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A.45°B.65°C.70°D.75°【分析】先依据一幅直角三角板的度数得到∠A=30°,∠BDE=90°,∠E=45°,从而可求得∠CBA 的度数,最后,依据三角形的外角的性质求解即可.解:如图所示:由题意可知:∠A=30°,∠DBE=45°,∴∠CBA=45°.∴∠1=∠A+∠CBA=30°+45°=75°.故选:D.4.如图所示,有一个简易平分角的仪器(四边形ABCD),其中AB=AD,BC=DC,将点A放在角的顶点处,AB和AD沿着角的两边张开,并分别与AQ,AP重合,沿对角线AC画射线AE,AE就是∠PAQ 的平分线.这个平分角的仪器的制作原理是()A.角平分线性质B.AASC.SSS D.SAS【分析】易知AC为公共边,其中AB=AD,BC=DC,利用SSS判断两个三角形全等,根据全等三角形的性质解题即可.解:在△ABC与△ADC中,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.即AE平分∠BAD.∴不论∠DAB是大还是小,始终有AE平分∠BAD.故选:C.5.如图,在△ABC中,AB=BC,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则下面四个结论中正确的有几个()①∠1=∠EFD;②BE=EC;③BF=DF=CD;④FD∥BC.A.1个B.2个C.3个D.4个【分析】根据等腰直角三角形ABC的“三合一”性质、角平分线的性质、全等三角形△ADF≌△ABF 的性质对以下选项进行一一验证即可.解:∵在△ABC中,AB=BC,AB⊥BC,BE⊥AC,∴AE=CE=BE;故②正确;在△ADF和△ABF中,,∴△ADF≌△ABF(SAS),∴∠ADF=∠ABE=45°,∴∠ADF=∠C(等量代换),∴DF∥BC(同位角相等,两直线平行),故④正确;∵△ADF≌△ABF,∴DF=BF(全等三角形的对应边相等).又∵DF∥BC,BE=EC,∴EF=DF,∴CD=BF=DF,故③正确;∵∠EAB=45°,∠1=∠2,∴∠1=∠EAB=22.5°.又∵DF∥BC,∴∠EFD=∠EBC=45°,∴∠1≠∠EFD;故①错误;综上所述,正确的说法有②③④三种;故选:C.6.在下列条件中,能判定△ABC≌△A'B'C'的是()A.AB=A'B',AC=A'C',∠C=∠C'B.AB=A'B',∠A=∠A',BC=B'C'C.AC=A'C',∠A=∠A',BC=B'C'D.AC=A'C',∠C=∠C',BC=B'C'【分析】依据全等三角形的判定定理进行判断即可.解:A、边边角不能证明两个三角形全等,故A不符合题意;B、边边角不能证明两个三角形全等,故B不符合题意;C、边边角不能证明两个三角形全等,故C不符合题意;D、AC=A'C',∠C=∠C',BC=B'C',符合SAS,故D符合题意.故选:D.7.点M(3,2)关于y轴对称的点的坐标为()A.(﹣3,2)B.(﹣3,﹣2)C.(3,﹣2)D.(2,﹣3)【分析】根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.解:点M(3,2)关于y轴对称的点的坐标为(﹣3,2),故选:A.8.有一等腰直角三角形纸片,以它的对称轴为折痕,将三角形对折,得到的三角形还是等腰直角三角形(如图)依照上述方法将原等腰直角三角形折叠四次,所得小等腰直角三角形的周长是原等腰直角三角形周长的()A.B.C.D.【分析】根据折叠的性质可知折叠一次后得到的等腰直角三角形与原等腰直角三角形是相似三角形,再根据相似比求周长比.解:由于折叠一次后得到的等腰直角三角形与原等腰直角三角形是相似三角形,得到的相似比=现在的斜边:原来的斜边=,∴折叠四次,所得小等腰直角三角形的周长是原等腰直角三角形周长的()4=倍.故选:B.9.如图,△ABC,点D在AC上,连接BD,∠ABD=2∠DBC,∠ADB=2∠C,∠DBC=∠A,则图中共有等腰三角形()个.A.0 B.1 C.2 D.3【分析】根据等腰三角形的判定分别证出DB=DC,AB=AD,AB=CB即可.解:图中共有等腰三角形3个,理由如下:∵∠ADB=∠C+∠DBC,∠ADB=2∠C,∴∠DBC=∠C,∴△BCD是等腰三角形,DB=DC,∵∠ABD=2∠DBC,∴∠ABD=∠ADB,∴△ABD是等腰三角形,AB=AD,∵∠DBC=∠A,∴∠A=∠C,∴△ABC是等腰三角形,AB=CB,故选:D.10.如图,在△ABC中,∠BAC=90°,AB=3,AC=4,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是()A.3 B.4 C.5 D.6【分析】根据题意知点B关于直线EF的对称点为点C,故当点P在AC上时,AP+BP有最小值.解:连接PC.∵EF是BC的垂直平分线,∴BP=PC.∴PA+BP=AP+PC.∴当点A,P,C在一条直线上时,PA+BP有最小值,最小值=AC=4.故选:B.二、填空题(本大题共7小题,共28.0分)11.已知等腰三角形的一边等于6cm,一边等于7cm,则它的周长为19cm或20cm.【分析】分两种情况,确定出三角形的三边,再判断是否能构成三角形,最后计算出周长即可.解:当6cm是等腰三角形的腰时,三边为6cm,6cm,7cm,而6+6>7,∴符合三角形的三边关系,此时周长为6+6+7=19cm,当7cm是等腰三角形的腰时,三边为6cm,7cm,7cm,而6+7>7,∴符合三角形的三边关系,此时周长为6+7+7=20cm,故答案为:19cm或20cm.12.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=30°.【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P的度数.解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,∵∠PCM是△BCP的外角,∴∠P=∠PCM﹣∠CBP=50°﹣20°=30°,故答案为:30°.13.在△ABC中,已知AB=3,AC=5,AD是BC边上的中线,则AD取值范围是1<AD<4.【分析】如图,首先倍长中线AD至E,连接CE,因此可以得到△ABD≌△ECD,这样就有CE=AB,然后在△ACE中利用三角形的三边的关系即可求解.解:如图,延长AD至E,使DE=AD,连接CE,∵AD是BC边上的中线,∴BD=CD,∠ADB=∠CDE,∴△ABD≌△ECD,∴CE=AB,在△ACE中,AC﹣CE<AE<AC+CE,而AB=3,AC=5,∴5﹣3<AE<5+3,∴2<2AD<8,即1<AD<4.14.如图所示,G、H分别是四边形ABCD的边AD、AB上的点,CD=CB=2,∠D=∠DCB=∠B=90°,∠GCH=45°,则△AGH的周长为4.【分析】延长AB至E,设BE=DG,连接CE,证明△CDG≌△CBE,根据全等三角形的性质得到∠BCE=∠DCG,CG=CE,再证明△CGH≌△CEH,得出GH=HE,根据三角形的周长公式计算,得到答案.解:延长AB至E,设BE=DG,连接CE,在△CDG和△CBE中,,∴△CDG≌△CBE(SAS),∴∠BCE=∠DCG,CG=CE,∵∠DCB=90°,∠GCH=45°,∴∠DCG+∠HCB=45°,∴∠BCE+∠HCB=45°,∴∠GCH=∠ECH=45°,在△CGH和△CEH中,,∴△CGH≌△CEH(SAS),∴GH=HE=DG+BH,∴△AGH的周长=AG+GH+AH=AG+DG+AH+BH=AD+AB=4,故答案为:4.15.如图,是轴对称图形且只有两条对称轴的是①②(填序号).【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.解:第①②两个图象是轴对称图形且只有两条对称轴,第③个图形有4条对称轴,第④个图形不是轴对称图形.故答案为:①②.16.如图,在三角形纸片中,AB=8cm,BC=5cm,AC=6cm,沿过点B的直线折叠这个三角形,使点C 落在AB边上的点E处,折痕为BD,则△AED的周长等于9cm.【分析】根据翻折变换的性质可得DE=CD,BE=BC,然后求出AE,再根据三角形的周长列式求解即可.解:∵BC沿BD折叠点C落在AB边上的点E处,∴DE=CD,BE=BC,∵AB=8cm,BC=6cm,∴AE=AB﹣BE=AB﹣BC=8﹣5=3cm,∴△ADE的周长=AD+DE+AE,=AD+CD+AE,=AC+AE,=6+3,=9cm.故答案为:9.17.如图,∠ABC,∠ACB的平分线相交于点F,过点F作DE∥BC,交AB于D,交AC于E,那么下列结论:①△BDF,△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长为AB+AC;④BD=CE.其中正确的是①②③.【分析】①根据平分线的性质、平行线的性质,借助于等量代换可求出∠DBF=∠DFB,即△BDF是等腰三角形,同理△CEF都是等腰三角形;②利用等腰三角形的性质即可证明③由①可得△ADE的周长为AB+AC;④无法判断故错误;解:①∵BF是∠ABC的角平分线,∴∠ABF=∠CBF,又∵DE∥BC,∴∠CBF=∠DFB,∴DB=DF即△BDF是等腰三角形,同理∠ECF=∠EFC,∴EF=EC,∴△BDF,△CEF都是等腰三角形;故正确.②∵∴BDF,△CEF都是等腰三角形,∴DF=DB,EF=EC,∴DE=BD+EC,故正确.③∵①△BDF,△CEF都是等腰三角形∴BD=DF,EF=EC,△ADE的周长=AD+DF+EF+AE=AD+BD+AE+EC=AB+AC;故正确,④无法判断BD=CE,故错误,故答案为①②③.三、解答题(本大题共8小题,共72.0分)18.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.【分析】多边形的外角和是360度,根据多边形的内角和比它的外角和的3倍少180°,即可得到多边形的内角和的度数.根据多边形的内角和定理即可求得多边形的边数.解:设这个多边形的边数是n,依题意得(n﹣2)×180°=3×360°﹣180°,n﹣2=6﹣1,n=7.∴这个多边形的边数是7.19.如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于点F,且∠BDE=∠CDF.求证:AD 平分∠BAC.【分析】求出∠DEB=∠DFC=90°,BD=CD,根据全等三角形的判定得出△BED≌△CFD,根据全等三角形的性质得出DE=DF,再推出答案即可.【解答】证明:∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,∵D是BC的中点,∴BD=CD,在△BED和△CFD中,,∴△BED≌△CFD(AAS),∴DE=DF,∵DE⊥AB于E,DF⊥AC于点F,∴点D在∠BAC的角平分线上,∴AD平分∠BAC.20.如图,BD平分△ABC的外角∠ABP,DA=DC,DE⊥BP于点E,若AB=5,BC=3,求BE的长.【分析】过点D作BA的垂线交AB于点H,分别证Rt△DEB≌Rt△DHB和Rt△DEC≌Rt△DHA,再利用全等三角形的性质即可求出BE的长.解:过点D作BA的垂线交AB于点H,∵BD平分△ABC的外角∠ABP,DH⊥AB,∴DE=DH,在Rt△DEB和Rt△DHB中,,∴Rt△DEB≌Rt△DHB(HL),∴BE=BH,在Rt△DEC和Rt△DHA中,,∴Rt△DEC≌Rt△DHA(HL),∴AH=CE,由图象易知:AH=AB﹣BH,CE=BE+BC,∴AB﹣BH=BE+BC,∴BE+BH=AB﹣BC=5﹣3=2,而BE=BH,∴2BE=2,故BE=1.21.如图,在△ABC中,D为AB上一点,E为AC中点,连接DE并延长至点F,使得EF=ED,连CF.(1)求证:CF∥AB(2)若∠ABC=50°,连接BE,BE平分∠ABC,AC平分∠BCF,求∠A的度数.【分析】(1)求出∴△AED≌△CEF,根据全等得出∠A=∠ACF,根据平行线的判定得出即可;(2)求出∠A=∠ACB,根据三角形内角和定理求出即可.【解答】(1)证明:∵在△AED和△CEF中∴△AED≌△CEF(SAS),∴∠A=∠ACF,∴CF∥AB;(2)解:∵AC平分∠BCF,∴∠ACB=∠ACF,∵∠A=∠ACF,∴∠A=∠ACB,∵∠A+∠ABC+∠ACB=180°,∠ABC=50°,∴2∠A=130°,∴∠A=65°.22.如图,已知等腰△ABC顶角∠A=36°.(1)在AC上作一点D,使AD=BD(要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加黑);(2)求证:△BCD是等腰三角形.【分析】(1)作AB的垂直平分线交AC于D;(2)利用等腰三角形的性质和三角形内角和计算出∠ABC=∠C=72°,再利用DA=DB得到∠ABD =∠A=36°,所以∠BDC=72°,从而可判断△BCD是等腰三角形.【解答】(1)解:如图,点D为所作;(2)证明:∵AB=AC,∴∠ABC=∠C=(180°﹣36°)=72°,∵DA=DB,∴∠ABD=∠A=36°,∴∠BDC=∠A+∠ABD=36°+36°=72°,∴∠BDC=∠C,∴△BCD是等腰三角形.23.如图,已知AD=BC,AC=BD.(1)求证:△ADB≌△BCA;(2)OA与OB相等吗?若相等,请说明理由.【分析】(1)根据SSS定理推出全等即可;(2)根据全等得出∠OAB=∠OBA,根据等角对等边得出即可.【解答】(1)证明:∵在△ADB和△BCA中,,∴△ADB≌△BCA(SSS);(2)解:OA=OB,理由是:∵△ADB≌△BCA,∴∠ABD=∠BAC,∴OA=OB.24.已知:点B,C,D在同一直线上,△ABC和△CDE都是等边三角形,BE交AC于点F,AD交CE 于点H,(1)求证:△BCE≌△ACD;(2)求证:CF=CH;(3)判断△CFH的形状并说明理由.【分析】(1)根据等边三角形的性质就可以得出AC=BC,DC=EC,∠ACB=∠DCE=60°,由SAS 就可以得出△BCE≌△ACD;(2)由△BCE≌△ACD可以得出∠CAD=∠CBE,再求出∠ACE=∠BCF就可以得出△ACH≌△BCF,就有CH=CF;(3)连接FH,由CH=CF,∠ACE=60°就可以得出△CFH是等边三角形.解:(1)证明:∵△ABC和△CDE都是等边三角形,∴∠ACB=∠DCE=60°,∴∠ACB+∠ACE=∠DCE+∠ACE,∴∠BCE=ACD.在△BCE和△ACD中,,∴△BCE≌△ACD(SAS);(2)∵△BCE≌△ACD,∴∠CBE=∠CAD.∵∠ACB+∠ACE+∠DCE=180°,∴∠ACE=60°,∴∠ACE=∠ACB.在△ACH和△BCF中,,∴△ACH≌△BCF(ASA),∴CH=CF;(3)△CFH是等边三角形.理由:连接FH.∵∠ACE=60°,CH=CF,∴△CFH是等边三角形.25.如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P 作PE⊥AB于E,连接PQ交AB于D.(Ⅰ)若设AP=x,则PC=6﹣x,QC=6+x;(用含x的代数式表示)(Ⅱ)当∠BQD=30°时,求AP的长;(Ⅲ)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.【分析】(Ⅰ)由△ABC是边长为6的等边三角形,设AP=x,则PC=6﹣x,QB=x,由此即可解决问题.(Ⅱ)在Rt△QCP中,∠BQD=30°,PC=QC,即6﹣x=(6+x),求出x的值即可;(Ⅲ)作QF⊥AB,交直线AB的延长线于点F,连接QE,PF,由点P、Q作匀速运动且速度相同,可知AP=BQ,再根据全等三角形的判定定理得出△APE≌△BQF,再由AE=BF,PE=QF且PE∥QF,可知四边形PEQF是平行四边形,进而可得出EB+AE=BE+BF=AB,DE=AB,由等边△ABC的边长为6可得出DE=3,故当点P、Q运动时,线段DE的长度不会改变.解:(Ⅰ)∵△ABC是边长为6的等边三角形,∴AB=BC=AC=6,设AP=x,则PC=6﹣x,QB=x,∴QC=QB+BC=6+x,故答案为:6﹣x,6+x;(Ⅱ)∵在Rt△QCP中,∠BQD=30°,∴PC=QC,即6﹣x=(6+x),解得x=2,∴AP=2;(Ⅲ)当点P、Q运动时,线段DE的长度不会改变.理由如下:法一、如图,作QF⊥AB,交直线AB的延长线于点F,连接QE,PF,又∵PE⊥AB于E,∴∠DFQ=∠AEP=90°,∵点P、Q速度相同,∴AP=BQ,∵△ABC是等边三角形,∴∠A=∠ABC=∠FBQ=60°,在△APE和△BQF中,∵∠AEP=∠BFQ=90°,∴∠APE=∠BQF,∴在△APE和△BQF中,,∴△APE≌△BQF(AAS),∴AE=BF,PE=QF且PE∥QF,∴四边形PEQF是平行四边形,∴DE=EF,∵EB+AE=BE+BF=AB,∴DE=AB,又∵等边△ABC的边长为6,∴DE=3,∴当点P、Q运动时,线段DE的长度不会改变.法二、如图,过点P作BC的平行线交AB于点M,∴∠AMP=∠ABC=60°,∠PMD=∠QBD,∴△AMP是等边三角形,∴MP=AP=x,∵PE⊥AB,∴AE=EM,∵QB=x,∴MP=QB,又∵∠MDP=∠BDQ∴△DMP≌△DBQ(AAS),∴DM=DB,∴DE=DM+ME=AB=3.∴当点P、Q运动时,线段DE的长度不会改变.。

人教版八年级上册数学期中达标训练题(含答案)

人教版八年级上册数学期中达标训练题(含答案)

初二上册数学期中达标训练题一.选择题1.如图,四个图标分别是剑桥大学、北京理工大学、浙江大学和北京大学的校徽的重要组成部分,其中是轴对称图形的是()A.B.C.D.2.以下列各组线段长为边能组成三角形的是()A.1,2,4 B.2,4,6 C.4,6,8 D.5,6,12 3.从多边形一条边上的一点(不是顶点)处出发,连接各个顶点得到2019个三角形,则这个多边形的边数为()A.2020 B.2019 C.2018 D.20174.作∠AOB的角平分线的作图过程如下,用下面的三角形全等判定法则解释其作图原理,最为恰当的是()A.SAS B.ASA C.AAS D.SSS5.如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1 B.1 C.﹣5 D.56.“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动、C点固定,OC=CD=DE,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°7.一个正多边形的每一个外角都等于45°,则这个多边形的边数为()A.4 B.6 C.8 D.108.已知多边形的每个内角都是108°,则这个多边形是()A.五边形B.七边形C.九边形D.不能确定9.如图,在△ABC中,AB的垂直平分线交BC于D,AC的中垂线交BC于E,∠DAE =20°,则∠BAC的度数为()A.70°B.80°C.90°D.100°10.如图,D是△ABC的边AB上一点(不与点A、B重合),DE∥BC,交AC于点E,连接BE,已知△ABC的面积为9,则△BDE面积的最大值为()A.3 B.C.D.二.填空题11.如图,已知AE是△ABC的边BC上的中线,若AB=8cm,△ACE的周长比△AEB 的周长多2cm,则AC=cm.12.已知等腰三角形的两边长是3cm和6cm,则这个等腰三角形的周长是cm.13.如图,D是等边三角形ABC外一点.若BD=8,CD=6,连接AD,则AD的最大值与最小值的差为.14.如图,△ABC中,∠A=55°,将△ABC沿DE翻折后,点A落在BC边上的点A′处.如果∠A′EC=70°,那么∠A′DB的度数为.15.如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC=.16.已知:如图①,AD平分∠BAC,∠B+∠C=180°,∠B=90°,易知:DB=DC.应用:如图③,四边形ABDC中,∠B=45°,∠C=135°,DB=DC=a,则AB﹣AC =(用含a的代数式表示).三.解答题17.如图,∠A=50°,∠ABD=35°,∠ACB=70°,且CE平分∠ACB,求∠BEC的度数.18.如图1,CA=CB,CD=CE,∠ACB=∠DCE=α(1)求证:BE=AD;(2)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图②,判断△CPQ的形状,并加以证明.19.如图,在△ABC中,∠BAC=90°,BE平分∠ABC,AM⊥BC于点M交BE于点G,AD平分∠MAC,交BC于点D,交BE于点F.求证:线段BF垂直平分线段AD.20.如图所示,在平面直角坐标系中,A(﹣1,5)、B(﹣1,0)、C(﹣4,3).(1)直接写出△ABC的面积为.(2)在图形中作出△ABC关于x轴的对称图形△A1B1C1.(3)若△DAB与△CAB全等(D点不与C点重合),则点D的坐标为.21.如图,△ABC的边AB与△EDC的边ED相交于点F,连接CF.已知AC=EC,BC =DC,∠BCD=∠ACE.(1)求证:AB=ED;(2)求证:FC平分∠BFE.22.如图,在△ABC中,BE⊥AC于点E,BC的垂直平分线分别交AB、BE于点D、G,垂足为H,CD⊥AB,CD交BE于点F.(1)求证:△BDF≌△CDA,并写出BF与AC的数量关系.(2)若DF=DG,求证:①BE平分∠ABC;②CE=BF.23.【材料阅读】我们曾解决过课本中的这样一道题目:如图1,四边形ABCD是正方形,E为BC边上一点,延长BA至F,使AF=CE,连接DE,DF.……提炼1:△ECD绕点D顺时针旋转90°得到△FAD;提炼2:△ECD≌△FAD;提炼3:旋转、平移、轴对称是图形全等变换的三种方式.【问题解决】(1)如图2,四边形ABCD是正方形,E为BC边上一点,连接DE,将△CDE沿DE 折叠,点C落在G处,EG交AB于点F,连接DF.可得:∠EDF=°;AF,FE,EC三者间的数量关系是.(2)如图3,四边形ABCD的面积为8,AB=AD,∠DAB=∠BCD=90°,连接AC.求AC的长度.(3)如图4,在△ABC中,∠ACB=90°,CA=CB,点D,E在边AB上,∠DCE =45°.写出AD,DE,EB间的数量关系,并证明.24.(1)阅读理解:如图①,在△ABC中,若AB=8,AC=12,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,体现了转化和化归的数学思想,利用三角形三边的关系即可判断.中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DM⊥DN于点D,DM交AB于点M,DN交AC于点N,连接MN,求证:BM+CN>MN;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=110°,以C为顶点作一个55°角,角的两边分别交AB,AD于M、N两点,连接MN,探索线段BM,DN,MN之间的数量关系,并加以证明.参考答案一.选择1.解:A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形;故选:D.2.解:A、1+2<4,不能组成三角形;B、2+4=6,不能组成三角形;C、4+6>8,能组成三角形D、5+6<12,不能够组成三角形;故选:C.3.解:从多边形一条边上的一点(不是顶点)处出发,连接各个顶点得到2019个三角形,则这个多边形的边数为2019+1=2020.故选:A.4.解:用尺规作图画∠AOB的角平分线OC,作图依据是SSS,故选:D.5.解:∵点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,又∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,∴a=﹣2,b=3.∴a+b=1,故选B.6.解:∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC,∴∠DCE=∠O+∠ODC=2∠ODC,∵∠O+∠OED=3∠ODC=∠BDE=75°,∴∠ODC=25°,∵∠CDE+∠ODC=180°﹣∠BDE=105°,∴∠CDE=105°﹣∠ODC=80°.故选:D.7.解:多边形的边数为:360÷45=8.故选:C.8.解:∵多边形的每个内角都是108°,∴每个外角是180°﹣108°=72°,∴这个多边形的边数是360°÷72°=5,∴这个多边形是五边形,故选:A.9.D.10.B.二.填空题11.解:∵AE是△ABC的边BC上的中线,∴CE=BE,又∵AE=AE,△ACE的周长比△AEB的周长多2cm,∴AC﹣AB=2cm,即AC﹣8=2cm,∴AC=10cm,故答案为:10;12.解:若3cm是腰长,则三角形的三边分别为3cm,3cm,6cm,∵3+3=6,∴不能组成三角形,若3cm是底边,则三角形的三边分别为3cm,6cm,6cm,能组成三角形,周长=3+6+6=15cm,综上所述,这个等腰三角形的周长是15cm.故答案为:15.13.解:如图,以CD为边向外作等边△CDE,连接BE,∵△CDE和△ABC是等边三角形,∴CE=CD,CB=CA,∠ECD=∠BCA=60°,∴∠ECB=∠DCA,在△ECB和△DCA中,,∴△ECB≌△DCA(SAS),∴BE=AD,∵DE=CD=6,BD=8,∴在△BDE中,BD﹣DE<BE<BD+DE,即8﹣6<BE<8+6,∴2<BE<14,∴2<AD<14.则当B、D、E三点共线时,可得BE的最大值与最小值分别为14和2.∴AD的最大值与最小值的差为14﹣2=12.故答案为:12.14.解:由翻折的性质可知:∠ADE=∠EDA′,∠AED=∠A′ED=(180°﹣70°)=55°,∵∠A=55°,∴∠ADE=∠EDA′=180°﹣55°﹣55°=70°,∴∠A′DB=180°﹣140°=40°,故答案为40°.15.解:延长BD交AC于E.∵DA=DB=DC,∴∠ABE=∠DAB=20°,∠ECD=∠DAC=30°.又∵∠BAE=∠BAD+∠DAC=50°,∠BDC=∠DEC+∠ECD,∠DEC=∠ABE+∠BAE,∴∠BDC=∠ABE+∠BAE+∠ECD=20°+50°+30°=100°.故答案为:100°.16.证明:∵∠B+∠C=180°,∠B=90°,∴∠C=90°,∴DC⊥AC,DB⊥AB,∵AD平分∠BAC,∴DB=DC;应用:作DE⊥AB于点E,作DF⊥AC于点F,∵∠B=45°,DE⊥AB,DB=a,∴DE=BE=a,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,∵∠B=45°,∠C=135°,∴∠B=∠DCF=45°,在△DEB和△DFC中∴△DEB≌△DFC(AAS)∴DE=DF,BE=CF,连接AD,在Rt△AFD和Rt△AED中∴Rt△AFD≌Rt△AED(HL)∴AF=AE,∴AB﹣AC=AE+BE﹣AC=AF+BE﹣AC=AC+CF+BE﹣AC=CF+BE==a,故答案为:a.三.解答题17.解:在△ABC中,∵∠A=50°,∠ACB=70°,∴∠ABC=60°,∵∠ABD=35°,∴∠CBD=∠ABC﹣∠ABD=25°,∵CE平分∠ACB,∴∠BCE=1/2∠ACB=35°,∴在△BCE中,∠BEC=180°﹣25°﹣35°=120°.18.解:(1)如图1,∵∠ACB=∠DCE=α,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴BE=AD;(2)△CPQ为等腰直角三角形.证明:如图2,由(1)可得,BE=AD,∵AD,BE的中点分别为点P、Q,∴AP=BQ,∵△ACD≌△BCE,∴∠CAP=∠CBQ,在△ACP和△BCQ中,,∴△ACP≌△BCQ(SAS),∴CP=CQ,且∠ACP=∠BCQ,又∵∠ACP+∠PCB=90°,∴∠BCQ+∠PCB=90°,∴∠PCQ=90°,∴△CPQ为等腰直角三角形19.证明:∵∠BAC=90°,∴∠ABC+∠C=90°,∵AM⊥BC,∴∠AMB=90°,∴∠ABC+∠BAM=90°,∴∠C=∠BAM,∵AD平分∠MAC,∴∠MAD=∠CAD,∴∠BAM+∠MAD=∠C+∠CAD,∵∠ADB=∠C+∠CAD,∴∠BAD=∠ADB,∴AB=BD,∵BE平分∠ABC,∴BF⊥AD,AF=FD,即线段BF垂直平分线段AD.20.解:(1)△ABC的面积=×5×3=;故答案为:;(2)如图所示:△A1B1C1即为所求;(3)如图所示:点D的坐标为(2,3)或(2,2)或(﹣4,2).故答案为:(2,3)或(2,2)或(﹣4,2).21.证明:(1)∵∠BCD=∠ACE,∴∠BCD+∠ACD=∠ACE+∠ACD,即∠BCA=∠DCE,在△ABC与△EDC中,∴△ABC≌△EDC(SAS),∴AB=ED;(2)过点C作CG⊥AB,CH⊥DE,垂足分别为G,H,∵△ABC≌△EDC,∴∠B=∠D,∵CG⊥AB,CH⊥DE,∴∠BGC=∠DHC=90°,在△BCG与△DCH中,∴△BCG≌△DCH(AAS),∴CG=CH,∴FC平分∠BFE.22.(1))证明:∵DH垂直平分BC,∴BD=CD,∵BE⊥AC,BA⊥CD,∴∠A+∠DBF=90°,∠DBF+∠DFB=90°,∴∠A=∠DFB,在△ADC和△FDB中∴△ADC≌△FDB(AAS),∴BF=AC;(2)证明:①∵DF=DG,∴∠DGF=∠DFG,∵∠BGH=∠DGF,∴∠DGF=∠DFG,∵∠DBF+∠DFB=90°,∠FBC+∠BGH=90°,∴∠DBF=∠FBC,∴BE平分∠ABC;②在△ABE和△CBE中∴△ABE≌△CBE(ASA),∴AE=CE,∴AC=2CE,∵BF=AC,∴CE=BF.23.【问题解决】解:(1)由折叠的性质可得△CDE≌△GDE,∴CD=DG,∠CDE=∠GDE,∠DCE=∠DGE=90°,在Rt△DAF和Rt△DGF中,,∴Rt△DAF≌Rt△DGF(HL),∴∠ADF=∠GDF,AF=FG.∴∠EDF=∠EDG+∠FDG==45°,EF=FG+EG=AF+EC;故答案为:45°,AF+EC=FE.(2)如图,延长CD到E,使DE=BC,连接AE.∵AB=AD,∠DAB=∠BCD=90°,∴△ADE≌△ABC(SAS),∴AE=AC,∠EAD=∠CAB.∴∠EAC=90°.∵四边形ABCD的面积为8,可得△ACE的面积为8.∴.解得,AC=4.(3)AD2+BE2=DE2.证明如下:如图2:将△ACD绕点C逆时针旋转90°得到△BCH,连接EH.∴DC=HC,∠DCE=∠ECH=45°,∠CAD=∠CBH=45°,∵CE=CE,∴△CEH≌△CED(SAS).∴EH=ED.∴∠ABC+∠CBH=∠EBH=90°.∴HB2+BE2=EH2.∵AD=BH,∴AD2+BE2=DE2.24.(1)阅读理解:解:∵AD是BC边上的中线,∴BD=CD,在△ACD和△EBD中,,∴△ACD≌△EBD(SAS),∴BE=AC=12,在△ABE中,由三角形的三边关系得:BE﹣AB<AE<BE+AB,∴12﹣8<AE<12+8,即4<AE<20,∴2<AD<10;故答案为:2<AD<10;(2)问题解决:证明:延长ND至点F,使FD=ND,连接BF、MF,如图1所示:同(1)得:△BFD≌△CND(SAS),∴BF=CN,∵DM⊥DN,FD=ND,∴MF=MN,在△BFM中,由三角形的三边关系得:BM+BF>MF,∴BM+CN>MN;(3)问题拓展:解:BM+DN=MN;理由如下:延长AB至点E,使BE=DN,连接CE,如图2所示,∵∠ABC+∠D=180°,∠EBC+∠ABC=180°,∴∠EBC=∠D,在△EBC和△NDC中,,∴△EBC≌△NDC(SAS),∴CE=CN,∠ECB=∠NCD,∵∠BCD=110°,∠MCN=55°,∴∠BCM+∠NCD=55°,∴∠ECM=55°=∠MCN,在△NCM和△ECM中,,∴△NCM≌△ECM(SAS),∴MN=ME,∵BM+BE=ME,∴BM+DN=MN.。

【人教版】数学八年级上册《期中考试题》附答案

∵3+3=6<8,不能组成三角形,
∴不合题意,舍去;
若3cm为底边长,8cm为腰长,
则此三角形的周长为:3+8+8=19(cm).
故选A.
【点睛】此题考查了三角形的三边关系定理.比较简单,注意掌握分类讨论思想的应用.
5.如图所示,AD、AE分别是△ABC的高和角平分线,且∠B=76°,∠C=36°,则∠DAE等于( )
A.20°B.18°C.45°D.30°
6.如图,AD是△ABC的中线,E是AD的中点,S△AEC=3cm2,则S△ABC=()cm2
A. 10B. 11C. 12D. 13
7.如图,在 中, ,点 是两条角平分线的交点,则 的大小为()
A. B. C. D.
8.从n边形的一个顶点出发作对角线,可以把这个n边形分成9个三角形,则n等于()
11.在正方形网格中, 的位置如图所示,到 的两边距离相等的点应是( )
A.点MB.点QC.点PD.点N
12.如图,直线AC上取点B,在其同一侧作两个等边三角形△ABD和△BCE,连接AE,CD与GF,下列结论正确的有()
①AEDC;②AHC120;③△AGB≌△DFB;④BH平分AHC;⑤GF∥AC
即B点到AE和DC的距离相等,
∴BH平分∠AHC,所以④正确;
∵△AGB≌△DFB,
∴BG=BF,
∵∠GBF=60°,
∴△BGF 等边三角形,
∴∠BGF=60°,
∴∠ABG=∠BGF,
∴GF∥AC,所以⑤正确.
(2)组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线L上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

人教版八年级上册数学期中考试试卷及答案

人教版八年级上册数学期中考试试题一、单选题1.“国士无双”是人民对“杂交水稻之父”袁隆平院士的赞誉.下列四个汉字中是轴对称图形的是( )A .B .C .D .2.以下列各组线段为边,能组成三角形的是( )A .2cm,5cm,8cmB .25cm,24cm,7cmC .3cm,3cm,6cmD .1cm,2cm,3cm3.若一个多边形的内角和是900°,则这个多边形的边数是( )A .5B .6C .7D .84.如图,△ABC 中,DE 是AC 的垂直平分线,AE= 5cm ,△ABD 的周长为16cm ,则△ABC 的周长为( )A .21cmB .26cmC .28cmD .31cm5.如图,将一副三角板摆放在直线AB 上,90ECD FDG ∠=∠=︒,45EDC ∠=︒,设EDF x ∠=,则用x 的代数式表示GDB ∠的度数为( )A .xB .15x -︒C .45x ︒-D .60x ︒-6.如图A 、F 、C 、D 在一条直线上,ABC DEF ≅,B 和E ∠是对应角,BC 和EF 是对应边,1,3AF FD ==.则线段FC 的长为( )A .1B .1.5C .2D .2.57.如图,在Rt△ABC 中,△A=90°,BD 是△ABC 的角平分线,若AC=10,CD=6,则点D 到BC 的距离是( )A .10B .8C .6D .48.根据下列已知条件,能唯一画出△ABC 的是( )A .△C =90°,AB =6 B .AB =4,BC =3,△A =30°C .AB =5,BC =3D .△A =60°,△B =45°,BC =49.如图,点A 在直线l 上,ABC ∆与AB C ''∆关于直线l 对称,连接BB '分别交AC ,AC '于点D ,D ,连接CC '.下列结论不一定正确的是( )A .BACB AC ''∠=∠ B .BD B D ''= C .AD DD '= D .CC BB '' 10.如图,已知AB AC =,点D 、E 分别在AC 、AB 上且AE AD =,连接,,EC BD EC 交BD 于点M ,连接AM ,过点A 分别作,AF CE AG BD ⊥⊥,垂足分别为F 、G ,下列结论:△EBM DCM ≌;△EMB FAG ∠=∠;△MA 平分EMD ∠;△如果BEM ADM SS =,则E是AB 的中点;其中正确结论的个数为( )A .1个B .2个C .3个D .4个二、填空题11.点(5,9)P -关于y 轴的对称点Q 的坐标为________.12.一个正多边形的每个外角都等于45°,那么这个正多边形的内角和为______度. 13.在镜子中看到时钟显示的时间是,则实际时间是__________ 14.如图△ABC 中,△A :△B=1:2,DE△AB 于E ,且△FCD=75°,则△D=________.15.已知射线OM .以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,如图所示,则△AOB=________(度)16.如图,△1=△2,由AAS 来判定△ABD△△ACD ,则需添加的条件是________________.17.如图,在ABC 中,70A ∠=︒,ABC ∠的角平分线与ABC 的外角角平分线交于点E ,则E ∠=__________度.18.△ABC 中,AB=AC=12厘米,△B=△C ,BC=8厘米,点D 为AB 的中点.如果点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为v 厘米/秒,则当△BPD 与△CQP 全等时,v 的值为___________.三、解答题19.一个多边形的内角和是它的外角和的6倍,求这个多边形的边数.20.如图,点E ,C 在线段BF 上,A D ∠=∠,//AB DE ,BC EF =,求证:AC DF =.21.已知△ABC 中,△B =50°,△C =70°,AD 是△ABC 的角平分线,DE△AB 于E 点. (1)求△EDA 的度数;(2)AB =10,AC =8,DE =3,求S△ABC .22.如图,在平面直角坐标系中,ABC 的各顶点坐标分别为(4,4),(1,1),(3,1)A B C ---.(1)画出ABC 关于x 轴对称的111A B C △;(2)直接写出点111,,A B C 的坐标;(3)在111A B C △中,已知127A ∠=︒,请直接写出11B C 边上的高与11A C 所夹锐角的度数. 23.如图,已知B (-1,0),C (1,0),A 为y 轴正半轴上一点,点D 为第二象限一动点,E 在BD 的延长线上,CD 交AB 于F ,且△BDC=△BAC .(1)求证:△ABD=△ACD ;(2)求证:AD 平分△CDE ;(3)若在点D 运动的过程中,始终有DC=DA+DB ,在此过程中,△BAC 的度数是否变化?如果变化,请说明理由;如果不变,请求出△BAC 的度数.参考答案1.B【解析】【分析】根据轴对称图形的概念逐项判断即可.【详解】解:A 选项中的汉字不是轴对称图形,不符合题意;B 选项中的汉字是轴对称图形,符合题意;C 选项中的汉字不是轴对称图形,不符合题意;D选项中的汉字不是轴对称图形,不符合题意,故选:B.【点睛】本题考查轴对称图形的概念,掌握轴对称图形的概念是解答的关键.2.B【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,知A、2+5<8,不能组成三角形;B、7+24>25,能够组成三角形;C、3+3=6,不能组成三角形;D、1+2=3,不能组成三角形.故选:B.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.C【解析】【分析】根据多边形的内角和公式(n﹣2)•180°,列式求解即可.【详解】设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=7.故选:C.【点睛】本题考查多边形内角和,掌握多边形内角和公式是解答本题的关键.4.B【分析】根据垂直平分线的性质得到AD CD =,将ABC 的周长表示成ABD △的周长加上AC 长求解.【详解】解:△DE 是AC 的垂直平分线,△AD CD =,5AE CE ==,△10AC =,△ABD △的周长是16,△16AB BD AD ++=, ABC 的周长161026AB BD CD AC AB BD AD AC =+++=+++=+=.故选:B .【点睛】本题考查垂直平分线的性质,解题的关键是掌握垂直平分线的性质.5.C【解析】【分析】根据EDC EDF FDG GDB ∠+∠+∠+∠构成一个平角,结合题意和三角板各内角的大小即可求解.【详解】解:如图,45,90EDC FDG ∠=︒∠=︒,EDF x ∠=︒ 180EDC EDF FDG GDB ADB ∠+∠+∠+∠=∠=︒,4590180x GDB ∴︒++︒+∠=︒,1804590GDB x ∴∠=︒-︒-︒-,45GDB x ∴∠=︒-故选:C .【点睛】本题考查了平角定义,求角的大小,掌据三角板上各内角的大小是解本题的关键. 6.C【解析】根据ABC DEF ≅,得到3AC DF ==,然后根据1AF =即可求出线段FC 的长度.【详解】解:△ABC DEF ≅,△3AC DF ==,△1AF =,△312FC AC AF =-=-=.故选:C .【点睛】此题考查了全等三角形的性质,解题的关键是熟练掌握全等三角形的性质:全等三角形对应边相等,对应角相等.7.D【解析】【分析】根据题意作辅助线,然后根据角平分线的性质得出DE=AD ,根据已知可得AD=4,所以DE=4,即D 点到BC 的距离是4.【详解】过点D 作DE△BC 于点E .△△A=90°,BD 是△ABC 的平分线,DE△BC ,△△A=△DEB=90°,根据角平分线的性质可得:DE=AD .△AC=10,CD=6,△DA=4,△DE=4,即D 点到BC 的距离是4.故选D .【点睛】本题主要考查角平分线的性质,作出辅助线是解决本题的关键,难度适中.8.D【解析】根据全等三角形的判定方法对各选项进行判断.【详解】解:A 、当△C=90°,AB=6,可根据全等三角形的判定方法判断三角形不唯一,所以A 选项不符合题意;B 、当AB=6,BC=3,△A=30°,可根据全等三角形的判定方法判断三角形不唯一,所以B 选项不符合题意;C 、当AB=6,BC=3,可根据全等三角形的判定方法,判断三角形不唯一,所以C 选项不符合题意;D 、当△A=60°,△B=45°,BC=4,可根据全等三角形的判定方法判断三角形唯一,所以D 选项符合题意.故选:D .9.C【解析】根据轴对称的性质、平行线的判定、垂直平分线的性质逐个判断即可得.【详解】如图,由轴对称的性质可知,BAC B AC ''∠=∠,直线l 是,,DD BB CC '''的垂直平分线 ,,,,OB OB OD OD AD AD BB l CC l '''''∴===⊥⊥,//OB OD OB OD CC BB ''''∴-=-即BD B D ''=综上,,,A B D 选项一定正确,C 选项不一定正确故选:C .【点睛】本题考查了轴对称的性质、平行线的判定、垂直平分线的性质等知识点,掌握理解轴对称的性质是解题关键.10.D【解析】【分析】根据三角形全等的判定定理和性质,角平分线的性质定理的逆定理,三角形的面积公式,四边形的内角和定理,补角的定义等逐一判断即可.【详解】△AB=AC ,△BAD=△CAE ,AD=AE ,△△BAD△△CAE ,BE=CD ,△△EBM=△DCM ,△△BME=△CMD ,△△BME△△CMD ,△结论△正确;△,AF CE AG BD ⊥⊥,△△FAG+△FMG=180°,△△EMB+△FMG=180°,△△FAG=△EMB ,△结论△正确;△△BME△△CMD ,△△BEM=△CDM ,△△AEF=△ADG ,△,AF CE AG BD ⊥⊥,AE=AD ,△△AEF△△ADG ,△AF=AG ,△MA 平分△EMD ,△结论△正确;△△BME△△CMD ,△△BEM=△CDM ,EM=DM ,△△AEM=△ADM ,△AE=AD ,△△AEM△△ADM ,△AEM ADM S S =,△BEMADM S S =, △AEM BEM S S =,△E 是AB 的中点,△结论△正确;故选D .【点睛】本题考查了全等三角形的判定和性质,角的平分线的性质定理的逆定理,邻角,四边形的内角和定理,三角形的面积,熟练掌握三角形全等的判定和性质是解题的关键.11.(5,9)【解析】【分析】根据平面直角坐标系中任意一点P (x ,y ),关于y 轴的对称点的坐标是(-x ,y )即求关于y 轴的对称点时:纵坐标不变,横坐标变成相反数,据此即可解答.【详解】解:点P (-5,9)关于y 轴的对称点Q 的坐标为(5,9).故答案为:(5,9).【点睛】本题考查了关于x 轴、y 轴的对称点的坐标.解题的关键是掌握关于x 轴、y 轴的对称点的坐标的特征,关于y 轴对称的两个点纵坐标不变,横坐标变成相反数.12.1080【解析】【分析】利用多边形的外角和为360°计算出这个正多边形的边数,然后再根据内角和公式进行求解即可.【详解】解:△正多边形的每一个外角都等于45︒,△正多边形的边数为360°÷45°=8,所有这个正多边形的内角和为(8-2)×180°=1080°.故答案为:1080.【点睛】本题考查了多边形内角与外角等知识,熟知多边形内角和定理(n ﹣2)•180 °(n≥3)和多边形的外角和等于360°是解题关键.13.16:25:08【解析】【详解】△实际时间和镜子中的时间关于竖直的线成轴对称,△实际时间是16:25:08,故答案为16:25:08.14.40°##40度【解析】【分析】先根据75FCD ∠=︒及三角形内角与外角的性质及:1:2A B ∠∠=可求出A ∠的度数,再由DE AB ⊥及三角形内角和定理解答可求出AFE ∠的度数,再根据三角形内角和定理即可求出答案.【详解】解:75FCD ∠=︒,75A B ∴∠+∠=︒,:1:2A B ∠∠=,175253A ∴∠=⨯︒=︒, DE AB ∵⊥于E ,90902565AFE A ∴∠=︒-∠=︒-︒=︒,65CFD AFE ∴∠=∠=︒,75FCD ∠=︒,180180657540D CFD FCD ∴∠=︒-∠-∠=︒-︒-︒=︒.故答案为:40︒【点睛】本题考查了直角三角形的性质,垂直定义,三角形内角和定理,三角形外角性质的应用,解∠的度数.题的关键是求出DFC15.60【解析】【分析】首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得△AOB 的度数.【详解】解:连接AB,根据题意得:OB=OA=AB,△△AOB是等边三角形,△△AOB=60°.故答案为60【点睛】本题考查了等边三角形的判定与性质.此题难度不大,解题的关键是能根据题意得到OB=OA=AB.16.△B=△C【解析】【分析】本题要判定△ABD△△ACD,已经有一角一边相等,根据题目要求由AAS来判定即可得出答案.【详解】由题可知,题目已经有△1=△2,AD=AD,只能是△B=△C,才能组成“AAS”.故答案为:△B=△C.【点睛】本题考查了三角形的判定,明确题目已知有一边一角对应相等,注意由AAS来判定是解决本题的关键.17.35【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,用△A与△EBC表示出△ECD,再利用△E与△EBC表示出△ECD,然后整理即可得到△A与△E的关系,进而可求出△E.【详解】解:△BE和CE分别是△ABC和△ACD的角平分线,△△EBC=12△ABC,△ECD=12△ACD,又△△ACD是△ABC的一外角,△△ACD=△A+△ABC,△△ECD=12(△A+△ABC)=12△A+△ECD,△△ECD是△BEC的一外角,△△ECD=△EBC+△E,△△E=△ECD-△EBC=12△A+△EBC-△EBC=12△A=12×70°=35°,故答案为:35.【点睛】本题考查了三角形的外角性质与内角和定理,角平分线的定义,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.18.2或3【解析】【分析】此题要分两种情况:△若△DBP△△PCQ,则BD=PC,BP=CQ,计算出BP的长,进而可得运动时间,然后再求v;△若△BDP△△CQP,则BD=CQ,PB=PC,计算出BP的长,进而可得运动时间,然后再求v.【详解】解:分两种情况:△若△DBP△△PCQ ,则BD =PC ,BP =CQ ,△点D 为AB 的中点,△BD =12AB =6cm , △BD =PC ,△BP =8﹣6=2(cm ),△点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,△运动时间时1s ,△BP =CQ =2cm ,△v =2÷1=2;△若△BDP△△CQP ,则BD =CQ ,PB =PC ,△BD =6cm ,PB =PC ,△QC =6cm ,△BC =8cm ,△BP =4cm ,△运动时间为4÷2=2(s ),△v =6÷2=3(cm/s ).故答案为:2或3.【点睛】本题以运动的视角考查了全等三角形的性质,正确分类、注意对应、准确计算是解题的关键. 19.14【解析】【详解】解:设多边形边是n ,由题意得,解得n=14.△这个多边形的边数为14.20.见解析【解析】【分析】由//AB DE 可得,ABC DEF ∠=∠,进而根据AAS 证明ABC DEF △≌△,即可证明AC DF =.【详解】 //AB DE ,ABC DEF ∴∠=∠,在ABC 与DEF 中,A D ABC DEF BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩ABC DEF ∴≌(AAS ),∴AC DF =.【点睛】本题考查了三角形全等的性质与判定,掌握三角形全等的性质与判定是解题的关键. 21.(1)60°;(2)27.【解析】【分析】(1)先求出△BAC = 60°,再用AD 是△ABC 的角平分线求出△BAD ,再根据垂直,即可求解;(2)过D 作DF△AC 于F ,三角形ABC 的面积为三角形ABD 和三角形ACD 的和即可求解.【详解】解:(1)△△B =50°,△C =70°,△△BAC =180°﹣△B ﹣△C =180°﹣50°﹣70°=60°,△AD 是△ABC 的角平分线,△△BAD =12△BAC =12×60°=30°, △DE△AB ,△△DEA =90°,△△EDA =180°﹣△BAD ﹣△DEA =180°﹣30°﹣90°=60°;(2)如图,过D 作DF△AC 于F ,△AD 是△ABC 的角平分线,DE△AB ,△DF =DE =3,又△AB =10,AC =8,△S△ABC =12×AB×DE +12×AC×DF =12×10×3+12×8×3=27.【点睛】本题考查的是三角形,熟练掌握三角形的性质是解题的关键.22.(1)答案见解析;(2)()()()1114,4,1,13,1A B C ;(3)11B C 边上的高与11A C 所夹锐角的度数为18.【解析】【分析】(1)分别作A 、B 、C 点关于x 轴的对称点,然后连线即可;(2)根据平面直角坐标中,对称点的坐标特征,即可知道答案;(3)由等腰三角形的性质,求得11B A H ∠的度数,结合条件,即可得到答案.【详解】解:(1)作图如下:如图:111A B C △即为所求.(2)△ABC 与111A B C △关于x 轴对称,且(4,4),(1,1),(3,1)A B C ---△()()()1114,4,1,1,3,1A B C(3)据题意,过点1A 作111A H B C ⊥,交11B C 的延长线于点H ,如下图:△11=A H B H ,1190A HB ∠=△1145B A H ∠=又△11127C B A ∠=︒△11452718C A H ∠=-=△11B C 边上的高与11A C 所夹锐角的度数为18【点睛】本题考查作图——轴对称变化,以及等腰三角形的性质,解题的关键是掌握直角坐标系中点的坐标变换规律,牢记相关知识点是解题关键.23.(1)见解析;(2)见解析;(3)不变,60°【解析】【分析】(1)根据△BDC =△BAC ,△DFB =△AFC ,再结合△ABD +△BDC +△DFB =△BAC +△ACD+△AFC =180°,即可得出结论;(2)过点A 作AM△CD 于点M ,作AN△BE 于点N .运用“AAS”证明△ACM△△ABN 得AM =AN .根据“到角的两边距离相等的点在角的平分线上”得证;(3)运用截长法在CD 上截取CP =BD ,连接AP .证明△ACP△ABD 得△ADP 为等边三角形,从而求△BAC 的度数.【详解】(1)证明:△△BDC =△BAC ,△DFB =△AFC ,又△△ABD+△BDC+△DFB=△BAC+△ACD+△AFC=180°,△△ABD=△ACD;(2)过点A作AM△CD于点M,作AN△BE于点N.则△AMC=△ANB=90°,△OB=OC,OA△BC,△AB=AC,△△ABD=△ACD,△△ACM△△ABN (AAS),△AM=AN,△AD平分△CDE(到角的两边距离相等的点在角的平分线上);(3)△BAC的度数不变化.在CD上截取CP=BD,连接AP.△CD=AD+BD,△AD=PD,△AB=AC,△ABD=△ACD,BD=CP,△△ABD△△ACP,△AD=AP,△BAD=△CAP,△AD=AP=PD,即△ADP是等边三角形,△△DAP=60°,△△BAC=△BAP+△CAP=△BAP+△BAD=60°.。

人教版八年级上册数学期中试题附答案

∴ ,
∵ ,
∴ ,
在 与 中

∴ ;
(2)解: ,理由如下:
∵ ,
∴ ,
∵ ,
∴ .
21.
【详解】(1)证明:在△ABC和△DEB中,

(ASA),
∴BC=BE,
∴△CBE是等腰三角形,
又∵∠A= 90°,
∴∠1+∠ABC=90°,
∴∠2+∠ABC=90°,
∴∠CBE=90°,
∴△CBE是等腰直角三角形.
人教版八年级上册数学期中试题
姓名:学号:分数:
一、单选题(每题3分,共24分)
1.下列图形中,不是轴对称图形的是()
A. B. C. D.
2.已知三条线段的长分别是4,4,m,若它们能构成三角形,则整数m的最大值是()
A.9B.8C.7D.4
3.如图, 中, ,AE平分 ,若 , ,则 ()
A.7°B.12°C.17°D.22°
,解得: ,
故答案为: .
17.(1)
(2)
解:∵
∴ .
∵ 是 的平分线,
∴ .
(2)

∴ ,
∴ .
∵ ,
∴ .
18.(1)平行(2)
(1)
与 平行,
理由:∵ ,
∴ ,
∴ ,
∵ ,

∴ ;
(2)
解:∵ , ,
∴ ,
∴ .
19.
【详解】(1)证明:∵ ,
在 和 中
∴ 平分(2)解:在 Nhomakorabea和 中20
【详解】(1)证明:∵ ,
三、解答题(共66分)
17.如图,在△ABC中, 是 边上的高, 是 的平分线, 于F.

人教版数学八年级上册期中测试题及答案(一)

人教版数学八年级上册期中测试题(一)一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.本大题共15小题,每题3分,计45分)1.(3分)若正比例函数的图象经过点(﹣1,2),则这个图象必经过点()A.(1,2) B.(﹣1,﹣2)C.(2,﹣1)D.(1,﹣2)2.(3分)直线y=3x+6与两坐标轴围成的三角形的面积为()A.6 B.12 C.3 D.243.(3分)直角三角形两锐角的平分线相交得到的钝角为()A.150o B.135o C.120o D.120o或135o4.(3分)已知正方形ABCD中,A(﹣3,1),B(1,1),C(1,﹣3),则D点的坐标是()A.(﹣3,﹣3)B.(﹣1,1)C.(﹣3,3)D.(1,3)5.(3分)某公司准备与汽车租凭公司签订租车合同,以每月用车路程x km计算,甲汽车租凭公司每月收取的租赁费为y1元,乙汽车租凭公司每月收取的租赁费为y2元,若y1、y2与x之间的函数关系如图所示(其中x=0对应的函数值为月固定租赁费),则下列判断错误的是()A.当月用车路程为2000km时,两家汽车租赁公司租赁费用相同B.当月用车路程为2300km时,租赁乙汽车租赁公司车比较合算C.除去月固定租赁费,甲租赁公司每公里收取的费用比乙公司多D.甲租赁公司每月的固定租赁费高于乙租赁公司6.(3分)若一个三角形的两边长分别为3和7,则第三边长可能是()A.2 B.3 C.5 D.117.(3分)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.8.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.9.(3分)如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是()A.110°B.120°C.130° D.140°10.(3分)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个11.(3分)如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°12.(3分)如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A.13 B.15 C.17 D.1913.(3分)如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM14.(3分)如图,AD是△ABC的角平分线,则AB:AC等于()A.BD:CD B.AD:CD C.BC:AD D.BC:AC15.(3分)如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有()A.1个 B.2个 C.3个 D.4个二.解答题(共9小题)16.(6分)如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=80°,∠ABC=70°.求∠BAD,∠AOF.17.(6分)如图,AB=AD,CB=CD,求证:AC平分∠BAD.18.(7分)如图,已知AC=AE,∠BAD=∠CAE,∠B=∠ADE,求证:BC=DE.19.(7分)如图,在△ABC中,AB=AC,点D是BC边上的中点,DE、DF分别垂直AB、AC于点E和F.求证:DE=DF.20.(8分)如图,一艘轮船以18海里/时的速度由西向东航行,在A处测得小岛C在北偏东75°方向上,两小时后,轮船在B处测得小岛C在北偏东60°方向上,在小岛周围15海里处有暗礁,若轮船仍然按18海里/时的速度向东航行,请问是否有触礁危险?并说明理由.21.(8分)如图,在等腰三角形ABC中,AC=BC,分别以BC和AC为直角边向上作等腰直角三角形△BCD和△ACE,AE与BD相交于点F,连接CF并延长交AB 于点G.求证:CG垂直平分AB.22.(10分)如图,在等边△ABC中,点F是AC边上一点,延长BC到点D,使BF=DF,若CD=CF,求证:(1)点F为AC的中点;(2)过点F作FE⊥BD,垂足为点E,请画出图形并证明BD=6CE.23.(11分)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A 向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.24.(12分)如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE.连接DE、DF、EF.(1)求证:△ADF≌△CEF;(2)试证明△DFE是等腰直角三角形.参考答案与试题解析一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.本大题共15小题,每题3分,计45分)1.(3分)若正比例函数的图象经过点(﹣1,2),则这个图象必经过点()A.(1,2) B.(﹣1,﹣2)C.(2,﹣1)D.(1,﹣2)【考点】待定系数法求正比例函数解析式.【专题】待定系数法.【分析】求出函数解析式,然后根据正比例函数的定义用代入法计算.【解答】解:设正比例函数的解析式为y=kx(k≠0),因为正比例函数y=kx的图象经过点(﹣1,2),所以2=﹣k,解得:k=﹣2,所以y=﹣2x,把这四个选项中的点的坐标分别代入y=﹣2x中,等号成立的点就在正比例函数y=﹣2x的图象上,所以这个图象必经过点(1,﹣2).故选D.2.(3分)直线y=3x+6与两坐标轴围成的三角形的面积为()A.6 B.12 C.3 D.24【考点】一次函数图象上点的坐标特征.【专题】数形结合.【分析】求出直线y=3x+6与两坐标轴的交点坐标,画出函数图象,再根据三角形的面积公式求出三角形的面积.【解答】解:设直线与x轴交点坐标为A(x,0),与y轴交点为B(0,y).将A、B两点分别代入解析式得,x=﹣2,y=6.故A、B两点坐标为A(﹣2,0)、B(0,6).于是S=×2×6=6.△ABC如图:3.(3分)直角三角形两锐角的平分线相交得到的钝角为()A.150o B.135o C.120o D.120o或135o【考点】直角三角形的性质.【专题】计算题.【分析】本题可根据直角三角形内角的性质和三角形内角和为180°进行求解.【解答】解:直角三角形中,两锐角三角形度数和为90°,则两锐角的各一半度数和为45°,根据三角形内角和为180°,可得钝角度数为135°,故选B.4.(3分)已知正方形ABCD中,A(﹣3,1),B(1,1),C(1,﹣3),则D点的坐标是()A.(﹣3,﹣3)B.(﹣1,1)C.(﹣3,3)D.(1,3)【考点】坐标与图形性质.【专题】计算题.【分析】因为四边形为正方形,四条边相等,根据正方形的性质与边长为:|AB|=4,从而可计算出D的坐标.【解答】解:设D点的坐标为(x,y),已知四边形为正方形,四条边相等,且易知|AB|=4,AB∥CD,∴C,D两点的从坐标相等,∴y=﹣3,又∵AD∥BC,∴A,D两点的横坐标相等,∴x=﹣3,∴D的坐标为(﹣3,﹣3),故选A.5.(3分)某公司准备与汽车租凭公司签订租车合同,以每月用车路程x km计算,甲汽车租凭公司每月收取的租赁费为y1元,乙汽车租凭公司每月收取的租赁费为y2元,若y1、y2与x之间的函数关系如图所示(其中x=0对应的函数值为月固定租赁费),则下列判断错误的是()A.当月用车路程为2000km时,两家汽车租赁公司租赁费用相同B.当月用车路程为2300km时,租赁乙汽车租赁公司车比较合算C.除去月固定租赁费,甲租赁公司每公里收取的费用比乙公司多D.甲租赁公司每月的固定租赁费高于乙租赁公司【考点】函数的图象.【专题】计算题;应用题;函数及其图像.【分析】观察函数图象可知,函数的横坐标表示路程,纵坐标表示收费,根据图象上特殊点的意义即可求出答案.【解答】解:A、交点为(2000,2000),那么当月用车路程为2000km,两家汽车租赁公司租赁费用相同,说法正确,不符合题意;B、由图象可得超过2000km时,相同路程,乙公司收费便宜,∴租赁乙汽车租赁公司车比较合算,说法正确,不符合题意;C、由图象易得乙的租赁费较高,当行驶2000千米时,总收费相同,那么可得甲租赁公司每公里收取的费用比乙租赁公司多,说法正确,不符合题意;D、∵由图象易得乙的租赁费较高,说法错误,符合题意,故选:D.6.(3分)若一个三角形的两边长分别为3和7,则第三边长可能是()A.2 B.3 C.5 D.11【考点】三角形三边关系.【分析】根据三角形三边关系,两边之和第三边,两边之差小于第三边即可判断.【解答】解:设第三边长为x,由题意得:7﹣3<x<7+3,则4<x<10,故选:C.7.(3分)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选D.8.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:为△ABC中BC边上的高的是A选项.故选A.9.(3分)如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是()A.110°B.120°C.130° D.140°【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:由三角形的外角性质的,∠ABD=∠A+∠C=50°+70°=120°.故选B.10.(3分)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个【考点】全等三角形的判定.【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB 的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C11.(3分)如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°【考点】角平分线的性质;三角形内角和定理.【专题】计算题.【分析】根据三角形的内角和定理列式计算即可求出∠BAC=70°,再根据角平分线的定义求出∠ABO,然后利用三角形的内角和定理求出∠AOB再根据对顶角相等可得∠DOC=∠AOB,根据邻补角的定义和角平分线的定义求出∠DCO,再利用三角形的内角和定理列式计算即可∠BDC,判断出AD为三角形的外角平分线,然后列式计算即可求出∠DAC.【解答】解:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣50°﹣60°=70°,故A选项正确,∵BD平分∠ABC,∴∠ABO=∠ABC=×50°=25°,在△ABO中,∠AOB=180°﹣∠BAC﹣∠ABO=180°﹣70°﹣25°=85°,∴∠DOC=∠AOB=85°,故B选项错误;∵CD平分∠ACE,∴∠ACD=(180°﹣60°)=60°,∴∠BDC=180°﹣85°﹣60°=35°,故C选项正确;∵BD、CD分别是∠ABC和∠ACE的平分线,∴AD是△ABC的外角平分线,∴∠DAC=(180°﹣70°)=55°,故D选项正确.故选:B.12.(3分)如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A.13 B.15 C.17 D.19【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质得出AD=DC,AE=CE=4,求出AC=8,AB+BC=15,求出△ABD的周长为AB+BC,代入求出即可.【解答】解:∵AC的垂直平分线分别交AC、BC于E,D两点,∴AD=DC,AE=CE=4,即AC=8,∵△ABC的周长为23,∴AB+BC+AC=23,∴AB+BC=23﹣8=15,∴△ABD的周长为AB+BD+AD=AB+BD+CD=AB+BC=15,故选B.13.(3分)如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM【考点】轴对称的性质.【分析】根据直线MN是四边形AMBN的对称轴,得到点A与点B对应,根据轴对称的性质即可得到结论.【解答】解:∵直线MN是四边形AMBN的对称轴,∴点A与点B对应,∴AM=BM,AN=BN,∠ANM=∠BNM,∵点P时直线MN上的点,∴∠MAP=∠MBP,∴A,C,D正确,B错误,故选B.14.(3分)如图,AD是△ABC的角平分线,则AB:AC等于()A.BD:CD B.AD:CD C.BC:AD D.BC:AC【考点】角平分线的性质.【专题】压轴题.【分析】先过点B作BE∥AC交AD延长线于点E,由于BE∥AC,利用平行线分线段成比例定理的推论、平行线的性质,可得∴△BDE∽△CDA,∠E=∠DAC,再利用相似三角形的性质可有=,而利用AD时角平分线又知∠E=∠DAC=∠BAD,于是BE=AB,等量代换即可证.【解答】解:如图过点B作BE∥AC交AD延长线于点E,∵BE∥AC,∴∠DBE=∠C,∠E=∠CAD,∴△BDE∽△CDA,∴=,又∵AD是角平分线,∴∠E=∠DAC=∠BAD,∴BE=AB,∴=,∴AB:AC=BD:CD.故选:A.15.(3分)如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有()A.1个 B.2个 C.3个 D.4个【考点】等边三角形的性质;全等三角形的判定;角平分线的性质.【分析】根据到角的两边的距离相等的点在角的平分线上可得AP平分∠BAC,从而判断出①正确,然后根据等边对等角的性质可得∠APQ=∠PAQ,然后得到∠APQ=∠PAR,然后根据内错角相等两直线平行可得QP∥AB,从而判断出②正确,然后证明出△APR与△APS全等,根据全等三角形对应边相等即可得到③正确,④由△BPR≌△CPS,△BRP≌△QSP,即可得到④正确.【解答】解:∵△ABC是等边三角形,PR⊥AB,PS⊥AC,且PR=PS,∴P在∠A的平分线上,故①正确;由①可知,PB=PC,∠B=∠C,PS=PR,∴△BPR≌△CPS,∴AS=AR,故②正确;∵AQ=PQ,∴∠PQC=2∠PAC=60°=∠BAC,∴PQ∥AR,故③正确;由③得,△PQC是等边三角形,∴△PQS≌△PCS,又由②可知,④△BRP≌△QSP,故④也正确,∵①②③④都正确,故选D.二.解答题(共9小题)16.(6分)如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=80°,∠ABC=70°.求∠BAD,∠AOF.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】在直角三角形中,根据两锐角互余即可得到∠BAD=20°,根据角平分线的性质可求出∠BAO和∠ABO,最后由三角形外角的性质求得∠AOF=75°.【解答】解:∵AD是高,∠ABC=70°,∴∠BAD=90°﹣70°=20°,∵AE、BF是角平分线,∠BAC=80°,∠ABC=70°,∴∠ABO=35°,∠BAO=40°,∴∠AOF=∠ABO+∠BAO=75°.17.(6分)如图,AB=AD,CB=CD,求证:AC平分∠BAD.【考点】全等三角形的判定与性质.【分析】根据全等三角形的判定定理SSS推出△BAC≌△DAC,根据全等三角形的性质可得∠BAC=∠DAC即可.【解答】解:在△BAC和△DAC中,,∴△BAC≌△DAC(SAS),∴∠BAC=∠DAC,∴AC平分∠BAD.18.(7分)如图,已知AC=AE,∠BAD=∠CAE,∠B=∠ADE,求证:BC=DE.【考点】全等三角形的判定与性质.【分析】先通过∠BAD=∠CAE得出∠BAC=∠DAE,从而证明△ABC≌△ADE,得到BC=DE.【解答】证明:∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠CAE+∠DAC.即∠BAC=∠DAE,在△ABC和△ADE中,∴△ABC≌△ADE(AAS).∴BC=DE.19.(7分)如图,在△ABC中,AB=AC,点D是BC边上的中点,DE、DF分别垂直AB、AC于点E和F.求证:DE=DF.【考点】等腰三角形的性质;全等三角形的判定与性质.【专题】证明题.【分析】D是BC的中点,那么AD就是等腰三角形ABC底边上的中线,根据等腰三角形三线合一的特性,可知道AD也是∠BAC的角平分线,根据角平分线的点到角两边的距离相等,那么DE=DF.【解答】证明:证法一:连接AD.∵AB=AC,点D是BC边上的中点∴AD平分∠BAC(三线合一性质),∵DE、DF分别垂直AB、AC于点E和F.∴DE=DF(角平分线上的点到角两边的距离相等).证法二:在△ABC中,∵AB=AC∴∠B=∠C(等边对等角)…(1分)∵点D是BC边上的中点∴BD=DC …(2分)∵DE、DF分别垂直AB、AC于点E和F∴∠BED=∠CFD=90°…(3分)在△BED和△CFD中∵,∴△BED≌△CFD(AAS),∴DE=DF(全等三角形的对应边相等).20.(8分)如图,一艘轮船以18海里/时的速度由西向东航行,在A处测得小岛C在北偏东75°方向上,两小时后,轮船在B处测得小岛C在北偏东60°方向上,在小岛周围15海里处有暗礁,若轮船仍然按18海里/时的速度向东航行,请问是否有触礁危险?并说明理由.【考点】解直角三角形的应用-方向角问题.【分析】作CE⊥AB,利用直角三角形性质求出CE长,和15海里比较即可看出船不改变航向是否会触礁.【解答】解:作CE⊥AB于E,∵A处测得小岛P在北偏东75°方向,∴∠CAB=15°,∵在B处测得小岛P在北偏东60°方向,∴∠ACB=15°,∴AB=PB=2×18=36(海里),∵∠CBD=30°,∴CE=BC=18>15,∴船不改变航向,不会触礁.21.(8分)如图,在等腰三角形ABC中,AC=BC,分别以BC和AC为直角边向上作等腰直角三角形△BCD和△ACE,AE与BD相交于点F,连接CF并延长交AB于点G.求证:CG垂直平分AB.【考点】全等三角形的判定与性质;线段垂直平分线的性质;等腰直角三角形.【分析】求证△AFC≌△CEB可得∠ACF=∠BCF,根据等腰三角形底边三线合一即可解题.【解答】证明:∵CA=CB∴∠CAB=∠CBA∵△AEC和△BCD为等腰直角三角形,∴∠CAE=∠CBD=45°,∠FAG=∠FBG,∴∠FAB=∠FBA,∴AF=BF,在三角形ACF和△CBF中,,∴△AFC≌△BCF(SSS),∴∠ACF=∠BCF∴AG=BG,CG⊥AB(三线合一),即CG垂直平分AB.22.(10分)如图,在等边△ABC中,点F是AC边上一点,延长BC到点D,使BF=DF,若CD=CF,求证:(1)点F为AC的中点;(2)过点F作FE⊥BD,垂足为点E,请画出图形并证明BD=6CE.【考点】作图—基本作图;等边三角形的性质.【专题】作图题.【分析】(1)根据等边三角形的性质得∠ABC=∠ACB=60°,利用∠CFD=∠D,则根据三角形外角性质得到∠ACB=2∠D,即∠D=∠ACB=30°,然后利用FB=FD得到∠FBD=∠D=30°,则BF平分∠ABC,于是根据等边三角形的性质可得到点F为AC的中点;(2)如图,过点F作FE⊥BD于E,利用含30度的直角三角形三边的关系得到CF=2CE,而CD=CF,则CF=2CE,再利用BC=2CF,所以BD=6CE.【解答】解:(1)∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵CF=CD,∴∠CFD=∠D,∴∠ACB=2∠D,即∠D=∠ACB=30°,∵FB=FD,∴∠FBD=∠D=30°,∴BF平分∠ABC,∴AF=CF,即点F为AC的中点;(2)如图,在Rt△EFC中,CF=2CE,而CD=CF,∴CF=2CE,在Rt△BCF中,BC=2CF,∴BC=4CE,∴BD=6CE.23.(11分)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A 向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.【考点】等边三角形的性质;全等三角形的判定与性质;含30度角的直角三角形.【专题】压轴题;动点型.【分析】(1)由△ABC是边长为6的等边三角形,可知∠ACB=60°,再由∠BQD=30°可知∠QPC=90°,设AP=x,则PC=6﹣x,QB=x,在Rt△QCP中,∠BQD=30°,PC= QC,即6﹣x=(6+x),求出x的值即可;(2)作QF⊥AB,交直线AB于点F,连接QE,PF,由点P、Q做匀速运动且速度相同,可知AP=BQ,再根据全等三角形的判定定理得出△APE≌△BQF,再由AE=BF,PE=QF且PE∥QF,可知四边形PEQF是平行四边形,进而可得出EB+AE=BE+BF=AB,DE=AB,由等边△ABC的边长为6可得出DE=3,故当点P、Q运动时,线段DE的长度不会改变.【解答】解:(1)∵△ABC是边长为6的等边三角形,∴∠ACB=60°,∵∠BQD=30°,∴∠QPC=90°,设AP=x,则PC=6﹣x,QB=x,∴QC=QB+BC=6+x,∵在Rt△QCP中,∠BQD=30°,∴PC=QC,即6﹣x=(6+x),解得x=2,∴AP=2;(2)当点P、Q同时运动且速度相同时,线段DE的长度不会改变.理由如下:作QF⊥AB,交直线AB于点F,连接QE,PF,又∵PE⊥AB于E,∴∠DFQ=∠AEP=90°,∵点P、Q速度相同,∴AP=BQ,∵△ABC是等边三角形,∴∠A=∠ABC=∠FBQ=60°,在△APE和△BQF中,∵∠AEP=∠BFQ=90°,∴∠APE=∠BQF,,∴△APE≌△BQF(AAS),∴AE=BF,PE=QF且PE∥QF,∴四边形PEQF是平行四边形,∴DE=EF,∵EB+AE=BE+BF=AB,∴DE=AB,又∵等边△ABC的边长为6,∴DE=3,∴点P、Q同时运动且速度相同时,线段DE的长度不会改变.24.(12分)如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE.连接DE、DF、EF.(1)求证:△ADF≌△CEF;(2)试证明△DFE是等腰直角三角形.【考点】全等三角形的判定与性质;等腰直角三角形.【专题】证明题.【分析】(1)根据在等腰直角△ABC中,∠ACB=90°,AC=BC,利用F是AB中点,∠A=∠FCE=∠ACF=45°,即可证明:△ADF≌△CEF.(2)利用△ADF≌△CEF,∠AFD+∠DFC=∠CFE+∠DFC,和∠AFC=90°即可证明△DFE是等腰直角三角形.【解答】证明:(1)在等腰直角△ABC中,∠ACB=90°,AC=BC,∴∠A=∠B=45°,又∵F是AB中点,∴∠ACF=∠FCB=45°,即,∠A=∠FCE=∠ACF=45°,且AF=CF,在△ADF与△CEF中,,∴△ADF≌△CEF(SAS);(2)由(1)可知△ADF≌△CEF,∴DF=FE,∴△DFE是等腰三角形,又∵∠AFD=∠CFE,∴∠AFD+∠DFC=∠CFE+∠DFC,∴∠AFC=∠DFE,∵∠AFC=90°,∴∠DFE=90°,∴△DFE是等腰直角三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版初二数学上册期中试题及答案 一. 选择题 1. (2008年南京)2的平方根是 ( ) A. 4 B. C. - D. ± 2. (2008年武汉)计算的结果是 ( ) A. 2 B. ±2 C. -2 D. 4 3. 下列说法中正确的是 ( ) A. 1的平方根是1 B. 1是1的平方根 C. -1是-1的平方根 D. 0没有平方根 4. 下列式子中,正确的是 ( ) A. =-2B. ±=2 C. =±2 D. =2 5. 下列说法正确的是 ( ) A. 27的立方根是±3 B. -的立方根是 C. -2是-8的立方根 D. -27没有立方根 *6. 若=4-k,则k的取值范围为 ( ) A. k≥4 B. k≤4 C. k=4 D. k为任何数 *7. (2007年浙江湖州)估算+2的值是在 ( ) A. 5和6之间 B. 6和7之间 C. 7和8之间 D. 8和9之间 **8. 当x=-3时,±的值是 ( ) A. -3 B. ±3 C. 3 D. ±9 *9. 一个数的算术平方根等于它本身,则这个数是 ( ) A. 1和-1 B. 1和0 C. 1 D. 1,0,-1 **10. 若有意义,则a能取的最小整数是 ( ) A. 0 B. 1 C. -1 D. -4 **11. 如果的平方根是±2,那么a的值是 ( ) A. 4 B. 16 C. ±4 D. ±16 **12. 一个自然数的算术平方根为a,则它的下一个自然数的算术平方根是 ( ) A. a+1 B. +1 C. D.

二. 填空题 1. 的算术平方根是__________,3的算术平方根是__________. 2. 如果x2+1=6,且x>0,则x=__________. 3. 计算:()2=__________,=__________,()2=__________(a≥0). 4. 正方体的表面积是150cm2,则正方体的棱长是__________. 5. 一个数的算术平方根等于这个数的立方根,这个数是__________. 6. (2007年河北)比较大小:7__________.(填>、<或=) 7. (2008年安徽)化简=_________. 8. (2008年长沙)已知a、b为两个连续整数,且a<<b,则a+b=__________. 9. (2008年连云港)如果2a-18=0,那么a的算术平方根是__________. **10. 一个正数的平方根是2a与a-1,则这个正数是__________. *11. 若|a|=3,=2,且ab<0,则a-b的值是__________. **12. (2007年河南)已知x为整数,且满足-≤x≤,则x=__________. **13. 当x__________时,有意义;+=__________.

三. 解答题 1. 求下列各数的平方根和算术平方根 (1) (2)0.0081 (3)(-)2 (4)14 2. 求下列各数的立方根. (1)0.001 (2)-216 (3)3 (4)-3 3. 求下列各式中的x. (1)9x2-256=0 (2)4(2x-1)2=25 *4. 已知:(1-2a)2+=0,求ab的值. 5. 若3x+16的立方根是4,求2x+4的算术平方根.

四. 实际应用题 1. 计划用100块地板砖来铺设面积为16m2的客厅,求所需的正方形地板砖的边长是多少米? *2. 已知第一个正方体纸盒的棱长是6cm,第二个正方体纸盒的体积要比第一个纸盒的体积大127cm3,求第二个正方体纸盒的棱长. 1. (2007年佛山)下列说法正确的是 ( ) A. 无限小数是无理数 B. 不循环小数是无理数 C. 无理数的相反数还是无理数 D. 两个无理数的和还是无理数 2. 与数轴上的点具有一一对应关系的数是 ( ) A. 实数 B. 有理数 C. 无理数 D. 整数 3. (2008年广西桂林)在下列实数中,无理数是 ( ) A. 0. B. π C. -4 D. 4. (2008年新疆)的相反数是( ) A. - B. C. - D. 5. (2008年湖北省襄樊)下列说法正确的是 ( ) A. 4的平方根是2 B. 将点(-2,-3)向右平移5个单位长度到点(-2,2) C. 是无理数 D. 点(-2,-3)关于x轴的对称点是(-2,3) *6. (2008年重庆)计算-的结果是( ) A. 6 B. C. 2 D. 7. (2008年广州)若实数a、b互为相反数,则下列等式中恒成立的是( ) A. a-b=0 B. a+b=0 C. ab=1 D. ab=-1 *8. 下列各式成立的是 ( ) A. 5< B. ->- C. -2<2- D. 0< *9. 若=-a,则实数a在数轴上的对应点一定在 ( ) A. 原点左侧 B. 原点右侧 C. 原点及原点的左侧 D. 原点及原点的右侧 **10. 设a>0,则a与的大小关系为( ) A. a> B. a= C. a< D. 以上结论都可能成立 *11. 满足-<x<的整数的个数是( ) A. 6 B. 5 C. 4 D. 3 **12. 若a、b为实数,下列说法正确的是( ) A. 若a>b,则a2>b2 B. 若a>|b|,则a2>b2 C. 若|a|=()2,则a=b D. 若a3>b3,则a2>b2

二. 填空题 1. 在-2.,,-,,,π,0中无理数是__________。 2. 绝对值最小的实数是__________。 3. -1的相反数是__________,绝对值是__________。 *4. 比较大小:0.34_____;-_____-1.42。 5. 化简:|1-|=__________,=__________,|-1.74|=__________。 *6. (2008年浙江杭州)写出一个比-1大的负有理数是__________;比-1大的负无理数是__________。 7. (2008年宁夏)计算:5-=__________。 **8. (2007年宜宾)数学家发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b+1. 例如把(3,-2)放入其中,就会得到32+(-2)+1=8. 现将实数对(-2,3)放入其中得到实数m,再将实数对(m,1)放入其中后,得到的实数是__________。

三. 解答题 1. (2008年海南)计算:+(-12)×-(-1)2。 2. 比较下列各组数的大小。 (1)-与-3 (2)与 3. 写出符合下列条件的数。 (1)绝对值小于的所有整数之和; (2)绝对值小于8的所有整数。 **4. 已知5+的小数部分是a,5-的小数部分是b,求a+b的值。 **5. 设x、y是有理数,且x、y满足等式x+2y-y=17+4,求(+y)2008的值。 **6. 已知b<++,化简|b-2|+|3b-1|+。 【试题答案】 一. 选择题 1. D 2. A 3. B 4. D 5. C 6. C 7. B 8. B 9. B 10. A 11. B 12. D

二. 填空题 1. 2, 2. 3. 4,5,a 4. 5cm 5. 0或1 6. < 7. 4 8. 5 9. 3 10. 11. 5或-5 12. -1,0,1 13. ≤3,0

三. 解答题 1. (1)平方根是:±,算术平方根是: (2)平方根是:±0.09,算术平方根是:0.09 (2)平方根是:±,算术平方根是: (2)平方根是:±,算术平方根是: 2. (1)0.1 (2)-6 (3) (4)- 3. (1)x2=,x=± (2)把2x-1作为一个整体,则2x-1=±.当2x-1=时,x=;当2x-1=-时,x=- 4. ∵(1-2a)2≥0,≥0,又(1-2a)2+=0,∴(1-2a)2=0,=0,∴1-2a=0,b-2=0,∴a=,b=2,∴ab=1. 5. ∵3x+16的立方根是4,∴3x+16=43,∴x=16,∴2x+4=36,∴2x+4的算术平方根是=6.

四. 实际应用题 1. 每块正方形地砖的面积是16÷100=0.16(m2),∴所需的正方形地砖的边长为=0.4(m). 2. 第一个正方体的体积是63=216(cm3),第二个正方体的体积是216+127=343(cm3),∴第二个正方体的棱长是=7(cm). 一. 选择题 1.C 2. A 3. B 4. A 5. D 6. D 7. B 8. C 9.C 10.D 11.B 12.B

二. 填空题 1. -,,,π 2. 0 3. 1-,-1 4. <,> 5. -1,-1,1.74- 6. -;-(不唯一) 7. 3 8. 66

三. 解答题 1. 原式=4-6-1=-3 2. (1)>(2)< 3. (1)0(2)±7,±6,±5,±4,±3,±2,±1,0 4. a=-2,b=3-,∴a+b=1 5. 由题意可得解得x=25,y=-4,∴原式=(5-4)2008=1 6. 由题意得得a=3,∴b<,∴|b-2|+|3b-1|+=2-b+1-3b+a=6-4b。

相关文档
最新文档