计量经济学学习笔记之误差修正模型v2.0
5.3 协整与误差修正模型 计量经济学PPT课件

• 非平稳的时间序列,它们的线性组合也可能成为 平稳的。称变量X与Y是协整的(cointegrated)。
3、协整
• 如果序列{X1t,X2t,…,Xkt}都是d阶单整,存在向量 =(1,2,…,k),使得Zt=XT ~ I(d-b), 其中,b>0,X=(X1t,X2t,…,Xkt)T,则认为序列 {X1t,X2t,…,Xkt}是(d,b)阶协整,记为Xt~CI(d,b), 为协整向量(cointegrated vector)。
5%的显著性水平下协 整的ADF检验临界值
为-3.521
注意:查什么临 界值表?
结论:中国居民总量消费的对数序 列lnY与总可支配收入的对数序列 lnX之间存在(1,1)阶协整。
注意:
这里采用由协整检 验临界值表算得的 临界值(-3.521 ),没有采用ADF 检验给出的临界值 (-1.953),是 正确的。但是,在 很多应用研究中忽 视了这一点,而直 接采用ADF检验给 出的临界值,则是 错误的,容易产生
• 均衡方程中应该包含均衡系统中的所有时间序 列,而协整方程中可以只包含其中的一部分时 间序列。
• 协整方程的随机扰动项是平稳的,而均衡方程 的随机扰动项必须是白噪声。
• 不能由协整导出均衡,只能用协整检验均衡。
五、误差修正模型 Error Correction Model, ECM
1、一般差分模型的问题
• 对于非稳定时间序列,可通过差分的方法将其 化为稳定序列,然后才可建立经典的回归分析 模型。
Yt 0 1 X t t
Yt 1X t vt vt t t1
《计量经济分析方法与建模》第二版课件-第09章--向量自回归和向量误差修正模型

例9.1 我国货币政策效应实证分析的VAR模型 为了研究货币供应量和利率的变动对经济波动的长 期影响和短期影响及其贡献度,根据我国1995年1季度~ 2007年4季度的季度数据,设居民消费价格指数为CPI_90 (1990年1季度=1)、居民消费价格指数增长率为CPI 、实 际GDP的对数ln(GDP/CPI_90) 为ln(gdp) 、实际M1的对 数ln(M1/CPI_90) 为ln(m1) 和实际利率rr (一年期存款利 率R-CPI )。
10
利用VAR(p)模型对 ln(gdp) , ln(m1) 和 rr,3个变量之 间的关系进行实证研究,其中实际GDP和实际M1以对数差分 的形式出现在模型中,而实际利率没有取对数。
ln( gdp)t ln( m1)t
rrt
c1 c2 ck
1
ln( gdp) ln( m1)
2 4 6 9 12 12 即为用2―4阶,6―9阶及第12阶滞后变量。
14
(4) 在Endogenous Variables编辑栏中输入相应的内生变量 (5)在Exogenous Variables编辑栏中输入相应的外生变量 EViews允许VAR模型中包含外生变量,
yt Φ1 yt1 Φp yt p Hxt εt
同时,有两类回归统计量出现在VAR对象估计输 出的底标准OLS回归统 计量。根据各自的残差分别计算每个方程的结果,并显示 在对应的列中。
输出的第二部分显示的是VAR模型的回归统计量。
18
残差的协方差的行列式值(自由度调整)由下式得出:
Σˆ
det 1 T m
1
0.21
e3
-0.42 0.21
1
21
从表中可以看到实际利率rr、实际M1的ln(m1) 方程和实际GDP的ln(gdp)方程的残差项之间存在的 同期相关系数比较高,进一步表明实际利率、实际货 币供给量(M1)和实际GDP之间存在着同期的影响关系, 尽管得到的估计量是一致估计量,但是在本例中却无 法刻画它们之间的这种同期影响关系。
第6章协整和误差修正模型

第6章协整和误差修正模型本章介绍含有非平稳变量结构方程或V AR的估计。
在一维模型中,我们已经看到,可以通过差分去掉一个随机趋势,得到的平稳序列,再用Box-Jenkins方法来估计模型。
在多维情况下,并不这样直接处理。
通常,整变量的线性组合是平稳的,这些变量称为协整的。
许多经济模型都有这种关系。
本章主要内容:1.介绍协整的基本概念,及在经济模型中的应用。
非平稳变量之间的均衡关系意味着它们的随机趋势是相联系的。
均衡关系意味着这些变量不能相互独立运动。
随机趋势之间的这种联系保证了这些变量是协整的。
2.考虑了协整变量的动态路径,由于协整变量的趋势是相互联系的,这些变量的动态路径反映了偏离均衡的偏差的联系。
详细分析了变量的变化与偏离均衡的偏差之间的联系。
3.讨论了协整检验的几种方法。
6.1整变量的线性组合考虑一个简单的货币需求模型:1)居民持有实际货币余额,使名义货币需求与价格水平成比例;2)当实际收入及交易次数的增加,居民希望持有更多的货币余额;3)利率是持有货币的机会成本,货币需求与利率负相关。
因而,方程设定形式(采用对数形式)如下:0123t t t t t m p y r e ββββ=++++ (6.1.1) 这里: t m =货币需求, t p =价格水平 t y =实际收入 t r =利率t e =平稳扰动项i β=待估计的参数在货币市场是均衡的条件下,可以得到货币供给、价格水平、实际收入和短期利率的时间序列数据,且要求1231,0,0βββ=><。
当然,在研究中需要检验这些限制。
货币需求的任何偏差{}t e 必须是暂时的。
如果{}t e 有随机趋势,偏离货币市场均衡的偏差不能消失。
所以,这里的关键假设是{}t e 是平稳的。
许多研究者认为,实际GDP 、货币供给、价格水平、利率都是I(1)变量。
每个变量都没有返回到长期水平的趋势。
但(6.1.1)说明:对这些非平稳变量,存在线性组合是平稳的。
经济统计学中的误差校正模型

经济统计学中的误差校正模型经济统计学是研究经济现象和经济活动的科学,它通过收集、整理和分析大量的统计数据来揭示经济运行的规律和特点。
然而,由于数据的收集和处理过程中存在各种误差,这些误差会对统计结果产生影响,因此需要使用误差校正模型来修正统计数据。
一、误差校正模型的背景和意义在经济统计学中,误差校正模型是一种用于修正统计数据误差的方法。
由于经济活动的复杂性和多样性,数据收集过程中难免会出现各种误差,比如抽样误差、测量误差和非抽样误差等。
这些误差会对统计结果产生一定的偏差,因此需要使用误差校正模型来进行修正,以保证统计结果的准确性和可靠性。
二、误差校正模型的类型误差校正模型主要包括线性模型、非线性模型和混合模型等。
线性模型是最简单和常用的误差校正模型,它假设误差项与自变量之间存在线性关系,通过对误差项进行线性修正来纠正数据误差。
非线性模型则假设误差项与自变量之间存在非线性关系,通过对误差项进行非线性修正来纠正数据误差。
混合模型则是线性模型和非线性模型的综合应用,根据具体情况选择合适的修正方法。
三、误差校正模型的应用领域误差校正模型在经济统计学中有广泛的应用,主要包括国民经济核算、价格指数计算、就业统计和财政收支统计等领域。
在国民经济核算中,误差校正模型可以对国内生产总值(GDP)进行修正,以提高统计数据的准确性和可比性。
在价格指数计算中,误差校正模型可以对物价指数进行修正,以反映实际的价格水平变动。
在就业统计中,误差校正模型可以对就业人数和就业率进行修正,以反映实际的就业情况。
在财政收支统计中,误差校正模型可以对财政收入和支出进行修正,以保证统计数据的真实性和可比性。
四、误差校正模型的局限性和挑战误差校正模型虽然在经济统计学中有重要的应用价值,但仍然存在一些局限性和挑战。
首先,误差校正模型的建立需要大量的统计数据和复杂的计算方法,对数据的质量和处理能力要求较高。
其次,误差校正模型的修正效果受到多种因素的影响,如样本大小、误差类型和模型选择等,需要进行合理的假设和参数估计。
协整分析与误差修正模型

协整分析与误差修正模型1.协整分析协整分析用于找到两个或多个非平稳时间序列之间的长期关系。
当两个变量之间存在协整关系时,它们的线性组合将是平稳的。
协整关系可以解释为变量之间长期的平衡关系,即存在一种平衡机制使得变量保持在一个相对稳定的范围内。
协整分析的步骤如下:1)对非平稳时间序列进行单位根检验,例如ADF检验。
2)如果两个或多个时间序列都是非平稳的,那么可以进行线性组合,得到一个平稳的时间序列,通过单位根检验确定这个线性组合是否是平稳的。
3)如果线性组合是平稳的,那么就可以认为存在协整关系。
协整分析的优点是可以探索多个非平稳时间序列之间的关系,并且提供了具体的数值关系,能够描述长期平衡关系。
但是,协整分析不能提供因果关系,只能提供关联关系。
2.误差修正模型(ECM)误差修正模型是一种用于描述非平稳变量之间长期关系的模型。
它是在协整分析的基础上发展而来的。
误差修正模型的基本思想是,如果两个变量之间存在协整关系,那么它们之间的误差会随着时间的推移逐渐修正,回归到长期平衡关系。
因此,误差修正模型可以用来分析变量之间的动态行为。
基本的误差修正模型可以表示为:△Y_t=α+βX_t-1+γE_t-1+ε_t其中,△表示时间差分,Y_t和X_t分别表示被解释变量和解释变量,E_t表示长期误差修正项,ε_t表示短期误差项。
α、β和γ分别表示模型的截距和参数。
误差修正模型的步骤如下:1)进行协整分析,确定变量之间的协整关系。
2)构建误差修正模型,通过估计模型参数来描述长期关系。
3)进行模型检验,包括参数显著性检验、拟合优度检验等。
4)根据模型结果进行解释和预测。
误差修正模型的优点是能够同时分析长期和短期关系,提供了关于变量之间回归到长期平衡的速度信息。
同时,误差修正模型还可以用于预测和政策分析等方面。
但是,误差修正模型的局限性在于假设模型中的所有变量都是线性关系,不能很好地处理非线性关系。
综上所述,协整分析和误差修正模型是非平稳时间序列分析中常用的方法,它们能够揭示非平稳变量之间的长期关系,并对其动态行为进行建模和分析。
协整与误差修正模型

协整与误差修正模型第六讲协整与误差修正模型一、非平稳过程与单位根检验二、长期均衡关系与协整三、误差修正模型一、非平稳过程与单位根检验1、非平稳过程1)随机游走过程(random walk)。
y t = y t-1 + u t, u t~ IID(0, σ2)10y=y(-1)+u5-5-10204060140160差分平稳过程(difference- stationary process)。
2)有漂移项的非平稳过程(non-stationary process with drift )或随机趋势非平稳过程(stochastic trend process )。
y t = μ + y t -1 + u t , u t ~ IID(0, σ2)迭代变换:y t = μ + (μ + y t -2 + u t -1) + u t = … = y 0 + μ t +∑-t i i u 1= μ t +∑-ti i u 120406080100-80-60-40-2020差分平稳过程3)趋势平稳过程(trend-stationary process)或退势平稳过程。
y t = μ+ α t + u t, u t~ IID(0, σ2)2520151055101520253035404550趋势平稳过程的差分过程是过度差分过程:?y t = α + u t - u t-1。
所以应该用退势的方法获得平稳过程。
y t - α t = μ+ u t。
4)确定性趋势非平稳过程(non-stationary process with deterministic trend)y t = μ+ α t + y t-1+ u t, u t~ IID(0, σ2) 1801601401201008060400450500550600650700750800确定性趋势非平稳过程的差分过程是退势平稳过程,?yt = μ + α t + ut。
第4讲 协整与误差修正模型
现在的问题是:何原因造成的残差序列自相关? 首先,模型没问题,因散点图呈线性关系。 其次,遗漏重要解释变量了吗?需要考虑政策变量吗? 再次,是滞后性吗?需要考虑前期收入对即期消费的影响吗? 有人做过研究:如用年度数据,发现前期收入比当期收入对消费的 影响都大。 最后,看时序图:
不难看出:x和y有明显共同趋势,需检验是否存在协整关系。 下面我们用EG两步法: 第一步:构建协整回归(见前) 第二步:对e做单位根检验 定义:genr e=y-yf,对e做单位根检验:
第4 讲
一、协整关系
协整与误差修正模型(ECM)
协整模型常用在经济学领域分析相关变量的长期均衡关系,也常 被用来分析金融中的套利等。自从20世纪90年代以来,国际著名杂志 发表了大量的相关文章。 协整分析是基于非平稳序列基础之上,而利用非平稳序列进行回 归,经常出现伪回归。而另一种情况却是更有应用价值的协整关系。
对二者取自然对数后进行单位根检验,发现在10%的水平下都不能拒 绝变量含有单位根。
如果暂时忽略非平稳性,直接设立以下回归方程,即 cont=c+βinct+et
回归后得:cont=−0.167+1.008inct
R2=0.998,且各系数也具有统计显著性。 试问:是不是伪回归呢?
为此,考察:et=cont − c − βinct
1 3 y x 是误差修正项,即(1) 可见(3)即为ECM模型,其中 (1 2 ) 中ecm 。
如果 xt 和 yt 间存在长期均衡关系,即 y ax ,则上述(3)式中 的ecm 正好可以改写成: 1 3
y
(1 2 )
x
可见,短期波动 yt 的影响因素有二:
第二步:做回归 (1)建立回归方程
stata误差修正模型命令
stata误差修正模型命令摘要:1.Stata误差修正模型简介2.误差修正模型基本原理3.Stata中误差修正模型命令详解4.实例演示5.模型应用注意事项正文:**一、Stata误差修正模型简介**误差修正模型(Error Correction Model,简称ECM)是一种用于分析时间序列数据中变量之间长期均衡关系的计量经济学方法。
在Stata中,误差修正模型可以通过一组特定的命令进行构建和估计。
**二、误差修正模型基本原理**误差修正模型的基本思想是:在短期内,变量之间的关系可能存在波动,但长期内它们会收敛到均衡状态。
因此,我们可以通过建立一个包含变量自身滞后期的方程来表示这种长期均衡关系,同时结合当期的观测值来纠正短期波动。
**三、Stata中误差修正模型命令详解**在Stata中,误差修正模型可以使用以下命令进行构建和估计:1.命令格式:```sysmodel 变量名1 变量名2 [,adj(滞后阶数)][at(均衡系数)]```其中,变量名1和变量名2分别为需要建立长期均衡关系的两个变量,滞后阶数和均衡系数为可选参数。
2.示例:```sysmodel y1 y2,adj(2) at(0.8)```该命令表示建立一个误差修正模型,其中y1和y2分别为两个变量,滞后两期,均衡系数为0.8。
3.命令输出:运行命令后,Stata会输出模型的估计结果,包括系数估计、标准误差、z统计量、p值等。
**四、实例演示**假设我们有一组时间序列数据,包括两个变量y1和y2,我们可以通过以下步骤构建误差修正模型:1.导入数据:```use 数据文件名,clear```2.构建误差修正模型:```sysmodel y1 y2,adj(2) at(0.8)```3.查看模型结果:```estimates```4.输出结果分析:从输出结果中,我们可以看出模型估计的系数、标准误差、z统计量和p值等信息。
通过分析这些信息,我们可以判断模型是否符合实际意义,并对变量之间的关系进行解释。
协整与误差修正模型
变量选择是合理的,随机误差项一定是“白噪声”(即均 值为0,方差不变的稳定随机序列),模型参数有合理的经 济解释。
这也解释了尽管这两时间序列是非稳定的,但却可以用 经典的回归分析方法建立回归模型的原因。
• 从这里,我们已经初步认识到:检验变 量之间的协整关系,在建立计量经济学模 型中是非常重要的。 而且,从变量之间是否具有协整关系 出发选择模型的变量,其数据基础是牢固 的,其统计性质是优良的。
Yt 1X t vt
式中,vt=t-t-1。
实际情况往往并非如此
如果t-1期末,发生了上述第二种情况,即Y的值小于其 均衡值,则Y的变化往往会比第一种情形下Y的变化Yt 大一些; 反之,如果Y的值大于其均衡值,则Y的变化往往会小 于第一种情形下的Yt 。 可见,如果Yt=0+1Xt+t 正确地提示了X与Y间的长 期稳定的“均衡关系”,则意味着Y对其均衡点的偏离从 本质上说是“临时性”的。 因此,一个重要的假设就是:随机扰动项t 必须是平 稳序列。 显然,如果t有随机性趋势(上升或下降),则会导 致Y对其均衡点的任何偏离都会被长期累积下来而不能被 消除。
检验程序:
对于多变量的协整检验过程,基本与双变量情形相同, 即需检验变量是否具有同阶单整性,以及是否存在稳定的线 性组合。 在检验是否存在稳定的线性组合时,需通过设置一个变 量为被解释变量,其他变量为解释变量,进行OLS估计并检 验残差序列是否平稳。 如果不平稳,则需更换被解释变量,进行同样的OLS估 计及相应的残差项检验。 当所有的变量都被作为被解释变量检验之后,仍不能得 到平稳的残差项序列,则认为这些变量间不存在(d,d)阶 协整。
同样地,检验残差项是否平稳的DF与ADF检验临界值 要比通常的DF与ADF检验临界值小,而且该临界值还受 到所检验的变量个数的影响。
协整检验与误差修正模型(ppt 73页)
二、协整检验—EG检验
1、两变量的Engle-Granger检验
• 为了检验两变量Yt,Xt是否为协整,Engle和Granger于 1987年提出两步检验法,也称为EG检验。
第一步,用OLS方法估计方程 Yt=0+1Xt+t
并计算非均衡误差,得到:
Yˆt ˆ0 ˆ1 X t
eˆt Yt Yˆt
• MacKinnon(1991)通过模拟试验给出了协整检 验的临界值。
样本容量 25 50 100 ∝
表9.3.1 双变量协整ADF检验临界值
显著性水平
0.01
0.05
-4.37
-3.59
-4.12
-3.46
-4.01
-3.39
-3.90
-3.33
0.10 -3.22 -3.13 -3.09 -3.05
然而,如果Z与W,X与Y间分别存在长期均衡关系:
Zt 01 W tv1t
Xt 01Ytv2t
则非均衡误差项v1t、v2t一定是稳定序列I(0)。于是它 们的任意线性组合也是稳定的。例如
v t v 1 t v 2 t Z t 0 0 1 W t X t 1 Y t
• 例9.3.1 检验中国居民人均消费水平CPC与人均国内生
产总值GDPPC的协整关系。
已知CPC与GDPPC都是I(2)序列,已知它们的回归式
CP t 4 C.7 9640 1.4056G 83 D 1tPR2P =0.99C 81
对该式计算的残差序列作ADF检验,适当检验模型为:
e ˆ t 1 .5 e ˆ t 1 5 1 .4 e ˆ t 9 1 2 .2 e ˆ t 7 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
误差修正模型
这种模型和ARMA以及ARIMA是不同的方法,其适用前提是不一样的,二者不是一
个前后衔接关系,对一组数据,可以分别用两种方法进行建模比较。
1 相关概念
1.1 单积随机过程
说明:多个不平稳时间序列,如果满足协整,可以建模
1.2 伪回归(谬误回归)
问题:这个有点迷惑
1.3 协积(协整)
1.3.1 基本说明
两个非平稳序列是否协整,检验方法就是检验其回归后的残差是否是平稳序列,如果是则有
协积,否则没有。
不稳定序列相减可能降低单整d,相加不能。
例子:
1.3.2 协整注意事项:
注意第二点
1.3.3 协积检验
第二种方法是
问题:残差是平稳的就说明方程式合理的?不要打到白噪声吗?如果是平稳的,不是还可能
存在序列相关吗?
1.3.4 协整检验的一个例子
说明:不存在单位根,说明是平稳序列,但是并不是白噪声序列
1.4 误差修正
1.4.1 理论说明
问题:建立这个模型的时候,关于传统回归假设是否满足要不要进行检验?那些要检验?
从5.4.3中,好像可以看出有多重共线性问题。
1.4.2 建模过程
1.4.3 例子5.11参考(协整检验的一个例子):
2 建模过程
检验x,y的平稳性,并返回其单整阶数;
如果都平稳(阶数都是0),则建模;
如果不平稳,则是否同阶,如果同阶,则进行协整检验
如果不平稳,不同阶,则同阶化,然后进行协整检验
3 Eviews操作
4 Matlab实现