苯—甲苯混合液筛板(浮阀)精馏塔设计
苯–甲苯精馏塔的工艺设计

摘要目前用于气液分离的传质设备主要采用板式塔,对于二元混合物的分离,应采用连续精馏过程。
浮阀塔在操作弹性、塔板效率、压降、生产能力以及设备造价等方面都比较优越。
其主要特点是在塔板的开孔上装有可浮动的浮阀,气流从浮阀周边以稳定的速度水平进入塔板上液层进行两相接触,浮阀可根据气体流量的大小上下浮动,自行调节。
其中精馏塔的工艺设计计算包括塔高、塔径、塔板各部分尺寸的设计计算,塔板的布置,塔板流体力学性能的校核及绘出塔板的性能负荷图。
关键词:气液传质分离;精馏;浮阀塔IAbstractCurrently,the main transferring equipment that used for gas-liquid separation is tray column. For the separation of binary, we should use a continuous process.The advantages of the float value tower lie in the flexibility of operation, efficiency of the operation, pressure drop, producing capacity, and equipment costs. Its main feature is that there is a floating valve on the hole of the plate, then the air can come into the tray plate at a steady rate and make contract with the level of liquid, so that the flow valve can fluctuate and control itself according to the size of the air.The calculations of the distillation designing include the calculation of the tower height, the tower diameter, the size of various parts of the tray and the arrangement of the tray, and the check of the hydrodynamics performance of the tray.And then draw the dray load map.Key words:gas-liquid mass transfer;rectification;valve towerII目录摘要 (I)Abstract ......................................................................................................................... I I 第1章前言 .. (1)1.1苯、甲苯在工业中的用途. (1)1.2精馏原理及其在工业生产中的应用 (1)1.3精馏操作的特点及其对塔设备的要求 (3)1.4常用板式塔的类型及本设计的选型 (3)1.5本设计所选塔的特型 (3)第2章流程的确定和说明 (4)2.1设计思路 (4)2.2设计流程 (4)第3章精馏塔的工艺计算 (6)3.1物料衡算 (6)3.1.1原料液及塔顶,塔底产品的摩尔分率 (6)3.1.2 原料液和塔顶及塔底产品的平均摩尔质量 (6)3.1.3 物料衡算 (6)3.2塔板数的确定 (7)3.2.1理论塔板层数N T的求取 (7)3.2.2绘t-x-y图和x-y图 (7)3.2.3最小回流比及操作回流比的确定 (8)3.2.4精馏塔气、液相负荷的确定 (8)3.2.5求操作线方程 (8)3.2.6求理论板层数 (9)3.2.7实际塔板数的求取 (9)3.3精馏塔的工艺条件及有关物性的计算 (9)3.3.1操作压力计算 (9)3.3.2操作温度计算 (9)3.3.3平均摩尔质量计算 (10)3.4平均密度计算 (10)III3.4.1气相平均密度计算 (10)3.4.2液相平均密度计算 (10)3.5液体平均表面张力计算 (11)3.6液体平均黏度计算 (12)3.7全塔效率计算 (12)3.7.1全塔液相平均粘度计算 (12)3.7.2全塔平均相对挥发度计算 (13)3.7.3全塔效率的计算 (13)3.8精馏塔的塔体工艺尺寸计算 (14)3.8.1塔径的计算 (14)3.9精馏塔有效高度的计算 (15)3.10塔板主要工艺尺寸的计算 (16)3.10.1溢流装置计算 (16)3.10.2堰长l W (16)3.10.3溢流堰高度h W (16)3.10.4弓形降液管宽度W d和截面积A f (16)3.10.5降液管底隙高度h0 (17)3.11塔板布置 (17)3.11.1塔板分布 (17)3.11.2边缘区宽度确定 (17)3.11.3开孔区面积计算 (17)3.11.4筛孔计算及其排列 (18)3.12筛板的流体力学验算 (18)3.12.1干板压降hd计算 (18)3.12.2气体通过液层的阻力h L计算 (19)3.12.3液体表面张力的阻力hσ计算 (19)3.12.4液面落差 (19)3.13液沫夹带 (20)3.14漏液 (21)3.15液泛 (21)3.16塔板负荷性能图 (22)3.16.1漏液线 (22)IV3.16.2液沫夹带线 (23)3.16.3液相负荷下限线 (23)3.16.4液相负荷上限线 (24)3.16.5液泛线 (24)3.17塔板主要结构参数表 (26)第4章结论 (28)主要符号说明 (29)参考文献 (32)致谢 (33)V第1章前言1.1苯、甲苯在工业中的用途.我国纯苯消费结构如下:2 7.2 5%用于合成苯乙烯,聚酰胺树脂(环己烷) 约占12.6 5%,苯酚约占11.3 7%,氯化苯约占l0.98%,硝基苯约占9.8%,烷基苯约占7.8 4%,农用化学品约占5.56%,顺酐约占4.7l%,其它医药、轻工及橡胶制品业等约占9.84%。
苯-甲苯浮阀精馏塔课程设计

第一篇化工原理课程设计任务书1.1设计题目苯-甲苯连续精馏(浮阀)塔的设计1.2设计任务1、精馏塔设计的工艺计算及塔设备计算(1)流程及操作条件的确定;物料衡算及热量衡算;(2)塔板数的计算;(3)塔板结构设计(塔板结构参数的确定、流动现象校核、负荷性能图);(4)塔体各接管尺寸的确定;(5)冷却剂与加热剂消耗量的估算。
2.设计说明及讨论3.绘制设计图(1)流程图(A4纸);(2)塔盘布置图(8开坐标纸);(3)工艺条件图(1号绘图纸)。
1.3原始设计数据1、原料液:苯-甲苯,其中苯含量为35 %(质量),常温;2、馏出液含苯:99.2 %(质量);3、残液含苯: 0.5 %(质量);4、生产能力:4000 (kg/h).第二篇流程及流程说明为了能使生产任务长期固定,适宜采用连续精流流程。
贮罐中的原料液用机泵泵入精馏塔,塔釜再沸器用低压蒸汽作为热源加热料液,精馏塔塔顶设有全凝器,冷凝液部分利用重力泡点回流部分连续采出到产品罐(具体流程见附图)。
在流程确定方案选择上,本设计尽可能的减少固定投资,降低操作费用,以期提高经济效益。
1、加料方式的选择:设计任务年产量虽小,但每小时4000Kg的进料量,为维持生产稳定,采用高位槽进料,从减少固定投资,提高经济效益的角度出发,选用泡点进料的加料方式。
2、回流方式的选择:塔的生产负荷不大,从降低操作费用的角度出发,使用列管式冷凝器,利用重力泡点回流,同时也减少了固定投资。
3、再沸器的选择:塔釜再沸器采用卧式换热器,使用低压蒸汽作为热源,做到了不同品位能源的综合利用,大大降低了能源的消耗量。
第三篇 设计计算3.1全塔的物料衡算1、将任务书中的质量分数换算成摩尔分数,进料h km ol 4000=F35%78.110.33835%78.1165%92.13F x ==+(摩尔百分数)0.5%78.110.005890.5%78.1199.5%92.13W x ==+(摩尔百分数)99.2%78.110.99399.2%78.110.8%92.13D x ==+(摩尔百分数)2、求平均分子量,将h kg 换算成 h km ol进料处: 78.110.38892.130.61286.69kg kmol F M =⨯+⨯= 塔顶处: 78.110.99392.130.00778.21kg kmol D M =⨯+⨯= 塔釜处: 78.110.0058992.130.9941192.05kg kmol W M =⨯+⨯= 进料: kmol/h 46.144000/86.69==F 3、全塔的物料衡算由物料衡算得:F F DF W DF x W x D x =+⎧⎨⨯=⨯+⨯⎩代入数据得: ⎩⎨⎧⨯+⨯=⨯+=993.000589.0388.014.4614.46D W DW解之得: ⎩⎨⎧==h kmol 86.17hkmol 28.28D W3.2相对挥发度α及回流比Rα:1、求全塔平均相对挥发度表3-11 2 3 4 5 6 7 8 9 t C。
苯_甲苯浮阀式精馏塔的设计说明

化工原理课程设计任务书一 设计题目:苯-甲苯连续浮阀式精馏塔的设计 二 任务要求设计一连续浮阀式精馏塔以分离苯和甲苯, 具体工艺参数如下:原料加料量 F=75kmol/h 进料组成 xf=0.41 馏出液组成 965.0=D x 釜液组成 035.0=W x 塔顶压力 k P a P 325.101=单板压降 0.7kPa ≤ 进料状态 965.0=q2 工艺操作条件:常压精馏,塔顶全凝器,塔底间接加热,泡点回流。
三 主要设计内容1、设计方案的选择及流程说明2、工艺计算3、主要设备工艺尺寸设计 (1)塔径及塔板结构尺寸的确定 (2)塔板的流体力学校核 (3)塔板的负荷性能图 (4)总塔高4、辅助设备选型与计算设计结果汇总5、工艺流程图及精馏塔设备条件图目录任务书 (1)目录 (Ⅱ)摘要 (1)第1 章绪论 (2)1.1 设计流程 (2)1.2 设计思路 (2)第2 章精馏塔的工艺设计 (4)2.1 产品浓度的计算 (4)2.2 最小回流比的计算和适宜回流比的确定 (5)2.3 物料衡算 (6)2.4 精馏段和提馏段操作线方程 (7)2.5 逐板法确定理论板数及进料位置(编程) (7)2.6 全塔效率、实际板数及实际加料位置 (8)第3 章精馏塔主要工艺尺寸的设计计算 (8)3.1 物性数据计算 (8)3.2 精馏塔主要工艺尺寸的计算 (11)3.3 塔板主要工艺尺寸的计算 (13)3.4 塔板流体力学校核 (17)3.5 塔板符合性能图 (20)第4 章热量衡算 (24)4.1 热量衡算示意图 (24)4.2 热量衡算 (24)第5 章塔附属设备的计算 (29)5.1 筒体与封头 (29)5.2 除沫器 (29)5.3 裙座 (29)5.4 塔总体高度的设计 (30)5.5 换热器(进料预热器或产品冷却器)的设计计算 (30)5.6 进料管的设计 (32)5.7 泵的选型 (32)5.8 贮罐的计算 (33)第6 章结论 (35)6.1 结论 (35)6.2 主要数据结果总汇 (35)结束语 (36)参考文献 (31)附录1主要符号说明 (38)附录2 程序框图 (41)附录3 精馏塔工艺条件图 (43)附录4 生产工艺流程图 (44)教师评语.................................................................................................................... 错误!未定义书签。
化工原理课程设计-筛板塔设计(2013)

u — 空 塔 气 速 , m /s
u 0 .6 ~ 0 .8 u m ax
—最 大 空 塔 气 速 , m/ s
umax
L V C V
umax
L 、V — 分 别 为 液 相 与 气 相 密 度 , k g m 3 0 .2 负荷系数 C C 20 C ( 20 值 可 由 S m i t h 关 联 图 求 取 ) 20
三. 设计任务 完成精馏塔工艺设计,精馏设备设计,有关附 属设备的设计和选用,绘制带控制点工艺流程图, 塔板结构简图,编制设计说明书。
四. 设计内容 1. 工艺设计 (1) 选择工艺流程和工艺条件 a. 加料方式 b. 加料状态 c. 塔顶蒸汽冷凝方式 d. 塔釜加热方式 e. 塔顶塔底产品的出料状态 塔顶产品由塔顶产品冷却器冷却至常温。 (2) 精馏工艺计算: a. 物料衡算确定各物料流量和组成。 b. 经济核算确定适宜的回流比 根据生产经常费和设备投资费综合核算最经济原 则,尽量使用计算机进行最优化计算,确定适宜回流 比。
(a). 生产经常费 包括再沸器水蒸汽费, 塔顶冷凝器, 产品冷却器冷 却水费。 a1. 水蒸汽费用 CS 采用饱和水蒸汽压力:2.5kgf/cm2(表压) 按 1 吨煤可获得 6 吨水蒸汽计。 1 吨煤单价 250 元。 a2. 冷却水费用 CW 冷却水单价按 2 元/吨而定。 换热器中冷却水温升一般取 10~20℃。 (b).设备投资费 b1.精馏塔投资费 CD 成本:20000D1.2 元/实际塔板 D:精馏塔内径 m b2.年折旧率为 15% 全塔成本:20000D1.2Ne×15% 元/年 Ne:实际塔板数
1、 全 塔 物 料 衡 算 :
FxF DxD WxW
化工原理课程设计精馏塔设计9724

塔顶塔底的温度,进而求取全塔的平均温度,从而可以根据全
塔平均温度求取全塔平均相对挥发度。
式中: R ---回流
R m in —最小回流比
—全塔平均相对挥发度
3.理 论 板 数 和 实 际 板 数 的 确 定
(1)逐板法计算理论板数,交替使用操作线方程和相平衡关系。
精馏段操作线方程: yn1
L LD
3. 附属设备设计和选用 (1)加料泵选型,加料管规格选型
加料泵以每天工作3小时计(每班打1小时)。 大致估计一下加料管路上的管件和阀门。 (2)高位槽、贮槽容量和位置 高位槽以一次加满再加一定裕量来确定其容积。 贮槽容积按加满一次可生产10天计算确定。 (3)换热器选型 对原料预热器,塔底再沸器,塔顶产品冷却器等进行选型。 (4)塔顶冷凝器设计选型 根据换热量,回流管内流速,冷凝器高度,对塔顶冷凝器进 行选型设计。
0.735
lW hn
hOW
5 2
hOW
hn
5 2
LS —塔内液体流量, m3 S hn —齿深, m;可取为 0.015m
(3).堰高 hW
堰高与板上液层高度及堰上液层高度的关系:
hW hL hOW
2024/7/16
5、降液管的设计
(1)、降液管的宽度Wd 与截面积 Af
可根据堰长与塔径比值 lW ,查图求取。 D
塔径
流体 流 量 m3/h
Mm
U 形流型 单流型 双流型 阶梯流型
600
5 以下
5~25
900
7 以下
7~50
1000 1200
7 以下 9 以下
45 以下 9~70
1400
9 以下
70 以下
分离苯甲苯混合液及浮阀精馏塔设计。样本

分离苯-甲苯混合液及浮阀精馏塔设计。
样本新疆工程学院课程设计说明书题目名称:分离苯-甲苯混合液的浮阀精馏塔设计系部:专业班级:学生姓名:指导教师:完成日期:新疆工程学院课程设计评定意见设计题目:分离苯-甲苯混合液的浮阀精馏塔设计学生姓名:评定意见:评定成绩:指导教师(签名):年月日新疆工程学院课程设计任务书11-12学年第二学期 2012年 7月 5日教研室主任(签名)系(部)主任(签名)年月日摘要本设计任务为精馏塔分离苯-甲苯混合物。
对于二元混合物的分离,采用连续精馏过程。
设计中采用泡点进料,将原料液通过预热器加热至泡点后送人精馏塔内。
塔顶上升蒸气采用全器冷凝,冷凝液在泡点温度下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。
该物系属易分离物系,最小回流比较小,所以在设计中把操作回流比取最小回流比的1.5倍。
塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。
关键词:分离苯甲苯筛板精馏塔设计计算目录1 综述 01.1苯-甲苯物性 01.2 塔设备概述 01.3设计方案的原则 (1)1.4精馏塔设计任务 (2)1.5精馏塔设计方案的选定 (2)2 精馏塔设计计算 (3)2.1 精馏塔的物料衡算 (3)2.2 塔板数的确定 (3)2.3 精馏塔的工艺条件及有关物性数据的计算 (6)2.4 精馏塔的塔体工艺尺寸计算 (10)2.5 塔板主要工艺尺寸的计算 (13)3 塔的流体力学校验 (16)3.1 校核 (16)3.2 负荷性能图计算 (20)4精馏塔工艺设计结果 (27)4.1 筛板塔板工艺设计结果 (27)表4-1 设计计算结果汇总表 (27)设计小结 (29)参考文献 (30)致谢 (32)1 综述1.1苯-甲苯物性苯的沸点为80.1℃,熔点为5.5℃,在常温下是一种无色、味甜、有芳香气味的透明液体,易挥发。
苯比水密度低,密度为0.88g/ml。
苯难溶于水;但苯是一种良好的有机溶剂,溶解有机分子和一些非极性的无机分子的能力很强。
分离苯甲苯混合液的浮阀板式精馏塔工艺设计方案
分离苯甲苯混合液的浮阀板式精馏塔工艺设计方案设计方案的选择和论证1 设计流程本设计任务为分离苯__甲苯混合物。
对于二元混合物的分离,采用连续精馏流程。
设计中采用泡点进料,将原料液通过预热器加热至泡点后送入精馏塔。
塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔,其余部分经产品冷凝器冷却后送至储罐。
该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的2倍。
塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。
2 设计思路在本次设计中,我们进行的是苯和甲苯二元物系的精馏分离,简单蒸馏和平衡蒸馏只能达到组分的部分增浓,如何利用两组分的挥发度的差异实现高纯度分离,是精馏塔的基本原理。
实际上,蒸馏装置包括精馏塔、原料预热器、蒸馏釜、冷凝器、釜液冷却器和产品冷却器等设备。
蒸馏过程按操作方式不同,分为连续蒸馏和间歇蒸馏,我们这次所用的就是浮阀式连续精馏塔。
蒸馏是物料在塔的多次部分汽化与多次部分冷凝所实现分离的。
热量自塔釜输入,由冷凝器和冷却器中的冷却介质将余热带走。
在此过程中,热能利用率很低,有时后可以考虑将余热再利用,在此就不叙述。
要保持塔的稳定性,流程中除用泵直接送入塔原料外也可以采用高位槽。
塔顶冷凝器可采用全凝器、分凝器-全能器连种不同的设置。
在这里准备用全凝器,因为可以准确的控制回流比。
此次设计是在常压下操作。
因为这次设计采用间接加热,所以需要再沸器。
回流比是精馏操作的重要工艺条件。
选择的原则是使设备和操作费用之和最低。
在设计时要根据实际需要选定回流比。
1、本设计采用连续精馏操作方式。
2、常压操作。
3、20℃进料。
4、间接蒸汽加热。
5、选R=2Rmin。
6、塔顶选用全凝器。
7、选用浮阀塔。
在此使用浮阀塔,浮阀塔塔板是在泡罩塔板和筛孔塔板的基础上发展起来的,它吸收了两者的优点,其突出优点是可以根据气体的流量自行调节开度,这样就可以避免过多的漏液。
另外还具有结构简单,造价低,制造方便,塔板开孔率大,生产能力大等优点。
苯-甲苯分离过程浮阀板式精馏塔设计课程设计
化工原理课程设计院系:化学化工学院专业:化学工程与工艺班级: 11级化工2班姓名:李钊学号:2011321216指导教师:武芸2013年12月15日——2014年01月3日课程设计任务书一、设计题目苯-甲苯分离过程浮阀板精馏塔设计二、设计任务1.原料名称:苯-甲苯二元均相混合物;2.原料组成:含苯42%(质量百分比);3.产品要求:塔顶产品中苯含量不低于97%,塔釜中苯含量小于1.0%;4.生产能力:年产量5万吨/年;5.设备形式:浮阀塔;6.生产时间:300天/年,每天24h运行;7.进料状况:泡点进料;8.操作压力:常压;9.加热蒸汽压力:270kPa10.冷却水温度:进口20℃,出口45℃;三、设计内容1.设计方案的选定及流程说明2.精馏塔的物料衡算3.精馏塔的工艺条件及有关物性数据的计算(加热物料进出口温度、密度、粘度)4.塔板数的确定5.精馏塔塔体工艺尺寸的计算6.塔板主要工艺尺寸的计算7.塔板的流体力学验算8.塔板负荷性能图9.换热器设计10.馏塔接管尺寸计算11.绘制生产工艺流程图(带控制点、机绘,A2图纸)12.绘制板式精馏塔的总装置图(包括部分构件,A1图纸)13.撰写课程设计说明书一份四、设计要求1.工艺设计说明书一份2.工艺流程图一张,主要设备总装配图一张(采用AutoCAD绘制)五、设计完成时间2013年12月16日~2014年01月01日目录概述 (6)第一章塔板的工艺设计 (7)第一节精馏塔全塔物料衡算 (7)第二节基本数据 (8)第三节实际塔板数计算 (15)第四节塔径的初步计算 (16)第五节溢流装置 (17)第六节塔板布置及浮阀数目与排列 (19)第二章塔板的流体力学计算 (21)第一节气体通过浮阀塔的压降 (21)第二节液泛 (21)第三节雾沫夹带 (22)第四节塔的负荷性能图 (23)第三章塔附件设计 (28)第一节接管 (28)第二节筒体与封头 (30)第三节塔的总体高度 (31)第四章附属设备设计 (33)第一节原料预热器 (33)第二节塔顶冷凝器 (34)第三节再沸器 (34)第四节泵的计算与选型 (35)参考文献 (37)概述本设计任务为分离苯-甲苯混合物。
苯_甲苯浮阀式精馏塔的设计说明
化工原理课程设计任务书一设计题目:苯-甲苯连续浮阀式精馏塔的设计二任务要求设计一连续浮阀式精馏塔以分离苯和甲苯,具体工艺参数如下:原料加料量 F=75kmol/h进料组成 xf=0.41馏出液组成965x=.0D釜液组成035x=.0W塔顶压力kPa101=.P325单板压降0.7kPa≤进料状态965q=.02 工艺操作条件:常压精馏,塔顶全凝器,塔底间接加热,泡点回流。
三主要设计容1、设计方案的选择及流程说明2、工艺计算3、主要设备工艺尺寸设计(1)塔径及塔板结构尺寸的确定(2)塔板的流体力学校核(3)塔板的负荷性能图(4)总塔高4、辅助设备选型与计算设计结果汇总5、工艺流程图及精馏塔设备条件图目录任务书 (1)目录 (Ⅱ)摘要 (1)第 1 章绪论 (2)1.1 设计流程 (2)1.2 设计思路 (2)第 2 章精馏塔的工艺设计 (4)2.1 产品浓度的计算 (4)2.2 最小回流比的计算和适宜回流比的确定 (5)2.3 物料衡算 (6)2.4 精馏段和提馏段操作线方程 (7)2.5 逐板法确定理论板数及进料位置(编程) (7)2.6 全塔效率、实际板数及实际加料位置 (7)第 3 章精馏塔主要工艺尺寸的设计计算 (8)3.1 物性数据计算 (8)3.2 精馏塔主要工艺尺寸的计算 (10)3.3 塔板主要工艺尺寸的计算 (12)3.4 塔板流体力学校核 (15)3.5 塔板符合性能图 (17)第 4 章热量衡算 (21)4.1 热量衡算示意图 (21)4.2 热量衡算 (21)第 5 章塔附属设备的计算 (25)5.1 筒体与封头 (25)5.2 除沫器 (25)5.3 裙座 (25)5.4 塔总体高度的设计 (25)5.5 换热器(进料预热器或产品冷却器)的设计计算 (26)5.6 进料管的设计 (27)5.7 泵的选型 (27)5.8 贮罐的计算 (28)第 6 章结论 (29)6.1 结论 (29)6.2 主要数据结果总汇 (29)结束语 (29)参考文献 (31)附录1主要符号说明 (32)附录2 程序框图 (34)附录3 精馏塔工艺条件图 (35)附录4 生产工艺流程图 (36)教师评语................................................... 错误!未定义书签。
苯-甲苯精馏浮阀塔
《化工原理》课程设计题目苯-甲苯精馏浮阀塔设计学院化学化工学院专业无机非金属材料班级 2012无机01姓名罗钢学号 20124620123指导教师杜可杰2015年 1月 20日目录绪论第一章、设计方案的确定1、设计方案2、设计要求第二章、工艺设计1、基础物性数据2、塔的工艺计算3、逐板计算法求理论板数计算4、精馏塔的工艺条件及有关物性数据的计算5、精馏塔的工艺尺寸的计算6、塔板负荷性能图7、辅助设备的选型第三章、讨论总结1、进料状况的影响2、回流比的选择3、精馏塔的操作和调节4、热量衡算和节能5、三废的处理结束语附录:参考文献附:精馏塔优化设计任务书一、设计题目苯-甲苯连续精馏浮阀塔设计二、工艺条件与原始数据1.体系可以看成理想溶液,φ=0.5, K=1;2.原料液组成:含苯0.42(质量分数,下同);3.生产能力:50000吨/年(按进料计),年生产时间300天;4.馏出液组成:苯95%;塔釜液要求:含苯3%。
三、设计条件1.常压操作,连续操作、泡点回流;2.进料状况:进料温度为20 -50℃;3.回流温度为塔顶蒸汽的露点;4.间接蒸汽加热,加热蒸汽压力 (绝压);5.冷却水进口温度为20℃,出口温度为40℃。
四、设计任务1.物料衡算,热量衡算;2.塔板数、塔径计算;3.溢流装置、塔盘设计;4.流体力学计算、负荷性能图。
五、设计成果1.设计说明书一份;2.设计图纸,包括塔板布置图,负荷性能图,塔设备的平面、立面图(要求手工绘图)。
绪论塔设备是炼油、化工、石油化工、制药等生产中广泛应用的气液传质设备。
根据塔气液接触部件的结构型式,可分为板式塔和填料塔。
板式塔设置一定数目的塔板,气体以鼓泡或喷射形式穿过板上液层进行质热传递。
在正常操作下,气相为分散相,液相为连续相,气液相组成呈阶梯变化,属逐级接触逆流操作过程。
填料塔装有一定高度的填料层,液体自塔顶沿填料表面下流,气体逆流向上(也有并流向下者)流动,气液相密切接触,进行质热传递。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 攀 枝 花 学 院 化 工 原 理 课 程 设 计 说 明 书
题目:50000吨/年苯~甲苯混合液 筛板(浮阀)精馏塔设计
年 级 2008 专 业 设计者姓名 张 三 指导教师 设计成绩 2
完成日期 年 月 日 攀 枝 花 学 院 化工原理课程设计任务书 设计者:张 三 班级: 指导教师: 设计时间:2010年 月 日 至 月 日 一、设计任务 设计题目:苯—甲苯混合液筛板(浮阀)精馏塔设计 给定条件: 原料液: 组 成:52%(苯质量分率) 处理量:50000t/a 馏出液: 组 成:98.5%(苯质量分率) 残 液: 组 成:2%(苯质量分率) 塔顶压强:4 kpa(表压) 单板压降不超过0.7kPa 二、设计内容: (一)设计说明书一份,其内容包括: (1)说明书封面 (2)设计任务书 (3)目录 (4)工艺流程选择论证及说明,流程图 (5)主要设备的设计 塔板数、塔径、塔板结构元件 (6)主要辅助设备的选用与计算 3
原料预热器、塔顶冷凝器 (二)绘制工整的设备结构图
目 录
1 概述 ·································································································· 5
1.1 设计依据 ····························································································· 5 1.2 技术来源 ····························································································· 6 1.3 设计任务及要求 ···················································································· 6 2 正戊烷—正己烷精馏塔设计 ································································ 6
2.1 塔型选择 ····························································································· 6 2.2 操作条件的确定 ···················································································· 7 2.3 进料状态 ····························································································· 7 2.4 加热方式 ····························································································· 7 2.5 热能利用 ····························································································· 7 3 有关的工艺计算 ················································································· 7
3.1 精馏塔的物料衡算 ················································································· 7 3.2 塔板数的确定 ······················································································· 8 3.3 实际板层数的求取 ················································································· 9 4 馏塔的工艺条件及有关物性数据的计算 ·············································· 10
4.1 操作压力计算 ······················································································ 10 4.2 操作温度计算 ······················································································ 11 4.3 平均摩尔质量计算 ················································································ 11 4.4 平均密度计算 ······················································································ 12 4.5 液体平均表面张力计算········································································· 13 4.6 液体平均粘度计算 ··············································································· 14 5 精馏塔的塔体工艺尺寸计算 ······························································· 15
5.1 塔径的计算 ························································································· 15 5.2 精馏塔有效高度的计算 ·········································································· 17 6 塔板主要工艺尺寸的计算 ·································································· 17
6.1 溢流装置计算 ······················································································ 17 6.2 塔板布置 ···························································································· 19 7 浮阀塔板流体力学验算 ······································································ 22
7.1 塔板压降 ···························································································· 22 7.2 雾沫夹带量 ························································································· 24
7.3 降液管内液面高度dH ··········································································· 25 7.4 漏液 ·································································································· 27 7.5 液体在降液管内的停留时间及流速 ··························································· 27 8 塔板的负荷性能图 ············································································· 29
8.1 精馏段 ······························································································· 29 4
8.2提馏段 ································································································ 31 9 浮阀塔的辅助设备 ············································································· 35
9.1配管 ··································································································· 35 9.2辅助设备 ····························································································· 36 10 塔体的初步设计 ·············································································· 37
10.1筒体的设计 ························································································ 37 10.2封头的设计 ························································································ 38 10.3人孔 ································································································· 38