高中数学 简单的逻辑联结词课件二 新人教A版选修1-1.
高中数学《简单的逻辑联结词》课件9 新人教A选修11

《高中数学》
选修1-1
1.3.2《简单的逻辑联结词 (二)复合命题》
教学目标
加深对“或”“且”“非”的含义的理 解,能利
用真值表判断含有复合命题的真假; 教学重点:判断复合命题真假的方法; 教学难点:对“p或q”复合命题真假判断
的方法课 型:新授课 教学手段:多媒体
一、知識點复習:
• 例3:判断下列命题的真假: • (1)5是10的约数或是15的约数; • (2)5是12的约数或是8的约数; • (3)5是12的约数或是15的约数; • (4)方程x2-3x-4=0的判别式大于或等于零
当p、q中至少有一个为真时,p或q为真; 当p、q都为假时,p或q为假。
非p形式复合命题
p
当p为真时,非p为假;
当p为假时,非p为真.
•11、凡为教者必期于达到不须教。对人以诚信,人不欺我;对事以诚信,事无不成。 •12、首先是教师品格的陶冶,行为的教育,然后才是专门知识和技能的训练。 •13、在教师手里操着幼年人的命运,便操着民族和人类的命运。2022/1/102022/1/10January 10, 2022 •14、孩子在快乐的时候,他学习任何东西都比较容易。 •15、纪律是集体的面貌,集体的声音,集体的动作,集体的表情,集体的信念。 •16、一个人所受的教育超过了自己的智力,这样的人才有学问。 •17、好奇是儿童的原始本性,感知会使儿童心灵升华,为其为了探究事物藏下本源。2022年1月2022/1/102022/1/102022/1/101/10/2022 •18、人自身有一种力量,用许多方式按照本人意愿控制和影响这种力量,一旦他这样做,就会影响到对他的教育和对他发生作用的环境。 2022/1/102022/1/10
2018-2019学年高二数学新人教A版选修1-1课件:第1章 章末复习

章末复习
学习目标
1.理解命题及四种命题的概念,掌握四种命题间的相互关系. 2.理解充分条件、必要条件的概念,掌握充分条件、必要条件的 判定方法. 3.理解逻辑联结词的含义,会判断含有逻辑联结词的命题的真假. 4.理解全称量词、存在量词的含义,会判断全称命题、特称命题 的真假,会求含有一个量词的命题的否定.
跟踪训练2 使a>b>0成立的一个充分不必要条件是 A.a2>b2>0 B.
log 1 a log 1 b 0
2 2
√
C.ln a>ln b>0
D.xa>xb且x>0.5
解析
答案
命题角度2 充分条件与必要条件的应用 例3 设p:实数x满足x2-4ax+3a2<0,a<0.q:实数x满足x2-x-6≤0
2.“所有奇数都是质数 ”的否定“至少有一个奇数不是质数 ”是真命
题.( √ )
3.命题“若p,则q”与命题“若綈p,则綈q”的真假性一致.( × )
4. 已知命题 p : ∃x0∈R , x0 - 2 > 0 ,命题 q : ∀x∈R , x2 > x ,则命题
p∨(綈q)是假命题.( × )
题型探究
3.简单的逻辑联结词 (1)用联结词“且”“或”“非”联结命题p和命题q,可得 p∧q , p∨q, 綈p . ____ (2)命题p∧q,p∨q,綈p的真假判断: 一真一假 p∧q 中 p , q 有 一 假 即 为 假 , p∨q 有 一 真 即 为 真 , p 与 綈p必定 是 .
4.全称量词与存在量词 (1)全称量词与全称命题: 全称量词用符号“ ∀ ”表示. 全称命题用符号简记为 ∀x∈M,p(x) . (2)存在量词与特称命题: 存在量词用符号“ ∃ ”表示. 特称命题用符号简记为 ∃x0∈M,p(x0) .
高中数学 1.3 简单的逻辑联结词课件 新人教A版选修11

迁移与应用 1.关于命题 p:A∩⌀ =⌀ ,命题 q:A∪⌀ =A,则下列说法正确 的是( ) A. ( ������ p) ∨q 为假 B. ( ������ p) ∧( ������ q) 为真 C. ( ������ p) ∨( ������ q) 为假 D. ( ������ p) ∧q 为真 答案:C 解析:由已知得 p 为真命题, q 为真命题, ∴ ������ p 为假命题, ������ q为 假命题, ∴ ( ������ p) ∨( ������ q) 为假命题, 故 C 正确.
判断含逻辑联结词的命题的真假的步骤: (1)确定命题的构成形式,是“p∧q”“p∨q”还是“������ p”形式; (2)判断其中简单命题 p,q 的真假; (3)根据真值表判断含逻辑联结词的命题的真假.
三、逻辑联结词“或”“且”“非”的综合应用
活动与探究 3 已知命题 p:方程 a2x2+ax-2=0 在[-1,1]上有解;命题 q:只有一 个实数 x 满足不等式 x2+2ax+2a≤0.若命题“p∨q”是假命题,求实数 a 的取值范围.
2.含有逻辑联结词的命题的真假判断(真值表)
p 真 真 假 假 q 真 假 真 假 ������ p 假 假 真 真 p∨q 真 真 真 假 p∧q 真 假 假 假
预习交流 2
已知 p:函数 y=cos x 是周期函数,q:y=cos x 是奇函数,则 p∧q 是 题,(������ p)∧q 是 命题,p∨q 是 命题,������ p是 命
3.若条件 p:x∈A∩B,则������ p 是( A.x∈A 且 x∉ B B.x∉ A 或 x∉ B C.x∉ A 且 x∉ B D.x∈A∪B 答案:B
)
高中数学选修1课件:1.3简单的逻辑联结词

“或”,“且”, “非”称为逻辑联结词.含有逻 辑联结词的命题称为复合命题,不含逻辑联结 词的命题称为简单命题.
复合命题有以下三种形式: (1)P且q. (2)P或q. (3)非p.
1.3.1 且(and)
思考?
正面
=>
是
都是
至多有一个 至少有一个 任意的 所有的
否定
≠
≤
不是
不都是
至少有两个 没有一个 某个 某些
例4 已知命题p,q,写出“P或q”,“P且q”,“非p”形
式的复合命题. (1)p:π是无理数,q:π是实数. (2)p:3>5,q:3+5=8. (3)p:等腰三角形的两个底角相等,q:等腰三 角形底边上的高和底边上的中线重合.
例2 分别写出由命题“p:平行四边形的对角 线相等”,“q:平行四边形的对角线互相平分” 构成的“P或q”,“P且q”,“非p”形式的命题。
例3 分别指出下列命题的形式及构成它的 简单命题。 (1)24既是8的倍数,又是6的倍数. (2)李强是篮球运动员或跳水运动员. (3)平行线不相交.
本节须注意的几个方面: (1)“≥”的意义是“>或=”. (2)“非”命题对常见的几个正面词语的否定.
是假命题时, p q是假命题.
p
q
全真为真,有假即假.
一般地,用逻辑联结词”或”把 命题p和命题q联结起来.就得到一个
p q 新命题,记作
规定:当p,q两个命题中有一个是真命题
时, p q 是真命题;当p,q两个命题中都是
假命题时, p q 是假命题.
当p,q两个命题中有一个是真命
高中数学 复习课(一)常用逻辑用语讲义(含解析)新人教A版选修1-1-新人教A版高二选修1-1数学教

复习课(一) 常用逻辑用语命题及其关系通过选择题、填空题的方式设置一些多知识点、知识跨度大的试题,考查命题及其关系,以及对命题真假的判断.[考点精要]四种命题的相互改写交换原命题的条件和结论,所得的命题是原命题的逆命题;同时否定原命题的条件和结论,所得的命题是原命题的否命题;交换原命题的条件和结论,并且同时否定,所得的命题是原命题的逆否命题.[注意] 互为逆否命题的两个命题,它们具有相同的真假性.[典例] 将下列命题改写成“若p,则q”的形式,并写出它的逆命题、否命题和逆否命题并判断它们的真假.(1)垂直于同一平面的两条直线平行;(2)当mn<0时,方程mx2-x+n=0有实数根.[解] (1)将命题写成“若p,则q”的形式为:若两条直线垂直于同一个平面,则这两条直线平行.它的逆命题、否命题和逆否命题如下:逆命题:若两条直线平行,则这两条直线垂直于同一个平面.(假命题)否命题:若两条直线不垂直于同一个平面,则这两条直线不平行.(假命题)逆否命题:若两条直线不平行,则这两条直线不垂直于同一个平面.(真命题)(2)将命题写成“若p,则q”的形式为:若mn<0,则方程mx2-x+n=0有实数根.它的逆命题、否命题和逆否命题如下:逆命题:若方程mx2-x+n=0有实数根,则mn<0.(假命题)否命题:若mn≥0,则方程mx2-x+n=0没有实数根.(假命题)逆否命题:若方程mx2-x+n=0没有实数根,则mn≥0.(真命题)[类题通法]简单命题真假的判断方法[题组训练]1.命题“若函数f (x )=x 2-ax +3在[1,+∞)上是增函数,则a ≤2”的否命题( ) A .与原命题同为假命题 B .与原命题一真一假 C .为假命题D .为真命题解析:选D 原命题显然为真,原命题的否命题为“若函数f (x )=x 2-ax +3在[1,+∞)上不是增函数,则a >2”,为真命题,故选D.2.下列命题中为真命题的是( ) A .命题“若a >b ,则3a >3b”的逆命题 B .命题“若x 2≤1,则x ≤1”的否命题 C .命题“若x =1,则x 2-x =0”的否命题 D .命题“若a >b ,则1a <1b”的逆否命题解析:选A 对于A ,逆命题是“若3a >3b,则a >b ”,是真命题;对于B ,否命题是“若x 2>1,则x >1”,是假命题,因为x 2>1⇔x >1或x <-1;对于C ,否命题是“若x ≠1,则x 2-x ≠0”,是假命题,因为当x =0时,x 2-x =0;对于D ,逆否命题是“若1a ≥1b,则a ≤b ”,是假命题,如a =1,b =-1.故选A.3.下列说法中错误的个数是( )①命题“余弦函数是周期函数”的否命题是“余弦函数不是周期函数” ②命题“若x >1,则x -1>0”的否命题是“若x ≤1,则x -1≤0” ③命题“两个正数的和为正数”的否命题是“两个负数的和为负数”④命题“x =-4是方程x 2+3x -4=0的根”的否命题是“x =-4不是方程x 2+3x -4=0的根”A .1B .2C .3D .4解析:选C ①错误,否命题是“若一个函数不是余弦函数,则它不是周期函数”;②正确;③错误,否命题是“若两个数不全为正数,则它们的和不为正数”;④错误,否命题是“若一个数不是-4,则它不是方程x 2+3x -4=0的根”.充分条件与必要条件充要条件是数学的重要概念之一,在数学中有着非常广泛的应用,在高考中有着较高的考查频率,其特点是以高中数学的其他知识为载体考查充分条件、必要条件、充要条件的判断.[考点精要]充分条件、必要条件与充要条件(1)如果p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件; (2)如果p ⇒q ,q ⇒p ,则p 是q 的充要条件.[典例] (1)(2017·某某高考)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件(2)(2017·某某高考)设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[解析] (1)因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5.(2)法一:由⎪⎪⎪⎪⎪⎪θ-π12<π12,得0<θ<π6,故sin θ<12.由sin θ<12,得-7π6+2k π<θ<π6+2k π,k ∈Z ,推不出“⎪⎪⎪⎪⎪⎪θ-π12<π12”.故“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件.法二:⎪⎪⎪⎪⎪⎪θ-π12<π12⇒0<θ<π6⇒sin θ<12,而当sin θ<12时,取θ=-π6,⎪⎪⎪⎪⎪⎪-π6-π12=π4>π12. 故“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件. [答案] (1)C (2)A [类题通法]充要关系的判断方法(1)定义法:直接判断若p则q,若q则p的真假.(2)等价法:利用A⇒B与綈B⇒綈A,B⇒A与綈A⇒綈B,A⇔B与綈B⇔綈A的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)利用集合间的包含关系判断:若A⊆B,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件.[题组训练]1.设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的( )A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件解析:选A 若四边形ABCD为菱形,则AC⊥BD,反之,若AC⊥BD,则四边形ABCD不一定是菱形,故选A.2.设α,β是两个不同的平面,m是直线且m⊂α,“m∥β”是“α∥β”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:选B 当m∥β时,过m的平面α与β可能平行也可能相交,因而m∥β⇒/ α∥β;当α∥β时,α内任一直线与β平行,因为m⊂α,所以m∥β.综上知,“m∥β”是“α∥β”的必要不充分条件.3.对于任意实数x,〈x〉表示不小于x的最小整数,例如〈1.1〉=2,〈-1.1〉=-1,那么“|x-y|<1”是“〈x〉=〈y〉”的( )A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件解析:选B 当x=1.8,y=0.9时,满足|x-y|<1,但〈1.8〉=2,〈0.9〉=1,即〈x〉≠〈y〉;当〈x〉=〈y〉时,必有|x-y|<1,所以“|x-y|<1”是“〈x〉=〈y〉”的必要不充分条件,故选B.含有逻辑联结词、量词的命题的真假,以及全称命题,特称命题的否定.[考点精要]1.含有逻辑联结词的命题与集合之间的关系2.全称命题、特称命题的否定全称命题“∀x ∈M ,p (x )”的否定是“∃x 0∈M ,綈p (x 0)”,特称命题“∃x 0∈M ,p (x 0)”的否定是“∀x ∈M ,綈p (x )”.[典例] (1)已知命题p :∀x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)≥0,则綈p 是( ) A .∃x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)≤0 B .∀x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)≤0 C .∃x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)<0 D .∀x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)<0(2)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题:p 1:|a +b |>1⇔θ∈⎣⎢⎡⎭⎪⎫0,2π3; p 2:|a +b |>1⇔θ∈⎝⎛⎦⎥⎤2π3,π;p 3:|a -b |>1⇔θ∈⎣⎢⎡⎭⎪⎫0,π3;p 4:|a -b |>1⇔θ∈⎝ ⎛⎦⎥⎤π3,π.其中的真命题是( ) A .p 1,p 4 B .p 1,p 3 C .p 2,p 3D .p 2,p 4[解析] (1)已知全称命题p :∀x 1,x 2∈R ,[f (x 2)-f (x 1)]·(x 2-x 1)≥0,则綈p :∃x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)<0,故选C.(2)由|a +b |>1可得:a 2+2a ·b +b 2>1,∵|a |=1,|b |=1,∴a ·b >-12.故θ∈⎣⎢⎡⎭⎪⎫0,2π3.当θ∈⎣⎢⎡⎭⎪⎫0,2π3时,a ·b >-12,|a +b |2=a 2+2a ·b +b 2>1,即|a +b |>1;由|a -b |>1可得:a 2-2a ·b +b 2>1,∵|a |=1,|b |=1,∴a ·b <12.故θ∈⎝ ⎛⎦⎥⎤π3,π,反之也成立.[答案] (1)C (2)A [类题通法]1.判断含有逻辑联结词的命题真假的方法 (1)先确定简单命题p ,q .(2)分别确定简单命题p ,q 的真假. (3)利用真值表判断所给命题的真假. 2.判断含有量词的命题真假的方法(1)全称命题的真假判定:要判定一个全称命题为真,必须对限定集合M 中每一个x 验证 p (x )成立,一般用代数推理的方法加以证明;要判定一个全称命题为假,只需举出一个反例即可.(2)特称命题的真假判定:要判定一个特称命题为真,只要在限定集合M 中,能找到一个x =x 0,使p (x 0)成立即可;否则,这一特称命题为假.(3)全称命题的否定一定是特称命题,特称命题的否定一定是全称命题.首先改变量词,把全称量词改为存在量词,把存在量词改为全称量词,然后把判断词加以否定.[题组训练]1.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称,则下列判断正确的是( )A .p 为真B .綈q 为假C .p ∧q 为假D .p ∨q 为真解析:选C 由题意p 与q 均为假命题,故p ∧q 为假.2.命题“存在x ∈R ,使得x 2+2x +5=0”的否定是________________.解析:这里给出的是一个特称命题,其否定是一个全称命题.等于的否定是不等于. 答案:对任意的x ∈R ,都有x 2+2x +5≠03.已知p :点M (2,3)在直线ax -y +1=0上,q :方程x 2+y 2+x +y +a =0表示圆,p ∨q 是假命题,某某数a 的取值X 围.解:当p 是真命题时,2a -3+1=0,即a =1, 所以当p 是假命题时,a ≠1;当q 是真命题时,1+1-4a >0,即a <12,所以当q 是假命题时,a ≥12.又p ∨q 是假命题,所以p ,q 均为假命题, 所以a ≥12且a ≠1,所以实数a 的取值X 围是⎣⎢⎡⎭⎪⎫12,1∪(1,+∞).1.设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( ) A .綈p :∃x ∈A,2x ∈B B .綈p :∃x ∉A,2x ∈B C .綈p :∃x ∈A,2x ∉BD .綈p :∀x ∉A,2x ∉B解析:选C 命题p 是全称命题:∀x ∈M ,p (x ),则綈p 是特称命题:∃x ∈M ,綈p (x ).故选C.2.命题p :若ab =0,则a =0;命题q :若a =0,则ab =0,则( ) A .“p 或q ”为假 B .“p 且q ”为真 C .p 真q 假D .p 假q 真解析:选D 由条件易知:命题p 为假命题,命题q 为真命题,故p 假q 真.从而“p 或q ”为真,“p 且q ”为假.3.下列命题中,真命题是( ) A .∃x 0∈R ,e x 0≤0 B .∀x ∈R,2x >x 2C .a +b =0的充要条件是ab=-1 D .a >1,b >1是ab >1的充分条件解析:选D ∵∀x ∈R ,e x >0,∴A 错;∵函数y =2x 与y =x 2的图象有交点,如点(2,2),此时2x=x 2,∴B 错;∵当a =b =0时,a +b =0,而0作分母无意义,∴C 错;a >1,b >1,由不等式可乘性知ab >1,∴D 正确.4.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A 先证“α⊥β⇒a ⊥b ”.∵α⊥β,α∩β=m ,b ⊂β,b ⊥m ,∴b ⊥α.又∵a ⊂α,∴b ⊥a ;再证“a ⊥b ⇒/ α⊥β”.举反例,当a ∥m 时,由b ⊥m 知a ⊥b ,此时二面角αm β可以为(0,π]上的任意角,即α不一定垂直于β.故选A.5.下列有关命题的说法错误的是( )A .命题“若x 2-1=0,则x =1”的逆否命题为“若x ≠1,则x 2-1≠0” B .“x =1”是“x 2-3x +2=0”的充分不必要条件 C .若集合A ={x |kx 2+4x +4=0}中只有一个元素,则k =1D .对于命题p :∃x 0∈R ,使得x 20+x 0+1<0,则綈p :∀x ∈R ,均有x 2+x +1≥0 解析:选C A 显然正确;当x =1时,x 2-3x +2=0成立,但x 2-3x +2=0时,x =1或x =2,故“x =1”是“x 2-3x +2=0”的充分不必要条件,B 正确;若集合A ={x |kx 2+4x +4=0}中只有一个元素,则k =0或k =1,故C 错误;D 显然正确.6.已知p :m -1<x <m +1,q :(x -2)(x -6)<0,且q 是p 的必要不充分条件,则m 的取值X 围是( )A .(3,5)B .[3,5]C .(-∞,3)∪(5,+∞)D .(-∞,3]∪[5,+∞)解析:选B p :m -1<x <m +1,q :2<x <6.因为q 是p 的必要不充分条件,所以由p 能得到q ,而由q 得不到p ,所以可得⎩⎪⎨⎪⎧m -1>2,m +1≤6或⎩⎪⎨⎪⎧m -1≥2,m +1<6.解得3≤m ≤5.7.命题“在△ABC 中,如果∠C =90°,那么c 2=a 2+b 2”的逆否命题是__________________________________.答案:在△ABC 中,若c 2≠a 2+b 2,则∠C ≠90°8.设p :x >2或x <23;q :x >2或x <-1,则綈p 是綈q 的________条件.解析:綈p :23≤x ≤2.綈q :-1≤x ≤2.因为綈p ⇒綈q ,但綈q ⇒/ 綈p . 所以綈p 是綈q 的充分不必要条件. 答案:充分不必要9.已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”,若命题“p 且q ”是真命题,则实数a 的取值X 围是________.解析:命题p :“∀x ∈[1,2],x 2-a ≥0”为真,则a ≤x 2,x ∈[1,2]恒成立,所以a ≤1. 命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”为真, 则“4a 2-4(2-a )≥0,即a 2+a -2≥0”,解得a ≤-2或a ≥1. 若命题“p 且q ”是真命题,则实数a 的取值X 围是(-∞,-2]∪{1}. 答案:(-∞,-2]∪{1}10.已知p :x 2-8x -20>0,q :x 2-2x +1-a 2>0,若p 是q 的充分不必要条件,求正实数a 的取值X 围.解:p :x 2-8x -20>0⇔x <-2或x >10, 令A ={x |x <-2或x >10},∵a >0,∴q :x <1-a 或x >1+a , 令B ={x |x <1-a 或x >1+a }, 由题意p ⇒q 且q ⇒/ p ,知A B ,应有⎩⎪⎨⎪⎧a >0,1+a <10,1-a ≥-2或⎩⎪⎨⎪⎧a >0,1+a ≤10,1-a >-2⇒0<a ≤3,∴a 的取值X 围为(0,3].11.已知函数f (x )=⎩⎪⎨⎪⎧-x -1,x <-2,x +3-2≤x ≤12.(1)求函数f (x )的最小值;(2)已知m ∈R ,命题p :关于x 的不等式f (x )≥m 2+2m -2对任意m ∈R 恒成立;q :函数y =(m 2-1)x是增函数.若“p 或q ”为真,“p 且q ”为假,某某数m 的取值X 围.解:(1)作出函数f (x )的图象,可知函数f (x )在(-∞,-2)上单调递减,在⎝ ⎛⎭⎪⎫-2,12上单调递增,故f (x )min =f (-2)=1.(2)对于命题p ,m 2+2m -2≤1, 故-3≤m ≤1; 对于命题q ,m 2-1>1,故m >2或m <- 2.由于“p 或q ”为真,“p 且q ”为假,则p 与q 一真一假.①若p 真q 假,则⎩⎨⎧-3≤m ≤1,-2≤m ≤2,解得-2≤m ≤1.②若p 假q 真,则⎩⎨⎧m >1或m <-3,m <-2或m >2,解得m <-3或m > 2. 故实数m 的取值X 围是(-∞,-3)∪[-2,1]∪(2,+∞).。
最新-高中数学 简单的逻辑联结词课件一 新人教A版选修1-1 精品

况是 ( B )
A.没有使用逻辑联结词 B.使用了逻辑联结词“或” C.使用了逻辑联结词“且” D.使用了逻辑联结词“非”
2.已知p:2+2=5,q:3>2,则下列判断中,错误的是 ( C )
A.p或q为真,非q为假 B.p且q为假,非p为真 C.p且q为假,非p为假 D.p且q为假,p或q为真 3.如果命题“p或q”与命题“非p”都是真命题,那么() A.命题p不一定是假命题 B.命题q一定是真命题 C.命题q不一定是真命题 D.p与q的真值相同
q: △=16(m-2)2-16=16(m2-4m+3)<0 解得1<m<3
∵p或q真,p且q假 ∴p为真,q为假;或p为假,q为真
{即
m>2, m≤1,或m≥3
{m≤2,
或 1<m<3
解得 m≥3,或1<m≤2
小结归纳
✓含逻辑联结词“且”“或”的命
题真假的判断:确定形式→判断真
假 ✓判断p∧q的真假:一假必假 ✓判断p∨q的真假:一真必真 ✓p与﹁q的真假相反
命题(2)是命题(1)的否定.
归纳新知
一般地,对一个命题p全盘否定, 就得到一个新命题,记作:﹁p 读作“非p”或“p的否定”
归纳p与非p真假的规律
(1)如果p表示“2是10的约数”,试判断 非p的真假 (2)p表示“1>2”,那么非p表示什么? 判断其真假
思考:p与﹁p的关系?
若p是真命题,则﹁p必是 假命题; 若p是假命题,则﹁p必是 真命题.
如果 p表示“5是10的约数” q表示“5是15的约数” r表示“5是8的约数” s表示“5是16的约数”
§1.3_简单的逻辑联结词、全称量词与存在量词(人教A版选修2-1)
p
6
或
)
q
为真命题,p
若当若 当 若 当若 当若 当 若当pppppppppppp或真或 真或 真或 真或真或 真qqqqqqqqqqqq为假为 假为 假为 假为假为 假真时真 时真 时真 时真时真 时命,命 ,命 ,命 ,命,命 ,题c题c题c题c题c题c的的的,的的的,,,p,,取pp取取ppp取取取且且且值且且且值值值值值q范qq范范qqq范范范为为为围为为为围围围围围假假假是假假假是是是是是命命命命命命000题0<00题题<<题题题<<<c,cc≤,,ccc≤≤,,,≤≤≤则则则12则则则121212;1212;;p;;;ppp,pp,,q,,,qqqqq中中中中中中必必必必必必有有有有有有一一一一一一真真真真真真一一一一一一假假假假假假......
第三讲 简单的逻辑联结词、
全称量词与存在量词
临沂一中高三数学组
知识网络
命题及 其关系
常 充分条件
用
必要条件
逻
充要条件
辑
用
简单的逻
语
辑联结词
量词
命题
四种命题
四种命 题的相 互关系
原命题:若p则q
互否
否命题:若p则q
互逆
互为逆否 等价关系
互逆
逆命题:若q则p
互否
逆命题:若q则p
充分条件
p ⇒q
必要条件
③③∵∴∵∴ppaa和aa和>≤>≤11q12q12或中或中a有a有≥≥且且88仅仅或有或有一一12a12a<≤个<≤个aa1正<1是<88确真,,命,题∴∴,a≥a≤812或或12a<≥a≤8 1.或12<a<8
2014年人教A版选修2-1课件 1.3 简单的逻辑联结词
例3. 判断下列命题的真假: (1) 2≤2; (2) 集合A是A∩B的子集或是A∪B的子集; (3) 周长相等的两个三角形全等或面积相等的两 个三角形全等.
解: (3) 题设中的命题是 p∨q 的形式, p: 周长相等的两个三角形全等, 这是假命题;
q: 面积相等的两个三角形全等, 这也是假命题. ∴ 题设中的命题是假命题.
∴ p∨q 是真命题.
练习: (补充) 将下列命题写成 p∨q 的形式, 并判断其真假: (1) 若直线 l 不在平面 a 内, 则 l 就在平面 a 外; (2) a{a, b, c}∪{c, d, e}. 解: (2) p: a{a, b, c}. q: a{c, d, e}. p∨q: a{a, b, c} 或 a{c, d, e}. ∵ 命题 p 是真命题,
2. 用逻辑联结词联结命题后得到的新命题与 原命题的真假性有什么关系? 怎样判断新命题的 真假?
1.3.1 且 (and)
问题1. “12 能被 3 整除且能被 4 整除” 是命题吗? 它是由哪两个命题联结起来的? 是用什么词联结成的? 如果是命题, 它的真假性如何? (1) 12 能被 3 整除. (2) 12 能被 4 整除. 将上面两命题用逻辑联结词 “且” 联结起来即得 12 能被 3 整除且能被 4 整除. 这也是命题.
本章内容
1.1 命题及其关系 1.2 充分条件与必要条件
1.3 简单的逻辑联结词 1.4 全称量词与存在量词 第一章 小结
1.3 简单的逻辑联结词
1.3.t)
1. 本节教材中有哪几个简单的逻辑联结词? 它们用在命题中各自的含义是什么?
例1. 将下列命题用 “且” 联结成新命题, 并判 断它们的真假: (1) p: 平行四边形的对角线互相平分, q: 平行四 边形的对角线相等; (2) p: 菱形的对角线互相垂直, q: 菱形的对角线 互相平分; (3) p: 35 是 15 的倍数, q: 35 是 7 的倍数. 解: (1) p˄ q: 平行四边形的对角线相等且互相平分. 因为命题 q 是假命题, 所以 p˄ q 是假命题. (2) p˄ q: 菱形的对角线互相垂直且平分. 因为 p, q 都是真命题, 所以 p˄ q 是真命题. (3) p˄ q: 35 是 15 的倍数且是 7 的倍数. 因为命题 p 是假命题, 所以 p˄ q 是假命题.
人教A版高中数学选修2-1课件【6】简单的逻辑联结词
) B.(綈 p)∨q
C . p∧ q
D.p∨q
1 解析: 因为 f(x)=sinxcosx=2sin2x, 所以命题 p 为真命题. 又 因为
π g(x)=sinx+2=cosx,所以 π g(x)=sinx+2的图象关于
y轴
对称,所以命题 q 为假命题,所以命题 p∨q 为真命题.
3 5 a≤ 或a≥ , 5 2 2 若 p 假,q 真,则 得2≤a≤4; 2≤a≤4, 3 5 综上,实数 a 的取值范围为 <a<2 或 ≤a≤4. 2 2
12.已知命题 A:函数 f(x)=x2-4mx+4m2+2 在区间[-1,3] 上的最小值为 2; 命题 成立; 命题 C:{x|m≤x≤2m+1}⊆{x|x2-4≥0}.
解析:由于将点(-1,1)代入 y=loga(ax+2a)成立,故 p 真; 由 y=f(x)的图象关于(3,0)对称,知 y=f(x-3)的图象关于(6,0)对 称,故 q 假.
答案:C
二、填空题:每小题 5 分,共 15 分. 7.已知 p(x):x2+2x-m>0,若 p(1)是假命题且 p(2)是真命 题,则实数 m 的取值范围是________.
解析:由已知,p 和 q 都是真命题,
m<0, ∴ 2 Δ=m -4<0,
∴-2<m<0.
答案:D
5.已知命题 p:函数 f(x)=sinxcosx 的最小正周期为 π;命 题 q:函数
π g(x)=sinx+2的图象关于原点对称,则下列命题中
为真命题的是( A.綈 p
答案:[1,2)
1 9.已知命题 p:x +2x-3>0,命题 q: >1,若綈 q 3-x
2
且 p 为真,则 x 的取值范围是__________.
2012新课标人教A版数学同步导学课件:1.3《简单的逻辑联结词》(选修2-1)
(2)用联结词“或”把命题p和命题q联结起来,就得到一个 新命题,记作 p∨q ,读作“ p或q ”.
(3)对一个命题p全盘否定,就得到一个新命题,记作 綈p 非p p的否定 读作“ ”或“ ”.
,
第一章 常用逻辑用语
2.含有逻辑联结词“且”与“或”的命题的真假规律(真值 表): p q p∧q 真 假 假 假 p∨q
第一章 常用逻辑用语
[题后感悟]
(1)利用命题的真假求参数,实际就是已知命题
p∧q真,p∨q真,¬p真等不同的条件,求命题中涉及的参数的 范围.
(2)分清p∧q,p∨q、¬p为真的不同情况,p∧q为真,则p真, q也真;若p∨q为真,则p、q中至少有一个为真.若p∧q为假, 则p、q中至少有一个为假;¬p为真,则p为假.
(1)5≥4;
(2)24既是8的倍数,也是6的倍数;
(3)正方形不是矩形;
(4)5是合数或是素数.
第一章 常用逻辑用语
第一章 常用逻辑用语
[解题过程] (1)p∨q的形式,其中p:5>4,q:5=4.
∵p真q假,∴p∨q为真.
(2)p∧q的形式,其中p:24是8的倍数,q:24是6的倍数.
∵p真q真,∴p∧q为真. (3)¬p的形式,其中p:正方形是矩形. ∵p真,∴¬p为假. (4)p∨q的形式,其中p:5是合数,q:5是素数. ∵p假q真,∴p∨q为真.
真
真 假 假
真
假 真 假
真
真 真
假
第一章 常用逻辑用语
1.已知 p:∅⊆{0},q:{1}∈{1,2}.由它们构成的新 命题“p∧q”,“p∨q”,“綈 p”中,真命题有( )
A.1 个 C.3 个
B.2 个 D.4 个