七年级整式的乘除培优讲义

合集下载

七年级数学培优资料下册

七年级数学培优资料下册

第一章 整式的乘除知识要点 一、概念1、代数式:由数和表示数的字母经过加、减、乘、除、乘方和开方等运算所得的式子称为代数式。

2、单项式:由数字与字母的乘积的代数式叫做单项式。

单项式不含加减运算,分母中不含字母。

3、多项式:几个单项式的和叫做多项式。

多项式含加减运算。

4、整式:单项式和多项式统称为整式。

(与整式相对应的是分式,分母中含有字母的代数式) 二、公式、法则:(1)同底数幂的乘法:a m ﹒a n =a m+n (同底幂数相乘,底数不变,指数相加。

) 逆用: a m+n =a m ﹒a n (指加,幂乘,同底)(2)同底数幂的除法:a m ÷a n =a m-n (a ≠0)。

(同底数幂相除,底数不变,指数相减)逆用:a m-n = a m ÷a n (a ≠0)(指减,幂除,同底) (3)幂的乘方:(a m )n =a mn (幂的乘方,底数不变,指数相乘)逆用:a mn =(a m )n(4)积的乘方:(ab )n =a n b n (积的乘方等于积中各因式乘方的积)逆用: a n b n =(ab )n (当ab=1或-1时常逆用)(5)零指数幂:a 0=1(注意考底数范围a ≠0)。

(6)负指数幂:11()(0)pppa aa a-==≠(底倒,指反)(7)单项式与多项式相乘:m(a+b+c)=ma+mb+mc 。

(8)多项式与多项式相乘:(m+n)(a+b)=ma+mb+na+nb 。

(9)平方差公式:(a+b )(a-b)=a 2-b 2公式特点:(有一项完全相同,另一项只有符号不同,结果=22()-相同)(不同 推广(项数变化),连用变化。

(10)完全平方公式:222222()2,()2,a b a ab b a b a ab b +=++-=-+ 逆用:2222222(),2().a ab b a b a ab b a b ++=+-+=-完全平方公式变形(知二求一):222()2a b a b ab +=-+ 222()2a b a b ab+=+-222212[()()]a b a b a b +=++-22222212()2()2[()()]a b a b ab a b ab a b a b +=+-=-+=++-22()()4a b a b ab +=-+2214[()()]ab a b a b =+-- 例如:229x +mxy+4y 是一个完全平方和公式,则m = ;是一个完全平方差公式,则m = ;(11)多项式除以单项式的法则:().a b c m a m b m c m ++÷=÷+÷+÷(12)常用变形:221((n n x y x y +--2n 2n+1)=(y-x), )=-(y-x)巩固提高练习2229.4,10x y x y xy +=+=已求①知:的值222222x x y xy y --+②的值第二章《平行线与相交线》一、知识结构图余角余角补角补角角两线相交对顶角同位角三线八角内错角同旁内角平行线的判定平行线平行线的性质尺规作图二、基本知识提炼整理(一)余角与补角1、如果两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。

第2讲(学生)第1章 整式的乘除 幂的乘方

第2讲(学生)第1章 整式的乘除   幂的乘方

第2讲 幂的乘方学习目标:1、经历探索幂的乘方与积的乘方的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。

2、了解幂的乘方与积的乘方的运算性质,并能解决一些实际问题。

学习重点:会进行幂的乘方的运算。

学习难点:幂的乘方法则的总结及运用。

学习过程:计算(1)23()()x y x y +⋅+ (2)224x x x x x ⋅⋅+⋅(3) 341(0.75)()4a a ⋅ (4)3124n n x x x x --⋅-⋅探索练习:1、(23)2表示_________个___________相乘=__________(22)3表示_________个___________相乘 =__________所以(23)2 (22)3(3a )2表示_________个___________相乘 =__________ 23()a 表示_________个___________相乘=__________所以(3a )2 23()a2、(35)2=________×_________=__________(根据n m n m a a a +⋅=)=__________(32)5=_____×_______×_______×________×_______=__________(根据n m n m a a a +⋅=)=__________所以(35)2 (32)5即()m n a = ______________(其中m 、n 都是正整数)归纳 :幂的乘方,底数__________,指数__________.幂的乘方的拓展应用:(1)幂的乘方的运算性质的逆用()mn m n a a =或()mn n m a a =是否成立?探究题:已知:a m=2,求a m 2的值。

(2)“不同指数的幂”化为“同指数的幂”这个过程为“同指化”,以方便比较大小。

初一整式的乘法与平方差公式培优同步讲义

初一整式的乘法与平方差公式培优同步讲义

学科教师辅导讲义学员编号:年 级:七年级 课 时 数:3 学员姓名:辅导科目:数学 学科教师: 授课主题第03讲---整式的乘法与平方差公式 授课类型T 同步课堂 P 实战演练 S 归纳总结 教学目标① 掌握整式的乘法法则,能够准确计算整式乘法的计算题; ② 理解平方差公式,了解平方差公式的几何背景,会灵活运用平方差公式进行计算。

授课日期及时段T (Textbook-Based )——同步课堂一、知识框架二、知识概念(一)整式的乘法1、单项式与单项式相乘法则:把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数保持不变,作为积的因式。

2、单项式与多项式相乘法则:根据分配律用单项式乘以多项式的每一项,再把所得的积相加。

公式如下: ()(,,,m a b c ma mb mc m a b c ++=++都是单项式)3、多项式与多项式相乘法则:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。

公式如下:()()(,,,m n a b ma mb na nb m n a b ++=+++都是单项式)(二)平方差公式体系搭建1、平方差公式:22()()a b a b a b-+=-,即两个数的和与这两个数的差的积,等于这两个数的平方差。

公式的推导:2222()()a b a b a ab ab b a b+-=-+-=-。

平方差公式的逆用即22()()a b a b a b-=-+平方差公式的特点:(1)左边是两个二项式的积,,在这两个二项式中,有一项(a)完全相同,另一项(b和-b)互为相反数。

(2)右边是乘式中两项的平方差(相同项的平方减去符号相反项的平方)(3)公式中的a和b可以是具体数,也可以是单项式和多项式。

2、平方差公式的几何意义如图两幅图中,阴影部分的面积相等,第一个图的阴影部分的面积是:a2﹣b2,第二个图形阴影部分的面积是:(a+b)(a﹣b),则a2﹣b2=(a+b)(a﹣b)平方差公式的几何意义还有很多,有兴趣的同学可以钻研一下。

七年级上册数学培优讲义(整式加减)第四讲

七年级上册数学培优讲义(整式加减)第四讲

模块一 代数式的概念用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数的字母连接起来的式子叫做代数式.单独的一个数或一个字母也是代数式. 例如:5.a .()222,,23a b ab a ab b +-+.等等.【例1】 列代数式(1)若正方形的边长为a .则正方形的面积是 ;(2)若三角形一边长为a .并且这边上的高为h .则这个三角形的面积为 ; (3)若x 表示正方形棱长.则正方形的体积是 ; (4)若m 表示一个有理数.则它的相反数是 ;(5)小明从每月的零花钱中贮存x 元钱捐给希望工程.一年下来小明捐款 元.(数学教学要紧密联系学生的生活实际.这是新课程标准所赋予的任务.让学生列代数式不仅复习前面的知识.更是为下面给出单项式埋下伏笔.同时使学生受到较好的思想品德教育)【题目难度】★ 【解题思路】略【题目答案】(1)2a ;(2)12ah ;(3)3x ;(4)m -;(5)12x列代数式时应该注意的问题(1)数与字母、字母与字母相乘时常省略“⨯”号或用“”.整式的加减如:22 223322a a ab ab x x-⨯=-⨯⨯=⨯-⨯=-,,(2)数字通常写在字母前面.如:()()()5533mn mn a b a b⨯--⨯+=+,(3)带分数与字母相乘时要化成假分数.如:152,22ab ab⨯=切勿错误写成“122ab”.(4)除法常写成分数的形式.如:s s xx ÷=思想方法小结在代数式里渗透了转化思想和推理思想.(1)转化思想表现为把实际问题中的数量关系转化为代数式或者给出代数式实际背景. (2)推理思想表现为用所学的知识去推导未知量.求代数式的值等.模块二 单项式与多项式单项式:像234,,6,,,2x vt a a n r π-.它们都是数或字母的积.这样的代数式叫做单项式.单独的一个数或一个字母也是单项式.单项式中的数字因数叫做这个单项式的系数.一个单项式中.所有字母的指数的和叫做这个单项式的次数.知识规律小结:(1)圆周率π是常数.如2r π的系数是2π.次数是1;2r π的系数是π.次数是2.(2)当一个单项式的系数是1或1-时.通常省略不写系数.如2a bc .abc -等.(3)代数式的系数是带分数时.通常写成假分数.如2314xy 写成274xy【例2】 判断下列各代数式是否是单项式.如不是.请说明理由;如是.请指出它的系数和次数.(1)1x +; (2)1x ; (3)2r π; (4)232a b - 【题目难度】★ 【解题思路】略【题目答案】(1)不是;单项式没有符号(2)不是;根据定义(3)是;系数是π.次数是2(4)是;系数是32-.次数是3【例3】 下面各题的判断是否正确?①27xy -的系数是7; ②23x y -与3x 没有系数; ③32ab c -的次数是032++; ④3a -的系数是1-;⑤2233x y -的次数是7; ⑥213r h π的系数是13.【题目难度】★ 【解题思路】略【题目答案】①×;②×;③×;④√;⑤×;⑥√通过其中的反例练习及例题.强调应注意以下几点: ①圆周率π是常数;②当一个单项式的系数是1或1-时.“1”通常省略不写.如2x .2a b -等; ③单项式次数只与字母指数有关.1. 写出一个系数是2004.且只含,x y 两个字母的三次单项式是 ; 【题目难度】★ 【解题思路】略. 【题目答案】22004x y2. 指出下列单项式的系数和次数2322332,5,,,2,137a ab ab a bc x y π-- 【题目难度】★ 【解题思路】略. 【题目答案】3a-的系数是13-.次数是1;25ab 的系数是5.次数是3; 23a bc 的系数是1.次数是6237a b π的系数是7π.次数是5322x y 的系数是32.次数是31-的系数是-1.次数是0【巩固练习】填空:单项式8310t ⨯的系数是_________ 【题目难度】★ 【解题思路】略 【题目答案】8310⨯ 3. 若124m nm x y --是系数为-1的五次单项式.求m n ,的值 【题目难度】★★ 【解题思路】根据题意得14125mm n ⎧-=-⎪⎨⎪-+=⎩解得:41m n =⎧⎨=⎩【题目答案】45m n ==,模块三 多项式多项式及相关概念(1)几个单项式的和叫做多项式.例如:222,3a ab b mn -+-等.(2)在多项式中.每个单项式叫做多项式的项.其中.不含字母的项叫做常数项.如:多项式232x x -+.它的项分别是2,3,2x x -.常数项是2.(3)一般地.多项式里次数最高的项的次数.就是这个多项式的次数.如:22232434x y x y x y y -++是五次四项式.最高次项是324x y .【例4】 指出下列多项式的项和次数.并说明它是几次几项式.(1)3223a a b ab b -+-; (2)42321n n -+【题目难度】★ 【解题思路】略【题目答案】(1)多项式3223a a b ab b -+-的项有33a 、2a b -、2ab 、3b -.次数是3.它为三次四项式.(2)多项式4221n n -+的项有4n 、22n -、1.次数是4.它为四次三项式【例5】 (1)如果231(1)n m x y-+是关于,x y 的六次单项式.则,m n 应满足什么条件?(2)如果2(1)1nx m x +-+是关于x 的三次二项式.求22m n -的值.(3)若多项式222(1)x k xy y k +-+-不含xy 的项.求k 的值.【题目难度】★★【解题思路】(1)由2(1)0m +≠.且316n +-=.即1,4m n ≠-=(2) 由题意得知.3n =.且10m -=.所以 1.3m n ==所以当 1.3m n ==时.228m n -=-. (3)由题意得10k -=.得1k =【题目答案】(1)1,4m n ≠-=;(2)8-; (3)1k =【例6】 已知多项式2231113832m x y xy x -+-+是五次四项式.单项式260.2n m x y --的次数与这个多项式的次数相同.求22m n +的值.【题目难度】★★【解题思路】由已知多项式2231113832m x y xy x -+-+是五次四项式.得3m =.又因为单项式260.2n m x y --的次数与这个多项式的次数相同.则265n m +-=.所以22,1n n ==所以22223110m n +=+=【题目答案】10【总结】(1)在确定多项式的项的时候.要连同它前面的符号.(2)多项式的次数是多项式中次数最高项的次数☞巩固练习4. 下列说法中正确的是﹙ ﹚A .2523x y x y -+是二次三项式B .yxy 110-是二次三项式 C .276x --的常数项是6- D .两个多项式的和一定还是多项式 【题目难度】★ 【解题思路】略 【题目答案】C5. 已知多项式63512212--+-+x xy y x m 是六次四项式.单项式m n y x -526.2的次数与这个多项式的次数相同.求n 的值. 【题目难度】★★【解题思路】由题意得216256m n m ++=⎧⎨+-=⎩解得32m n =⎧⎨=⎩【题目答案】3,2m n ==模块四 整式整式:单项式与多项式都是整式整式⎧⎪⎪⎨⎪⎪⎩单项式的系数、次数多项式的项、次数整式的概念同类项的概念【例7】 判断下列各式是否是整式①1;②r ;③343r π;④11x +;⑤213x +;⑥22x π【题目难度】★ 【解题思路】略【题目答案】①②③⑤⑥是整式☞巩固练习6. 某地区的手机收费有两种方式.用户可任选其一:A 、月租费 20元.0.25元/分;B 、月租费 25元.0.20元/分.某用户某月打手机x 分钟.两种方式的费用分别为1y 元和2y 元.试用含x 的代数式分别表示1y 和2y . 【题目难度】★★【解题思路】根据题意得10.2520y x =+ ; 20.225y x =+ 【题目答案】10.2520y x =+ . 20.225y x =+模块四 同类项同类项:所含字母相同.并且相同的字母的指数也相同的项【例8】 指出下列多项式的同类项(1)321523x y y x -++-- (2)2222123223x y xy xy yx -+- 【题目难度】★ 【解题思路】略【题目答案】(1)同类项:3x 和2x ;2y 和5y ;1和3-(2)同类项:23x y 和223yx -;22xy -和212xy 注:所含字母相同.并且相同的字母的指数也相同的项为同类项.【例9】 (1)若2122m ab +与2334m n a b +-是同类项.求,m n 的值.(2)若47a x y 与579bx y -是同类项.,a b 的值 【题目难度】★★【解题思路】(1)依题意得:212,32;1,5m m n m n +=+-=∴==所以1,5m n ==(2)依题意得:5,4a b ==【题目答案】(1)1,5m n ==.(2) 5,4a b ==【巩固练习】若25xa b 与30.9ya b 同类项.求,x y 的值. 【题目难度】★★【解题思路】因为3,2x y ==.所以3,2x y =±=± 【题目答案】3,2x y =±=±【例10】 单项式113a b a x y +--与23x y 是同类项.求a b -的值. 【题目难度】★★【解题思路】由题意得2,11,2,0a b a a b +=-=∴== 【题目答案】2,0a b ==☞巩固练习 7. 若3m mma b-与nnab 是同类项.求()2003n m -的值.【题目难度】★★【解题思路】由题意得1,3m m n =-=得m=1,n=2()20031n m -=【题目答案】18. 若12223559m m n ab+--与2a b 是同类项.求,m n 的值【题目难度】★★【解题思路】由题意得12222;1355m m n +=-=解得52,m=0,n=-【题目答案】52m=0,n=-9. 若25xa b 与30.9ya b 是同类项.求,x y 的值. 【题目难度】★★【解题思路】由题意得3,2,3,2x y x y ===±=±解得 【题目答案】3,2x y =±=±模块五 合并同类项合并同类项:把多项式中的同类项合并成一项. 类比数的运算.探究得出合并同类项的法则.法则:所得项的系数是合并前各同类项系数的和.字母部分不变.【例11】 合并下列各式中的同类项(1)226mn mn -;(2)22222332a b a b ab ab -++-; (3)()()()22232a b a b b a -----;【题目难度】★【解题思路】(1)22265mn mn mn -=-(2) 2222222332a b a b ab ab a b ab -++-=+ (3)()()()()2222324a b a b b a a b -----=--【题目答案】(1)25mn - ; (2)22a b ab +; (3)()24a b --.合并同类项法则:把同类项的系数相加.字母和字母的指数保持不变. 特别提醒:(1) 合并的前提是同类项.(3) 合并同类项的根据是加法交换律、结合律以及分配律.☞巩固练习10. 计算()()22321235x x x x -+-+-的结果是( )A .256x x -+B . 254x x --C . 24x x +-D . 26x x ++【题目难度】★★【解题思路】略【题目答案】A11. 在2xy 与215xy -.23ab 与24a b .4abc cab 与.334b 与.263-与.23235a b c a b 与中能合并的又( ) A.5组 B .4组 C .3组 D .2组【题目难度】★★【解题思路】略【题目答案】C12. 合并下列同类项(1)2222x x x x ----【题目难度】★【解题思路】略【题目答案】24x -(2)3223225115225363363a b a b ab a b ab ba --+-+++ 【题目难度】★★【解题思路】略 【题目答案】323511632a b a b ab +++(3)1110.50.20.3n n n n n x xx x x +++--+-【题目难度】★★【解题思路】略【题目答案】10.80.2n n x x ++(4)()()()()()223523x y y x y x x y x y +---+++-+【题目难度】★★【解题思路】略【题目答案】()()()()2333x y y x x y x y +--++-+13. 某市出租车收费标准为:起步价为5元.超过3千米后每1千米收费1.2元.某人乘坐出租车行了x 千米(x>3且为整数).则他应付费多少元?【题目难度】★★★【解题思路】根据题意列式()1.233x -+【题目答案】()1.233x -+元模块六 去括号括号前是“+”号.把括号和它前面的“+”号去掉.原括号里各项的符号都不改变;括号前是“-”号.把括号和它前面的“-”号去掉.原括号里各项的符号都要改变.【例12】 先去括号.在合并同类项(1)5(24);a a b -- 22(2)23(2)x x x +-【题目难度】★【解题思路】略【题目答案】(1)5(24)52434a a b a a b a b --=-+=+22222(2)23(2)2636x x x x x x x x +-=+-=-模块七 整式加减几个整式相加减.通常用括号把每一个整式括起来.再用加减号连接.然后去括号.合并同类项.【例13】 计算:(1)(237)(652);x y x y -++--22(2)(67)(34)a a a a ----+【题目难度】★【解题思路】略【题目答案】(1)(237)(652)x y x y -++--237652(26)(35)5(26)(35)5885x y x y x x y y x y x y =-++--=++--+=++--+=-+2222222(2)(67)(34)6734()(36)(74)(11)(36)11311a a a a a a a a a a a a a a a ----+=---+-=-+-+--=-+--=--【例14】 化简求值2323(1)381231x x x x x -+--+.其中2x =2222(2)42923x xy y x xy y ++--+.其中2,5x y ==【题目难度】★【解题思路】略【题目答案】(1)原式=322981x x x ---+当2x =时原式=32229282167-⨯-⨯-⨯+=- (2)原式=22210x xy y -+当2,5x y ==时原式=222225105248⨯-⨯+⨯=【例15】 有这样一道题:计算222221382(33)(3)3535x x xy y x xy y -+-+++的值.其中1,22x y =-=.甲同学把“12x =-”错抄成“12x =”.但他的计算结果也是正确的.你说这是怎么回事? 【题目难度】★★【解题思路】根据题意 22222222222221382(33)(3)3535138********1832(3)(33)()3355x x xy y x xy y x x xy y x xy y x xy y y -+-+++=--++++=-++-+++= 【题目答案】化简结果不含有字母x.故原多项式的值与x 无关.因此.无论甲同学把“12x =-”错抄成“12x =”还是错抄成别的什么.只要y 没抄错.结果都是正确的. 【例16】 已知多项式21(2)0a a b +++=.求多项式222231556152ab b a ab a b -+-+-的值 【题目难度】★ 【解题思路】由已知得1a +≥0.2(2)a b +≥0.21(2)0a a b +++= 所以10,20a a b +=+=所以1,2a b =-=【题目答案】222231556152ab b a ab a b -+-+- 22222031720(1)3(1)21722066842a ab b =--=---⨯-⨯=+-=-☞巩固练习14. 当211-=a 时.求代数式}3]9)2(85[4{1522222a a a a a a a a -+---+--的值.【题目难度】★★【解题思路】略【题目答案】2222215{4[58(2)9]3}a a a a a a a a --+---+-22222215{4[104]3}15{14}29a a a a a a a a a a =--+-+-=--+=- 当211-=a . 原式=255415. 先化简.再求值(1)233(4333)(4)a a a a a +-+--+.其中2a =-;【题目难度】★【解题思路】233(4333)(4)a a a a a +-+--+23533a a a =+-- 【题目答案】原式=7(2)22222222(22)(33)(33)x y xy x y x y x y xy ⎡⎤---++-⎣⎦.其中1,2x y =-=.【题目难度】★【解题思路】22222222(22)(33)(33)x y xy x y x y x y xy ⎡⎤---++-⎣⎦2222x y xy =- 【题目答案】原式=1216. 已知0a b -=.求()3432233422a a b a b ab b a b ----+的值【题目难度】★★★【解题思路】0,,a b a b -=∴=则()()34322334373337322222a a b a b ab b a b b b b b b b b ----+=----+=-【题目答案】32b -17. 已知:2733=+b a .622-=-ab b a .求代数式)(2)3()(232233ab b ab b a a b ---+-的值. 【题目难度】★★★【解题思路】332232()(3)2()b a a b ab b ab -+---()()()3322332227633b a a b ab a b a b ab =--+-=-++-=-+-=-【题目答案】33-18. 某公交车上原有()4a b -人.中途有半数人下车.同时又有若干人上车.这时车上共有乘客()6a b +人.你知道中途上车的人数吗?【题目难度】★★★【解题思路】把()4a b -与()6a b +看成两个整体.可列示()()1642a b a b +-- 化简后得342a b +. 【题目答案】342a b +【练习1】若当1x =时.多项式31ax bx ++的值为5.则当1x =-时.多项式311122ax bx ++的值为__________.【题目难度】★【解题思路】当1x =时.311ax bx a b ++=++.当1x =-时. 31111111()122222ax bx a b a b ++=--+=-++ 课堂检测由条件可知.15;4a b a b ++=+=.11()1()41122a b -++=-⨯+=- 【题目答案】1-【练习2】已知多项式21(2)0a a b +++=.求多项式222231556152ab b a ab a b -+-+-的值 【题目难度】★★【解题思路】由已知得1a +≥0.2(2)a b +≥0.21(2)0a a b +++= 所以10,20a a b +=+=所以1,2a b =-=原式22222031720(1)3(1)21722066842a ab b =--=---⨯-⨯=+-=- 【题目答案】42-【练习3】若1-a +()22b -0=.22236,5A a ab b B a =-+=--.求A B -的值【题目难度】★★【解题思路】∵22236,5A a ab b B a =-+=--A B ∴-=()22222365465a ab b a a ab b -+---=-++又∵1-a +()22b -0=.即1,2a b ==∴2462251A B -=-⨯++= 【题目答案】11.写出下列单项式的系数.(1)218a b -; (2)xy ; (3)322yz x -; (4)x -; (5)32x 4. 【题目难度】★【解题思路】略课后练习【题目答案】(1) 218a b -的系数是18-;(2) xy 的系数是1; (3)322yz x -的系数是-31;(4)x -的系数是1-; (5) 32x 的系数是23.即8.2.下列多项式分别是哪几项的和?分别是几次几项式?(1)2225356x y xy x -+-;(2)222226s s t t --+;(3)323x by -. 【题目难度】★【解题思路】略【题目答案】(1) 2225356x y xy x -+-是223x y .25xy -.5x .-6四项的和.是五次四项式.(2)222226s s t t --+是2222,2,6s s t t --三项的和.是四次三项式.(3) 323x by -是32,3x by -两项的和.是四次二项式. 3.将下列各式合并同类项.(1)22111445x x x x -+--+;(2)32322321122322ab a b a b ab a b a b -+----. 【题目难度】★【解题思路】略【题目答案】(1)22111445x x x x -+--+ 2104x =+(2)32322321122322ab a b a b ab a b a b -+---- 32322332322ab a b a b ab =-+-- 4.如图所示.请说出第n 个图形中笑脸的个数.【题目难度】★★【解题思路】略【题目答案】:第n 个图形中笑脸的个数可以表示为2n .5.(1)若2310x x +-=.则32558x x x +++= ;(2)若代数式2234a a -+的值为6.则代数式2213a a --的值为 . 【题目难度】★★★【解题思路】(1)无法求出x 的具体值.由2310x x +-=可变形为231x x +=.只需把所求32558x x x +++变形即可逐步求出.具体过程如下:∵2310x x +-=.∴231x x +=.∴()322225583258268x x x x x x x x x x +++=++++=++()223821810x x =++=⨯+=(2)此题不能直接求出a 的值.需对所求式子变形.∵22346a a -+=.∴2232a a -= ∴()2221111231213333a a a a --=--=⨯-=- 【题目答案】1103-,。

(完整版)整式的乘除法专题讲义

(完整版)整式的乘除法专题讲义

李甲数学让高分成为习惯第151讲整式的乘除法专题乘法运嘗•込够垃三方if 血.二 -(方伽:■、本节重点 1. 幕的乘法运算: (1) 同底数幕的乘法:同底数幕相乘底数不变指数相加 •(注意当底数互为相反数时要化成同底数幕,再运用同底数幕 乘法法则进行运算).表示:a m a n a m n ( m, n 都是整数)(2) 幕的乘方:幕的乘方,底数不变指数相乘 ^a ma mn ( m,n 都是整数);逆运算:a mn(3)积的乘方:积的乘方,等于把积的每一个因式分别乘方,再把所得的幕相乘 nn nn nn表示: ab a b ( n 是整数);逆运用:a b ab2. 同底数幕的除法:同底数幕相除,底数不变,指数相减.表示:a m a n a mn ( a 0,m,n 都是整数)3. 整式的乘法运算:(1) 单项式乘法法则:单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含 有字母,连同它的指数作为积的一个因式 .(2) 单项式与多项式相乘:单项式乘以多项式,是通过乘法的分配律,把它转化为单项式乘以单项 式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加(3) 多项式与多项式相乘:多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的 每一项,再把所得的积相加. 4. 整式的除法运算:(1) 单项式除以单项式:单项式相除,把系数、同底数幕分别相除,作为商的因式,对于只在被除 式里含有的字母,则连同它的指数作为商的一个因式;(2) 多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商 相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数、知识框架表示: 反丸1袖魅三、学生笔记四、经典题型题型一:幕的乘法运算 1.计算(1) a 3 a 22. (1) 如果 n 2 8 n16411 ,则 n(2)已知x 5y 35, x y 7,则 1 x 8 y 的值为2(3) 已知3m a 3,b 31 n 2,求 a 2m 3b n 3a 2mb n a 4m b 2n 的值 3. 若 nab 2 2 与 9a 2b' m互为相反数,求 m n 的值4.( 1)已知 a 8131,b 2741,C 961,则 a,b,c 的大小关系 ___________________________ (2)比较 3555,4 444,5333 的大小 _________________________ .题型二:同底数幕的除法35. ( 1) a 3a4(3)3a 2 3ab 2(4) 2x 2y 3 8 x 2 $ x 2(5)150.1252152003 132320023 mn 2(6) x yy x24(2) st t s st(2)3x -818. 若 3x 4,9y 7,则 3x 2y 的值 _________________ . 9. 已知x 2x 31,整数x 的值为 __________________ 10. 计算 10 2 3,10-,求 106 12 的值•51 已知 x 5y 6,求 x2 5xy 2 已知 x+y 5,xy 6,求 x y11. (1)c3 c 22a 3a4a5a 51 2 2(2) a b 3ab a b4(3) x 3 x 1x x 2 12(4) x 1 x 1题型三:整式的乘法运算 5a ab b 22x 2 x 46. 用科学记数法表示下列各数:(1)0.00005127. 计算:(用科学记数法表示结果)(1) 9 10418 107(2)-0.0000071(2) 2 102 10 7 312. 30y 的值.2xy 的值.李甲数学让高分成为习惯2 213. x xy 2y x 7y 6 x 2y A x y B .求A李甲数学让高分成为习惯题型四:整式的除法运算 16. ( 1) 12a 3b 5c 23a 2b 318. 若x 取整数,则使分式的值为整数的x 值有 _____________ 个. 2x 1219. 若x13,则〒的值为 _____________________________ .xx x 114.若多项式x 22px 8和多项式x3x q 的乘积中不含x 3和x 2项,求p 和q 的值. 15.先化简,再求值:x y x 2y12 2x 3y x 2y ,其中 x2,y17.化简求值:25x 4y 4y 5x 4y5x ,其中 x 1,y 3.(2)21 2」4 4 a b c 3 1 ,3 2ab c-a 3b 2248。

七年级数学上册专题知识讲义-乘法公式、整式的除法(附练习及答案)

七年级数学上册专题知识讲义-乘法公式、整式的除法(附练习及答案)

乘法公式、整式的除法【考向解读】一、考点突破本讲考点主要包括:平方差公式、完全平方公式,同底数幂的除法、单项式除以单项式、多项式除以单项式。

通过多项式的乘法运算得到乘法公式,再运用公式计算多项式的乘法,培养从一般到特殊,再从特殊到一般的思维能力;通过乘法公式的几何背景,培养运用数形结合思想和整体思想解决问题的能力。

平方差公式是中考命题中比较重要的考点之一,单独命题的题型多为填空题,选择题和简单的计算题,这一知识点也常融入其他知识命题;完全平方公式在中考中占有重要地位,它在数的运算,代数式的化简,方程,函数等方面都有极其广泛的应用。

整式的除法在中考中出现的频率比较高,题型多见选择题与填空题,有时也会出现化简求值题,因此运算必须熟练。

二、重点、难点提示重点:平方差公式、完全平方公式,整式的除法及零指数幂的运算。

难点:乘法公式中字母的广泛含义及整式除法法则的应用。

【重点点拨】知识脉络图【典例精析】能力提升类例1 计算:(1)(-2a-b)(b-2a);(2)(2x+y-z)2.一点通:第(1)题中的b-2a=-2a+b,把-2a看成平方差公式中的“a”即可;第(2)题有多种解法,可把2x看成完全平方公式中的“a”,把y-z看成公式中的“b”,也可把2x+y看成公式中“a”,把z看成公式中的“b”。

答案:(1)(-2a-b)(b-2a)=(-2a-b)(-2a+b)=(-2a)2-b2=4a2-b2;(2)(2x+y-z)2=[(2x+y)-z]2=(2x+y)2-2z(2x+y)+z2=4x2+4xy+y2-4xz -2yz +z 2.点评:这两题都可以运用乘法公式计算,第(1)题先变形,再用平方差公式;第(2)题把三项和看成两项和,两次运用完全平方公式。

例2 计算:(1)[(-3xy )2·x 3-2x 2·(3xy 2)3·12y ]÷(9x 4y 2);(2)[(x +2y )(x -2y )+4(x -y )2]÷(6x ).一点通:本题是整式的混合运算,解题时要注意运算顺序,先乘方,再乘除,最后加减,有括号先算括号里的。

七年级数学拓展第三讲整式的乘法讲义

七年级数学拓展第三讲整式的乘法讲义

第三讲整式的乘法整式的乘法1.乘方知识回顾求多个相同因数的乘积的运算,叫做乘方。

一般地将乘方写做a n ,读作a 的n 次方,也读作a 的n 次幂,其中a 叫做底数,n 叫做指数,乘方的结果叫做幂和数字的乘方运算类似,字母的乘方运算也遵循以下法则(1)同底数幂相乘,底数不变,指数相加,即m n m n a a a+⋅=(2)乘积的幂,等于各因数的幂的乘积,即()n n n a b a b⋅=⋅(3)幂的乘方,底数不变,指数相乘,即()n m mna a =(4)同底数幂相除,底数不变,指数相减,即()m n m n a a am n -÷=>(5)任何不为0的数的0次幂都是“1”,即a 0=1一般的,我们不用特意强调字母a 、b 的取值范围,但是我们默认它们要使得整个式子有意义,例如上面的(4)、(5)中,都要求a ≠0在整式的乘法运算中,我们主要会用到上面的(1)、(2)、(3)2.单项式乘以单项式(1)系数相乘作为积的系数;(2)相同字母的因式相乘,应用同底数幂的运算法则底数不变,指数相加;(3)只在一个单项式里含有的字母,连同它的指数也作为积的一项例如:()()()3232525(25)10x x y x x y x y⨯=⨯⨯⋅⨯=注意:单项式与单项式的乘积仍然是单项式3.单项式乘以多项式利用乘法分配律,用单项式分别去乘多项式的每一项,转化为单项式与单项式相乘的形式,再把得到的所有乘积相加例如:()()()2323253235232(5)610a a ab a a a ab a a b ⎡⎤⨯-=⋅+⋅-=-⎣⎦4.多项式乘以多项式先把其中一个多项式看作整体,用它去乘另一个多项式的每一项,利用分配律拆开括号。

此时括号由两个减少为一个。

再利用单项式乘以多项式的方法,将所有括号拆开,最后将所有项加起来例如:注意:把所有括号展开后,最后一定要记得合并同类项例1.计算:()()54232233232224(1)(2)3()3(3)(4)m n m n a a x xy z ⋅⨯⨯-⨯⎡⎤⎢⎥⎣⎦()()()()()()()()232222432322322(1)371(2)2(3)354(4)332ax a xy mn mnx a b a bc ac a b ab a b ⋅---⋅-⋅--⋅-⋅-例3.计算:()()()232222(1)(4)3211(2)8742(3)()25(4)7834xy x xy x x x x y xy a ab b b a b +-⎛⎫--+ ⎪⎝⎭+⎛⎫--++- ⎪⎝⎭()()()()22222222(1)(31)(2)(2)(2)35(3)2(32)(54)1(4)4(32)2(5)2326(6)(232)23x y a b a b x y x y m n n m n x y z x y z bc ab ac a b c ++--+-⎛⎫++ ⎪⎝⎭++-+++-+例5.计算:(1) (x+2)(y+2)(z+2)(2) (x+1)(y+1)(z+1)(3) (x+7)(y+2)(1-x+xy)(4) (3x+2)(6y+5)(2z+1)一元整式的乘法关于一元整式(只含有一个字母)的乘法,我们可以运用列竖式来运算。

七年级数学拓展第六讲整式乘除整式乘法进阶讲义

七年级数学拓展第六讲整式乘除整式乘法进阶讲义

第六讲整式乘除整式乘法进阶整式乘法进阶1.整式的乘法(1)单项式乘以单项式,把它们的系数、相同字母分别相乘,对于只在一个单项式含有的字母,则连同它的指数作为一个因式(2)多项式乘以单项式,用单项式去乘多项式的每一项,再把所得的积相加(3)多项式乘以多项式,主要有三种方法:①利用乘法分配律,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加:②一元整式的乘法也可以利用列竖式的方法进行计算,列竖式时注意使用分离系数的技巧;③利用特殊的乘法公式进行计算。

利用分离系数法,列竖式进行计算,能使我们的计算更为简洁明了2.乘法公式以下7个乘法公式是以后代数式运算的基础,一定要牢牢记住例1.整式乘法复习:()()()()()()()()32232234222222(1)332(2)3(25)(3)(31)(21)(4)1231(5)(43)(43)(6)(32)(7)(25)(8)55(9)(4)(4)16(10)()()a b ab a b xy x y x x x x x x y y x a b x x x x y y y a b c d a b c d -⋅-⋅--++++--+-+--++--++++-+-+整式的除法1.单项式除以单项式被除式,除式里的系数相除作为商的系数;相同字母的幂相除,应用同底数幂的运算法则一一底数不变,指数相减;最后把它们的积作为商的因式。

对于只在被除式里出现的字母,连同它的指数也作为商的一个因式例如:()53532102(102)5x y x x x y x y ÷=÷⨯÷⨯=2.多项式除以单项式先用这个多项式的每一项分别除以这个单项式,转化为单项式除以单项式,再把所得的商相加例如:()()()32322331833333183(33)1161a a a a a a a a a a a a -+÷=÷+-÷+÷=-+3.多项式除以多项式关于整数,我们学过带余除法:17÷3=5 (2),而对于多项式,我们可以类似地作除法这里得到的3x 2-3x +2称为商式,最后的2称为余式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的乘除培优讲义
【知识精要】:
1幂的运算性质:
① 〔、为正整数〕 ② 〔为正整数〕 ③ 〔、为正整数〕 ④

、为正整数,且



〔,为正整数〕
2整式的乘法公式:

② ③
3. 科学记数法
,其中
4单项式的乘法法那么:单项式与单项式相乘,把他们的系数,一样字母分别相
乘,对于只在一个单项式里含有的字母,那么连同它的指数作为积的一个因式。

5.单项式乘以多项式:就是用单项式去乘多项式的每一项,再把所得的积相加,
多项式与多项式相乘的法那么;
6.多项式与多项式相乘:先用多项式的每一项乘以另一个多项式的每一项,再
把所的的积相加。

7单项式的除法法那么:单项式相除,把系数、同底数幂分别相除,作为商的因
式,对于只在被除式里含有的字母,那么连同它的指数作为商的一个因式。

8多项式除以单项式:先把这个多项式的每一项除以这个单项式,在把所的的商
相加。

【例题解析】:
例1, 计算:
教师寄语:
. 任何的限制,都是从自己的内心开场的。

忘掉失败,不过要牢记失败中的教训。

2
1、(a+b+c)(a-b-c) 2,
,3、20212-2021×20074、(2a-b)2(b+2a)2例2,求的值。

例3 [例2] ,,求的值。

例4 [例3],求的值。

例5 [例4] ,,求的值。

【课堂精练】:
1. 〔为偶数〕
2用科学记数法表示为
3.
4.
5.
6.
7. 假设,那么
8. 如果,那么=〔〕
A. B. C. D.
9. 所得结果是〔〕
A. B. C. D. 2
10. 为正整数,假设能被整除,那么整数的取值范围是〔〕
A. B. C. D.
11. 要使成为一个完全平方式,那么的值为〔〕
A. B. C. D.
12. 以下各式能用平方差公式计算的是〔〕
A. B.
C. D.
13.计算:
〔1〕〔2〕
〔3〕〔为正整数〕
〔4〕
【培优拓展】:
1.,求
的值。

2. 假设,求
的值。

3.
,求
的值。

4.己知x+5y=6 , 求 x 2+5xy+30y 的值。

5计算〔1-221〕〔1-231〕〔1-241〕…〔1-291〕〔1-20
11
〕的值.
6.假设〔x 2+px +q 〕〔x 2-2x -3〕展开后不含x 2,x 3项,求p 、q 的值.
7.〔a -1〕〔b -2〕-a 〔b -3〕=3,求代数式 ½〔a ²+b ²〕-ab 的值.
8.化简求值:[〔x +
21y 〕2+〔x -21y 〕2]〔2x 2-2
1y 2〕,其中x =-3,y =4.
①.设12142
++mx x 是一个完全平方式,那么m =_______。

②.51
=+
x x ,那么221x
x +=_______。

③方程()()()()41812523=-+--+x x x x 的解是_______。

④.2=+n m ,2-=mn ,那么=--)1)(1(n m _______。

⑤.2a =5,2b =10,2c =50,那么a 、b 、c 之间满足的等量关系是___________.
⑥.假设62
2=-n m ,且3=-n m ,那么=+n m .
(1)()()0
2
2012
14.3211π--⎪⎭
⎫ ⎝⎛-+--
(2)〔2〕()()()()2
3
3
2
32222x y x xy y x ÷-+-⋅
〔3〕()()
222223366m m n m n m -÷--
【数学故事】:
第一个故事:企鹅肉 一个人在朋友家吃饭,问朋友这餐吃的是什么肉?朋友说是企鹅肉,他就号啕大哭自杀了。

为什么?
第二个故事:跳火车 一个人坐火车去邻镇看病,看完之后病全好了。

回来的路上火车经过一个隧道,这个人就跳车自杀了。

为什么?
第三个故事:水草 有个男的跟他女友去河边散步,突然他的女友掉进河里了,那个男的就急忙跳到水里去找,可没找到他的女友,他伤心的离开了这里,过了几年后,他故地重游,这时看到有个老头的在钓鱼,可那老头钓上来的鱼身上没有水草,他就问那老头为什么鱼身上没有沾到一点水草,那老头说:这河从没有长过水草。

说到这时那男的突然跳到水里,自杀了。

为什么?
第四个故事:葬礼的故事 有母女三人,母亲死了,姐妹俩去参加葬礼,妹妹在葬礼上遇见了一个很pp 的男子,并对他一见倾心。

但是葬礼后那个男子就不见了,妹妹怎么找也找不到他。

后来过了一个月,妹妹把姐姐杀了。

为什么?
第五个故事:半根火柴 有一个人在沙漠中,头朝下死了,身边散落着几个行李箱子,而这个人手里紧紧地抓着半根火柴,推理这个人是怎么死的?`
第六个故事:满地木屑 马戏团里有两个侏儒,瞎子侏儒比另一个侏儒矮,马戏团只需要一个侏儒,马戏团里的侏儒当然是越矮越好了。

两个侏儒决定比谁的个子矮,个子高的就去自杀可是,在约定比个子的前一天,瞎子侏儒也就是那个矮的侏儒已经在家里自杀死了。

在他的家里只发现木头做的家具和满地的木屑。

问他为什么自杀?
第七个故事:夜半敲门 一个人住在山顶的小屋里,半夜听见有敲门的,他翻开门却没有人,于是去睡了,等了一会又有敲门声,去开门,还是没人,如是者几次。

第二天,有人在山脚下发现死尸一具,pol.ice 来把山顶的那人带走了。

为什么?
【当堂检测】:
a 为正整数,且x 2a =5,那么〔2x 3a 〕2÷4x 4a 的值〔 〕 〔A 〕5 〔B 〕
2
5
〔C 〕25 〔D 〕10 =⎪
⎭⎫ ⎝

-⨯⎪⎭
⎫ ⎝⎛-2012
2012
532135.2〔 〕
A. 1-
B. 1
C. 0
D. 1997
()()A b a b a +-=+223535,那么A=〔 〕
A. 30ab
B. 60ab
C. 15ab
D. 12ab
4.,3,5=-=+xy y x 那么=+2
2y x 〔 〕
A. 25. B 25- C 19 D 、19- 5.,5,3==b
a
x x 那么=-b
a x 23〔 〕
A 、
2527 B 、10
9
C 、53
D 、52
6. .如图,甲、乙、丙、丁四位同学给出了四 种表示该长方形面积的多项式: ①(2a +b )(m +n ); ②2a (m +n )+b (m +n ); ③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn , 你认为其中正确的有
A 、①②
B 、③④
C 、①②③
D 、①②③④ 〔 〕
7.如(x+m)与(x+3)的乘积中不含x 的一次项,那么m 的值为〔 〕 A 、 –3
B 、3
C 、0
D 、1
8..(a+b)2=9,ab= -11
2 ,那么a²+b 2的值等于〔 〕
A 、84
B 、78
C 、12
D 、6 9.计算〔a -b 〕〔a+b 〕〔a 2+b 2〕〔a 4-b 4〕的结果是〔 〕 A .a 8+2a 4b 4+b 8 B .a 8-2a 4b 4+b 8 C .a 8+b 8 D .a 8-b 8 〔1〕〔32a 2b 〕3÷〔31ab 2〕2×43a 3b 2; 〔2〕〔4x +3y 〕2-〔4
x
-3y 〕2;
n
m a b
a
〔3〕〔2a -3b +1〕2; 〔4〕〔x 2-2x -1〕〔x 2+2x -1〕;
〔5〕〔a -
61b 〕〔2a +31b 〕〔3a 2+12
1b 2
〕;
【快乐作业】:
1、(_____-4b )(_____+4b )=9a 2-16b 2 2,(_____-2x )(_____-2x )=4x 2-25y 2
计算
3..(-2x 2+5)(-2x 2-5)
4..a (a -5)-(a +6)(a -6)
5.(2x -3y )(3y +2x )-(4y -3x )(3x +4y )
6.(31x +y )(31x -y )(9
1
x 2+y 2)
7.(x +y )(x -y )-x (x +y )
8化简求值 2
2)2()2()2)(12(+---+-x x x x ,其中2
11
-=x。

相关文档
最新文档